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Abstract
We investigate the power-down mechanism which decides when a machine transitions between states
such that the total energy consumption, characterized by execution cost, idle cost and switching
cost, is minimized. In contrast to most of the previous studies on the offline model, we focus on the
online model in which a sequence of jobs with their release time, execution time and deadline, arrive
in an online fashion. More precisely, we exploit a different switching on and off strategy and present
an upper bound of 3, and further show a lower bound of 2.1, in a dual-machine model, introduced
by Chen et al. in 2014 [STACS 2014: 226-238], both of which beat the currently best result.
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1 Introduction

Machines consume energy and many of them have the following property: namely machines
have two states, ON and OFF, and change between the two states quite often. Furthermore,
it requires a relatively large amount of energy to change from OFF to ON. For instance, a
laptop goes to sleep or shutdown (OFF) if we do not touch it for, e.g., one hour, and comes
back to ON if we press some key, but it is actually energy consuming. Copy machines also
turn off automatically if there is no job for, e.g., ten minutes. Similarly, it consumes relatively
large energy for heating them up when a new job arrives. There are many other similar
examples, and it is obviously important to design online algorithms to minimize the energy
consumption for this type of machines. Fortunately most of those problems are essentially
equivalent to the well-known ski-rental problem and the optimal solution has been known
for a long time both in deterministic and randomized cases [12,16].

In this study, we investigate the online model of the dynamic power management problem,
discussed by Irani et al. [14, 15] and Chen et al. [7], which aims at determining when to
transition a machine between the states: busy or idle (ON) and sleep (OFF) to finish all
input jobs such that the energy consumption is minimized. Suppose a machine M requires
E units of energy to change its state from OFF to ON and needs ψσ units per unit of time
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to keep it ON, i.e. the idle cost. The goal is to finish all input jobs, arriving in an online
fashion, while minimizing the total energy consumption. Let us consider a simpler model
first, where jobs arriving in an online fashion are required to be immediately performed
without any delay. One can observe that the optimal deterministic online algorithm of the
ski rental problem can be applied to solve this model, with the competitive ratio of 2. The
intuition is quite straightforward, by turning off the machine M E/ψσ units of time after its
last job is finished. Note that the performance of an online algorithm is typically evaluated
by competitive analysis. More precisely, the quality of an online algorithm is measured by
the worst case ratio, called competitive ratio, which is defined to be the fraction of the cost
of the online algorithm over that of the offline optimal algorithm, where the offline algorithm
is aware of all jobs in advance.

However, when considering a more complicated model, in which each job j is given as
(aj , dj , cj), where aj denotes the arrival time, dj the deadline and cj the execution time, a
dramatic change does happen. In other words, the execution of each job is allowed to be
postponed, which obviously increases the problem hardness. There have been actually not
many studies in the literature for the online model [12]. Irani et al. [14,15] initiated the study
of combining the above power-down mechanism with dynamic speed scaling, where the latter
technique has been widely explored in the past decades [5, 8, 9, 15,19]. The basic concept of
dynamic speed scaling is that a machine’s processing speed can be adjusted dynamically, and
the power consumption rate is usually represented by a convex function of the processing
speed in terms of time expense. They proposed the first online algorithm with a constant
competitive ratio of max{c1c2 + c1 + 2, 4}, where c1 and c2 are some constant parameters
in a given convex power function [15]. For example, if the power function is quadratic, the
upper bound of competitive ratio is 8. Chen et al. [7] considered a similar model but without
using dynamic speed scaling, where an online algorithm can use two machines M1 and M2
instead, under the same assumption that all input jobs must be finished by the offline optimal
scheduler using a single machine. This assumption is actually the so-called single machine
schedulability condition [10], which is characterized by the following lemma.

▶ Lemma 1. (Chetto et al. [10]) For any set of jobs J , they can be optimally scheduled
on one machine using the earliest-deadline-first(EDF) principle. That is, the job with the
earliest deadline is always selected for execution at any moment, if and only if the following
condition holds:

For any time interval (ℓ, r), we have
∑

j:j∈J ,ℓ≤aj ,dj≤r

cj ≤ r − ℓ. (1)

The condition is equivalent to the earliest-deadline-first (EDF) schedulability [19]. Here, we
also remark that a feasible solution can be a preemptive schedule but the jobs can only be
executed without migration. Chen et al. [7] gave an upper bound of 4 and a lower bound of
2.06 for the competitive ratio of this dual-machine problem. It is a significant contribution
for online dynamic power management problems, but unfortunately, the above gap is not
very small, for which there has been no improvement up to now.

Our Contribution. This paper improves both upper and lower bounds to 3 and 2.1, respect-
ively, for exactly the same dual-machine model. Namely the competitive ratio gap between
lower and upper bounds is improved from 1.94 in [7] to 0.9. Our algorithm has the same
basic structure as the one in [7], but two critical differences, which exactly contributes the
improvement, should deserve being mentioned. First, we delay jobs but turn on a machine
earlier than its due time by a margin instead of “energy-efficient anchor” introduced in [7].
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Second, our idle time after the machine is finished with its execution is not set to B = E/ψσ,
i.e. the so-called break-even time, but set to twice that value. Note that the break-even
time has always been used for the class of similar problems including the famous ski-rental
problem, as mentioned earlier. We hope this escape from the common tradition will help on
several different occasions in the future.

Moreover, we use a standard math induction for the analysis, making our analysis
significantly simpler than that of [7,15], which will also contribute to further improvement of
the bounds hopefully. In [7, 15], they made their competitive analysis by introducing what
they call a “sleep interval” where the optimal offline schedule is OFF and an “awaken-interval”
where their online algorithm is ON, and gave a key lemma saying a single sleep interval
overlaps with at most two awaken intervals. This is clever since the analysis boils down
to comparing a single (consecutively ON) interval of the online algorithm and that of the
optimal offline schedule. However, a single such interval of the optimal offline schedule can
still contribute to two such intervals of the online algorithm even if it can actually contribute
to only one in many cases. Thus the analysis underestimates the cost of the optimal offline
schedule. Our analysis splits the time line simply into “phases” that realizes the same
intervals for an online algorithm and the optimal offline schedule, which makes it possible
to use the standard math induction. Of course an online algorithm and the optimal offline
schedule can execute different jobs in each phase, but that can be managed by considering
“assets” and “liabilities” of jobs between phases. More details of the basic idea will be given
in Sections 2 and 3.

Other Studies. In comparison with a few amount of research on pure dynamic power
management, there have been relatively more studies which incorporate speed scaling into
the power-down mechanism. Albers et al. [1] investigated the offline setting of speed scaling
with a sleep state and presented a 4

3 -factor approximation algorithm. Antoniadis et al. [4]
further improved the result to a fully-polynomial time approximation scheme. Considering
the multi-machine systems, Demaine et al. [11] developed a polynomial-time algorithm
based on dynamic programming. Albers et al. [2] then considered dynamic speed scaling
with job migration. Very recently, Antoniadis et al. [3] presented a pseudo-polynomial time
algorithm for a single machine based on a linear programming relaxation and a constant-factor
approximation algorithm for the case of multiple machines. Readers may refer to the survey
works [6, 13,18] for more details.

2 Upper Bound

We formally introduce the dual-machine model proposed by Chen et al. [7]. Each machine
requires a constant amount of energy to switch its state from sleep to either busy or idle,
denoted by E. Suppose every machine uses a constant speed to execute jobs; that is, it
consumes a constant amount of energy per unit of time, denoted by ψb when it is busy and
ψσ when it is idle. The break-even time, as mentioned earlier, denoted by B, is defined
to be E/ψσ, which represents that when a machine is idle for B units of time, the energy
consumption is equal to E, i.e. the energy consumption for switching on a machine from
sleep to the other states. The standard assumption is that ψσ ≤ ψb. Another assumption
in this study is that E = ψb = 1 (and ψσ ≤ 1). If E is a positive integer k, we can use
our model by changing a unit time from 1 to 1/k (and changing the job and idle length
accordingly). Thus our model does not lose any generality and this setting contributes to
significantly simplified expositions. Recall that our input always satisfies Condition (1) in
this model, where a feasible schedule allows job preemption but no migration.

ISAAC 2022



28:4 Improving the Bounds of the Online Dynamic Power Management Problem

Before introducing our online algorithm, we have some more notation. The dual-machine
model has two machines: one of them is called MP (a primary machine) and the other MS

(a secondary machine). We basically use the primary machine as far as possible and turn on
the secondary machine if necessary. That is, we set MP to be the main machine, and MS

to be the backup machine. When a job arrives, we always turn on MP first and decide to
turn on MS only if it finds out that MP is not able to finish all the pending jobs before their
deadlines; i.e., MP is overloaded. In other words, MP and MS are logical names and the two
(physical) machines may swap their names in our algorithm. Let QMP

and QMS
denote the

job queues for MP and MS , respectively, which are already scheduled using EDF; namely,
the jobs in QMP

and QMS
are being executed continuously on MP and MS , respectively. We

use Q to denote a queue for jobs not yet scheduled. If a job in QMP
or QMS

is finished, it is
removed from the queue. Also, let c′

j(t) denote the remaining execution time of job j at time
t, and W (t, t†) =

∑
j∈Q(t,t†) c

′
j(t) denote the total remaining execution time in time interval

(t, t†), where Q(t, t†) denotes the subset of jobs that have not yet finished their execution
up to time t while their deadlines are not larger than t†, where t† > t. When a new job j′,
given by (aj′ , dj′ , cj′), is arriving, there are two cases. One is that the current schedule for
QMP

can accommodate its execution. If so, j′ is inserted into QMP
, which is rescheduled

by EDF (we say MP is available). The other case is that there is no room for j′ in QMP
(if

jobs in QMP
would not have been delayed, this cannot happen because of the single machine

schedulability assumption). We call such a j′ urgent. If an urgent job comes, then MS is
turned on and j′ is executed on MS immediately (where MP continues executing the already
assigned jobs). We then swap MP and MS at this point of time, which means the original
MS can act as a new primary machine. Table 1 shows our algorithm, denoted by A. Note
that in the following, we use ALG to denote an online algorithm, OPT an offline optimal
scheduler and CR a competitive ratio for simplicity.

Table 1 Algorithm A.

Initially assign MP and MS to two machines arbitrarily.
The input satisfies Condition 1 of Lemma 1.
At any time t, A proceeds as follows:

1. Execution of jobs:
a. No machines are on.

If there exist t† and t∗ such that W (t†, t∗) ≥ t∗ − t† and t ≥ t† − u, turn on one
machine (MP ) and move all jobs in Q to QMP

.
b. Only MP is on and a new job j comes.

If there is no t∗ such that W (t, t∗) > t∗ − t for jobs in QMP
∪ {j} (i.e., MP is

available), add j to QMP
and reschedule it.

Otherwise, turn on the other machine (MS) and add j to QMS
that is empty.

After that switch MP and MS .
c. MS is on and a new job j comes.

If MS is available, add j into QMS
and reschedule it.

Otherwise move it to QMP
(it is guaranteed that MP is available).

2. Idle state:
a. MS never has an idle state.

That is, we immediately turn off MS once QMS
becomes empty.

b. MP becomes idle once QMP
becomes empty.

We turn off MP when its total idle time becomes 2/ψσ.
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Algorithm A has two key gadgets. First, we present a new notion of “margin”, as a
positive constant u, for delaying a job. That is, we start a job earlier than its due time by u.
Fig. 1 shows examples to illustrate the idea. Here, we use a solid line segment from time aj

to dj for each job j = (aj , dj , cj), and a gray box to represent its execution time cj . Below
those line segments and boxes, we illustrate how those jobs are executed by ALG and OPT.
Dashed line segments show the idle time of ALG and dotted line segments the idle time of
OPT (if any).

Figure 1 Two examples for illustrating the notion of margin.

As shown in Fig. 1 (a), j1, having a tiny execution time of ϵ, starts at d1 −u− ϵ. Here we
let u = 0.5 to get close to the optimal setting although its perfect setting seems hard. (We
will show more details about the margin setting in the next section.) Thus, it is necessary
that job j2 that provokes MS ’s turn-on has an execution time of at least 0.5 (otherwise it can
interrupt j1 and be inserted into MP ). See Fig. 1 (b) for a more complicated scenario. Now
j2 is a bit smaller than the one in (a) and can be inserted into the (old) MP ’s execution gap
caused by the margin u. Then a tiny j3, which is urgent, makes the secondary machine ON,
but its idle time can start 0.5 earlier than before. Note that the idle time of a machine is
typically set to B after the last job is finished, where B = E/ψσ = 1 since we are temporarily
assuming ψσ = 1. It is actually a popular setting for the idle time that has been proved
optimal in similar situations including the ski-rental problem. In contrast, the second key
gadget of Algorithm A is that we set this value to twice, giving rise to that OPT has an
interval of 1.5 from the end of j2 (i.e. d2) to the end of the idle state of MP . On the other
hand, recall that OPT has an interval of 2 in the previous scenario (see Fig. 1 (a)). One can
observe that OPT could use this interval to execute the pending jobs and thus the longer the
better for this interval. However, we have to use 1.5 instead of 2 for the analysis in Section 3.

Tight Analysis of Algorithm S [7]. The two gadgets of Algorithm A reveal the improvement
of the upper bound in some sense. Here we recall Chen et al.’s 4-competitive algorithm,
called Algorithm S, and conduct tight analysis of their algorithm to clarify the merit of
our proposed gadgets. That is, we present a tight example to show its worst competitive
performance.

Basically, the main structure of Algorithm S is similar, but they let every job j be
associated with a parameter hj = max{aj , dj − λB}, i.e. its energy-efficient anchor, to
determine when the main machine MP should be switched on for a pending job j, where
λ is a constant (setting to be one in [7]). Set ψb = ψσ = 1, and E = B = k, where k is a
sufficiently large value, for simplicity. As shown in Fig. 2, we let c1 = c3 = B and c2 = c4 = ϵ.
Algorithm S turns on MP at h1. Since j2 arrives at the same time, i.e. a2 = h1, obviously,

ISAAC 2022



28:6 Improving the Bounds of the Online Dynamic Power Management Problem

Figure 2 Tight example for Algorithm S [7].

MP cannot finish j2 before its deadline. Therefore, MS is switched on to execute j2. One can
observe that the design of the margin in Algorithm A can provide the flexibility to escape
from the scenario.

Next, the turn-off strategy of Algorithm S is as follows: if both machines are ON, MP

(new MS) is turned off as soon as it becomes idle. Otherwise, if only one of the machines
is ON, then when the machine becomes idle, it is switched off once the length between the
current time and the moment when MP was turned on has reached B. In this example, MS

remains idle until MP keeps ON for B units of time, resulting in MP and MS being switched
off at the same time. One can observe that if the job executed on MS is tiny, the malicious
adversary can punish the turn-off strategy since it turns off MS too early. We design the
same worst-scenario for jobs j3 and j4 and consider the performance. As a result, the total
energy cost of ALG is 4E+ 4B − 2ϵ = (4k− ϵ) · 2. By contrast, in the offline optimal solution,
it turns on a single machine at a1 and keep it ON until all the input jobs are finished. The
minimum energy cost is E + 2B + 2ϵ+ ϵ′ = k + 2(k + ϵ) + ϵ′.

It is not hard to see that, if we consider the above case of four jobs to be one round, and
the energy cost of Algorithm S for r

2 rounds, where r is a multiple of 2, is (4k − ϵ) · r, while
the energy cost of OPT is k + r(k + ϵ) + (r − 1) · ϵ′. Letting the values of ϵ and ϵ′ be very
small, the ratio becomes

4kr
k + kr

= k · 4r
k · (r + 1) = 4r

r + 1 .

When the value of r is sufficiently large, the CR approaches 4. The tight analysis reveals the
advantages of our designed gadgets in Algorithm A.

3 Analysis of the Algorithm

For analysis, we need to show that (i) A is correct, namely it can execute any sequence of
jobs arriving under the single machine schedulability condition and (ii) its CR is at most 3.
We mostly focus on (ii). (i) is not hard and the following observation should be enough to
see every job is executed:
(1) Suppose when a new job j comes at time t, no machine is ON. Then if the condition of

1-a for Q ∪ j is not met, j just goes to queue Q. Once j enters Q, it must be executed
eventually by 1-a. If the condition of 1-a is met, then all the jobs in Q go to QMP

and
we go to 1-b. Here j is inserted to QMP

(if possible) or is executed on MS that is turned
on at t. Thus j is executed.

(2) Suppose only MP is already ON but MS is OFF when j comes. As (1), j is inserted to
QMP

or executed on MS that is turned on at t.
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(3) Suppose MS is ON when j comes. If MS is available, j is executed on it. Otherwise,
note that when MS is turned on for the last time, all the jobs in Q go to MS (recall
MP and MS are swapped) and while MS is on, all newly coming jobs are executed on
MP due to EDF. This execution is possible since if the whole input sequence satisfies
Condition 1 of Lemma 1, its arbitrary suffix obviously does, too. j is one of them and
must be executed.

To prove the CR, we first define a phase. Suppose the system changes its state from both
machines OFF to at least one machine ON at t1 and returns to the state of both machines
OFF at te. Also let a1, a2, . . . , ak be the arrival time of the jobs executed during t1 to te and
let t0 be min{a1, . . . , ak}. Then the time slot from t0 to te is called a phase. Note that an
entire execution of A consists of some phases. Let P (i) be the i’th phase.

Figure 3 A single phase. Now a period of idle time is 2/ψσ. MP and MS are swapped at ay1 .

Fig. 3 illustrates how a single phase looks like. x1 and x2 are executed on MP , then an
urgent y1 comes and executed on the new MP (so w1, x3 and x4 are executed on the new
MS). w1 is a job moved from Q to QMP

when x1 starts (more precisely, w1 is scheduled
after x1, but x2 is inserted later due to the EDF principle). x3 and x4 are added to QMS

.
y2 is a job that cannot be inserted to QMS

because of the existence of x4; it goes to MP .
Thus MP can be OFF for some period of time during a single phase (but MS should be ON
during that period by definition). The earliest arrival time of the jobs A executes in this
phase is that of x1, which is the start time, t0, of this phase. Note that te at which the phase
ends is the moment when the idle time after y2 expires. An example of the OPT’s execution
sequence is given at the bottom of the figure. It must execute x1, x2, x3, x4, y1 and y2 since
each of them has its arrival time and deadline within the phase. w1 is not executed by OPT
in this example. By contrast, z1 which is performed by OPT is not executed by A (can be
executed in the previous phase), so its arrival time is not counted to determine the beginning
of the phase. (Note that OPT and A as well, may execute each job separately, so we have
two z1’s in the figure.) Fig. 3 is also used for the later analysis of the competitive ratio. A
phase is called a single-machine phase if only one machine (MP ) is ON in that phase and a
dual-machine phase otherwise.

Our proof of the CR uses a math induction. Since A is deterministic, the set of jobs
that are executed by A in P (i) is uniquely determined once the input is given, which we
denote by JA(i). For the jobs executed by OPT in P (i), the situation is less clear; jobs whose
arrival time and deadline are both within P (i) must be executed, but jobs such that only

ISAAC 2022
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one of them is within P (i) may or may not be executed even partially. Furthermore, OPT
may execute some jobs outside phases, namely while no machine is ON. Fix an arbitrary
execution sequence S(i) of OPT in this phase. Then we define the following parameters used
in the induction.
(1) α(i) (λ(i), and δ(i), resp.) = the total execution time of the jobs executed by both A

and OPT (only by A and only by OPT possibly partially, resp.)
(2) A(i) is the cost of A in P (i) that includes α(i), λ(i), turn-on costs and idle costs.
(3) Of (i) is a lower bound for the cost of OPT, namely it includes α(i), δ(i) and idle costs

if any. Note that it does not include the turn-on cost when S(i) starts since OPT may
not need it depending on its state at the end of the previous phase, but does include
one(s) if S(i) includes turn-off and turn-on in the middle of the phase. On(i) is similar
but we impose the condition that OPT is ON at the end of P (i).

For instance, consider P (i) whose execution sequence looks like Fig. 1 (a). Then A(i) = 4.5,
Of (i) = 0.5 and On(i) = 2.5, where 0.5 is for the execution of jobs and 2 = (2/ψσ)ψσ is the
idle cost to keep it ON until the end of the phase.

▶ Theorem 2. A is correct and its CR is at most 3 for u = 0.5.

Proof. We omit the first part (see the previous observation). For the CR, we fix an arbitrary
execution sequence S (S(i) is its subsequence associated with P (i)) for the entire execution
sequence of OPT and prove two lemmas.

▶ Lemma 3. The following (2) and (3) hold for each phase for r = 3.

rOf (i) −A(i) ≥ δ(i) − λ(i) − r. (2)
rOn(i) −A(i) ≥ δ(i) − λ(i). (3)

The proof will be given later. Let O(i) be the (real) cost of OPT under the sequence S(i)
in P (i). Also let m be an integer less than or equal to the number of phases.

▶ Lemma 4. For r = 3, we have

m∑
i=1

(rO(i) −A(i)) ≥



m∑
i=1

(δ(i) − λ(i)) if OPT is OFF at the end of P (m). (6)

m∑
i=1

(δ(i) − λ(i)) + r if OPT is ON at the end of P (m). (7)

Proof. Suppose OPT is OFF at the end of P (i). Then O(i) should be at least Of (i) since
the latter is a lower bound and similarly for On(i) if OPT is ON at the end of the phase.
For m = 1, note that OPT must spend the turn-on cost of 1 that is not included in either
Of (i) or On(i). Therefore if OPT is OFF at the end of the phase, we have

rO(1) −A(1) ≥ rOf (1) + r −A(1) ≥ δ(1) − λ(1)

by Lemma 3. Otherwise, if OPT is ON at the end of the phase, we have

rO(1) −A(1) ≥ rOn(1) + r −A(1) ≥ δ(1) − λ(1) + r

similarly. Now suppose the lemma is true for m′ = m− 1. Then to prove that the lemma
also holds for m′ = m, we consider four cases and define C → D as the states of OPT at the
end of P (m− 1) and P (m) respectively: (i) OFF → OFF, (ii) OFF → ON, (iii) ON → OFF
and (iv) ON → ON. For case (i), OPT must pay the turn-on cost in P (m), so
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m∑
i=1

(rO(i) −A(i)) =
m−1∑
i=1

(rO(i) −A(i)) + rO(m) −A(m)

≥
m−1∑
i=1

(δ(i) − λ(i)) + 0 · r + rOf (m) −A(m) + 1 · r

≥
m−1∑
i=1

(δ(i) − λ(i)) + δ(m) − λ(m)

=
m∑

i=1
(δ(i) − λ(i))

by the induction hypothesis and Lemma 3. Here 0 and 1 before r are for handling the four
cases. Since the current case is OFF → OFF, the first 0 means formula (4) does not have r
on the right-hand side and the second 1 means that OPT must turn on in P (m). The other
cases are similar (just 0 and 1 before r change) and may be omitted. ◀

If there are m phases in total, it must be that
∑m

i=1 (δ(i) − λ(i)) = 0 and thus the
theorem is proved. What remains is to prove Lemma 3.

Proof. (Proof of Lemma 3) Suppose x1 = (a1, d1, c1) is the first job executed in some phase
P starting from t0 and ending at te. Then since x1 is executed in P , t0 ≤ a1 (there may be
another job executed in P and having an earlier arrival time). Also, since the ending time
of x1’s execution is to be d1 − 0.5 due to the delay (or not delayed at all if this amount of
delay is impossible) and we have a mandatory idle time, 2/ψσ ≥ 2, after its (or a later job’s)
execution, it must be that d1 ≤ tk. This means the period (a1, d1) is included in P , meaning
OPT also executes x1 in P . Thus, in each phase, both A and OPT execute at least one job.
Also it turns out, by definition, that A never executes a job outside phases.

Note, however, that OPT may execute some job, say x, outside phases (this happens,
e.g., if u1 in Fig. 4 is executed by OPT after this phase and before the next phase). If
that happens, we consider that x is executed in a “special” phase, P (i′), by extending the
definition of a phase. Note that this phase has A(i) = λ(i) = 0 and both Of (i) and On(i)
are at least δ(i), so (2) and (3) obviously hold. A special phase may continue to/from a
neighboring (normal) phase.

Figure 4 A single-machine phase. Recall a period of idle time of A is 2/ψσ.
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28:10 Improving the Bounds of the Online Dynamic Power Management Problem

We first prove the lemma for a single-machine phase P (i). See Fig. 4 which illustrates
the execution sequences of A and OPT as with Fig. 3. In this figure, the phase starts at
the arrival time of w1 and ends when ALG’s machine (MP ) turns off. x1 is the first job
executed in this phase, and x2 is a job whose arrival time and deadline are both within this
phase (so must be executed by both A and OPT in this phase). z1 has only its deadline, and
u1 and w1 have only their arrival times within the phase. Thus there are several different
types of jobs, but what is important is whether or not each job is executed in this phase.
In the example of this figure, x1 and x2, called type-AO jobs, are executed by both A and
OPT, w1 and u1, type-A, by only A, and z1, type-O, only by OPT. Each type can include an
arbitrary number of jobs, but as will be seen in a moment, those numbers are not important.
So we will progress our analysis by using these five jobs, x1, x2, w1, u1, z1, for a while and
will mention the generalization after this analysis. It should also be noted that a single job
may be executed by OPT in two or more phases. If this happens, we divide that job into
two or more parts and allow each part can have a different job type, if necessary.

Set the following moments (see the figure) of time: t1 and t2: the ending time of execution
and the deadline of x1, respectively. t3: the time when OPT becomes ON after time t0 to
execute x1 or maybe another job. t4 and t5: the start and ending times of the idle state of
A, respectively. Thus one can observe that neither the number of jobs in each type nor their
execution sequence is important to define these times, except x1 that is first executed. For
the five jobs, it turns out that A(i) = cx1 + cx2 + cw1 + cu1 + 1 + 2 (1 is the turn-on cost and
2 is the idle cost; recall once A enters an idle state, it continues until its total time becomes
2/ψσ, i.e., until its total idle cost becomes (2/ψσ)ψσ = 2), and Of (i) ≥ (cx1 + cx2 + cz1).
OPT’s execution of some job may exceed the border of the phase. If that happens, as
mentioned before, we can partition that job into two parts, the first one ends at the end of
the phase and the second one is to be the remaining part, which is executed in the following
special phase.

Now we have

rOf (i) −A(i) ≥ 3(cx1 + cx2 + cz1) − (cx1 + cx2 + cw1 + cu1 + 3)
= 2(cx1 + cx2 + cz1) + cz1 − (cw1 + cu1) − 3
≥ cz1 − (cw1 + cu1) − 3.

Thus (2) holds for any nonnegative values of cx1 through cu1 . Similarly, letting θ be the
idle time of OPT (if any) that keeps the OPT’s machine ON until t5 (OPT can turn off once
and turn on at or before t5, but OPT would then need an extra turn-on cost and our proof
becomes easier), we have On(i) ≥ cx1 + cx2 + cz1 + ψσθ and hence

rOn(i) −A(i) ≥ 3(cx1 + cx2 + cz1 + ψσθ) − (cx1 + cx2 + cw1 + cu1 + 3)
≥ 2(cx1 + cx2 + cz1 + ψσθ) + cz1 − (cw1 + cu1) − 3.

Here we have the following claim.

▷ Claim 5.

cx1 + cx2 + cz1 + ψσθ ≥ 1.5

Proof. We have a sequence of time relations:
(i) t2 − t1 ≤ 0.5 due to the margin,
(ii) t3 ≤ t2 (x1 must be executed before its deadline),
(iii) t1 ≤ t4 (obviously),
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(iv) t3 − t4 ≤ t3 − t1 (by (iii)) ≤ t2 − t1 (by (ii)) ≤ 0.5 (by (i)),
(v) t5 − t4 ≥ 2/ψσ (the total idle time),
(vi) t4 − t5 ≤ −2/ψσ (inversion of (v)), and
(vii) cx1 + cx2 + cz1 + θ = t5 − t3 = −(t3 − t5) ≥ 2/ψσ − 0.5 (by (iv)+(vi)).
We may need a bit more explanation for (i). Recall that if x1 is delayed and nothing happens,
t2 − t1 is exactly 0.5. However, some (small) job that comes after x1’s execution has started
may interrupt x1 and be inserted. It should also be noted that if dx1 − (ax1 + cx1) < 0.5,
then x1 is not delayed in the first place. Now we have from (vii) (note ψσ ≤ 1)

cx1 + cx2 + cz1 + ψσθ ≥ ψσ(cx1 + cx2 + cz1 + θ) ≥ 2 − 0.5ψσ ≥ 1.5. ◁

Thus we have

rOn(i) −A(i) ≥ 2 × 1.5 + cz1 − (cw1 + cu1) − 3 = cz1 − (cw1 + cu1),

meaning (3) is also true. In general, we have more (or less) jobs in each job type. However,
one can see that the definitions of t1 through t5 are not affected by that (only the first job,
x1 is important). Also we can simply replace cx1 by the sum of execution times of type-AO
jobs and similarly for type-A and type-O jobs. Thus the extension to the general case is
straightforward and details may be omitted.

We next consider a dual-machine phase as shown in Fig. 3, where there are two executions,
y1 and y2 on MP while MS is busy. (Recall MP and MS are swapped when MS turns on.
Now MS is busy and it may not be available for urgent jobs.) Let the first execution be E1
and the second one E2. We first consider the case that E2 does not exist. Namely, there
is no x3, x4 or y2 and OPT has an idle time after having executed z1. Thus the phase
would be ending at the end of the idle state following the execution of y1 and we prove the
lemma for this case first. As before, we use specific examples for jobs to be executed in this
phase, x1, x2 and y1 for type-AO, w1 for type-A and z1 for type-O. Since the MS ’s turn-on
is provoked, there must be a set S of jobs such that their execution on MP is impossible
during the period from some t′1 to some t′2. We assume that S = {x1, x2, y1}, where t′1 = t1
and t′2 is the deadline of y1. What we do for the generalization is the same as before, namely
we replace {x1, x2, y1} by the real jobs in S, maybe more jobs for type-AO, replace w1 by
real type-A jobs, and z1 by real type-O jobs.

Now we start with definitions of time moments (see the figure) as before. t1, t2 and t3:
the time when MP and MS become on and the time OPT becomes busy, respectively. t4:
the time when the idle state of MP is ended and this is the end of the phase, too. For those
five jobs, we have A(i) = cx1 + cx2 + cy1 + cw1 + 2 + 2 (we now need to turn on both MP

and MS), Of (i) ≥ (cx1 + cx2 + cy1 + cz1), and On(i) ≥ (cx1 + cx2 + cy1 + cz1 +ψσθ), where θ
is the idle time (if any) to keep the OPT’s machine on until t4.

To prove formulas (2), we have (recall ψσ ≤ 1)

rOf (i) −A(i) ≥ 3(cx1 + cx2 + cy1 + cz1) − (cx1 + cx2 + cy1 + cw1 + 4.0)
= 2(cx1 + cx2 + cy1 + cz1) + cz1 − cw1 − 4.0.

Here we can claim that cx1 + cx2 + cy1 ≥ 0.5. The reason is that there is a margin of 0.5
between the end of the execution of x1 and its deadline (recall again if realizing this margin
is impossible, MS would not have been turned on). So if cx1 + cx2 + cy1 < 0.5, then it follows
of course cx2 + cy1 < 0.5, which means that x2 and y1 could have been executed using this
margin time (they can interrupt the execution of x1) on MP , resulting in a contradiction.
Thus rOf (i) −A(i) ≥ 2 × 0.5 + cz1 − cw1 − 4.0 = cz1 − cw1 − 3 and we are done for (2).
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For formula (3), we have (ψσ ≤ 1)

rOn(i) −A(i) ≥ 3(cx1 + cx2 + cy1 + cz1 + ψσθ) − (cx1 + cx2 + cy1 + cw1 + 4.0)
= 2((cx1 + cx2 + cy1 + cz1) + 3ψσθ + cz1 − cw1 − 4.0
≥ 2ψσ(cx1 + cx2 + cy1 + cz1 + θ) + cz1 − cw1 − 4.0.

We again have the following time relations:
(i) t1 < t2 (MS never turns on before MP ),
(ii) t3 < t1 (see below),
(iii) t4 − t3 ≥ t4 − t1 (by (ii)) ≥ t4 − t2 (by (i)) ≥ 2/ψσ.
For (ii) recall that MP cannot execute x1, x2 and y1 from time t1. Since OPT does execute
those jobs by a single machine, it should have started their execution before t1, meaning
t3 < t1. Since cx1 + cx2 + cy1 + cz1 + θ = t4 − t3, we finally have

rOn(i) −A(i) ≥ 2ψσ(2/ψσ) + cz1 − cw1 − 4.0 = cz1 − cw1 ,

and (3) is proved. The generalization to arbitrary number of jobs is the same as before and
may be omitted.

Finally we consider the case that E2 (or even more) exists, which can be simply done by
considering that a new virtual phase, just an interval starting from t4 and ending at te where
we do the similar calculation as above. Note that A needs only one turn-on cost and so the
energy consumption of the new virtual phase is the job execution costs +3 instead of +4
above. Therefore we do not need to lower bound the cost for executing type-AO jobs (as we
did for cx1 + cx2 + cy1 above). Also, since the new virtual phase obviously includes the whole
idle time of MS , the proof for formula (3) is also straightforward. Details may be omitted.

Thus Lemma 3 is proved. ◀

And the proof of Theorem 2 is also concluded. ◀

4 Lower Bound

In this section we give our second result, a lower bound of 2.1, which improves 2.06 obtained
in [7]. Throughout this section we set ψσ = 1 (which seems the worst case for online
algorithms).

▶ Theorem 6. The CR of any online algorithm for the online DPM job scheduling problem
is at least 2.1.

Proof. Our strategy is quite simple and standard. The adversary, Adv, gives requests, one by
one, so that each request blames the last action of the algorithm. Fix an arbitrary algorithm
ALG and a target CR lower bound, α, we want to prove. Before the formal proof, we briefly
look at the basic strategy of Adv. Recall that ψσ = 1 in this proof.

The first request by Adv is j1 = (0, d1, c1), where its execution time c1 is tiny and d1
should not be too small. ALG must execute j1 at some time before d1, say at d1 − x1 on one
of the two machines, say M1 (Fig. 5). Here we have two cases.

Suppose that x1 is relatively large. Then Adv sees how long ALG stays in the idle state
after the execution of j1. We can assume without loss of generality that this idle state
continues at least until d1 and may be more for additional y1 as shown in Fig. 5. (If the
idle state ends before d1, then Adv immediately gives another tiny request with the same
deadline d1. This situation is similar to that ALG postpones its execution of j1 up to this
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Figure 5 Illustration of the incoming job j1.

time. Since ALG has already spent a turn-on cost of 1, it is not hard to show that Adv’s
job becomes easier. We omit details.) From the OPT side, it suffices to execute a tiny c1
at d1. Here ALG cannot have a long y1 since the CR at this moment is 1+c1+x1+y1

1+c1
(both

ALG and OPT need a turn-on cost of 1, since this is the beginning of the game), which may
exceed α and the game would end. So y1 is relatively small, for which Adv gives a similar
request right after the idle time expires. As shown in Fig. 6, OPT can manage these two
requests by being ON from d1 to a2, thus blaming the small value of y1.

Figure 6 Illustration of the incoming job j2.

What if x1 is relatively small? Then Adv gives a request j2 as shown in Fig. 7 immediately
after ALG has started the execution of j1. Note that j2 has the same deadline as j1 (i.e.
d1 = d2) and its execution time is x1 (i.e. c2 = x1). Thus ALG cannot execute j2 on M1
and it turns on M2 meaning ALG has to pay a new turn-on cost. OPT can manage this by
being on from slightly before d1 − x1 to d1, thus blaming the shortness of x1.

Figure 7 Case A with j1 and j2.

Now we start our formal proof. As mentioned above, Adv has basically two different
strategies depending on the first response of ALG, namely x1 ≤ β (Case A) and x1 > β

(Case B), where β is some constant to be optimized later. Let us look at Case A first. As
shown above, it proceeds to the situation illustrated in Fig. 7 and now ALG selects its new
idle time w1 on M2. Of course M1 can also have some idle time. However, as seen in a
moment, our Adv always gives a next request after both machines become OFF. Therefore
without loss of generality, we can assume only one machine which is busy until later than the
other enters an idle state and the other turns off immediately when it finishes all the assigned
requests. At the moment of Fig. 7, the CR is 2+c1+x1+w1

1+c1+x1
(recall ψσ = 1). Here we set c1 = 0

for the exposition (and will do the same for a tiny execution time in the remaining part, too).
This does not lose much sense since we can make c1 arbitrarily small and it always appears
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as a sum with far greater values. Thus our current CR is 2+x1+w1
1+x1

. If this value is greater
than α, Adv has achieved its goal and the game ends. For the game to continue it must be
2+x1+w1

1+x1
≤ α. This implies

w1 ≤ α(1 + x1) − (2 + x1) ≤ α+ (α− 1)x1 − 2 ≤ α+ (α− 1)β − 2 (= f1)

since α ≥ 1 and x1 ≤ β. Let f1 be the value of the right-hand side.

Figure 8 Case A with j1, j2 and j3.

Next, the adversary releases another tiny request j3 after the idle period of M2. See Fig. 8.
At this moment, both M1 and M2 are OFF, so we can use M1 without loss of generality
for j3. Similarly as before, ALG executes j3 at d3 − x2 and has an idle time of x2. OPT
executes j3 immediately when it comes by keeping its idle state for w1 assuming that w1 ≤ 1,
which can be verified after we eventually fix all parameter values (indeed, w1 ≤ 0.63197 for
our final setting of the parameters). Note that ALG needs three turn-ons and OPT one, so
the current CR is 3+x1+w1+x2

1+x1+w1
. For the game to be continued, it must be

x2 ≤ α(1 + x1 + w1) − (3 + x1 + w1) ≤ α− 3 + (α− 1)β + (α− 1)w1 ≤ f2 + (α− 1)w1

by letting α− 3 + (α− 1)β = f2.

Figure 9 Case A with j1 to j4.

The adversary then releases j4 exactly as it did for j2 as shown in Fig. 9. Here, it is
better for OPT to turn off at d2 and turn on at a4 since Adv selects a large d3 − a3. The
CR is 4+x1+w1+x2+w2

2+x1+x2
. For the game to continue, we must have

w2 ≤ α(2 + x1 + x2) − (4 + x1 + w1 + x2)
= 2α− 4 + (α− 1)x1 + (α− 1)x2 − w1

≤ 2α− 4 + (α− 1)β + (α− 1)(f2 + (α− 1)w1) − w1

= 2α− 4 + (α− 1)β + (α− 1)f2 + (α− 1)2w1 − w1

= 2α− 4 + (α− 1)(β + f2) + (α2 − 2α)w1

= f3 + (α2 − 2α)w1

by letting f3 = 2α− 4 + (α− 1)(β + f2).
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Figure 10 Case A ending with j5.

Finally, the adversary releases a tiny request j5 as shown in Fig. 10. For ALG, we impose
only a turn-on cost which ALG at least spends. OPT can manage this request by continuing
its idle state as before. Now the CR is at least

5 + x1 + w1 + x2 + w2

2 + x1 + x2 + w2
≥ 5 + β + w1 + f2 + (α− 1)w1 + f3 + (α2 − 2α)w1

2 + β + f2 + (α− 1)w1 + f3 + (α2 − 2α)w1

= 5 + β + f2 + f3 + (α2 − α)w1

2 + β + f2 + f3 + (α2 − α− 1)w1

≥ 5 + β + f2 + f3 + (α2 − α)f1

2 + β + f2 + f3 + (α2 − α− 1)f1
= CA.

The first inequality holds for the following reason: x1, x2 and w2 appear both in the numerator
and the denominator, the fraction becomes minimum when all x1, x2 and w2 are maximum.
For the second inequality, recall that our target CR, α, is greater than 2. So (α2−α)

α2−α−1 ≤ 2,
which means the fraction becomes minimum when w1 is maximum. Thus the CR is at least
CA for Case A.

Case B is similar and we can prove that the CR is at least

CB = (α2 − α)g1 + 4 + β + g2 + g3

(α2 − α− 1)g1 + 2 + g2 + g3
,

where g1 = α − 1 − β, g2 = α − 2 − β, and g3 = (α − 1)g2 + 2α − 3 − β (see [17] for more
details).

For β = 0.4745 and α = 2.1068, our numerical calculation shows that CA = 2.107447 and
CB = 2.106989, and the theorem is proved. ◀

5 Concluding Remarks

Obvious future work is to narrow the gap. For the lower bound, one can easily notice that
increasing the number of stages (currently, it is three) might help. This is correct and in fact
one more stage can give us a strictly better bound. Unfortunately the degree of improvement
is already pretty small and getting even smaller in further stages. For the upper bound, it is
obviously important to consider more flexible structures for delaying requests. Our present
algorithm executes all the pending requests when one request comes to its due time. It would
be even more important to make our CR a function in ψσ. Our open question is that a
smaller ψσ very likely implies a better CR.
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