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Abstract
We study the problem of determining minimal directed intersection representations of DAGs in a
model introduced by [Kostochka, Liu, Machado, and Milenkovic, ISIT2019]: vertices are assigned
color sets, two vertices are connected by an arc if and only if they share at least one color and
the tail vertex has a strictly smaller color set than the head, and the goal is to minimize the total
number of colors. We show that the problem is polynomially solvable in the class of triangle-free
and Hamiltonian DAGs and also disclose the relationship of this problem with several other models
of intersection representations of graphs and digraphs.
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1 Introduction

Problem definition and state of the art. Given a digraph D = (V,A), a directed intersection
representation of D is a pair (U,φ) where U is a finite set of colors and φ is a proper coloring
of D, that is, a mapping assigning to each vertex v ∈ V a set φ(v) ⊆ U such that for any
two vertices u, v ∈ V , it holds that

(u, v) ∈ A if and only if φ(u) ∩ φ(v) ̸= ∅ and |φ(u)| < |φ(v)| . (1)

The cardinality of a directed intersection representation (U,φ) of D is defined as the number
of colors, that is, |U |. Note that if (U,φ) is a directed intersection representation of a digraph
D and W = (v1, . . . , vk) is a walk in D, then |φ(v1)| < . . . < |φ(vk)| , which implies that
D is acyclic (that is, a DAG). On the other hand, Kostochka et al. [9] showed that every
DAG admits a directed intersection representation. They initiated a study of the following
invariant of DAGs. The directed intersection number of a DAG D = (V,A) – denoted by
DIN (D) – is the smallest cardinality of a directed intersection representation of D. In [9, 11],
the authors focused on characterizing the extremal values of DIN . They showed that:
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38:2 On Constrained Intersection Representations of Graphs and Digraphs

for every DAG D with n vertices, it holds that DIN (D) ≤ 5n2

8 + O(n).1

for every n there is a DAG D with n vertices such that DIN (D) ≥ 9n2

16 (1 − o(1)) .
In [1, 2] Caucchiolo and Cicalese studied the computational complexity of determining
DIN (D). They showed that the problem of computing DIN (D) is NP-hard even when D

is an arborescence (a tree with all the edges oriented away from the root). Moreover, for
general DAGs and any ϵ > 0, the problem does not admit an n1−ϵ approximation unless
P = NP. Conversely, for the case of arborescences the problem is shown to be in APX, and
in [2] the authors also provide an asymptotic fully polynomial time approximation scheme.

The main result. In this paper we continue the quest for islands of tractability in the
complexity landscape for the problem of computing directed intersection representations of
DAGs initiated in [1, 2]. We focus on a class of graphs that, in the analysis of [9], appears to
include the instances that are the most demanding in terms of the DIN value. In fact, in [9],
a key point in the construction of the lower bound on the extremal value of DIN (D) is to
consider DAGs that are both Hamiltonian and triangle-free.2 Here we show that for every
D in the class of Hamiltonian and triangle-free DAGs, computing the value of DIN (D) is a
tractable problem solvable in time O(n3).

A key element for obtaining such a result is the fact that for any Hamiltonian and
triangle-free DAG D it is possible to define a demand function b on the vertices such that the
value of DIN (D) can be exactly characterized in terms of the value of a maximum b-matching
in the underlying graph of D, a parameter that can be computed in polynomial time [8, 14].

Additional results, related problems, and literature. The proof of the above result leads us
to introduce several generalizations and variants of intersection representations of graphs and
digraphs (defined in Section 2.1). We believe that these variants might be of independent
interest and for which we are able to prove interesting results on their relations in terms of
minimal intersection representations (summarized in Figure 1).

It is known that any finite undirected graph G admits an intersection representation given
by a family of finite sets associated to its vertices, such that two vertices are adjacent if and
only if their associated sets intersect. The minimum cardinality of the ground set of such a
family is referred to as the intersection number of the graph G and denoted by IN (G). Erdős,
Goodman and Pósa [6] showed that IN (G) equals the minimum number of cliques needed
to cover the edges of G, i.e., the size of a minimum edge clique cover of G. Determining
this value was proved to be NP-hard in [13] (see also [10]). By [7, 12], both problems are
not approximable within a factor of |V |ϵ for some ϵ > 0 unless P = NP. Applications of
intersection representations and clique covers are found in areas as diverse as computational
geometry, matrix factorization, compiler optimization, applied statistics, resource allocations,
etc; see, e.g., the survey papers [15, 16, 17], and the comprehensive introduction of [3].

In this paper several new variants are considered which contribute to this rich literature
and in particular to the approach of [17] of studying constrained versions of intersection
representation and their applications.

The following practical scenario can be modelled by a constrained variant of the intersec-
tion number of undirected graphs, which is considered in the series of reductions leading to
the proof of our main result.

1 The precise bound given in [11] is 5n2

8 − 3n
4 + 1.

2 Liu et al. [11] leave as an open problem to show that for every n the maximum value of DIN (D) among
the DAGs with n vertices is attained by one that is also Hamiltonian.
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There is a shared resource (for example, a wireless communication channel) and a set
of participants who want to use the resource. However, no two participants are willing to
share the resource at the same time unless they need to do it for accomplishing a common
task. In the wireless communication example, you might imagine that using the channel at
the same time means to be possibly eavesdropped while you do need to share temporally
at least once with whomever you want to communicate with. We say that two participants
are compatible (with each other) if they need to accomplish a common task. We assume
that the resource can be used for an arbitrary number of time periods, where in each time
period only a subset of pairwise compatible participants can share the resource. Furthermore,
if a set S of pairwise compatible participants shares the resource in a certain time period,
then the common task of any pair of participants in S can be carried out in this period.
Since the use of the resource is expensive, our goal is to design a schedule of assigning the
participants to time slots for using the resource that minimizes the total number of temporal
slots, such that all pairs of participants can accomplish their tasks without ever using a
resource together with an incompatible participant. This problem can be modeled as the
problem of computing the intersection number of the compatibility graph. If we also assume
that every participant requests to take part in at least a certain number of slots, we obtain
the ℓ-constrained intersection number, where ℓ(v) is the desired lower bound on the number
of slots for participant v (see Section 2.1 for definitions).

2 Notations and definitions

We denote by N the set of all positive integers and by Z+ the set of all nonnegative integers.
All graphs in this paper will be finite and simple, but may be directed or undirected. We
will use the term graph to refer to an undirected graph and the term digraph to refer to a
directed graph.

Definitions for graphs. A graph is a pair G = (V,E) where V = V (G) is a finite set of
vertices and E = E(G) is a set of 2-element subsets of V called edges. Two vertices u and
v in a graph G = (V,E) are adjacent if {u, v} ∈ E. A vertex in a graph is universal if it
is adjacent to all other vertices. A graph is said to be nontrivial if it contains more than
one vertex. A vertex cover in G is a set C of vertices such that every edge has at least one
endpoint in C. Let b : V → Z+ be a capacity function on the vertices of G. A b-matching
of G is a function x : E → Z+ such that for each vertex v it holds that

∑
e∈Ev

x(e) ≤ b(v),
where Ev denotes the set of edges incident with v. A maximum weight b-matching of G is a
b-matching of G such that the total weight

∑
e∈E x(e) is maximum among all b-matchings of

G. We use ν(G, b) to denote the total weight of a maximum weight b-matching of G.

Definitions for digraphs. A digraph is a pair D = (V,A) where V = V (D) is a finite set
of vertices and A = A(D) is a set of ordered pairs of vertices called arcs. Given an arc
a = (u, v) ∈ A, we call u the tail of a and v its head. Two vertices u and v in a digraph
D = (V,A) are adjacent if (u, v) ∈ A or (v, u) ∈ A. A walk in a digraph D is a sequence
(v1, . . . , vk) of vertices of D such that (vi, vi+1) ∈ A for all i ∈ {1, . . . , k − 1}. A path in
D is a walk in which all vertices are pairwise distinct. Given a positive integer k, a cycle
of length k in D is a path (v1, . . . , vk) such that (vk, v1) ∈ A. Note that a cycle of length
one consists of a vertex v at which D has a loop (that is, an arc of the form (v, v)), and
a cycle of length two consists of a pair of vertices u, v such that both arcs (u, v) and (v, u)
exist. A digraph is acyclic if it contains no cycles; a directed acyclic graph is referred to as
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a DAG. A digraph is Hamiltonian if it has a path containing every vertex. For a digraph
D = (V,A), the underlying graph of D is the undirected graph U(D) = (V,E) in which two
distinct vertices are adjacent if and only if they are adjacent in D.

Common definitions for graphs and digraphs. Let G be a graph or a digraph. An
independent set in G is a set of pairwise nonadjacent vertices. Let f be a function from V (G)
to Z+. Given a set S ⊆ V (G), we denote by f(S) the value

∑
v∈S f(v). Let α(G, f) denote

the maximum value of f(S) over all independent sets S in G. We say that G is bipartite
if it admits a bipartition, that is, a partition of its vertex set into two (possibly empty)
independent sets. More generally, G is triangle-free if it does not contain three pairwise
adjacent vertices. Given a vertex u ∈ V (G), the degree of u in G, denoted by degG(u) (or
simply by deg(u) when the graph or digraph is clear from the context), is the number of
vertices v ∈ V (G) such that u and v are adjacent in G. Note that if D is a digraph without
cycles of length one or two (in particular, if D is a DAG), then the vertex degrees are the
same in D and in the underlying graph U(D).

A partially ordered set (or: a poset) is a pair (V,⪯) where V is a finite set and ⪯ is a
binary relation on V that is reflexive, antisymmetric, and transitive. We write u ≺ v if u ⪯ v

and u ̸= v. A poset element v ∈ V is minimal if there is no element u ∈ V \ {v} such that
u ≺ v.

2.1 Intersection representations of graphs and digraphs
In this section we introduce several definitions of intersection representation for graphs and
digraphs. These variants will be used in the proof of our main result which will consist of a
sequence of reductions from one variant to another.

A weak directed intersection representation of a digraph D = (V,A) is a pair
(U,φ) where U is a finite set of colors and φ is a weak proper coloring of D, that is, a mapping
assigning to each vertex v ∈ V a set φ(v) ⊆ U such that for any two distinct vertices u, v ∈ V ,
it holds that (u, v) ∈ A if and only if φ(u) ∩ φ(v) ̸= ∅ and |φ(u)| ≤ |φ(v)|. Note that, with
respect to the definition of a directed intersection representation given in Equation (1), the
constraint on the cardinality is expressed by a weak inequality. Furthermore, if (U,φ) is a
weak directed intersection representation of a digraph D and W = (v1, . . . , vk) is a walk in
D, then it may happen that |φ(v1)| = . . . = |φ(vk)|, in which case (vk, vk−1, . . . , v1) is also a
walk in D. In particular, D may contain cycles in which for each arc (u, v) the digraph D

also contains the oppositely oriented arc (v, u). If G is a graph and D is the digraph obtained
from G by replacing each edge with a pair of oppositely oriented arcs, then DIN (D,≤)
equals the minimum cardinality of a set U such that G admits an intersection representation
over the set U such that vertices in each component of G are assigned sets with the same
cardinality (see, e.g., [4, 5, 19]).

The cardinality of a weak directed intersection representation (U,φ) of D is defined as the
number of colors, that is, |U |. It is not hard to see that every DAG admits a weak directed
intersection representation, e.g., (i) use a distinct color for each arc; (ii) fix a topological
sorting (using the fact that it is a DAG); (iii) add to each vertex a distinct set of colors
so that the cardinality of the color set of the vertices strictly increase along the chosen
topological sorting3. The weak directed intersection number of a DAG D = (V,A), denoted

3 Note that the coloring defined by such procedure is also a (non-weak) directed intersection representation
of the DAG. In fact, for a DAG, every weak directed intersection representation is also a directed
intersection representation (see Lemma 7). Note, however, that the converse is not true as there are
directed intersection representation of a DAG where non-adjacent vertices have intersecting color set of
the same cardinality that are not weak directed intersection representation of the same graph.
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by DIN (D,≤), is the smallest cardinality of a weak directed intersection representation of D.
The weak directed intersection number has been previously considered in [20], where it was
showed that the problem of computing DIN (D,≤) is NP-hard when D is an arbitrary DAG
but polynomially solvable if D is an arborescence, which is in contrast with the NP-hardness
of computing DIN (D) for arborescences.

An intersection representation of an undirected graph G = (V,E) is a pair (U,φ)
where U is a finite set and φ is a mapping assigning to each vertex v ∈ V a set φ(v) ⊆ U

such that for any two distinct vertices u, v ∈ V , it holds that {u, v} ∈ E if and only if
φ(u) ∩ φ(v) ̸= ∅. The cardinality of an intersection representation (U,φ) of G is defined as
the cardinality of U . The intersection number of an undirected graph G, denoted by IN (G),
is the smallest cardinality of an intersection representation of G.

A partially ordered graph is a pair (G,⪯), where G = (V,E) is an undirected graph and
⪯ is a partial order on the vertex set of G (that is, (V,⪯) is a poset). An intersection
representation of a partially ordered graph (G,⪯) is a pair (U,φ) where U is a finite
set of colors and φ is a proper coloring of (G,⪯), that is, a mapping assigning to each vertex
v ∈ V a set φ(v) ⊆ U such that for any two distinct vertices u, v ∈ V , it holds that

{u, v} ∈ E if and only ifφ(u) ∩ φ(v) ̸= ∅;
if u ≺ v then |φ(u)| < |φ(v)|.

The cardinality of an intersection representation (U,φ) of a partially ordered graph (G,⪯) is
defined as the cardinality of U . The intersection number of a partially ordered graph (G,⪯),
denoted by IN (G,⪯), is the smallest cardinality of an intersection representation of (G,⪯).

Let G = (V,E) be a graph and let ℓ : V → Z+ be a demand function on the vertices
of G. An ℓ-constrained intersection representation of an undirected graph G

is an intersection representation (U,φ) of G such that |φ(v)| ≥ ℓ(v) for all v ∈ V . The
ℓ-constrained intersection number of G, denoted by IN (G, ℓ), is the smallest cardinality of
an ℓ-constrained intersection representation of G.

One can view the ℓ-constrained intersection number of a graph G and the intersection
number of a partially ordered graph (G,⪯) as constrained variants of the intersection number
of the graph G, placing it in a general framework proposed by Roberts in [16] along with
numerous other variants of the intersection number studied in the literature.

When discussing algorithms on partially ordered graphs, we assume that a partially
ordered graph (G,⪯) is represented with the adjacency lists of the graph G and an arbitrary
DAG D on the same vertex set such that u ⪯ v if and only if there exists a directed u, v-path
from u to v in D.

3 The DIN of triangle-free Hamiltonian DAGs

In this section, we present our main result about the polynomial computation of DIN (D)
(including a corresponding optimal directed intersection representation (U,φ) for D) for a
triangle-free Hamiltonian DAG D. We prove the following theorem.

▶ Theorem 1. Let D = (V,A) be a triangle-free DAG with a Hamiltonian path P =
(v1, . . . , vn). Let w : V → Z+ be the vertex weight function on D defined recursively along
P as follows: w(v1) = deg(v1), and for all i ∈ {2, . . . , n}, we set w(vi) = max{w(vi−1) +
1,deg(vi)}. Let b : V → Z+ be a capacity function on the vertices of D defined by setting
b(v) = w(v) − deg(v) for all v ∈ V and let G be the underlying graph of D. Then DIN (D) =
|A| + b(V ) − ν(G, b) and a directed intersection representation (U,φ) of D with minimum
cardinality can be computed in time O(|V |3).
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3.1 Proof of Theorem 1
The proof of Theorem 1 involves several intermediate steps that allow us to state relationships
among the variants of intersection representations introduced above. Here, we present these
steps and the relationships they involve among variants of IN and DIN , and defer the proofs
to the following subsections.

We first show that a weak directed intersection representation is equivalent to an inter-
section representation for any DAG that is Hamiltonian.

▶ Lemma 2. Let D = (V,A) be a Hamiltonian DAG. Then, DIN (D) = DIN (D,≤).

We now show that computing a weak directed representation of a DAG D is equivalent to
computing an intersection representation of a partially ordered graph (G,⪯), where G is the
underlying graph of D and the partial order ⪯ is defined by the reachability relation in D.

▶ Lemma 3. Let D = (V,A) be a DAG. Let G = (V,E) be the underlying graph of D and
let ⪯ be the partial order on V defined by setting u ⪯ v if and only if there exists a u, v-path
in D. Then, DIN (D,≤) = IN (G,⪯).

Then, we show that for a triangle-free graph G, and any given partial order ⪯ on
the vertices of G, the computation of a weak intersection representation for the partially
ordered graph (G,⪯) can be reduced to the computation of an ℓ-constrained intersection
representation of G for a well defined and polynomially computable demand function ℓ.

▶ Theorem 4. Let (G,⪯) be a partially ordered graph such that G = (V,E) is triangle-free.
Let M be the set of minimal elements in the poset (V,⪯). Let ℓ : V → Z+ be a demand
function on the vertices of G defined by

ℓ(v) =

deg(v) if v ∈ M ,

max
{

1 + max
u:u≺v

ℓ(u),deg(v)
}

if v ̸∈ M .
(2)

Then IN (G,⪯) = IN (G, ℓ).

Figure 1 summarizes the relationships established by the above steps.

IN (G,⪯)

IN (G, ℓ)

IN (G) DIN (D,⪯)

DIN (D)

G is triangle-free

D is a DAG s.t. G = U(D)

D is a Hamiltonian DAG

Figure 1 The relationships among the different types of intersection representations considered in
this paper. The arc P rob(a) → P rob(b) is to be read “P rob(a) is a special case of P rob(b)”. A label
on an arc specifies the restriction on the class of instances for which the relation is proved to hold.

Finally, we show that computing the ℓ-constrained intersection representation of a triangle-
free graph G can be attained in polynomial time.
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▶ Theorem 5. Let G = (V,E) be a triangle-free graph and ℓ : V → Z+ be a demand function
on the vertices of G. Let b : V → Z+ be a capacity function on the vertices of G defined by
setting b(v) = max{ℓ(v) − deg(v), 0} for all v ∈ V . Then IN (G, ℓ) = |E| + b(V ) − ν(G, b)
and an ℓ-constrained intersection representation (U,φ) of G with minimum cardinality can
be computed in polynomial time, namely in time O(min{B|V |2, |E|2 log |V | logB}), where
B = maxv∈V b(v).

By following the above reductions in the opposite order, this final result extends to the
computation of the directed intersection number of triangle-free Hamiltonian DAGs, i.e., it
implies Theorem 1; we recall its statement and give a proof.

▶ Theorem 1. Let D = (V,A) be a triangle-free DAG with a Hamiltonian path P =
(v1, . . . , vn). Let w : V → Z+ be the vertex weight function on D defined recursively along
P as follows: w(v1) = deg(v1), and for all i ∈ {2, . . . , n}, we set w(vi) = max{w(vi−1) +
1,deg(vi)}. Let b : V → Z+ be a capacity function on the vertices of D defined by setting
b(v) = w(v) − deg(v) for all v ∈ V and let G be the underlying graph of D. Then DIN (D) =
|A| + b(V ) − ν(G, b) and a directed intersection representation (U,φ) of D with minimum
cardinality can be computed in time O(|V |3).

Proof. Since D is a Hamiltonian DAG, Lemma 2 implies that DIN (D) = DIN (D,≤). Let
G = (V,E) denote the underlying graph of D and ⪯ the partial order on V such that u ⪯ v if
and only if there exists a u, v-path in D. By Lemma 3, we obtain that DIN (D,≤) = IN (G,⪯).
We define the demand function ℓ : V → Z+ as in Theorem 4, which, by Theorem 4, implies
that IN (G,⪯) = IN (G, ℓ). Finally, Theorem 5 guarantees that IN (G, ℓ) = |E|+b(V )−ν(G, b)
and thus that DIN (D) = |A| + b(V ) − ν(G, b), as claimed. ◀

As a corollary of Theorem 5, we also obtain a characterization of the intersection number
of a partially ordered triangle-free graph.

▶ Corollary 6. Let (G,⪯) be a partially ordered graph such that G = (V,E) is triangle-free.
Let M be the set of minimal elements in the poset (V,⪯). Let w : V → Z+ be the vertex
weight function on G defined by

w(v) =

deg(v) if v ∈ M ,

max
{

1 + max
u:u≺v

w(u),deg(v)
}

if v ̸∈ M .
(3)

Let b : V → Z+ be a capacity function on the vertices of G defined by setting b(v) =
w(v) − deg(v) for all v ∈ V . Then IN (G,⪯) = |E| + b(V ) − ν(G, b) and an intersection
representation (U,φ) of (G,⪯) with minimum cardinality can be computed in time O(|V |3).

3.2 On the relationships between DIN and weak DIN of DAGs
We first show that for arbitrary DAGs, the weak directed intersection number is always an
upper bound on the directed intersection number.

▶ Lemma 7. Let D = (V,A) be a DAG. Then, DIN (D) ≤ DIN (D,≤).

Proof. The claim will follow from showing that any weak directed intersection representation
of D is a directed intersection representation of D.

Let (U,φ) be a weak directed intersection representation of D. Then, (u, v) ∈ A if and
only if φ(u)∩φ(v) ̸= ∅ and |φ(u)| ≤ |φ(v)|. Moreover, since D is a DAG, whenever (u, v) ∈ A,
there is no arc (v, u), hence the inequality between the color sets’ cardinalities must be
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strict, i.e., |φ(u)| < |φ(v)|. If (u, v) ̸∈ A, then either φ(u) ∩ φ(v) = ∅ or |φ(u)| > |φ(v)|,
which implies that either φ(u) ∩ φ(v) = ∅ or |φ(u)| ≥ |φ(v)|. Hence, (U,φ) is also a directed
intersection representation of D. ◀

▶ Lemma 2. Let D = (V,A) be a Hamiltonian DAG. Then, DIN (D) = DIN (D,≤).

Proof. By Lemma 7, it suffices to show that ifD is Hamiltonian, then any directed intersection
representation of D is a weak directed intersection representation of D.

Let (U,φ) be a directed intersection representation of D. Clearly, we have that for each
(u, v) ∈ A the fact that φ(u) ∩ φ(v) ̸= ∅ and |φ(u)| < |φ(v)| implies that

φ(u) ∩ φ(v) ̸= ∅ and |φ(u)| ≤ |φ(v)|. (4)

Moreover, the existence of a Hamiltonian path in D implies that for each pair of vertices
u, v we have |φ(u)| ≠ |φ(v)|. Therefore, if (u, v) ̸∈ A, since (U,φ) is a directed intersection
representation, at least one of the following must hold: (i) |φ(u)| ≥ |φ(v)|, and hence
|φ(u)| > |φ(v)|; (ii) φ(u) ∩φ(v) = ∅. The fact that (4) holds for each arc (u, v) and (i) or (ii)
holds whenever (u, v) ̸∈ A implies that (U,φ) is a weak directed intersection representation
of D. ◀

3.3 A relationship between weak directed intersection representations of
DAGs and intersection representations of partially ordered graphs

▶ Lemma 3. Let D = (V,A) be a DAG. Let G = (V,E) be the underlying graph of D and
let ⪯ be the partial order on V defined by setting u ⪯ v if and only if there exists a u, v-path
in D. Then, DIN (D,≤) = IN (G,⪯).

Proof. Let (U,φ) be a weak directed intersection representation of D.

▷ Claim 8. Fix distinct vertices u, v. If there is a u, v-path then |φ(u)| < |φ(v)|.

Proof. Let (u, v) be an arc of D. Then, we have |φ(u)| ≤ |φ(v)| and φ(u) ∩ φ(v) ̸= ∅. The
latter, together with (v, u) ̸∈ A (since D is a DAG), implies |φ(u)| < |φ(v)|. The claim now
follows by transitivity, repeatedly using the above argument on the arcs of a u, v-path. ◁

Let us show that (U,φ) satisfies the two properties defining an intersection representation
of (G,⪯). Let u, v be a pair of distinct vertices in G.
1. Assume that u ≺ v. By the definition of ≺ there is a u, v-path in D, hence by the claim

above we have |φ(u)| < |φ(v)|.
2. Let {u, v} ∈ E. Then, either (u, v) ∈ A or (v, u) ∈ A, and in either case, φ(u) ∩ φ(v) ̸= ∅.

Similarly, if φ(u) ∩φ(v) ̸= ∅, then either (u, v) or (v, u) is an arc of D, which implies that
{u, v} ∈ E.

Let us now assume that (U,φ) is an intersection representation of (G,⪯). Then, for each
pair of distinct vertices u, v of D we have the following.

If (u, v) ∈ A then: (i) {u, v} ∈ E; and (ii) u ≺ v. Hence, from (i) and (ii) respectively,
φ(u) ∩ φ(v) ̸= ∅, and |φ(u)| < |φ(v)|.
Assume now that: (i) φ(u) ∩ φ(v) ̸= ∅, and (ii) |φ(u)| < |φ(v)|. From (i) we have
{u, v} ∈ E. Since G is the underlying graph of D and D is a DAG, it follows that exactly
one of the arcs (u, v), (v, u) is in A. However, we cannot have (v, u) ∈ A, for otherwise
v ≺ u, which, together with (U,φ) being an intersection representation of (G,⪯), would
contradict the hypothesis |φ(u)| < |φ(v)|. Therefore, we must have (u, v) ∈ A.

The two items imply that (U,φ) is a weak directed intersection representation of D and
conclude the proof. ◀



F. Cicalese, C. Dallard, and M. Milanič 38:9

3.4 From partially ordered triangle-free graphs to ℓ-constrained
triangle-free graphs

▶ Theorem 4. Let (G,⪯) be a partially ordered graph such that G = (V,E) is triangle-free.
Let M be the set of minimal elements in the poset (V,⪯). Let ℓ : V → Z+ be a demand
function on the vertices of G defined by

ℓ(v) =

deg(v) if v ∈ M ,

max
{

1 + max
u:u≺v

ℓ(u),deg(v)
}

if v ̸∈ M .
(2)

Then IN (G,⪯) = IN (G, ℓ).

Proof. The claim will follow from showing that any intersection representation of (G,⪯)
is an ℓ-constrained intersection representation of G, and that there exists an ℓ-constrained
intersection representation of G with minimum cardinality that is also an intersection
representation of (G,⪯).

Let (U,φ) be an intersection representation of (G,⪯). To show that (U,φ) is an
ℓ-constrained intersection representation of G, we need to show that for each vertex v ∈ V ,
we have |φ(v)| ≥ ℓ(v). By the definition of an intersection representation of a partially
ordered graph, we have that

|φ(v)| > |φ(u)| for each u ≺ v. (5)

Moreover, because of the triangle-free condition we have that the neighborhood of v is an
independent set. Again, by the definition of intersection representation, this implies that the
corresponding color sets are pairwise disjoint. On the other hand, each one of these color
sets has a nonempty intersection with φ(v). It follows that |φ(v)| ≥ deg(v). This, together
with Equation (5), implies that |φ(v)| ≥ ℓ(v). Thus, (U,φ) is an ℓ-constrained intersection
representation of G.

Assume now that (U,φ) is an ℓ-constrained intersection representation of G such that
|U | = IN (G, ℓ). For each edge e = {u, v} ∈ E, we have φ(u) ∩ φ(v) ̸= ∅; in particular, there
exists a color ce ∈ φ(u) ∩ φ(v). We show next that for any two distinct edges e, e′ ∈ E, we
have ce ̸= ce′ . Suppose for a contradiction that there exist two different edges e = {u, v} ∈ E

and e′ = {x, y} ∈ E such that ce = ce′ . Since e ̸= e′ and G does not contain loops or
duplicated edges, the set {u, v, x, y} has cardinality at least 3. Therefore, there is a color
shared by at least three vertices, and, since the coloring is proper, this implies that any such
three vertices form a triangle, contradicting the hypothesis that G is triangle-free.

Let us write UE = {ce : e ∈ E} and for all v ∈ V , denote φ′(v) = φ(v) \ UE . Then
|φ′(v)| = |φ(v)| − deg(v). Since the representation is ℓ-constrained, we have for any vertex
v ∈ V that |φ′(v)| = |φ(v)| − deg(v) ≥ ℓ(v) − deg(v) ≥ 0. For each v ∈ V such that
|φ′(v)| > ℓ(v) − deg(v), we select an arbitrary set Xv ⊆ φ′(v) such that |Xv| = ℓ(v) − deg(v).
Then, we define, for each v ∈ V

ψ(v) =
{

(φ(v) ∩ UE) ∪Xv, if |φ′(v)| > ℓ(v) − deg(v) ,
φ(v), otherwise.

Similarly as above, let us denote ψ′(v) = ψ(v) \ UE for all v ∈ V . By construction, we
have |ψ′(v)| = ℓ(v) − deg(v) for all v ∈ V and consequently |ψ(v)| = |ψ′(v)| + deg(v) = ℓ(v)
for all v ∈ V . Note that the recursive definition of the function ℓ implies that ℓ(u) < ℓ(v)
whenever u ≺ v, and hence |ψ(u)| < |ψ(v)| whenever u ≺ v. Next, we show that (U,ψ) is
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an intersection representation of (G,⪯). To this end, it remains to show that {u, v} ∈ E if
and only if ψ(u) ∩ ψ(v) ̸= ∅. If {u, v} = e ∈ E then ce ∈ φ(u) ∩ φ(v) ∩ UE ⊆ ψ(u) ∩ ψ(v)
since we obtained the mapping ψ from φ by only removing colors not in UE . If {u, v} ̸∈ E

then ψ(u) ∩ ψ(v) = ∅ follows directly from the relations ψ(u) ⊆ φ(u) and ψ(v) ⊆ φ(v), using
the fact that φ(u) ∩ φ(v) = ∅. This shows that (U,ψ) is an intersection representation of
(G,⪯). Furthermore, since |ψ(v)| = ℓ(v) for all v ∈ V and |U | = IN (G, ℓ), the pair (U,ψ) is
an ℓ-constrained intersection representation of G with minimum cardinality. This completes
the proof. ◀

3.5 The ℓ-constrained intersection number of triangle-free graphs
▶ Theorem 5. Let G = (V,E) be a triangle-free graph and ℓ : V → Z+ be a demand function
on the vertices of G. Let b : V → Z+ be a capacity function on the vertices of G defined by
setting b(v) = max{ℓ(v) − deg(v), 0} for all v ∈ V . Then IN (G, ℓ) = |E| + b(V ) − ν(G, b)
and an ℓ-constrained intersection representation (U,φ) of G with minimum cardinality can
be computed in polynomial time, namely in time O(min{B|V |2, |E|2 log |V | logB}), where
B = maxv∈V b(v).

Proof. First, we prove that |E| + b(V ) − ν(G, b) is an upper bound on the ℓ-constrained
intersection number of the graph G by constructing an ℓ-constrained intersection representa-
tion (U,φ) with cardinality at most |E| + b(V ) − ν(G, b). We associate to each edge e ∈ E

a unique color ce and define UE = {ce : e ∈ E}. Let x : E → Z+ be a maximum weight
b-matching in G. Then

∑
e∈E x(e) = ν(G, b). We denote by Ev the set of edges in G incident

with a vertex v. To each edge e of G, we associate another set Ce of x(e) new colors, and to
each vertex v of G, we associate a set Cv of b(v) −

∑
e∈Ev

x(e) new colors, so that the sets
UE , Ce, e ∈ E, and Cv, v ∈ V , are pairwise disjoint. Note that this construction is indeed
possible: for each vertex v, the value of b(v) −

∑
e∈Ev

x(e) is a non-negative integer since x
is a b-matching in G. We define

U = UE ∪

( ⋃
e∈E

Ce

)
∪

( ⋃
v∈V

Cv

)
and φ(v) = {ce : e ∈ Ev} ∪ Cv ∪

( ⋃
e∈Ev

Ce

)
. (6)

Next, we show that (U,φ) is an ℓ-constrained intersection representation of G. Clearly
φ(v) ⊆ U for all v ∈ V . Furthermore, for each vertex v ∈ V , by definition it holds that
b(v) + deg(v) ≥ ℓ(v), and we have

|φ(v)| = |Ev| + |Cv| +
∑

e∈Ev

|Ce| = deg(v) + b(v) −
∑

e∈Ev

x(e) +
∑

e∈Ev

x(e)

= deg(v) + b(v) ≥ ℓ(v) . (7)

Therefore, the color sets assigned to the vertices by φ satisfy the lower bounds defined by
the demand function ℓ.

We now prove that (U,φ) is an intersection representation of G, by showing that for any
distinct vertices u and v of G, it holds that (u, v) ∈ E if and only if φ(vi) ∩ φ(vj) ̸= ∅.

For this, assume first that e = {u, v} ∈ E. Then e ∈ Eu ∩ Ev and thus ce ∈ φ(u) ∩ φ(v),
implying that φ(u) ∩ φ(v) ̸= ∅. For the converse direction, assume that φ(u) ∩ φ(v) ̸= ∅. Let
c ∈ φ(u) ∩ φ(v). Because for any two vertices u, v ∈ V , we have that Cu ⊆ φ(v) if and only
if u = v, the color c cannot belong to any set Cz for z ∈ V . Therefore, since the sets UE ,
and Ce, e ∈ E, are pairwise disjoint, the color c must belong to either UE or to some set
Ce for e ∈ E. Assume first that c ∈ UE . Then c = ce for some e ∈ E, which implies that
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e ∈ Eu ∩ Ev and thus e = {u, v}, i.e., {u, v} is an edge of E. Assume now that c ∈ Ce for
some e ∈ E. Since c ∈ φ(u) ∩ φ(v), we infer that e ∈ Eu and e ∈ Ev, which again implies
that {u, v} is an edge of G. This concludes the proof that φ is a proper coloring of (G,φ).

It remains to show that |U | = |E| + b(V ) − ν(G, b). Using the definition of U we infer
that, as claimed, its cardinality is

|U | = |UE | +
∑
e∈E

|Ce| +
∑
v∈V

|Cv| = |E| +
∑
e∈E

xe +
∑
v∈V

(
b(v) −

∑
e∈Ev

x(e)
)

= |E| + ν(G, b) +
∑
v∈V

b(v) −
∑
v∈V

∑
e∈Ev

x(e) = |E| + ν(G, b) + b(V ) − 2
∑
e∈E

x(e)

= |E| + ν(G, b) + b(V ) − 2ν(G, b) = |E| + b(V ) − ν(G, b).

Second, we prove that |E| + b(V ) − ν(G, b) is a lower bound for the ℓ-constrained
intersection number of G. Let (U,φ) be an arbitrary ℓ-constrained intersection representation
of G. We need to show that |U | ≥ |E| + b(V ) − ν(G, b). For each edge e = {u, v} ∈ E, we
have φ(u) ∩φ(v) ̸= ∅; in particular, there exists a color ce ∈ φ(u) ∩φ(v). We show next that
for any two distinct edges e, e′ ∈ E, we have ce ̸= ce′ . Suppose for a contradiction that there
exist two different edges e = {u, v} ∈ E and e′ = {x, y} ∈ E such that ce = ce′ . Since e ≠ e′

and G does not contain loops or duplicated edges, the set {u, v, x, y} has cardinality at least
3. Therefore, there is a color shared by at least three vertices, and, since the coloring is
proper, this implies that any such three vertices form a triangle, contradicting the hypothesis
that G is triangle-free.

Because of the triangle-free condition we have that the neighborhood of v is an independent
set. By the definition of ise , this implies that the corresponding color sets are pairwise
disjoint. On the other hand, each one of these color sets has a nonempty intersection with
φ(v). It follows that |φ(v)| ≥ deg(v). By the assumption that (U,φ) is an ℓ-constrained
intersection representation of G we also have |φ| ≥ ℓ(v), hence |φ| ≥ max{ℓ(v),deg(v)}.

For all v ∈ V , let us denote φ′(v) = φ(v) \ UE . Then |φ′(v)| = |φ(v)| − deg(v) ≥ 0. It
follows that for any vertex v ∈ V , we have that

|φ′(v)| = |φ(v)| − deg(v) ≥ max{0, ℓ(v) − deg(v)} = b(v).

▷ Claim 9. We may assume without loss of generality that |φ′(v)| = b(v) for all v ∈ V .

Proof. Suppose that this is not the case. Then, we choose for each v ∈ V such that
|φ′(v)| > b(v), an arbitrary set Xv ⊆ φ′(v) such that |Xv| = b(v) and define, for all v ∈ V

ψ(v) =
{

(φ(v) ∩ UE) ∪Xv, if |φ′(v)| > b(v) ,
φ(v), otherwise.

Similarly as above, let us denote ψ′(v) = ψ(v) \ UE for all v ∈ V . By construction, we
have |ψ′(v)| = b(v) for all v ∈ V and consequently |ψ(v)| = |ψ′(v)| + deg(v) ≥ ℓ(v) for all
v ∈ V . Hence, ψ satisfies the ℓ-constraints on the vertices. To see that (U,ψ) is indeed an
ℓ-constrained intersection representation of G, it remains to show that {u, v} ∈ E if and
only if ψ(u) ∩ ψ(v) ̸= ∅. If {u, v} = e ∈ E then ce ∈ φ(u) ∩ φ(v) ∩ UE ⊆ ψ(u) ∩ ψ(v) since
we obtained the mapping ψ from φ by only removing colors not in UE . If {u, v} ̸∈ E then
ψ(u) ∩ ψ(v) = ∅ follows directly from the relations ψ(u) ⊆ φ(u) and ψ(v) ⊆ φ(v), using the
fact that φ(u) ∩ φ(v) = ∅. This shows that (U,ψ) is an intersection representation of G and
completes the proof of the claim. ◁
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Let UE = {ce : e ∈ E}. Then |UE | = |E|. To complete the proof of the lower bound, we
need to show that |U \UE | ≥ b(V ) − ν(G, b), or, equivalently, that b(V ) ≤ |U \UE | + ν(G, b).
Consider the function x : E → Z+ defined by setting

x(e) = |φ′(u) ∩ φ′(v)| for each edge e = {u, v} ∈ E .

We claim that x is a b-matching of G. Let v be a vertex of G. Let Ev be the set of edges
in G that are incident with v and let N(v) be the set of neighbors of v in G. Recall that
by the assumption that the graph is triangle-free, each color c ∈ U \ UE appears in at most
two of the color sets φ′(u), u ∈ V . Therefore, for each vertex v ∈ V , the sets φ′(u) ∩ φ′(v),
u ∈ N(v), are pairwise disjoint. This implies that

∑
e∈Ev

x(e) =
∑

u∈N(v)

|φ′(u) ∩ φ′(v)| =

∣∣∣∣∣∣φ′(v) ∩

 ⋃
u∈N(v)

φ′(u)

∣∣∣∣∣∣ ≤ |φ′(v)| = b(v) ,

and hence x is indeed a b-matching of D. For each v ∈ V , let us denote by Cv the set of
private colors of v, that is, those colors c ∈ φ′(v) such that c ̸∈ φ′(u) for all u ∈ V \ {v}. We
have

b(V ) =
∑
v∈V

b(v) =
∑
v∈V

|φ′(v)| =
∑
v∈V

(|Cv| + |φ′(v) \ Cv|)

=
∑
v∈V

|Cv| +
∑
v∈V

∑
u∈N(v)

|φ′(u) ∩ φ′(v)| =
∑
v∈V

|Cv| + 2
∑
e∈E

x(e)

=
(∑

v∈V

|Cv| +
∑
e∈E

x(e)
)

+
∑
e∈E

x(e) ≤ |U \ UE | + ν(G, b) ,

where the last inequality follows from the fact that each color in U \UE is counted exactly once
in the sum

∑
v∈V |Cv| +

∑
e∈E x(e) and that

∑
e∈E x(e) ≤ ν(G, b), since x is a b-matching

in D.
Finally, we observe that an ℓ-constrained intersection representation (U,φ) of G with

minimum cardinality can be computed in polynomial time. First, we compute the capacity
function b according to the definition. Including also the time for the computation of the vertex
degrees, this can be done in time O(|V | + |E|) = O(|V |2). Then we compute a maximum
weight b-matching x in G for which we can either use the algorithm by Pulleyblank [14] (see
also [18]), that requires time O(B|V |2), or (when B is superpolynomial in |V | and/or for
the case of G being sparse) the algorithm of Gabow [8] which runs in O(|E|2 log |V | logB).
Finally, we use Equations (6) to compute an intersection representation (U,φ) of (G,⪯) with
cardinality |E| + b(V ) − ν(G, b). This can be done in time proportional to the total size of
this representation, which is

∑
v∈V |φ(v)| =

∑
v∈V w(v) = O(|V |2). Since we can choose the

best of the two above options for the computation of maximum weight b-matching x, we
conclude that the overall running time satisfies O(min{B|V |2, |E|2 log |V | logB}). ◀

3.6 Intersection number of triangle-free partially ordered graphs
▶ Corollary 6. Let (G,⪯) be a partially ordered graph such that G = (V,E) is triangle-free.
Let M be the set of minimal elements in the poset (V,⪯). Let w : V → Z+ be the vertex
weight function on G defined by

w(v) =

deg(v) if v ∈ M ,

max
{

1 + max
u:u≺v

w(u),deg(v)
}

if v ̸∈ M .
(3)
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Let b : V → Z+ be a capacity function on the vertices of G defined by setting b(v) =
w(v) − deg(v) for all v ∈ V . Then IN (G,⪯) = |E| + b(V ) − ν(G, b) and an intersection
representation (U,φ) of (G,⪯) with minimum cardinality can be computed in time O(|V |3).

Proof. The claim IN (G,⪯) = |E| + b(V ) − ν(G, b) follows directly from observing that by
Theorem 4, upon defining a demand function ℓ on the vertices of G such that ℓ(v) = w(v)
for each v ∈ V , we have IN (G,⪯) = IN (G, ℓ). Moreover, by Theorem 5, we have IN (G, ℓ) =
|E| + b(V ) − ν(G, b).

Finally, we show that a directed intersection representation (U,φ) of (G,⪯) with minimum
cardinality can be computed in time O(|V |3). For this, we first observe that the weight
function w according to the definition given by Equation (3) and the capacity function b

can be computed in time O(|V | + |A|) = O(|V |2) where D = (V,A) is the DAG representing
the poset (V,⪯). Then, we note that from the definition, it follows that for each vertex
v ∈ V , we have b(v) ≤ w(v) ≤ ∆ + L where ∆ denotes the maximum vertex degree in G

and L denotes the maximum length (that is, the number of arcs) in a directed path in D.
Therefore B ≤ 2(|V | − 1), hence B|V |2 = O(|V |3), which implies that, using the algorithm
by Pulleyblank [14], we can compute a maximum weight b-matching in G in time O(|V |3).
And in particular, the bound on the construction of (U,φ) follows from Theorem 4, using
B|V |2 = O(|V |3). ◀

4 Some final observations and open questions

The bipartite case. In a bipartite graph G, the maximum size of a b-matching is equal to
the minimum b-weight of a vertex cover (see, e.g., [18]). Using this, we can give an alternative
expression of the result in Theorem 1 in the case of bipartite Hamiltonian DAGs.

▶ Theorem 10. Let D = (V,A) be a bipartite DAG with a Hamiltonian path P = (v1, . . . , vn).
Let w : V → Z+ be a vertex weight function on D defined recursively along P as follows:
w(v1) = deg(v1), and for all i ∈ {2, . . . , n}, we set w(vi) = max{w(vi−1) + 1,deg(vi)}. Let
b : V → Z+ be a capacity function on the vertices of D defined by setting b(v) = w(v)−deg(v)
for all v ∈ V . Then DIN (D) = |A| + α(D, b).

O(1)-approximations. Before this paper, the only class of graphs for which a constant
approximation polynomial algorithm was known for computing the DIN was the class of
arborescences. As a consequence of our results, we can significantly widen the class of DAGs
where the problem admits a constant approximation as recorded in the following observation
(the details are deferred to the full version of the paper).

▶ Observation 11. The DIN can be approximated in polynomial time to a constant factor on
DAGs obtained from graphs with bounded chromatic number and bounded path cover number
by orienting the edges along a bounded path cover.

Argument: such graphs need Ω(n2) colors, which matches the algorithmic bound from
Liu et al. [11] to within a constant. The lower bound can be argued by taking a path with
linearly many vertices and finding a constant-fraction independent set along that path.

Other open questions are about the extent, in terms of graph classes, to which the relationships
between the different intersection representations hold (see the diagram in Figure 1). For
example, does the fact that the ℓ-constrained intersection number of a graph G generalizes
the computation of intersection number over any partially ordered graph (G,⪯) hold beyond
the class of triangle-free graphs? In particular, we can show that this is true in the larger
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class of diamond-free graphs, where the diamond is the graph obtained from the 4-vertex
complete graph by removing an edge (details are deferred to the full version of the paper).
However, for assessing the complexity of such a reduction one would need to determine
the complexity of the following problem: Given a diamond-free graph G and a function
b : V (G) → Z+, find a function x : C(G) → Z+, where C(G) is the set of maximal cliques
of G, such that for all v ∈ V (G), the sum of the values x(C) over all maximal cliques C
containing v does not exceed b(v), and the sum

∑
C∈C(G) x(C) is maximized.
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