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—— Abstract
Given a graph and a colouring of its vertices, a rainbow vertex path is a path between two vertices
such that all the internal nodes of the path are coloured distinctly. A graph is rainbow vertex-
connected if between every pair of vertices in the graph there exists a rainbow vertex path. We
study the problem of deciding whether a given graph can be coloured using k or less colours such
that it is rainbow vertex-connected. Note that every graph G needs at least diam(G) — 1 colours to
be rainbow vertex connected.

Heggernes et al. [MFCS, 2018] conjectured that if G is a graph in which every induced subgraph
has a dominating diametral path, then G can always be rainbow vertex coloured with diam(G) — 1
many colours. In this work, we confirm their conjecture for chordal, bipartite and claw-free diametral
path graphs. We complement these results by showing the conjecture does not hold if the condition
on every induced subgraph is dropped. In fact we show that, in this case, even though diam(G)
many colours are always enough, it is NP-complete to determine whether a graph with a dominating
diametral path of length three can be rainbow vertex coloured with two colours.
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1 Introduction

Rainbow colouring is a concept that was first introduced by Chartrand et al. [2] in 2008, to
study connectivity in edge coloured graphs. A rainbow colouring of a graph is a colouring of
its edges such that, between any two vertices, there exists a path no two edges of which have
the same colour. The study of this topic garnered a lot of attention and led Krivelevich and
Yuster [7] to define a variation which applied to vertex colourings, instead of edge colourings.

In this variant, we are concerned with rainbow vertex paths, which are paths between two
vertices in which all the internal nodes have different colours. We say a graph is rainbow
vertex connected if between every pair of vertices there exists a rainbow vertex path. Resulting
from this we have the decision problem RAINBOW VERTEX COLOURING (RVC) which takes
as input a graph G and some integer k& with the task to decide if G' can be coloured using &
or less colours such that it is rainbow vertex-connected. The minimum number of colours
needed to make a graph G rainbow vertex-connected is denoted by rvc(G), and it is called
the rainbow vertex-connection number of G.

It is easy to see that any rainbow vertex colouring needs at least diam(G) — 1 many
colours, where diam(G) denotes the diameter of the graph G. On the other hand, the size of
a minimum connected dominating set provides an upper bound on rvec. Indeed, if we give
each vertex of a connected dominating set D a distinct colour, and an arbitrary colour to
the remaining vertices, we obtain a rainbow vertex colouring of GG, as between any two pairs
of vertices there is a path whose all internal vertices lie in D. This relation led Heggernes et
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al. [6] to propose the following conjecture on diametral path graphs. A diametral path is a
shortest path whose length is equal to the diameter of the graph. A graph is a diametral
path graph if every induced subgraph contains a dominating diametral path.

» Conjecture 1 (Heggernes et al. [6]). If G is a diametral path graph, then rvc(G) =
diam(G) — 1.

To support their conjecture, they showed it to be true for two subclasses of diametral
path graphs, namely bipartite permutation graphs and interval graphs. Later on, the above
conjecture was also shown to be true for permutation graphs [11].

Our results

We show the conjecture to be true for chordal, bipartite and claw-free diametral path graphs.
In fact, we show a slightly more general result, as our algorithms require only the input
graph to have a dominating diametral path, instead of every induced subgraph.

» Theorem 2. If G is a chordal, bipartite or claw-free graph that contains a dominating
diametral path, then rve(G) = diam(G) — 1. Moreover, a rainbow vertex colouring can be
computed in time that is polynomial on the size of G.

Note that our results for chordal graphs, bipartite graphs and claw-free graphs with a
dominating diametral path generalize the results for interval graphs, bipartite permutation
graphs and unit interval graphs, respectively, obtained by Heggernes et al. [6]. It is also
interesting to notice that these results contrast with the fact that RAINBOW VERTEX
COLOURING is NP-complete on bipartite graphs for any fixed k& > 3 [6, 9] and on chordal
graphs for any fixed k& > 2 [6].

We complement these results by showing that Conjecture 1 does not hold if we drop the
condition on every induced subgraph. We give an example of a graph with a dominating
diametral path that requires diam(G) many colours to be rainbow vertex connected. Moreover,
we show that, in this graph class, even though diam(G) many colours always suffice, already
when diam(G) = 3, it is NP-complete to decide whether rve(G) = 2.

» Theorem 3. If G is a graph that has a dominating diametral path, then rvc(G) < diam(G).

» Theorem 4. Let G be a graph with a dominating diametral path of length three. It is
NP-complete to decide whether rve(G) < 2.

A summary of these results is presented in Figure 1. In the figure we shorten dominating
diametral path with the abbreviation DDP.

A variant of the RVC problem concerned with shortest paths was introduced by Li et
al. [10]. We say a graph is strongly rainbow vertex-connected if between every pair of vertices
there exists a shortest path which is also rainbow vertex path. The resulting decision problem
is called STRONG RAINBOW VERTEX COLOURING (SRVC) and the analogous parameter
is denoted by srve(G). Every strong rainbow vertex colouring is also a rainbow vertex
colouring, thus rvc(G) < srve(G). Heggernes et al. [6] showed that if G is a unit interval
graph, then srvc(G) = diam(G) — 1. Their result for interval graphs, however, applied only
to the standard variant of the problem. In this work we strengthen their result by showing
the following.

» Theorem 5. If G is an interval graph, then srve(G) = diam(G) — 1 and an optimal strong
rainbow vertex colouring can be found in time that is linear in the size of G.
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Figure 1 An overview of the complexity of RVC restricted to the graph classes considered here.

A thick line represents results obtained in this work. A line connecting two graph classes means the
lower one is a subclass of the upper one.

Bipartite [6,9]
NP-c

This paper is organized is follows. In Section 2 we define the notation and define basic
concepts that will be used throughout the text. In Section 3 we prove Theorems 3 and 4,
and provide the example of a graph with a dominating diametral path that requires diam(G)
many colours in any rainbow vertex colouring. The proof of Theorem 2 is split in Sections 4,
5 and 6. Finally, in Section 7, we consider interval graphs and prove Theorem 5. Due to
space constraints, statements marked with & have their proofs deferred to the full version of
this work.

Other related work

As mentioned above, RVC is NP-complete for any fixed k¥ > 2 on chordal graphs (in fact,
even on split graphs) and any fixed k > 3 on bipartite graphs [6]. These results also apply to
SRVC. In terms of positive results, both problems are polynomial-time solvable on bipartite
permutation graphs, unit interval graphs, and block graphs [6], on planar graphs for every
fixed k [8, 5], and on split strongly chordal graphs [11]. RVC was furthermore showed to be
polynomial-time solvable on interval graphs [6] and on permutation graphs and powers of
trees [11].

Although rainbow vertex colouring may seem abstract and almost purely theoretical it
does have some quite interesting applications to real world problems especially in terms of
encryption and data security. One example of this mentioned in [4] can be seen in onion
routing, a technique for anonymously browsing online. In onion routing the goal is to prevent
an adversary from knowing what sites you are connecting to. The way this is achieved is
by sending the message through a path of intermediaries before accessing the server you
requested. This message will be sent using multiple layers of encryption [12], where each
node of the path can only decrypt a single layer of this encryption. Assigning decryption
keys to the network draws parallels to rainbow vertex colouring.
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2 Preliminaries

For basic graph terminology we refer the reader to [1]. We denote a set of consecutive integers
from 1 to k as [k]. Given some path P = uziz3...x,v the vertices zyz...x,, are called the
internal vertices of P. A path is a rainbow vertex path if for every pair of internal vertices
x;,x; they are coloured such that c¢(z;) # c(z;). For some graph G if diam(G) = 2, then
rvc(G) = srve(G) = 1. The reason each node of the G can have the same colour is that
between every pair of vertices there will always exist some path such that there is only one
internal node.

Breadth-first search (BFS) is an algorithm for traversing graph structures. The algorithm
works by exploring the graph in layers, starting from some arbitrary root node vg. The layers
are indicated L;, where Lg is the layer of the root vertex. Thus all vertices in layer v; € L; of
the BFS-structure have a distance of ¢ to vg. Throughout this text we will often, for the sake
of convenience, indicate a vertex v belonging to some layer L; of a BFS-structure with v;.

A diametral path is a shortest path whose length is equal to diam(G). A dominating
diametral path is a path P = z...y such that dist(x,y) = diam(G) and the set V(P) =
{z,...,y} is a dominating set of G.

We say a graph is a diametral path graph if every connected induced subgraph has a
dominating diametral path. It has been shown that the existence of a dominating diametral
path in a graph can be checked and the path itself can be computed in O(n3m) time [3].
Throughout this text we will often run a BFS-search on one end of the dominating diametral
path. We denote the vertices of the diametral path p;, where p; belongs to layer L; of the
BFS-tree. We will also often refer to vertices as being dominated to the right, dominated to
the left or dominated in layer. For some vertex v € L; we say it is dominated to the right
if (v,pi+1) € F(G), we say it is dominated to the left if (v,p;—1) € F(G) and we say it is
dominated in layer if (v,p;) € E(G).

A graph is chordal if it contains no induced cycle of a length which is greater than three.
A well known subclass of the chordal graph is that of interval graphs. A graph G is an
interval graph if its vertices can be associated with a set of intervals in the real line in such a
way that two vertices are adjacent if and only if the corresponding intervals intersect. The
set of intervals associated with a graph G is called an interval model for G. Interval graphs
is a subclass of the chordal graphs with a dominating diametral path.

If the vertices of graph can be divided into two disjoint subsets such that each of the
subsets are independent the graph is said to be a bipartite graph. A claw is a bipartite graph
on four vertices a, b, ¢ and d, with edges (a,b), (a,c) and (a,d). A graph is claw-free if
it contains no induced claw. When referring to claws throughout this text we will write
them {abed} such that {b, c,d} C N(a), or said in another way the center of the claw will be
written first.

Basic properties of graphs with a dominating diametral path

We now present some basic properties of the layers of a BFS performed on a graph with
a dominating diametral path. These properties will come in useful in all the algorithms
presented in this work. Let G be a graph containing a dominating diametral path to which
a BFS is performed on one end of the diametral path. We let & = diam(G) thus the BFS
will have k£ + 1 layers. For each layer L;, for 0 < i < k, we let p; indicate the vertex of the
dominating diametral path in layer i, where pg is the root vertex. The following is an easy
property of a BFS.

» Observation 6. A vertex x € L; can only have neighbours in L;—1, L; and L;11.
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We will now introduce two new definitions which are used repeatedly throughout the
text. Recall that for convenience of notation we indicate vertices by the layer they belong to,
i.e. a vertex v € L; is denoted v;.

» Definition 7. We say a path between x € L; and y € L; is a direct path if the length of
the path is j — i, that is, it intersects every layer from L; to L; only once.

» Definition 8. We say a path between two vertices v € L; and y € L; zig-zags in Ly if it is
of the following structure: x...vj_1viv;_,v]...y, where vi_1 # v]_,, vy # v] and the paths = to
v and v] to y are direct paths.

This next observation comes naturally as a result of pg being the root vertex of the BFS.

» Observation 9. The root vertex pg of the BFS will have a direct path to every vertex in
the graph.

The following claims concerns colourings in which the vertices of the diametral path are
coloured in a specific way.

> Claim 10 (&). Let ¢: V — [k — 1] be a colouring for G in which each vertex p; of the

diametral path is coloured ¢(p;) = ¢, for 1 < i < k. Furthermore, ¢(pg) = k—1 and ¢(p) = 1.

The vertices not in the diametral path are coloured with arbitrary colours in [k — 1]. For
pairs of vertices v € L; and y € L;, where 2 < ¢ < j < k, a rainbow path can always be
found between x and y whose all internal vertices are contained in the diametral path.

The consequence of this claim is that when looking at pairs of vertices u € L; and v € L;,
where 0 < i < j <k if the colouring of the diametral path is equal to ¢ then we only have to
examine cases when 4 < 3. This next claim ensures that when i = j for two vertices we only
have to examine the case when the diameter of the graph is three.

> Claim 11 (&). Let ¢: V — [k — 1] be a colouring for G in which each vertex p; of the

diametral path is coloured ¢(p;) = ¢, for 1 < i < k. Furthermore, c¢(pg) = k—1 and ¢(p) = 1.

The vertices not in the diametral path are coloured with arbitrary colours in [k — 1]. For a

pair of vertices x,y € L; in G there will always be a rainbow path connecting them, unless
diam(G) = 3.

3 Graphs with a dominating diametral path

In this section, we first prove Theorem 3, stating that diam(G) many colours are always
enough to rainbow vertex colour a graph G that has a dominating diametral path. We then
proceed to give an example of one such graph that in fact needs diam(G) many colours to
be rainbow vertex connected. To round off this section, we present the proof of Theorem 4,
stating that even when diam(G) = 3, testing whether two colours are enough to make G
rainbow vertex connected is an NP-complete problem.

» Theorem 3. If G is a graph that has a dominating diametral path, then rvc(G) < diam(G).

Sketch of the proof (&). To construct the colouring ¢ : V' — [k], we run a BFS on some
end-point of the diametral path. We let k equal the number of layers of the tree excluding
po and let p; denote the vertex of the diametral in layer L;. We assign the colouring for
v€ L e(v)=kifi =0o0ri=k; and ¢(v) = i otherwise. For a proof that G is rainbow
vertex coloured under ¢ we refer the reader to the full version of this work. <
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Figure 2 The graph has a diameter of 5, while also needing 5 colours to be rainbow vertex-coloured.
The dominating diametral path is highlighted.

We now give an example of a graph with a dominating diametral path that needs diam(G)
many colours to be rainbow vertex connected. The graph is depicted in Figure 2. It should
be noted that this does not disprove the conjecture as the example graph in Figure 2 is not
a diametral path graph. It is rather a graph containing a dominating diametral path. The
distinction can be seen by observing that the graph in the figure contains two induced cycles
of a length greater than six, which is a forbidden structure in diametral path graphs [3].

» Proposition 12. If G is the graph shown in Figure 2, then rve(G) > diam(G)

Proof. Note that the diameter of the graph in Figure 2 is five. Assume for a contradiction
that G can be rainbow vertex coloured with four colours. First we highlight the three paths
of interest in the graph: wvavsvivav, VvV w and w'vyvjvivs. What makes these paths
interesting for our purposes is that they are the only paths of length less than or equal to the
diameter between their two endpoints. Thus, if there exists a rainbow vertex colouring for
the graph using 4 colours all of these paths must be rainbow coloured simultaneously. We
begin by giving the uv-path an arbitrary rainbow colouring, the internal vertices vovsvivy
receive the colouring 1,2, 3,4 such that c(ve) = 1, ¢(vs) = 2, ¢(v}) = 3 and c(vq) = 4. For
the uww-path we see that v) must be coloured 4 for it to be rainbow, but this means that
the u'v-path will not be rainbow as there are two nodes of its internal vertices which are
coloured 4. Thus we see that there is no way for all of these paths to be rainbow at the same
time. <

To conclude this section, we prove the following.

» Theorem 4. Let G be a graph with a dominating diametral path of length three. It is
NP-complete to decide whether rve(G) < 2.

Proof. We give a reduction from HYPERGRAPH 2-COLOURING. In this problem, we are
given a hypergraph H and we want to colour its vertices in such a way that no hyperedge is
monochromatic. The HYPERGRAPH COLOURING problem is known to be NP-hard for any
fixed number of colours k£ > 2.

Given an instance H of HYPERGRAPH 2-COLOURING with V(H) = [n] and E(H) =
{e1,...,em}, we construct an instance (G, k) of RAINBOW VERTEX COLOURING, with k = 2,
as follows. The graph G has four vertices pg, ..., p3 forming an induced path; two pendant
vertices a1 and ay attached to p; and po, respectively; two independent sets S7 and S, where
each vertex of S; corresponds to a hyperedge of H; and a clique C, each vertex of which
corresponds to an element of V(H).
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a2
P3
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Figure 3 The graph constructed in the proof of Theorem 4. Thick lines indicate a vertex is
complete to the set. Dashed lines indicate the two sets are attached.

We now give some definitions to describe the edge set of G. We denote by s;, the vertex
of §; corresponding to the hyperedge e, of H, and by v, the vertex of C' corresponding to the
element ¢ € V(H). We say a set S; is attached to C if for every 1 < g < m, s;4 is adjacent
to all the vertices of C' corresponding to elements of e,. That is, (s;q,v¢) € E(G) if and only
if £ € eq in H. In words, the adjacencies between S; and C encode the structure of H.

The edges of G can then be described as follows: pop; ... ps is an induced path; (p;, a;) €
E(G) for i € {1,2}; C is a clique; S; and Sy are attached to C; py dominates Si; p1 and po
dominate C; and p3 dominates So.

See Figure 3 for an illustration of the structure of G.

> Claim 13 (&). If H is 2-colourable, then G has rainbow vertex colouring with two colours.

> Claim 14. If G has a rainbow vertex colouring with two colours, then H is 2-colourable.

Proof. Let ¢ be a rainbow colouring for G with two colours. Since p; and ps are cut vertices

in G, they must have distinct colours under ¢. So we may assume c¢(p1) = 1 and ¢(ps) = 2.

To retrieve a 2-colouring for H from ¢ we consider the restriction of ¢ to C. That is, we
define a 2-colouring for H as follows: for every g € V(H), ¢(q) = ¢(vq). To see that H has
no monochromatic edge of colour 1 under ¢, consider rainbow paths between a; and the
vertices of Sa. Since N(S2) = C' U {p3} and dist(a1,p3) = 3, every such rainbow path has
to use a vertex from C. Note also that this path must contain p;, and ¢(p;) = 1. If there
exists a monochromatic hyperedge e; with colour 1 under ¢, then there is no rainbow path

between sy; and ay, a contradiction. Hence ¢ has no monochromatic hyperedge of colour 1.

By a similar argument, we see that H has no monochromatic edge of colour 2. Indeed, since
N(S1) = CU{po} and dist(pg, az) = 3, any path between a vertex of S; and as must contain
p2 and a vertex from C'. Since ¢(pz) = 2 and S; is attached to C, the claim follows. N

To conclude the proof of the theorem, note that diam(G) = 3 and that popipaps is a
dominating diametral path in G. <

4 Bipartite graphs with a dominating diametral path

In this section, we investigate the complexity of RVC on bipartite graphs with a dominating
diametral path, and prove Conjecture 1 for this graph class. Recall that for bipartite graphs
RVC has already been proven to be NP-complete for any fixed k > 3. The result we achieve
for this graph class is a direct improvement on the earlier result of Heggernes et al. [6] on
bipartite permutation graphs, a known subclass of the bipartite graphs with a dominating
diametral path.
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» Theorem 15 (&%). If G is a bipartite graph with a dominating diametral path, then
rve(G) = diam(G) — 1 and the corresponding rainbow vertex colouring can be found in time
that is polynomial in the size of G.

5 Chordal graphs with a dominating diametral path

In a similar vein to the previous section, we are now going to consider the complexity of
RVC on chordal graphs with a dominating diametral path. In particular, we show that
Conjecture 1 is true for chordal diametral path graphs. Recall that RVC is NP-complete on
chordal graphs for k£ > 2. Our algorithm for chordal graphs with a dominating diametral path
generalizes the existing result for interval graphs of Heggernes et al. [6]. We also point out
that an example of a graph that is a chordal diametral path graph and not an interval graph
is the 3-sun, a graph on vertex set {a,b,c,d, e, f} in which {a,b,c}, {b,d,e} and {c,d, f}
induce triangles.

» Theorem 16. If G is a chordal graph with a dominating diametral path, then rvc(G) =
diam(G) — 1 and the corresponding rainbow vertex colouring can be found in time that is
polynomial in the size of G.

Proof. Let G = (V, E) be a chordal graph with a dominating diametral path. We run a
BFS search on one of the endpoints of the diametral path which we will call py. We let k
denote the number of layers of the BFS tree and let p; be the vertex of the diametral path in
L; where 0 < i < k. To construct a rainbow colouring ¢ : V' — [k — 1] for G we assign the
colouring for v € L;:

k—1 ifi=0
c(v) =141 if i =k or if i = 2 and for some vo € (N(v) N Ly) : dist(ve, pr) = k
1 otherwise.

Once a BFS is performed on a chordal graph with a dominating diametral path, we will
see that some special edges must exist within a layer, otherwise we would have long induced
cycles. We will formulate some of these properties before delving into the details of the proof
as they will be of great use.

> Claim 17 (&). If we have a path P; = abc such that a,c € L; and b € L;;1 then the edge
(a,c) must be in E(G).

» Observation 18 (&). A vertex x € L; in G cannot only be dominated to the right.

> Claim 19 (&). If we have some P, = abed where a,d € L; and b, ¢ € L; 11, then the edge
(a,d) must be in E(G).

> Claim 20 (&). If a vertex z € L;, where x # p;, has a neighbour y € L;;; then z must be
dominated in layer.

» Observation 21 (&). A vertex x € Lo with a direct path to py, will always be coloured 2.

> Claim 22 (&%). There will never exist a direct path between some vertex x € Lo coloured
1 and some vertex y € L;, 2 < ¢ < k, where y is only dominated in layer.

> Claim 23 (&). If for a pair of vertices € L; and y € L; where j > i and dist(z, y) = j—i+1,
then there will always exist some path between x and y such that it repeats layers in L;.
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Figure 4 Illustration of the Case 2 in the proof of Theorem 16.

To argue the correctness of the colouring let us look at a pair of arbitrary vertices u € L;
and v € L;. Firstly we consider the case when ¢ = j. By Claim 11 we know there will be a
rainbow path for all cases of G except for when diam(G) = 3. For this instance there are
three possibilities for i and j.

1. i = j = 1. The path upgv will always exist and is rainbow.

2. 5= j = 2. Because of Observation 18 we know u and v must be dominated by either pq,
po or both. If they are dominated by the same vertex there is a rainbow path, while if
they are dominated by different vertices either path up;pov and upsopyv is rainbow.

3. i = j = 3. The vertices are either dominated by ps, ps or both. If they are dominated by
the same vertex there is a rainbow path, and if they are dominated by different vertices
either path upspsv and upspov is rainbow.

We will now examine all cases of u and v such that 0 <1¢ < j < k. First we can observe
by Claim 10 that when ¢ > 3 we can always use the dominating path. We will look at the
cases where the dominating path cannot be arbitrarily used, i.e. when ¢ < 3 more closely.

Case 1. © = 0. The only case we cannot use the dominating path is if j = k and v is only
dominated in layer. We know by Observation 9 that py must have a direct path to every
vertex including v. By Claim 22, this path will never intersect some vertex coloured 1 in
Lo and thus is rainbow.

Case 2. ¢ = 1. If u is dominated to the right the diametral path will be rainbow for every
case of v. This leaves us two cases of u.
1. u is dominated in layer. The only case of v we have to look at is when j = k while v is
only dominated in layer. There are two subcases we have to examine for this case.

a. dist(u,v) = k — 1. Since the path between u and v is direct and v is only dominated
in layer we know by Claim 22 that no internal vertex is coloured 1 and thus the
path is rainbow.

b. dist(u,v) = k. Using Claim 23 we know there will be some path repeating in L;
and from there go directly to v. Since the path from L, to v is direct we can again
use Claim 22 and thus we know that all internal vertices are distinctly coloured.

2. u is only dominated by py. For this case in both instances when j =k —1 and j =k
we cannot arbitrarily use the diametral path.

a. j =k —1. If v is dominated to the left we can use the diametral path, thus let us
assume v is only dominated in layer. From py there must exist some direct path
to v. We can thus go from u to py and then traverse the direct path to v. By
Claim 22, since v is dominated in layer, the vertex in Lo of the direct path will
never be coloured 1.
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b. j = k. First we observe that the combination of u not being dominated in layer
and Claim 20 means that dist(u,v) = k. By Claim 23 we therefore know there
must exist some path P = uvivs...v5_1v, where vy # py. If v is only dominated in
layer, Claim 22 states that vy must be coloured 2 and thus P is rainbow. Therefore
let us assume v is dominated to the left. As argued before, the fact that u is not
dominated in layer and Claim 20, imply that by Claim 23 we can identify that the
following path P’ = wv{v}...v},_,pk also must be in G. By Observation 21 v} is
not coloured 1 as this vertex has a direct path to pi. If for some i < k, v) = p;
then we have the following rainbow path: wvi...v}_;p;...px—1v, thus let us assume
for all i < k, v} # p;. Using Claim 20 we know both v}_; and v;_; must be
dominated in layer. With P and P’ we can as a result see the formation of a large
cycle starting at u and meeting at px_;. In particular in Li_; we have a P3; on
the vetices v},_,pr—1vk—1. We let P” denote the shortest path between v;_q and
v,y in G = G{u} U {v1,v1} U.. U {vg_2,v;_ 5} U{vg_1,v,_1}]. If |[E(P")] =2
then either vy_s or vj_, is an internal node of P”. If vj_o is the internal node this
means the edge (vg—2,v,_) is in E(G), which means there is a direct path from vo
to pr and therefore vy would be coloured 2, making P a rainbow path. We therefore
check for when v},_, is the internal node. This means that (v},_,,vx—1) is an edge
in E(G), but this results in the rainbow path: uvs...vj,_,vk_1v. Since |[E(P")| =2
always results in a rainbow path between u and v we check for when |E(P")| = 3.
This means that (vy_2,v),_,) is an edge in E(G). We already established earlier that
neither edge (v},_o, vk—1) Or (Vg—_2,v},_;) can be in E(G). If (vx_2,pr—1) is in the
graph then, again, v, will have a direct path to p, — resulting in vy being coloured 2.
If (v},_o, pr—1) is an edge in the graph then there is a rainbow path wv]...v},_,pr—_1v
between v and v, thus we can omit these two edges. As we currently have a cycle
Uk—2Uk—1Pk—1V},_,V}_o and no other edges can be added to G’ in these layers we
see that for |E(P")| > 3 we will find an even longer induced cycle. Therefore
|E(P")| =1 and by applying Claim 19 on the Py = vj_ov_1v),_,v},_, we conclude
(Uk—2,v}_5) is an edge in G. However as argued above, (vg—2,v},_;) and (v},_,, Vk—1)
are not in G. We then have an induced cycle of length four in G, a contradiction
since G is chordal. All the potential edges in the cycle is shown in Figure 4.

The proof of Case 3, that is, when ¢ = 2, is deferred to the full version of this work.

This proves c is indeed a rainbow colouring for G with diam(G) — 1 colours. Finding the
root vertex of the dominating diametral path is a polynomial time operation while the BFS
takes linear time. Checking if nodes in Ly must be coloured 1 is done by checking for each
vertex in Ly their distance to pg. This is a O(n?) time operation, thus when summarizing
all these times together we end up with a polynomial time algorithm. <

6 Claw-free graphs with a dominating diametral path

In this section, we give a polynomial-time algorithm to optimally rainbow vertex colour
claw-free graphs with a dominating diametral path. In particular, this proves Conjecture 1
for claw-free diametral path graphs. This result also improves on the previous algorithm for
unit interval graphs [6].

» Theorem 24. If G is a claw-free graph with a dominating diametral path, then rve(G) =
diam(G) — 1 and the corresponding rainbow vertex colouring can be found in time that is
polyonmial in the size of G.
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Proof. Let G be a claw-free diametral path graph. We run a BFS on one of the ends of
the diametral path. We denote this vertex py and we let k denote the number of layers of
the BFS-tree excluding py. The vertex of the diametral path in each layer we denote p;,
1 <4 < k. To construct a colouring ¢: V — [k — 1] on G for v € L; we assign the colouring:

k—1 ifi=0
c(v)y =41 ifi=korif Nw)NLiy1 =10
1 otherwise.

Before arguing the correctness of our colouring we make the following observations.

» Observation 25 (&). A direct path between vertices x € L; and y € Lj;, where j > i,
cannot intersect some vertex z € L; coloured 1, 0 < i <1 < j.

> Claim 26 (&%). If a vertex « € L;, with ¢ > 1, is dominated to the left, then z is also
dominated in layer.

To argue the correctness of the colouring we will look at a pair of arbitrary vertices u € L;
and v € L;. We start by looking at the case where i = j. By Claim 11 we know that for all
cases except for when diam(G) = 3 there will be a rainbow path between v and v. There are
three possible cases for ¢ and j:

1. i =j = 1. Both u and v are connected to pg, leading to the rainbow path upgv.

2. i =7 = 2. Claim 26 states that neither u nor v can only be dominated to the left, which
means they are either dominated by po, p3 or both. If the vertices are dominated by the
same vertex there is a rainbow path, and for the case they are dominated by different
vertices either path upspsv and upspov is rainbow.

3. i =7 = 3. Since u and v are in layer L3 they cannot be dominated to the right. Claim 26
tells us u and v cannot only be dominated left so we therefore know that both v and v
must be dominated in layer. We, as a result, have the rainbow path upsv.

For the rest of the proof we will assume 0 < ¢ < j < k. For cases when i > 3 we know
by Claim 10 that there exists a rainbow path between u and v. When ¢ = 0 we know by
Observation 9 that there must always be a direct path to v, and this path will never intersect
some vertex coloured 1, other than in Lj, as this would by Observation 25 imply the path
not being direct. When ¢ = 2 we know from Claim 26 that v must be dominated in layer
and thus for all cases of j the diametral path will have a rainbow path to v. We are thus left
with only one case to examine, which is when ¢ = 1 while v is not dominated to the right.
1. j =k — 1. Consider the path using the edge (u,pg) and then a direct path between pg

and v. The direct path between py and v will by Observation 25 never intersect a vertex

coloured 1 in layers other than L, and thus the path is rainbow.

2. j = k. If dist(u,v) = k — 1 then the path goes directly to v and by Observation 25
this path will not intersect some vertex coloured 1, thus it is rainbow. If dist(u,v) =k
the path must repeat layers at some point. If the repetition of layers happens in L; or
L; the path will be rainbow. Therefore let us assume this repetition happens in some
layer L; where i < I < j. We have the following path: P = u..v;_jvvvy ,..v. If y
has no neighbour in L;1 it will be coloured 1, making P rainbow, thus let us assume
P has some neighbour vj41 € Liyqi. If (vi_1,v)) ¢ E(G) and (v}, v41) ¢ E(G) then
{vivj—1vjvi41} induces a claw in G. As a result, either (v;_1,v]) or (v}, v;+1) must be an
edge in F(G). The former case implies a direct path w...v;_1vjv],;...v between v and v,
thus let us assume only (v}, vi+1) € E(G). Since v; must have some neighbour v;_, in L;_4
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Figure 5 Scenario where the path repeats in layer L;. If v; has no neighbours in L;y; it is
coloured 1, otherwise one of two possible edges (dashed lines) must be in the graph.

another claw becomes apparent: {vjv;_;v;  v;41}. In a similar argument to the proof of
Claim 26 we have three possible edges to prevent an induced claw, but only one, as seen
by Observation 6 is allowed within the BFS-structure — thus (v;11,v;, ;) must be an edge
within F(G). The inclusion of this edge means the repetition of layers can be shifted one
step further to the right, to L; 1, with the following path: u...v;_1vvi41v;,;...v. For this
new path either v;11 has a neighbour in L;;9, which means the repetition can be shifted
a further step to the right, the argument being identical to the one presented just now,
or v;4+1 has no neighbour in L;;o meaning its coloured 1, making this new path rainbow.
If the path repeats in Lg, in the scenario where the repetition has shifted all the way to
the right, the path will also be rainbow. This scenario where the path between u and v
repeats in some layer L; is shown in Figure 5.

This proves that ¢ is a rainbow colouring for G using diam(G) — 1 colours. It is simple to
see that our colouring algorithm only takes polynomial time. The BFS-search is linear, while
finding vertices which are not dominated by the following layer is also linear. This added
with the time it takes to find the dominating diametral path results in a polynomial time
algorithm. |

7 Interval graphs

In Section 5, we presented a proof which generalized an earlier result concerning interval
graphs. For this section we will expand on the theme of interval graphs as we prove that
also SRVC can be efficiently solved on this graph class. Only an algorithm for computing an
optimal strong rainbow verex colouring on unit interval graphs was previously known [6].

» Theorem 5. If G is an interval graph, then srve(G) = diam(G) — 1 and an optimal strong
rainbow vertex colouring can be found in time that is linear in the size of G.

8 Conclusion

In this work we have given efficient algorithms for optimally colouring multiple subclasses
of graphs with dominating diametral paths. We have shown that for a graph G with a
dominating diametral path, and one of the following properties: chordal, claw-free or bipartite,
we can find a colouring in polynomial time using diam(G) — 1 colours. But the status of the
of the conjecture of Heggernes et al. [6] still remains an open problem.

We believe the conjecture is true because diametral path graphs seem to be a graph class
that is more dense than graphs with a dominating diametral path. As we have seen for
the claw-free and chordal graphs, the dominating diametral path in conjunction with some
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property making for a more dense graph class seems to help in terms of finding a rainbow
vertex colouring using diam(G) — 1 colours. A step towards solving Conjecture 1 would be to
consider other widely studied subclasses of diametral path graphs, such as co-comparability
graphs and AT-free graphs.

On the other hand, we showed Conjecture 1 is not true for a closely related graph class,
namely if we assume that only the input graph has a dominating diametral path, as opposed
to every induced subgraph of it. We showed an example of a graph with a dominating
diametral path that requires diam(G) many colours in any rainbow vertex colouring. We also
showed that RVC becomes NP-complete on this graph class. In the light of our algorithms
for chordal, bipartite and claw-free graphs with a dominating diametral path, it would be
interesting to understand which other properties ensure efficient algorithms for RVC on
graphs with a dominating diametral path.
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