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Abstract
We study a common delivery problem encountered in nowadays online food-ordering platforms:
Customers order dishes online, and the restaurant delivers the food after receiving the order.
Specifically, we study a problem where k vehicles of capacity c are serving a set of requests ordering
food from one restaurant. After a request arrives, it can be served by a vehicle moving from the
restaurant to its delivery location. We are interested in serving all requests while minimizing the
maximum flow-time, i.e., the maximum time length a customer waits to receive his/her food after
submitting the order.

We show that the problem is hard in both offline and online settings even when k = 1 and c = ∞:
There is a hardness of approximation of Ω(n) for the offline problem, and a lower bound of Ω(n) on
the competitive ratio of any online algorithm, where n is number of points in the metric.

We circumvent the strong negative results in two directions. Our main result is an O(1)-
competitive online algorithm for the uncapacitated (i.e, c = ∞) food delivery problem on tree
metrics; we also have negative result showing that the condition c = ∞ is needed. Then we explore
the speed-augmentation model where our online algorithm is allowed to use vehicles with faster
speed. We show that a moderate speeding factor leads to a constant competitive ratio, and we prove
a tight trade-off between the speeding factor and the competitive ratio.
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1 Introduction

Online food-ordering-and-delivery services (e.g., UberEats and Doordash) have become more
and more popular in the past decade. Customers can order dishes online and wait for the
restaurant to deliver the food to their home. Arguably one of the most important factors
for service quality is the flow time, i.e., how long a customer waits to receive the food after
submitting his/her order. We formalize the problem as the following Online Food Delivery
Problem (Online FDP). Let (V, d) be a metric space with |V | = n, where d is a metric on V .
Let o ∈ V be the depot that has k unit-speed vehicles, each with a capacity c ∈ Z>0 ∪ {∞}.
The requests arrive online, where a request ρ = (rρ, vρ) is released at time rρ with delivery
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33:2 Online Food Delivery Problem

location vρ. To serve ρ, a vehicle needs to first pick up the ordered food at the depot (after ρ

is released) and deliver it to vρ. The goal of the online FDP is to schedule vehicles to deliver
the food to their delivery locations (i.e., to serve the requests), satisfying the requirement
that a vehicle can only carry food for at most c requests at any time. The objective of the
problem is to minimize the maximum flow time. This model captures the real-world scenario
that one restaurant owns several vehicles and needs to deliver food to customers, and the
restaurant wants to make all customers satisfied, i.e, wait for a short period of time.

The offline food delivery problem (FDP) is closely related to many vehicle routing
problems. For example, the uncapacitated (i.e., c = ∞) single-vehicle (i.e., k = 1) FDP
with all requests released at time 0 already captures a variant of the traveling salesman path
problem. When the vehicle has finite capacity c, the FDP just mentioned is also known as
the Capacitated Vehicle Routing Problem (CVRP). A more general setting is studied under
the name Dial-a-Ride Problem (DaRP), where besides the delivery location, each customer
can specify its own pickup location. To satisfy the request, a vehicle has to take the customer
from the pick-up location to its delivery location. Most results on offline CVRP/DaRP
focused on the total travel distance objective [1, 24, 12, 23]; while in the online model, much
effort has been devoted to completion time objectives like average completion time [25, 9]
or makespan [19, 2]. Compared with previous studies, we are focusing on a much harder
and less-studied objective – maximum flow time, in the online setting. The only theoretical
results we know regarding maximum flow time are two lower bounds for online TSP and
online DaRP: Krumke et al.[33] show that the single-vehicle finite-capacity DaRP does not
admit O(1)-competitive algorithms, and a similar lower bound holds for online TSP, even on
line metrics [35]. But the lower bound does not hold for FDP, which is not a generalization
of TSP in the online case.

Another motivation for FDP is from the seemingly unrelated broadcast scheduling problem.
In this problem, a server holds n pages of varying sizes and requests are released over time,
each of which is a query on one of the pages. The server can broadcast a page to all requests
on that same page, which takes time equal to the page size. The objective is to minimize the
maximum flow time. It is easy to reduce the broadcast scheduling problem to uncapacitated
single-vehicle FDP on a star, where a page of size s in the broadcast scheduling problem
corresponds to an edge of length s/2 in the FDP problem.1 It is known that FIFO gives
O(1)-competitiveness for the broadcast scheduling problem [13, 11], and the single-vehicle
uncapacitated FDP on stars [22]. One of our main results in the paper is an O(1)-competitive
algorithm for uncapacitated FDP on trees, generalizing the results to tree metrics and
the multiple-vehicle case. Mapping to the broadcast scheduling application, this gives the
following more general setting. There is a tree rooted at o, where the pages correspond to
the leaves of a tree, and each internal node corresponds to a setup procedure that takes some
time to run. To broadcast a set of pages, in addition to the broadcasting time for each page,
we have to spend time on running the setup procedures correspondent to the ancestor nodes
of the pages.

1.1 Our Results
We state our results in this section. The formal definition of the offline and online food
delivery problem (FDP) can be found in Section 2. In all the theorems below, n is the
number of points in the metric space.

1 In FDP, we could define the completion time of a request as the time the vehicle returns to the depot
after serving the request. The maximum flow time objective for the two versions differs by an O(1)
factor.
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We first show that our problem also suffers from the maximum flow time objective, both
in offline and online settings, even if we focus on the single-vehicle uncapacitated case.

▶ Theorem 1. The following statements hold for the single-vehicle uncapacitated FDP:
(1a) It is NP-hard to approximate the offline problem within a factor of o(n).
(1b) There is no o(n)-competitive algorithm for the online problem, even if it can run in

exponential time and the metric is a bounded-pathwidth planar graph.

Our Results for Tree Metrics. Given that (1b) holds even for bounded-pathwidth planar
graphs, a natural candidate family of metrics is the tree metrics. Our first algorithmic result
of the paper is that uncapacitated FDP on trees admit O(1)-competitive online algorithms:

▶ Theorem 2 (Tree Metric). There’s an efficient O(1)-competitive online algorithm for
uncapacitated FDP on trees.

The results in Theorem 1 and 2 are for uncapacitated version of the problem (c =∞). We
remark that these results should be contrasted with the lower bound given by Krumke et al.[35],
which says that online TSP (and thus uncapacitated DaRP) does not admit O(1)-competitive
algorithms even on line metrics. Their lower bound however does not apply to (online)
uncapacitated FDP, and this is crucially due to the fact that in FDP a vehicle has to return
to the depot before it can serve a newly released request.

We now turn to the general capacitated case. One can ask if the algorithm in Theorem 2
works for general c. Unfortunately, we show that this is impossible even for a very special
case. Below R is the set of requests in the instance:

▶ Theorem 3. There is no o(
√
|R|)-competitive online algorithm for single-vehicle FDP

with c = 2 and on a tree with 5 vertices.

Our Results with Speed Augmentation. Despite all the negative results, we show that
the problem admits good competitive algorithms under the speed augmentation model (in
general metric). In this model we allow vehicles in our algorithm to run faster than normal
vehicles, while we compare the maximum flow time achieved by our algorithm using faster
vehicles against the optimum maximum flow time that can be achieved with normal vehicles.
The speeding factor defines how faster our vehicles are, and our goal is to decide the tradeoff
between the speeding factor and the competitive (approximation) ratio of our algorithm.
There are two reasons for which we consider this model. First, in the optimum solution
of the hard instance for (1b), the vehicle is always busy. One mistake made by the online
algorithm can delay the whole schedule. This situation rarely happens in practice, where one
should expect the vehicles to have a reasonable amount of idle time. Second, the travel time
between two points in practice is often an estimate and affected by many factors such as the
driver’s skill and the traffic condition. So, a solution that becomes very bad if the speeds of
vehicles decrease slightly should be considered as very fragile. We remark that the speed
augmentation model is also popular in many scheduling problems.

Let αTSP be the infinum of all values α such that there is a (polynomial time) α-
approximation algorithm for TSP. With the breakthrough result of Karlin, Klein, and Oveis
Gharan [30], we know that αTSP is strictly smaller than 1.5. Define αCVRP similarly for the
CVRP problem. It is known that αCVRP ≤ αTSP + 1. We give our results for the food delivery
problem with speeding below.
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▶ Theorem 4 (General Metric). For any small enough constant ϵ > 0, there are
(4a) an exponential time (1 + ϵ)-speeding O(1/ϵ)-competitive online algorithm for FDP,
(4b) a polynomial time (αTSP + ϵ)-speeding O(1/ϵ)-competitive online algorithm for uncapa-

citated FDP, and
(4c) a polynomial time (αCVRP + ϵ)-speeding O(1/ϵ)-competitive online algorithm for (capa-

citated) FDP.

▶ Theorem 5. The following statements hold.
(5a) There is NO (1 + ϵ)-speeding o(1/ϵ)-competitive online algorithm for FDP.
(5b) For any constant α ∈ [1, αTSP), there is NO (polynomial time) α-speeding o(

√
n)-

approximation algorithm for uncapaciated FDP.
(5c) For any constant α ∈ [1, αCVRP), there is NO (polynomial time) α-speeding o(

√
n)-

approximation algorithm for (capaciated) FDP.
Therefore, by (5a), the O(1/ϵ)-dependence on ϵ in (4a) is needed. (5b) and (5c) state that
the speeding factors in (4b) and (4c) are almost tight.

1.2 An Overview of Techniques
The hardness results in (1a), (5b) and (5c) are proved using simple reductions from TSP
or CVRP, in which we repeat a TSP/CVRP instance multiple times. Since an efficient
algorithm can not find the best TSP/CVRP tour, it needs to use a longer tour for each
instance, which creates a delay in the schedule. The delays for all instances will accumulate,
resulting in a bad flow time. The hardness remains if the speeding factor is not big enough.

The lower bounds in (1b), (5a) and Theorem 3 are proved using the same idea. We build
a base instance satisfying the following property. At the beginning of the time horizon, the
online algorithm needs to make a decision between two choices. If it made the incorrect
choice, the total length of trips it uses to satisfy all requests will be 1 unit time longer than
the case if it made the correct choice. The catch is, the algorithm will only know which choice
is the correct one until near the end of the time horizon. So, it has to either wait for almost
the whole time horizon, which will incur a large maximum flow time, or it will spend 1 more
unit time on the trips, delaying the schedule. By repeating the base instance many times, the
delay of the online algorithm will accumulate, resulting in a large maximum flow time. Lastly,
we remark that although all such lower bounds are proved for deterministic algorithms, it is
not hard to extend the proofs to randomized algorithms by directly applying Yao’s Minimax
Principle: instead of giving the correct choice adversarially, we make it uniformly random.

The overview of the algorithms for online uncapacitated FDP on trees will be given at
the beginning of Section 3. The online algorithms in Theorem 4 are based on a simple
idea. We wait for γF time units (F is a given upper bound of the optimal flow time. See
Section 2 for details.) for some γ = Θ

( 1
ϵ

)
. Then we know that the optimum solution can

serve all the requests that arrived in the γF -length interval using (γ + O(1))F time. With
(1 + ϵ)-speeding, the online algorithm can serve them in γF time. Thus, we can always
guarantee an O(F/ϵ)-flow time for all requests. If the algorithm has to be efficient, we need
to lose a speeding factor of αTSP + ϵ or αCVRP + ϵ, depending on whether the instance is
uncapacitated.

1.3 Other related work
Most of previous results on CVRP and DaRP focus on the single vehicle case and the total
travel distance objective, which is equivalent to the makespan. Unless specified otherwise, all
the results surveyed below for CVRP and DaRP are for this case.
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Capacitated Vehicle Routing Problem (CVRP). The CVRP is mostly studided in the
offline setting. It admits an (αTSP + 1)-approximation, where αTSP is the approximation ratio
for traveling salesman problem (TSP) [1, 24, 30]. A more general version of CVRP is studied
in the literature: Each request has a demand, and we require the total demand of all requests
satisfied in a single trip made by the vehicle is at most c. In the same papers, Altinkemer
and Gavish [1] and Haimovich and Rinnooy Kan [24] gave an approximation algorithm with
ratio αTSP + 2 for the general CVRP, which stood for over 30 years. Very recently, the
approximation ratio for the problem has been improved to αTSP + 2(1− ϵ) by Blauth et al.
[10], for some small constant ϵ > 0. There are also improved ratios on special metrics like
Euclidean plane [16, 32], tree metrics [36, 44, 41], or other special graph metrics [15, 27].

One variant of CVRP that is related to the flow time objective is the CVRP with bounded
delay: There is a delay constraint that any request ρ spends at most βd(r, vρ) time on
the vehicle, where vρ denotes the drop-off location of ρ. The goal is to find a minimum
length route that satisfies all the delay constraints. For this variant, Gørtz et al. [21] gave a(

2.5 + 3
β−1

)
-approximation algorithm for single-vehicle CVRP with bounded delay.

Dial-a-Ride Problem (DaRP). Like CVRP, the most studied setting for offline DaRP is
also for the single-vehicle case with makespan objective, for which the best known algorithm
achieves Õ(min{

√
n,
√

c}) approximation ratio [12, 23], where n is the number of requests.
The best known lower bound is only APX-hardness. The online DaRP is mostly studied
with objectives like makespan [2] or total/weighted completion time [19, 34, 9]: all of
these objectives admit small constant competitive-ratio algorithm. However, if we turn to
minimizing the maximum flow-time, there exists no o(n)-competitive algorithm even on a
3-point uniform metric with a unit-capacity vechile [33].

A variant of DaRP studied in the literature that seems much easier is the preemptive
DaRP, in which the vehicle is allowed to temporarily unload the cargo it carries in the middle
of a trip, and pick it up later to resume delivery. The best approximation ratio for the
problem with single vehicle is O(log n) [12], and there is a hardness of Ω(log1/4 n) hardness
of approximation [20]. For the multi-vehicle case, Gørtz et al.[21] gave an O(log3 n) for the
preemptive DaRP, and an O(log n)-approximation when vehicles have infinite capacity.

Flow-Time Scheduling. The maximum flow time objective is studied in many scheduling
problems. The simple FIFO strategy is known to achieve the best competitive ratio 2 [40]
in the identical machine setting, and constant competitive algorithm exists even in related
machine setting [6] (i.e., machines have different speed). However, the approximability
changes dramatically if we switch the objective to the (weighted) sum of flow-time: if
no preemption is allowed, the problem is Ω(m)-hard in the online setting where m is the
number of machines, and Ω(m1/2−ϵ)-hard in the offline setting [31]. Even when preemption
is allowed, offline O(1)-approximations (for the single-machine setting) are known only very
recently [8, 18, 43], and there’s an ω(1) lower bound for the online case [3].

For online broadcast scheduling, the maximum flow time objective also appears to be easier
than other flow time objectives: max flow time admits 2-competitive algorithm [7, 11, 13],
while average flow time has very strong lower bounds Ω(n) for deterministic algorithms [29]
and Ω(

√
n) for randomized algorithms [5].

Resource Augmention in Flow-Time Scheduling. Due to the strong lower bounds men-
tioned above for various flow time objectives, people proposed the resource augmentation
model in order to find provably good algorithms. In a pioneering work, Kalyanasundaram
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and Pruhs [28] proposes the speed augmentation model where the algorithm is allowed to use
machines faster than the optimal solution, and give the first constant competitive algorithm
for minimizing (nonclairvoy) total flow time. Later Phillips et al.[42] explores another type
of resource – machines: they showed that there is a constant competitive algorithm for
non-preemptive weighted flow time scheduling, but uses m + O(log P ) machines (here P is
the ratio of length between the longest and the shortest job, and the optimal solution uses
only m machines). They also showed that one can combine the two resources and get a
constant-competitive algorithm for total flow time, using O(log n) extra machines with O(1)
speeding. Epstein and van Stee [17] gave a ℓ-machine algorithm for the single-machine total
flow time scheduling, and achieves an asymtotically optimal O(min{ ℓ

√
P , ℓ
√

n})-competitive
ratio.

In the offline case, the resource augmentation model is also used to give constant approx-
imation algorithms for non-preemptive flow time scheduling: first on a single machine [4],
and then extended to multiple machines by Im et al.[26]. The resources are not equally
powerful, though. Lucarelli et al.[39] showed that for the weighted flow time objective, the
non-preemptive single-machine scheduling problem does not admit bounded-competitive
algorithms even with arbitrarily faster machine. Choudhury et al.[14] therefore explored
another type of “augmentation”: allowing rejection of some jobs. This idea is used to
obtain the first constant competitive algorithm for weighted flow time scheduling in the
non-preemptive setting [39, 37, 38].

1.4 Organization
The remaining part of the paper is organized as follows. In Section 2, we formally define the
offline and online food delivery problem. We prove our main algorithmic result, Theorem 2,
by giving the O(1)-competitive algorithm for uncapacitated FDP on trees in Sections 3 and 4.
The two sections consider the single-vehicle and multiple-vehicle cases respectively. Due to
space limit, all lower bound results and the results with speed augmentation are included
only in the full version.

2 Preliminary

We now define the food delivery problem formally, starting from the offline setting. We are
given a graph G = (V, E) with edge lengths ℓ : E → R>0, where ℓ(e) denotes the time needed
to traverse the edge e in either direction.2 There is a special vertex o ∈ V called the depot,
which represents the restaurant. We are given a number k ≥ 1 of vehicles which are initially
located at o, and capacity c ∈ Z>0 ∪ {∞} on the vehicles. When k = 1, we say the problem
is single-vehicle, and when c =∞, we say the problem is uncapacitated. There is a set R of
requests. Each request ρ ∈ R is denoted by ρ = (rρ, vρ), where rρ ∈ R≥0 and vρ ∈ V are the
arrival time and the delivery location of the request respectively.

To describe the output of the problem, we need to define trips. A trip is defined by
a triple (t, (u0 = o, u1, u2, · · · , uz = o), R′), where t ≥ 0 is the starting time of the trip,
(u0 = o, u1, u2, u3, · · · , uz−1, uz = o) is a (possibly complex) cycle in G that starts and
ends at o, and R′ ⊆ R, |R′| ≤ c, is the set of requests served by the trip. So z ≥ 2 and
(uz′−1, uz′) ∈ E for every z′ ∈ [z]. We require the following properties to hold for a trip.

2 Equivalently we could use a metric (V, d) to describe the travel times, but for many of our results it is
more convenient to use the graph G with edge lengths.
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First, uz′ ̸= o for every z′ ∈ [z − 1]; one can see easily soon that this is without loss of
generality. Then, for every served request ρ ∈ R′, we have rρ ≤ t and vρ appears in the cycle.
If z̃ is the smallest index such that uz̃ = vρ, then we say ρ is served by the trip at time
t +

∑z̃
z′=1 ℓ(uz′−1, uz′). The completion time of the trip is defined as t +

∑z
z′=1 ℓ(uz′−1, uz′).

Abusing the definition slightly, sometimes we also use the word “trip” to denote the cycle
(u0 = o, u1, u2, · · · , uz = o), with t and R′ specified separately.

The output of the food delivery problem contains k sequences of trips correspondent to
the itineraries of the k vehicles. The following properties need to be satisfied. For every pair
of adjacent trips in any of the k sequences, the starting time of the latter trip is at least the
completion time of the former one. Moreover, each request in R is served by exactly one trip
in the k sequences; in other words, the sets of served requests in all trips of the k sequences
form a partition of R. Let tρ be the time that a request ρ ∈ R is served (by the unique trip
that serves it). We define the flow time of ρ to be tρ − rρ. The goal of the problem is to
minimize the maximum flow time, i.e, maxρ∈R(tρ − rρ).

So far we have defined the food delivery problem in the offline setting. In the online
setting, G, ℓ, k and c are given upfront, but the requests arrive online. Once we decided to
start a trip at time t, then we have to complete the trip as planed. Formally, we require that
for any time t ≥ 0, the prefixes of the k sequences of trips with starting time at or before t

can only depend on the requests that arrive at or before t.

Guessing the Optimum Maximum Flow Time Online. When designing online algorithms,
we shall use the standard doubling trick to assume that we are given an upper bound F

on the optimum maximum flow time of the instance, and the competitive ratio is defined
by comparing to F . That is, a β-competitive online algorithm has maximum flow time at
most βF . If we have a β-competitive online algorithm A under this setting, then we can
obtain an 8β-competitive algorithm A′ under the setting where F is not given to us, while
keeping the speeding factor and running time unchanged. In the paper, we are not trying to
optimize the constant, and the factor of 8 will be hidden in the O(·) notation. Due to space
limitation, we omit the detail here.

3 Online Uncapacitated Single-Vehicle FDP on Tree Metrics

In this section and the next one, we give the O(1)-competitive algorithm for online unca-
pacitated FDP on tree metrics, proving Theorem 2. In this section, we consider the case
k = 1, i.e, there is only one vehicle. We separate this case from the general problem as its
algorithm is simpler and the competitive ratio we obtain is better.

First we setup some notations here. Let T = (V, E) be the tree and we assume it is
rooted at the depot o ∈ V . For every v ∈ V , we use Vv to denote the set of descendants of v

(including v itself). For an edge e = (u, v) with v being the child, we define Ve = Vv. We
use d to denote the metric induced by the tree T with lengths ℓ(·). Given a set X ⊆ V of
vertices, we define mst(X) to be the cost of the minimal sub-tree of T containing X and
o (Notice that we require the tree to contain o). Suppose we are further given an element
e ∈ V ∪E. We define mste(X) = mst(Ve ∩X), which is the cost of the minimal sub-tree of
T containing o and all vertices in Ve ∩X. So if Ve ∩X = ∅, then mste(X) = 0; otherwise,
the tree contains all the edges from o to e (including e itself if it is an edge). By definition
we have msto(X) = mst(X).

ISAAC 2022
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Since most of the time we deal with requests, it is convenient for us to use mst(R′) and
mste(R′) to denote mst({vρ : ρ ∈ R′}) and mste({vρ : ρ ∈ R′}) respectively for a set R′ ⊆ R

of requests. Abusing notations slightly, sometimes we also use mst(X) to denote the actual
sub-tree of T achieving the cost mst(X). This also extends to mste(X), mst(R′) and mste(R′).

We now overview the algorithm for the online uncapacitated FDP problem on tree metrics,
for both the single and multiple-machine cases. We break the time horizon into intervals
of length F : {[0, F ), [F, 2F ), [2F, 3F ), [3F, 4F ), ...} and index them by 1, 2, 3, 4, · · · . Recall
that F is an upper bound on the optimum maximum flow time, and the competitive ratio of
our algorithm is defined against F . Let Ri be the set of requests that arrive in interval i.
For each even integer i, we break Ri into Rleft

i and Rright
i , merge Rleft

i with Ri−1, merge Rright
i

with Ri+1, so as to minimize some carefully designed objective. So for each odd integer i, we
have constructed a merged set R′

i := Rright
i−1 ∪Ri ∪Rleft

i+1, which we call a bundle. The bundles
then can be constructed in an online manner: the bundle R′

i is determined by requests that
arrive before time (i + 2)F .

Then our online algorithm handles the bundles separately. When k = 1, we view each
bundle R′

i as a job of size 2mst(R′
i); when k ≥ 2, we break R′

i into many groups and treat
each group Q as a job of size 2mst(Q). We think of all these jobs are released at time (i+2)F .
We then assign the jobs to the vehicles online in a greedy manner. A crucial lemma we show
is that the jobs have a small backlog: The jobs released in any interval [aF, bF ] have total
size at most (b − a)F + O(1) · kF , and each job has size O(F ). The properties guarantee
that all the jobs complete with an O(F ) flow time.

3.1 Description of Algorithm for Single-Vehicle (k = 1) Case
Now we formally state the algorithm for the case k = 1. For every integer i ≥ 1, let
Ri = {ρ ∈ R : (i− 1)F ≤ rρ < iF} as stated. Indeed, once we know a request is in Ri, we do
not care about its precise arrival time anymore. In the first step of the online algorithm, we
partition the requests into bundles (R′

i)i≥1:i is odd, using Algorithm 1, where the bundle R′
i

is generated at time (i + 2)F . For now let us focus on the case k = 1 in the algorithm. The
formal definition for cost(·|·) is postponed to section 4 since it’s not used here. Throughout
the section and the next one, we assume all undefined sets are set to ∅. See Figure 1(a) for
an illustration of the relationships between Ri, R′

i, Rleft
i and Rright

i .

Algorithm 1 Partition of Requests into Bundles for Both Single and Multiple-Vehicle Cases.

1: for i = 2, 4, 6, 8, · · · do
2: wait until time (i + 1)F
3: let Ri = {ρ ∈ R : rρ ∈ [(i− 1)F, iF )} be as defined in the text
4: partition Ri into Rleft

i and Rright
i so as to minimizemst(Ri−1 ∪Rleft

i ) + mst(Rright
i ∪Ri+1) if k = 1

cost(Rleft
i |Ri−1) + cost(Rright

i |Ri+1) if k > 1

5: release the bundle R′
i−1 := Rright

i−2 ∪Ri−1 ∪Rleft
i (at time (i + 1)F )

We briefly talk about the efficiency of the algorithm for k = 1. It is easy to see that
the following simple strategy will find the partition (Rleft

i , Rright
i ) that minimizes mst(Ri−1 ∪

Rleft
i ) + mst(Rright

i ∪Ri+1). For every ρ ∈ Ri, if d(ρ, mst(Ri−1)) ≤ d(ρ, mst(Ri+1)), then we
put ρ in Rleft

i . Otherwise we put ρ in Rright
i . Here d(ρ, mst(Ri−1)) (d(ρ, mst(Ri+1)), resp.) is

the shortest distance between rρ and any vertex in mst(Ri−1)) (mst(Ri+1), resp.).
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R1

Rleft
2 Rright

2

R3

Rleft
4 Rright

4
· · ·

Ri (i odd)

Rleft
i−1 Rright

i−1 Rleft
i+1 Rright

i+1
· · ·

· · ·R′1 R′3 R′i

R2 R4 · · · Ri−1 Ri+1 · · ·

· · ·

(a) Illustration of relationships between Ri’s, Rleft
i ’s, Rright

i ’s and R′
i’s. For every even i, we have Ri =

Rleft
i ∪ Rright

i . For every odd i, we have R′
i = Rright

i−1 ∪ Ri ∪ Rleft
i+1.

S1 ∩R2 R2 ∩ S2 S2 ∩R3 R3 ∩ S3 Si−1 ∩Ri Ri ∩ Si Si ∩Ri+1

R1 R2 R3 Ri

S1 S2 Si

R1

· · ·

· · ·

· · · · · ·

· · ·

· · ·

(b) Illustration of relationships between Ri’s and Si’s. For every i, we have Ri ⊆ Si−1 ∪ Si and
Si ⊆ Ri ∪ Ri+1.

Figure 1 Illustration of sets used in the algorithm and analysis for online uncapacitated FDP on
tree metrics.

Notice that starting from the depot o, serving all the requests in R′
i and traveling back

to the depot take time exactly 2mst(R′
i). Therefore, we can view each bundle R′

i, for an
odd i ≥ 1, as a job of size 2mst(R′

i) released at time (i + 2)F . We view the vehicle as a
machine. In the second step of the online algorithm, we then schedule the jobs (i.e., bundles)
on the machine (i.e., the vehicle) in their order of releasing: Whenever the machine is idle
and there are available jobs, we process the job that is released the earliest. This finishes the
description of the algorithm for the single vehicle case.

3.2 Analysis of Backlog of Jobs
We define the flow time of a job R′

i, for an odd i ≥ 1, as its completion time minus its release
time (which is (i + 2)F ). By the folklore result, if the total size of all jobs released in time
[t, t′] is at most t′ − t + D for some D and for every pair t ≤ t′ of time points, then every job
has flow time at most D in the schedule using greedy algorithm. Therefore, it remains to
prove that D is small, which is stated in Lemma 9 later.

Before describing and proving the lemma, we introduce a partition (Si)i≥1 of requests
that depends on the offline optimum solution, and prove some helper lemmas. Notice that in
the offline optimum solution a trip can not serve two requests whose arrival times are more
than F apart: If that happens, then the flow time of the earlier request of the two is more
than F . Thus, a trip in the optimum solution serves either requests from a single set Ri for
some i, or requests from two sets Ri and Ri+1 for some i. In both the cases, we put all the
requests in the trip into the set Si. Therefore, S1, S2, S3, · · · form a partition of R. Notice
that Si ⊆ Ri∪Ri+1 and Ri ⊆ Si−1∪Si for every integer i. See Figure 1(b) for an illustration
of the relationship between Ri’s and Si’s. Notice that Si’s is only used in our analysis, as
they depend on the offline optimum solution, which our algorithm does not know.

We need the following simple lemma and corollaries.

▶ Lemma 6. Let X1, X2, X3 and X4 be subsets of V and e ∈ E ∪ V . Then the following
inequalities hold:

mste(X1 ∪X2) ≤ mste(X1) + mste(X2), (1)
mste(X2) + mste(X1 ∪X2 ∪X3) ≤ mste(X1 ∪X2) + mste(X2 ∪X3), (2)

mste(X1 ∪X2 ∪X3) + mste(X2 ∪X3 ∪X4) ≤
mste(X1 ∪X2) + mste(X2 ∪X3) + mste(X3 ∪X4). (3)

ISAAC 2022
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Proof. It suffices to prove the inequalities for e = o, since the other cases can be proved by
changing X1, X2, X3 and X4 to Ve ∩X1, Ve ∩X2, Ve ∩X3 and Ve ∩X4 respectively.

(1) is easy to see. For (2), we focus on each edge e′ ∈ E and count the number of times
ℓ(e′) is considered on the left and right sides respectively. Notice that ℓ(e′) is counted in
mst(Y ) for some set Y if and only if Ve′ ∩ Y ̸= ∅.

If ℓ(e′) is counted 0 times on the left side, then Ve′ ∩ Y = ∅ for every Y ∈ {X1, X2, X3}.
Clearly ℓ(e′) is counted 0 times on the right side.
If ℓ(e′) is counted in mst(X1 ∪X2 ∪X3) but not in mst(X2), then either Ve′ ∩X1 ̸= ∅ or
Ve′ ∩X3 ̸= ∅. Then ℓ(e′) is counted at least once on the right side.
If ℓ(e′) is counted in mst(X2), then it is counted twice on both the left right sides.

Similarly for the proof of (3), we consider the number of times each ℓ(e′) is counted on
both sides:

If e′ is counted 0 times on the left side, then Ve′ ∩ Y = ∅ for every Y ∈ {X1, X2, X3, X4}.
Thus, ℓ(e′) is counted 0 times on the right side.
Assume ℓ(e′) is counted once on the left side. W.l.o.g assume it is counted in mst(X1 ∪
X2 ∪X3) but not in mst(X2 ∪X3 ∪X4). Then clearly e′ is counted at least once on the
right side.
Finally assume ℓ(e′) is counted in both mst(X1 ∪X2 ∪X3) and mst(X2 ∪X3 ∪X4). If
Ve′ ∩ X2 ̸= ∅ or Ve′ ∩ X3 ̸= ∅, then ℓ(e′) is counted at least twice on the right side.
Otherwise we have Ve′ ∩X1 ≠ ∅ and Ve′ ∩X4 ̸= ∅. In this case ℓ(e′) is counted twice on
the right side. ◀

▶ Corollary 7. For every odd i ≥ 1 and e ∈ E ∪ V , we have mste(R′
i) ≤ mste(Rright

i−1 ∪Ri) +
mste(Ri ∪Rleft

i+1)−mste(Ri).

Proof. Applying (2) with X1 = Rright
i−1 , X2 = Ri and X3 = Rleft

i+1, and using X1∪X2∪X3 = R′
i

proves the lemma. 3 ◀

▶ Corollary 8. For every integer i ≥ 1 and e ∈ E ∪ V , we have mste(Si−1 ∪Ri) + mste(Ri ∪
Si)−mste(Ri) ≤ mste(Si−1) + mste(Si).

Proof. We apply (3) with X1 = Ri−1 ∩ Si−1, X2 = Si−1 ∩ Ri, X3 = Ri ∩ Si and X4 =
Si ∩ Ri+1. The corollary follows by that X1 ∪ X2 = Si−1, X2 ∪ X3 = Ri, X3 ∪ X4 = Si,
X1 ∪X2 ∪X3 = Si−1 ∪Ri and X2 ∪X3 ∪X4 = Ri ∪ Si. ◀

With the corollaries established, we now state and prove the lemma that bounds the
backlog of bundles.

▶ Lemma 9. For any two odd positive integers a ≤ b, we have 2
∑

i∈[a,b]:i odd mst(R′
i) ≤

(b− a + 4)F .

Proof. ∑
i∈[a,b]:i odd

mst(R′
i)

≤
∑

i∈[a,b]:i odd

(
mst(Rright

i−1 ∪Ri) + mst(Ri ∪Rleft
i+1)−mst(Ri)

)
(by Corollary 7)

3 Recall that in the notation mste, we can view requests as vertices by ignoring their arrival times.
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=
∑

i∈(a,b):i even

(
mst(Ri−1 ∪Rleft

i ) + mst(Rright
i ∪Ri+1)

)
−

∑
i∈[a,b]:i odd

mst(Ri)

+ mst(Rright
a−1 ∪Ra) + mst(Rb ∪Rleft

b+1) (by reorganizing terms)

≤
∑

i∈(a,b):i even

(
mst(Ri−1 ∪ Si−1) + mst(Si ∪Ri+1)

)
−

∑
i∈[a,b]:i odd

mst(Ri)

+ mst(Sa−2 ∩Ra−1) + mst(Sa−1 ∪Ra) + mst(Rb ∪ Sb) + mst(Rb+1 ∩ Sb+1) (4)

=
∑

i∈[a,b]:i odd

(
mst(Si−1 ∪Ri) + mst(Ri ∪ Si)−mst(Ri)

)
+ mst(Sa−2 ∩Ra−1) + mst(Rb+1 ∩ Sb+1) (by reorganizing terms)

≤
∑

i∈[a,b]:i odd

(mst(Si−1) + mst(Si)) + mst(Sa−2 ∩Ra−1) + mst(Rb+1 ∩ Sb+1)

(by Corollary 8)

= mst(Sa−2 ∩Ra−1) +
b∑

i=a−1
mst(Si) + mst(Rb+1 ∩ Sb+1).

It remains to argue about (4). Notice that Si−1 ∩ Ri and Ri ∩ Si form a partition of Ri.
By the way we obtain Rleft

i and Rright
i , we have mst(Ri−1 ∪ Rleft

i ) + mst(Rright
i ∪ Ri+1) ≤

mst(Ri−1 ∪ (Si−1 ∩Ri)) + mst((Ri ∩Si)∪Ri+1) = mst(Ri−1 ∪Si−1) + mst(Si ∪Ri+1). Then
Rright

a−1 ∪ Ra ⊆ Ra−1 ∪ Ra = (Sa−2 ∩ Ra−1) ∪ Sa−1 ∪ Ra and Rb ∪ Rleft
b+1 ⊆ Rb ∪ Rb+1 =

Rb ∪ Sb ∪ (Rb+1 ∩ Sb+1). Combining the facts with (1) gives (4).
Now we prove that 2

(
mst(Sa−2 ∩Ra−1) +

∑b
i=a−1 mst(Si) + mst(Rb+1 ∩ Sb+1)

)
≤ (b−

a+4)F , which finishes the proof of the lemma. We define S = {(Sa−2∩Ra−1), Sa−1, Sa, Sa+1,

· · · , Sb, (Rb+1 ∩ Sb+1)} for convenience. Then S forms a partition of Q := Ra−1 ∪ Ra ∪
Ra+1 ∪ · · · ∪Rb+1. Focus on the trips in the optimum solution that serve at least one request
in Q. By the definition of Si’s, each such trip can not serve requests from two different sets
in S. Moreover, such a trip can not start before time (a− 2)F since all requests in Q arrive
no earlier than (a− 2)F . It can not end after (b + 1)F + F = (b + 2)F since all requests in
Q arrive before (b + 1)F and the maximum flow time of the optimum solution is at most
F . Therefore, 2

∑
S∈S mst(S) is at most the total length of these trips, which is at most

(b + 2)F − (a− 2)F = (b− a + 4)F . ◀

By Lemma 9, the total size of jobs (i.e, bundles) released in [t, t′] is at most (t′ − t) + 4F

for any t ≤ t′, using the language of the scheduling setting. Therefore, the greedy scheduling
algorithm produces a schedule with maximum flow time at most 4F . For an odd i, R′

i is
released at time (i + 2)F , and thus all requests in R′

i are served by time (i + 6)F . Since
requests in R′

i arrive no earlier than (i− 2)F , the maximum flow time of all requests is at
most 8F . This finishes the proof of Theorem 2 for the case k = 1.

4 Online Uncapacitated Multiple-Vehicle FDP on Tree Metrics

Now we move on to the case of general k for online FDP on trees. The first step is, again,
using Algorithm 1 to partition jobs into bundles. As we mentioned, the main differences
between the multi-vehicle case and the single-vehicle case are: We use a different criteria to
break Ri for an even i ≥ 2 into Rleft

i and Rright
i , and we break a bundle R′

i for an odd i ≥ 1
into groups and treat each group as a job (instead of treating the whole bundle as a job).
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4.1 Partitioning R into Bundles
As before we also generate the set (R′

i)i≥1,i is odd in the first step, which is also described
in Algorithm 1. To break Ri into Rleft

i and Rright
i , we use the function cost(Rleft

i |Ri−1) +
cost(Rright

i |Ri+1). We define the relevant notations now.
Given a real number F ′ > 0 and a set X of requests, we define

cF ′(X, e) =
⌈

mste(X)
F ′

⌉
,∀e ∈ E, and costF ′(X) = 2

∑
e∈E

cF ′(X, e)ℓ(e).

Most of the time we shall use the definitions with F ′ = F . Therefore we simply use c(X, e)
and cost(X) to denote cF (X, e) and cost(X).

Then, for two sets X and X ′ of requests, we define

c(X, e|X ′) =


⌈

mste(X)
F

⌉
= c(X, e) if Ve ∩X ′ = ∅⌊

mste(X′∪X)−mste(X′)
F

⌋
if Ve ∩X ′ ̸= ∅

, ∀e ∈ E,

and cost(X|X ′) = 2
∑
e∈E

c(X, e|X ′)ℓ(e).

By the definition, we have c(X, e|X ′) = c(X \X ′, e|X ′), and cost(X|X ′) = cost(X \X ′|X ′).
We now elaborate more on the definitions. Unlike the single-vehicle case, we need to

break each bundle R′
i created into many groups, to make sure that each group can be served

in time O(F ). Then an edge e ∈ E in mst(R′
i) may need to be used by many trips to satisfy

the property. Then c(X, e) gives a lower bound on the number of bi-directional traverses
of e needed to serve X in the offline optimum solution. Thus cost(X) gives the total time
needed to serve X. Notice if a trip uses an edge e, it uses e twice, hence the factor of 2.

For c(X, e|X ′), one can think of it as c(X ∪X ′, e)− c(X ′, e) =
⌈

mste(X∪X′)
F

⌉
−

⌈
mste(X′)

F

⌉
,

which is at least
⌊

mste(X∪X′)
F − mste(X′)

F

⌋
. That is, the extra number of traverses of e needed

if we grow the set of request positions from X ′ to X ∪X ′. In the actual definition, we use
the lower bound instead if Ve ∩X ′ ̸= ∅.

4.2 Upper Bound on Costs of Bundles
The main goal of the section is to prove the following theorem:

▶ Theorem 10. For every two odd positive integers a ≤ b, we have
∑

i∈[a,b] cost3F (R′
i) ≤

k(b− a + 4)F .

We prove the following three inequalities, which will imply the theorem:∑
i∈[a,b]

cost3F (R′
i) ≤

∑
i∈[a,b]:i odd

(
cost(Ri) + cost(Rright

i−1 |Ri) + cost(Rleft
i+1|Ri)

)
(5)

≤ cost(Sa−2 ∩Ra−1) +
b∑

i=a−1
cost(Si) + cost(Rb+1 ∩ Sb+1) (6)

≤ k(b− a + 4)F. (7)

We first prove (7), by showing that the cost() function indeed capture the length of trips
in optimum solution.
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▷ Claim 11. Let R′ ⊆ R, and P be the set of trips in the offline optimum solution that
serve at least one request in R′. Then every e ∈ E is used by at least c(R′, e) trips in P,
implying that the total cost of P is at least cost(R′).

Proof. Focus on each edge e ∈ E, and assume e = (u, v), where v is the child vertex.
If Ve ∩ R′ = ∅ then c(R′, e) = 0 and the statement holds trivially. If Ve ∩ R′ ̸= ∅ and
mste(R′) ≤ F , then c(R′, e) = 1 and at least 1 trip in P uses e and the claim also holds. So,
from now on, we assume mste(R′) > F .

Focus on a trip P ∈ P that uses e. For convenience, we treat P as the sub-tree of
edges used by P , without double-counting each edge. The total length of descendant edges
of e in P (excluding e itself) is at most F − d(o, v). This holds since P contains edges
with a total length of at most F , and it contains the edges from o to v. On the other
hand, all the descendant edges of v in mste(R′) should be contained in P. The total
length of these edges is mste(R′) − d(o, v). Therefore, the number of trips that use e is
at least

⌈
mste(R′)−d(o,v)

F −d(o,v)

⌉
≥

⌈
mste(R′)

F

⌉
= c(R′, e), where the inequality comes from that

mste(R′) > F ≥ d(o, v). The lemma holds as each trip that traverses e does this twice. ◁

Proof of (7). The argument is similar to that in the last paragraph inside the proof of
Lemma 9, except now we use cost(S), instead of 2mst(S), to lower bound the length of trips
for a set S ∈ S of requests, and there are k ≥ 2 vehicles. ◀

Then we turn to (6). We first show some simple inequalities about cost function.

▶ Lemma 12. For any X1, X2, X3, X4 ⊆ V , we have

cost(X1 ∪X2|X3) ≤ cost(X1) + cost(X2|X3), (8)
cost(X2 ∪X3) + cost(X1|X2 ∪X3) + cost(X4|X2 ∪X3) ≤

cost(X1 ∪X2) + cost(X3 ∪X4). (9)

Let Si’s be defined in the same way as in the single-vehicle case: all the requests in a trip
containing only requests from Ri, or requests from Ri and Ri+1, are put into Si.

▶ Corollary 13. For any i, we have cost(Ri) + cost(Ri−1 ∩ Si−1|Ri) + cost(Si ∩Ri+1|Ri) ≤
cost(Si−1) + cost(Si).

Proof. The corollary follows from (9) by setting X1 = Ri−1 ∩ Si−1, X2 = Si−1 ∩ Ri, X3 =
Ri ∩ Si and X4 = Si ∩Ri+1. ◀

Recall that in our algorithm, for every even i, we break Ri into Rleft
i and Rright

i so as
to minimize cost(Rleft

i |Ri−1) + cost(Rright
i |Ri+1). Then, we can proceed to show (6) and (5),

whose proof are tedious but straightforward. Due to space limit, we leave the complete
calculation in the full version.

4.3 Breaking Bundles into Groups

In this section, we break each bundle R′
i into many groups Qi as in the following lemma.

▶ Lemma 14. For every odd integer i ≥ 1, we can efficiently find a partition Qi of R′
i such

that mst(Q) ≤ 8F for every Q ∈ Qi, and 2
∑

Q∈Qi
mst(Q) ≤ cost3F (R′

i).
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Proof. Within this proof, we need to change T to a binary tree by replacing each internal
vertex v with at least three children with a binary tree. For every such vertex v with dv ≥ 3
children, we replace the star containing v and its children by a gadget, which is a complete
binary tree with dv leaves. We then identify the root of the gadget with v, and the leaves
with the dv children of v. In the gadget, the length of an edge incident to a child u of v is
set to ℓ(u, v), and the length of an edge not incident to a child is set to 0. It is easy to see
that this transformation does not change the instance, except now we have edges of length 0.
After this step, every internal vertex of T has degree exactly 2.

For any vertex v in T and a set R′ of requests, we define mst′
v(R′) to be cost of the

minimum spanning tree containing v and Vv∩R′, where Vv is the set of descendant vertices of
v in T (including v itself). Notice an important difference between the definition of mst′

v(R′)
and mstv(R′) for an edge e: for mst′

v(R′) the tree does not need to contain the depot o and
thus the quantity does not count the total length d(o, v) of edges from o to v. Similarly, for
an edge e = (u, v) with v being the child end-vertex, we use mst′

e(R′) to denote mst′
v(R′).

Also, sometimes we use mst′
v(R′) to denote the tree achieving the cost mst′

v(R′).
The following is the pseudo-code for constructing Qi:

1: R′ ← R′
i, Qi ← ∅.

2: while R′ ̸= ∅ do
3: choose a lowest vertex v such that mst′

v(R′) ≥ 3F ; if no vertices v satisfy the condition,
let v = o

4: Q← {ρ ∈ R′ : vρ ∈ Vv},Q ← Q∪ {Q}, R′ ← R′ \Q.

It is easy to see that Q form a partition of R′
i. Focus on any iteration of the loop, and

let v be the vertex chosen in the iteration. We argue that we have mst′
v(R′) + d(o, v) ≤ 8F ,

implying that the set Q added in the iteration has mst(Q) = mst′
v(R′) + d(o, v) ≤ 8F . To

see this, assume the two children of v in T are u and u′. (If v is a leaf the statement is
trivial.) By our choice of v we have mst′

u(R′) < 3F and mst′
u′(R′) < 3F . Then we have

mstv(R′) ≤ mst′
u(R′)+mst′

u′(R′)+d(o, v)+d(v, u)+d(v, u′) ≤ 3F +3F +d(o, u)+d(o, u′) ≤
6F + F + F = 8F . The first inequality may not hold with equality since (v, u) or (v, u′) may
not be in mst′

v(R′).
It remains to prove that for every edge e ∈ E, at most

⌈
mst′

e(R′
i)

3F

⌉
≤

⌈
mste(R′

i)
3F

⌉
= c3F (R′

i, e)
groups Q ∈ Qi use the edge e. Consider any edge e and assume the group Q is constructed in
an iteration in which the vertex we choose is v. If v ∈ Ve, then mst′

e(R′) is reduced by at least
3F in the iteration since all the edges in mst′

v(R′) are removed from mst′
e(R′). Otherwise,

v must be an ancestor of the parent end-vertex of e. In this case, mst′
e(R′) becomes ∅ and

thus this is the last time e is used. Moreover once mst′
e(R′) becomes 0, there are no requests

in Ve. Therefore, e is used at most
⌈

mst′
e(R′

i)
3F

⌉
times. ◀

4.4 Scheduling Groups Greedily
Once we partitioned each bundle R′

i into many groups Qi, we can then treat the groups
as jobs and the k vehicles as k machines. Each group Q ∈ Qi can be viewed as a job of
size 2mst(Q) that is released at time (i + 2)F . We need to analyze the maximum flow time
achieved using the FIFO algorithm.

Now we define the goal more formally in the language of the scheduling problem. A job j

arrives time rj , and upon its arrival, we know its processing time pj . We need to schedule
the jobs on the k machines non-preemptively so as to minimize the maximum flow time over
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all jobs, where the flow time of a job is its completion time minus its release time. We need
to design an online algorithm: Once we started processing a job on a machine, we need to
complete the job on the machine. Needless to say, the decisions made at or before time t can
only depends on the jobs arrived at or before time t.

We consider the simple FIFO (first-in-first-out) algorithm: whenever there is an idle
machine and an available job (an arrived job that is not being processed), we process the
available job with the earliest releasing time on the machine. The following simple lemma is
implicit in the analysis of FIFO on scheduling to minimize the maximum flow time:

▶ Lemma 15. Let P be the maximum processing times of all jobs and D ≥ 0. Assume for
any two time points a ≤ b, the total size of jobs released in time [a, b] is at most k(b− a) + D,
then the maximum flow time achieved by FIFO is at most D

k + 2(k−1)P
k .

Notice that when k = 1, the upper bound is simply D, and it is a folklore that the FIFO
algorithm is optimum.

Proof. Focus on a job j and let sj be its starting time in the schedule produced by the
greedy algorithm. Let t ≤ sj be the latest time such that some machine is idle in (t− ϵ, t)
for some positive ϵ. (It is possible that t = 0.) Notice that we have t ≤ rj since otherwise j

could be started on that machine at time t− ϵ.
All the k machines are busy in time (t, sj). All but at most k − 1 jobs that are processed

fully or partially in (t, sj) are released in [t, rj ]. The total size of the jobs (including the at
most k−1 jobs) is at most (k−1)P +k(rj−t)+D, by the conditions of the lemma. Therefore
we have k(sj − t) + pj ≤ (k− 1)P + k(rj − t) + D, which is sj + pj

k ≤
(k−1)P

k + rj + D
k . This

implies the flow time of j is sj + pj − rj ≤ (k−1)P
k + D

k + (k−1)
k pj ≤ D

k + 2(k−1)P
k . ◀

We then use Lemma 15 to bound the maximum flow time for the food delivery problem.
By Lemma 14, all jobs (which correspond to groups) have size at most 16F . By Lemma 14
and Theorem 10, the total size of jobs released at any interval [t, t′] is at most (t′− t)k + 4kF .
Therefore, using the greedy algorithm and Lemma 15, every job will have flow time at most
4kF

k + 2 × 8F = 20F . Notice that requests in R′
i has arrival time at least (i − 2)F and is

released at time (i + 2)F . So, every request has flow time at most 20F + 4F = 24F . This
finishes the proof of Theorem 2 for general k, except for the proof of the running time of
Algorithm 1, which we argue next.

Assuming all lengths are integers. Then it is easy to design a pseudo-polynomial time
algorithm to find a partition (Rleft

i , Rright
i ) of Ri to minimize cost(Rleft

i |Ri−1)+cost(Rright
i |Ri+1)

using dynamic programming. Consider any two edges e′ and e such that e′ is an ancestor
of e. Then given mste(Rleft

i ∪ Ri−1)−mste(Ri−1), c(Rleft
i , e′|Ri−1) does not depend on the

set
{

ρ ∈ Rleft
i : vρ ∈ Ve

}
. Similarly, given mste(Rright

i ∪Ri+1)−mste(Ri+1), c(Rright
i , e′|Ri+1)

does not depend on the set
{

ρ ∈ Rright
i : vρ ∈ Ve

}
. Therefore, we can design a dynamic

programming where for each e and two integers Mleft and Mright, we have a cell indicating if
there is a partition (Rleft

i , Rright
i ) of Ri such that mste(Rleft

i ∪Ri−1)−mste(Ri−1) = Mleft and
mste(Rright

i ∪ Ri+1) −mste(Ri+1) = Mright. To compute the value of a cell (e, Mleft, Mright),
we look at all cell (e′, M ′

left, M ′
right)s with e′ being a child of e, and check if there’s a way

to combine the M ′
lefts (resp. M ′

rights) to get Mleft (resp. Mright). (To make this step fast we
may assume the input tree is a binary tree: this can be done by adding zero-length dummy
edges and vertices) To make the algorithm truly polynomial, we can round all edge lengths
to integer multiples of ϵF/(n|R|) for any small constant ϵ > 0. Since every one of the n

edges is used by at most |R| requests, the total error incurred due to the rounding is at most
ϵF/(n|R|) · n|R| = ϵF , which can be ignored.
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