
On the Complexity of Tree Edit Distance with
Variables
Tatsuya Akutsu1 #

Bioinformatics Center, Institute for Chemical Research, Kyoto University, Japan

Tomoya Mori
Bioinformatics Center, Institute for Chemical Research, Kyoto University, Japan

Naotoshi Nakamura
The Thomas N. Sato BioMEC-X Laboratories, Advanced Telecommunications Research Institute
International (ATR), Kyoto, Japan
Karydo TherapeutiX, Inc., Tokyo, Japan
Interdisciplinary Biology Laboratory (iBLab), Division of Natural Science,
Graduate School of Science, Nagoya University, Japan

Satoshi Kozawa
The Thomas N. Sato BioMEC-X Laboratories, Advanced Telecommunications Research Institute
International (ATR), Kyoto, Japan
Karydo TherapeutiX, Inc., Tokyo, Japan

Yuhei Ueno
The Thomas N. Sato BioMEC-X Laboratories, Advanced Telecommunications Research Institute
International (ATR), Kyoto, Japan
Karydo TherapeutiX, Inc., Tokyo, Japan
V-iCliniX Laboratory, Nara Medical University, Japan

Thomas N. Sato2 #

The Thomas N. Sato BioMEC-X Laboratories, Advanced Telecommunications Research Institute
International (ATR), Kyoto, Japan
Karydo TherapeutiX, Inc., Tokyo, Japan
V-iCliniX Laboratory, Nara Medical University, Japan

Abstract
In this paper, we propose tree edit distance with variables, which is an extension of the tree edit
distance to handle trees with variables and has a potential application to measuring the similarity
between mathematical formulas. We analyze the computational complexity of several variants of
this model. In particular, we show that the problem is NP-complete for ordered trees. We also
show for unordered trees that the problem of deciding whether or not the distance is 0 is graph
isomorphism complete but can be solved in polynomial time if the maximum outdegree of input
trees is bounded by a constant. We also present parameterized and exponential-time algorithms for
ordered and unordered cases, respectively.

2012 ACM Subject Classification Theory of computation → Graph algorithms analysis

Keywords and phrases Tree edit distance, unification, parameterized algorithms

Digital Object Identifier 10.4230/LIPIcs.ISAAC.2022.44

Related Version Full Version: https://arxiv.org/abs/2105.04802

Funding Tatsuya Akutsu: Partially supported by JSPS KAKENHI #JP22H00532 and #JP22K19830.
Naotoshi Nakamura: Partially supported by JSPS KAKENHI #JP17H06003 and #JP19H05422.

1 Corresponding author
2 Corresponding author

© Tatsuya Akutsu, Tomoya Mori, Naotoshi Nakamura, Satoshi Kozawa, Yuhei Ueno, and
Thomas N. Sato;
licensed under Creative Commons License CC-BY 4.0

33rd International Symposium on Algorithms and Computation (ISAAC 2022).
Editors: Sang Won Bae and Heejin Park; Article No. 44; pp. 44:1–44:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:takutsu@kuicr.kyoto-u.ac.jp
https://orcid.org/0000-0001-9763-797X
mailto:island1005@atr.jp
https://doi.org/10.4230/LIPIcs.ISAAC.2022.44
https://arxiv.org/abs/2105.04802
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

44:2 Tree Edit Distance with Variables

Thomas N. Sato: Partially supported by JST ERATO Grant Number JPMJER1303, Nakatani
Foundation, and AMED under Grant Number JP21he2102002.

Acknowledgements We are grateful to the members of Sato lab at ATR and Karydo TherapeutiX,
Inc. for advice and discussion throughout the course of this work.

1 Introduction

Measuring the similarity of tree structured data is a fundamental problem in computer
science because various kinds of data are represented as trees. Tree edit distance is one of the
most extensively studied measures for dissimilarity between two rooted trees. It is known
that tree edit distance can be computed in polynomial time for ordered trees [7, 14, 16, 18],
whereas its computation is NP-hard for unordered trees [19].

Mathematical formulas are one of the widely used tree structured data. Indeed, many
methods have been developed for retrieving similar mathematical formulas [1, 10, 15, 20].
Comparison of mathematical formula is also important for analysis of biological systems [17].
However, most of the developed search methods are heuristic ones and are not studied from
a viewpoint of the computational complexity. Unification is a basic technique to evaluate the
identify of logic formulas, and the computational complexity of various variants (e.g., allowing
associative and/or commutative laws) has been studied [3, 11, 12]. However, unification does
not give a similarity or distance measure. Although a combination of unification and tree
edit distance was proposed under the name of “tree edit distance with variables”, only a
quite restricted case (each variable can occur only once) was studied [3].

In order to compare mathematical formulas, it is important to consider trees with variables.
For example, consider two functions f(x, y, z) and g(x, y, z) defined by:

f(x, y, z) = (x + y)× z,

g(x, y, z) = (x + z)× y.

These two functions are essentially the same: the former one is identical to the latter one
by replacing y and z with z and y, respectively. In addition, consider a function h(x, y, z)
defined by:

h(x, y, z) = z × (x + y).

This function is also essentially the same as f and g because multiplication satisfies the
commutative law. Functions f , g, and h can be respectively represented as T1, T2, and T3
shown in Figure 1. If we ignore variable names assigned to leaves, these trees are identical
as unordered rooted trees. However, considering variable names is important. For example,
consider a function k defined by

k(x, y) = (x + y)× x.

This function can be represented as a rooted tree T4 in Figure 1. Although (unordered)
tree structures of T1, . . . , T4 are identical, k is clearly different from f , g, and h. Therefore,
variable names assigned to leaves should be taken into account.

Based on the above discussion, we introduce tree edit distance with variables in this paper.
Before giving this new distance measure, we briefly review the standard tree edit distance [6].
Let T1 and T2 be two rooted trees in which each node has a label from some alphabet. We
consider two cases: both T1 and T2 are ordered trees, and both T1 and T2 are unordered trees.
This distinction can be taken into account only when we consider whether or not two trees

T. Akutsu, T. Mori, N. Nakamura, S. Kozawa, Y. Ueno, and T. N. Sato 44:3

T1 T2 T3

z

yxzx

yz

yx

x

yx

T4

+ + + +

Figure 1 Tree representations of mathematical expressions.

Table 1 Summary of Results.

d0(T1, T2) iso iso-BD d(T1, T2) d(T1, T2)-BD
ordered P [16] P P NPC NPC

(Prop. 3) (Prop. 3) (Thm. 4) (Thm. 4)
O((

√
3)M · poly(n1, n2))

time (Thm. 7)
unordered NPC [19] GIC P NPC [19] NPC [19]

(Thm. 9) (Thm. 9) O(
(

M
e

)(1
2 +δ)M · 1.26n1+n2)

time (Prop. 10)

are identical (i.e., isomorphic) after tree editing operations. The tree edit distance d0(T1, T2)
between T1 and T2 is defined as the cost of the minimum cost sequence of edit operations
that transforms T1 to T2, where an operation is one of deletion of a node, insertion of a node,
and change of the label of a node. Then, we define the tree edit distance between two trees
in which leaves can have variables as labels T1 and T2 by dist(T1, T2) = minθ dist0(T1θ, T2θ),
where θ is a substitution (i.e., a set of assignments of constants to variables). See Section 2
for the precise definitions.

In this paper, we analyze the computational complexity of several variants/subcases of
the tree edit distance problem with variables, with focusing on the unit cost model (i.e.,
the cost of each edit operation is 1). When discussing the complexity classes, we consider
a decision version of the problem: whether or not dist(T1, T2) ≤ d for given T1, T2, and a
given non-negative real number d. The main results are summarized in Table 1, where “iso”
asks whether d(T1, T2) = 0, “BD” means that the maximum outdegree (i.e., the maximum
number of children) of both T1 and T2 is bounded by a constant, M denotes the number
of occurrences of variables in T1 and T2, ni denotes the number of nodes in Ti, and δ is
any positive constant. In this table, P, NPC, and GIC mean that the target problem is
polynomial-time solvable, NP-complete, and Graph Isomorphism complete (i.e., as hard
as the graph isomorphism problem under polynomial-time reduction), respectively. It is
interesting to see that the complexity substantially changes according to introduction of
variables.

2 Preliminaries

In this section, we review the precise definition of the tree edit distance and then formally
define the tree edit distance with variables.

Let T1 and T2 be two rooted trees in which each node has a label from an alphabet
Σ. We use ℓ(v) to denote the label of a node v. As mentioned in Section 1, we consider
two cases: both T1 and T2 are ordered trees, and both T1 and T2 are unordered trees, and
this distinction can be taken into account only when we consider whether or not two trees
are identical after tree edit operations. We consider three kinds of edit operations (see also
Figure 2):

ISAAC 2022

44:4 Tree Edit Distance with Variables

a

c

fd

b

e

c g

change

of e to a

a

c

fd

b

a

c g

deletion

of e

insertion

of e

a

c

c gd f

b

Figure 2 Tree edit operations.

Deletion: Delete a non-root node v in a tree T with parent u, making the children of v

become children of u. The children are inserted in the place of v into the set of the
children of u.

Insertion: Inverse of delete. Insert a node v as a child of u in T , making v the parent of
some of the children of u.

Change-Label: Change the label of a node v in T .
We assign a cost for each editing operation: γ(a, b) denotes the cost of changing a node with
label a to label b, γ(a, ϵ) denotes the cost of deleting a node labeled with a, γ(ϵ, a) denotes
the cost of inserting a node labeled with a. We assume that γ(x, y) satisfies the conditions
of distance metric: γ(x, x) = 0, γ(x, y) = γ(y, x), γ(x, y) ≥ 0, and γ(x, z) ≤ γ(x, y) + γ(y, z).
Then, the edit distance between T1 and T2 is defined as the cost of the minimum cost sequence
of edit operations that transforms T1 to T2 (precisely, transforms T1 to a tree identical to
T2). It is well-known that this distance satisfies the conditions of distance measure, in both
ordered and unordered cases.

In this paper, we focus on the unit cost model in which the cost of each edit operation
is 1 (i.e., γ(x, y) = 1 for any x ̸= y). Note that all hardness results hold for a general cost
model because the unit cost model is a special case. For positive results, we need to consider
mapping costs between variables in T1 and T2. Since it is difficult to define appropriate
general costs for such cases, we only consider the unit cost model in this paper.

Here we define the tree edit distance with variables. Let Σ be a set of constant symbols,
where each constant is denoted by a lower-case letter (e.g., a, b, c, x, y, z, a1, a2). Let Λ be a set
of variables, where each variable is denoted by an upper-case letter (e.g., X, Y, Z, X1, X2). A
substitution is a set of variable-constant pairs, θ = {(X1, x1), (X2, x2), . . . , (Xk, xk)}, where
Xi ̸= Xj holds for all i ̸= j but xi = xj can hold for some (i, j). For a rooted tree T and a
substitution θ, Tθ denotes the tree obtained by changing variables appeared in T to constants
according to θ (each Xi is replaced with xi). Let dist0(T1, T2) be the standard tree edit
distance between T1 and T2 (i.e., distance between trees without variables). We reasonably
assume the following:

Variable symbols appear only in leaves.
The sets of variables appearing T1 and T2 are disjoint.
Distinct variables in the same tree must be substituted to distinct constants by θ.
Every variable appearing in T1 (resp., T2) is substituted to a constant symbol not
appearing in T1 or T2 (because otherwise the cost of substituting a variable to a constant
would be 0, which is not appropriate for measuring the distance between two mathematical
expressions).

Then, we define the tree edit distance with variables as follows.

▶ Definition 1. The tree edit distance with variables between T1 and T2 is

dist(T1, T2) = min
θ

dist0(T1θ, T2θ).

T. Akutsu, T. Mori, N. Nakamura, S. Kozawa, Y. Ueno, and T. N. Sato 44:5

W d

X Y

e

a

cb

d Z

T1 T2

U d

U V

h

a

f d g

e

Figure 3 Example of a tree pair. In this case, dist(T1, T2) = 5 under the unit cost model. Dashed
curves show a tree mapping corresponding to the minimum cost sequence of edit operations.

For example, consider trees T1 and T2 shown in Figure 3 and the unit cost model (i.e.,
γ(x, y) = 1 for any x ̸= y). Then, dist(T1, T2) = 5 (in both ordered and unordered cases)
by θ = {(X, x), (Y, y), (Z, z), (W, w), (U, x), (V, y)} and the following sequence of editing
operations: change the label of node w to x, insert node h, change the label of node b to f ,
delete node c, and change the label of node z to g, where we identify nodes by their labels.

As the basic property, the following holds.

▶ Proposition 2. For both ordered and unordered cases, tree edit distance with variables
satisfies the conditions of a distance measure.

Proof. Two trees that are isomorphic by one-to-one renaming of variables are regarded
as identical. Clearly, dist(T1, T2) = 0 if and only if T1 and T2 are identical. Since
dist0(T1, T2) = dist0(T2, T1) holds for variable-free trees T1 and T2, dist(T ′

1, T ′
2) = dist(T ′

2, T ′
1)

holds for trees with variables T ′
1 and T ′

2. Let θ1,2 = argminθdist0(T1θ, T2θ) and θ2,3 =
argminθdist0(T2θ, T3θ). We assume without loss of generality (w.l.o.g.) that θ1,2 and θ2,3
give the same substitutions for variables appearing in T2. Let θ1,3 be the union of θ1,2 and
θ2,3. Since T1θ1,2 = T1θ1,3, T2θ1,2 = T2θ2,3 = T2θ1,3, and T3θ2,3 = T3θ1,3 hold, we have

dist(T1, T3) ≤ dist0(T1θ1,3, T3θ1,3)
≤ dist0(T1θ1,2, T2θ1,2) + dist0(T2θ2,3, T3θ2,3)
= dist(T1, T2) + dist(T2, T3). ◀

There is a close relationship between the tree edit distance and the tree mapping [6]. For
an unordered tree, a bijective mapping M⊆ V (T1)× V (T2) is called a tree mapping if for
every (u1, v1), (u2, v2) ∈ M, it holds that: (i) u1 = u2 if and only if v1 = v2; and (ii) u1 is
an ancestor of u2 if and only if v1 is an ancestor of v2. Condition (i) states that each node
appears at most once inM, and condition (ii) states that ancestor-descendant relations must
be preserved in M. For ordered trees, the following condition is needed in addition to (i)
and (ii): (iii) u1 is left to u2 if and only if v1 is left to v2. See [6] for the precise definition of
“left”. It is known that any edit sequence can be modified without changing the total cost
such that change-label operations follow deletion operations and insertion operations follow
change-label operations. Then, an edit sequence gives a tree mapping: the nodes not deleted
or inserted correspond to each other. Conversely, a tree mapping gives an edit sequence:
nodes in T1 (resp., T2) that do not appear in M are regarded as deleted (resp., inserted),
and any (u, v) ∈M is regarded as change-labeled if their labels are different. Therefore, we
use such words as “u is mapped to v” when discussing about tree edit distance.

ISAAC 2022

44:6 Tree Edit Distance with Variables

w1

w2 w3

w4

r1

v2
v3v1

v1,1 v1,2 v1,3 v2,1 v2,2 v2,3 v3,1 v3,2 v3,3

X1,2 X1,3 X1,2 X2,3X1,1 X2,2 X1,3 X2,3 X3,3

r2

u1

u1,1 u1,2 u1,3

Y1,2Y1,1

u1,4

Y1,3 Y1,4

u2

u2,1 u2,2 u2,3 u2,4

Y2,3 Y2,4

u3

u3,1 u3,2 u3,3

Y2,3

u3,4

u4

u4,1 u4,2 u4,3

Y4,2Y4,1

u4,4

Y3,4Y1,2 Y2,2 Y3,4 Y4,4Y1,3 Y3,3

T1

T2

G(V,E), k=3

clique

Figure 4 Reduction from maximum clique to ordered tree edit distance with variables, where
only relevant labels are shown.

3 Ordered Trees

In this section, all trees are ordered trees, which means that the children of each node are
ordered from left to right and that this ordering must be preserved among isomorphic trees.
For each tree T , V (T) and E(T) denote the sets of nodes and edges, respectively. We let
n1 = |V (T1)| and n2 = |V (T2)|. For each node (resp., vertex) v in a tree (resp., in a graph),
ℓ(v) denotes the label of v.3 We may use the label of a node to denote the node itself when
there is no confusion.

▶ Proposition 3. For ordered trees, whether or not dist(T1, T2) = 0 can be determined in
polynomial time.

Proof. We construct an Euler string str(Ti) [2] for each of the trees Ti using depth first
search (DFS). In constructing str(Ti), we assign a unique integer number from 1, 2, · · · as the
label of a variable node every when we first encounter the variable. Then, it is straightforward
to see str(T1) = str(T2) if and only if dist(T1, T2) = 0. ◀

▶ Theorem 4. For ordered trees, the tree edit distance problem with variables is NP-complete.

Proof. It is clear that the problem is in NP. Then, we show a polynomial-time reduction
from the maximum clique problem (see also Figure 4). The maximum clique problem is,
given an undirected graph G(V, E) and an integer k, to decide whether or not there exists a
complete subgraph (clique) of size (#vertices) k in G(V, E), where all vertices have the same
label. It is well-known that the problem is NP-complete.

From a given k, we construct T1 as follows:

V (T1) = {r1} ∪ {v1, . . . , vk} ∪

 ⋃
i∈{1,...,k}

{vi,1, . . . , vi,k}

 ,

E(T1) =

 ⋃
i∈{1,...,k}

{(r1, vi)}

 ∪

 ⋃
i∈{1,...,k}

{(vi, vi,1), . . . , (vi, vi,k)}

 ,

3 We mainly use “nodes” for trees and “vertices” for graphs.

T. Akutsu, T. Mori, N. Nakamura, S. Kozawa, Y. Ueno, and T. N. Sato 44:7

ℓ(r1) = a,

ℓ(v1) = ℓ(v2) = · · · = ℓ(vk) = b,

ℓ(vi,i) = Xi,i for all i,

ℓ(vi,j) = ℓ(vj,i) = Xi,j for all i < j,

where Xi,j ̸= Xi′,j′ for any i ̸= i′ or j ̸= j′.
From a given G(V, E) with V = {w1, . . . , wn}, we construct T2 as follows:

V (T2) = {r2} ∪ {u1, . . . , un} ∪

 ⋃
i∈{1,...,n}

{ui,1, . . . , ui,n}

 ,

E(T2) =

 ⋃
i∈{1,...,n}

{(r2, ui)}

 ∪

 ⋃
i∈{1,...,n}

{(ui, ui,1), . . . , (ui, ui,n)}

 ,

ℓ(r2) = a,

ℓ(u1) = · · · = ℓ(un) = b,

ℓ(ui,j) = ℓ(uj,i) = Yi,j for all {wi, wj} ∈ E with i < j,

ℓ(ui,j) = Yi,j for all other ui,js,

where Yi,j ̸= Yi′,j′ holds for any i ̸= i′ or j ̸= j′.
Here, we note that n1 = 1 + k + k2 and n2 = 1 + n + n2. We show that G(V, E) has a

clique of size k if and only if dist(T1, T2) = n2−n1 (i.e., T1 is obtained by deletion operations
from T2 and renaming of variables). We say that a tree mapping M is an inclusion mapping
if M corresponds to the sequence of edit operations with cost n2 − n1 (i.e., M contains all
nodes in T1).

Suppose that G(V, E) has a clique of size k. We assume w.l.o.g. that {w1, w2, . . . , wk}
be the set of nodes in that clique. Then, the following mapping gives an inclusion mapping
from T1 to T2:

M = {(r1, r2)} ∪ {(vi, ui) | i = 1, . . . , k} ∪ {(Xi,j , Yi,j) | 1 ≤ i ≤ j ≤ k}.

Conversely, suppose that there exists an inclusion mapping M from T1 to T2. We assume
w.l.o.g. that M includes the following mappings:

{(r1, r2)} ∪ {(vi, ui) | i = 1, . . . , k}

Then, for any (i, j) such that 1 ≤ i < j ≤ k, Xi,j must be mapped to Yi,j because vi is
mapped to ui, vj is mapped to uj , and Xi,j (resp., Yi,j) is only one variable appearing
in children of both vi and vj (resp., ui and uj). It means that for all (i, j) such that
1 ≤ i < j ≤ k, there exists an edge between wi and wj . Therefore, there exists a clique of
size k in G(V, E). Note that although Xi,i may not be necessarily mapped to Yj,j , it does
not cause a problem.

Finally, we consider the bounded degree case. In this case, it is enough to encode each
non-leaf node as in Figure 5. Let T̂ be the tree obtained from T by this encoding. Then, it
is straightforward to see that there exists an inclusion mapping from T1 to T2 if and only if
there exists an inclusion mapping from T̂1 to T̂2. ◀

▶ Proposition 5. The tree edit distance problem with variables can be solved in polynomial
time for ordered trees if each variable occurs once in input trees.

ISAAC 2022

44:8 Tree Edit Distance with Variables

a

a

a

a

a

a

Figure 5 Encoding of the root node, where other non-leaf nodes are encoded in the same way
except that label a is replaced with label b.

Proof. Let Fi denote an ordered forest (i.e., an ordered set of rooted trees). For each Fi,
V (Fi) denotes the set of nodes in Fi. For the root v of the rightmost tree in Fi, Fi − Ti(v)
denotes the forest obtained by removing the rightmost tree of Fi, and Fi − v denotes the
forest obtained by removing v (i.e., each child u of v becomes the root of the subtree induced
by u and its descendants).

Recall that the edit distance for ordered trees (without variables) dist0(T1, T2) can be
computed in O(n2

1n2
2) time by using the following dynamic programming algorithm [6, 18]:

D0(F1, ϵ) =
∑

u∈V (F1)

γ(ℓ(u), ϵ),

D0(ϵ, F2) =
∑

v∈V (F2)

γ(ϵ, ℓ(v)),

D0(F1, F2) = min


D0(F1 − u, F2) + γ(ℓ(u), ϵ),
D0(F1, F2 − v) + γ(ϵ, ℓ(v)),
D0(F1 − T1(u), F2 − T2(v))

+D0(T1(u)− u, T2(v)− v)
+γ(ℓ(u), ℓ(v)),

where ϵ in D0(F1, ϵ) and D0(ϵ, F2) denotes the empty forest, u and v in the third recursion are
the roots of the rightmost trees in F1 and F2, respectively, and D0(T1, T2) gives dist0(T1, T2).
Then, it is enough to redefine γ(x, y) function as follows:

γ(Xi, Xj) = 0, for any variable pair (Xi, Xj) such that Xi ̸= Xj ,

γ(a, a) = 0, for any constant symbol a,

γ(x, y) = 1, for any other pair (x, y).

Note that γ(Xi, Xj) = 0 always holds in this dynamic programming algorithm because Xi

and Xj always appear in F1 and F2, respectively. Then, it is straightforward to see that
this algorithm correctly computes the edit distance with variables and works in polynomial
time. ◀

Let DPSO(T1, T2) denote the algorithm for two input trees T1 and T2 given in the proof.
The above result and proof are very similar to those in Theorem 11 of [3]. However, each
variable can match a subtree in [3], whereas each variable can match a variable or constant
here. Hereafter, M denotes the total number of occurrences of variables, and O∗(f(· · ·))
denotes O(f(· · ·) · poly(n1, n2)) time, where poly(n1, n2) denotes some polynomial function
of n1 and n2.

T. Akutsu, T. Mori, N. Nakamura, S. Kozawa, Y. Ueno, and T. N. Sato 44:9

▶ Proposition 6. The tree edit distance problem with variables for ordered trees can be solved
in O∗(2M) time.

Proof. Let X = (X1, X2, . . . , Xm1) and Y = (Y 1, Y 2, . . . , Y m2) be the lists of occurrences
of variables in the DFS ordering on T1 and T2, respectively, where M = m1 + m2. We
examine all 0-1 assignments σ on X and Y , where 1 (resp., 0) means that the corresponding
variable is mapped (resp., is not mapped) to a variable in the other tree. Let ϕ(Xi) = |{j |
j ≤ i, σ(Xj) = 1}| and ϕ(Y i) = |{j | j ≤ i, σ(Y j) = 1}|. Since any edit operation does not
change the ordering, Xi is mapped to Y j such that ϕ(Xi) = ϕ(Y j). In some cases, Xi is
mapped to multiple variables (e.g., Yj and Yk). We ignore such an assignment σ because
of the constraint on θ. Then, each σ gives a matching (i.e., partial one-to-one mapping)
between X and Y , where X (resp., Y) denotes the set of variables appearing in X (resp., Y).
Then, we assign a unique constant symbol to each variable in X . We assign the same symbol
(e.g., bk) as Xi to Yj if Xi is mapped to Yj . If a variable Xi (resp., Yj) is not mapped to a
variable, we assign a unique constant symbol to the variable (e.g., ck for Xi, and dh for Yj).
Let θσ denote the resulting substitution.

For example, let X = (X1, X2, X3, X2, X4, X5), Y = (Y1, Y2, Y3, Y4, Y4, Y5). For σ(X) =
(1, 0, 1, 1, 1, 0) and σ(Y) = (1, 1, 1, 0, 1, 0), we have a mapping of {(X1, Y1), (X2, Y3), (X3, Y2),
(X4, Y4)}, Then, we have a substitution θσ such that

X θσ = (b1, b2, b3, b2, b4, c1),
Yθσ = (b1, b3, b2, b4, b4, d1).

If σ(X) = (1, 1, 0, 1, 1, 0) and σ(Y) = (1, 1, 1, 0, 1, 0), we ignore this assignment because X2
should be mapped to both Y2 and Y3.

By applying substitution θσ to T1 and T2, we obtain variable-free trees T1θσ and T2θσ.
For each assignment σ, we compute dist0(T1θσ, T2θσ). Since all possible substitutions are
examined by testing all σ, minσ dist0(T1θσ, T2θσ) gives dist(T1, T2). Since 2M assignments
are examined and dist0(T1θσ, T2θσ) can be computed in polynomial time, the proposition
holds. ◀

In the above, we consider all 0-1 assignments to all occurrences of variables. However,
it is enough to find a mapping between Xis and Yjs and thus we need not consider all 0-1
assignments. Based on this idea, we have the following theorem.

▶ Theorem 7. The tree edit distance problem with variables for ordered trees can be solved
in O∗((

√
3)M) time.

Proof. As in the proof of Proposition 6, let X and Y be the lists of occurrences of variables
in the DFS ordering for T1 and T2, respectively. For each variable Xi occurring h times
in X , we consider the following 2h− 1 assignments: (1, 0, 0, · · · , 0, 0, 0), (0, 1, 0, · · · , 0, 0, 0),
(0, 0, 1, · · · , 0, 0, 0), · · · , (0, 0, · · · , 0, 0, 1), and (1, 1, 1, · · · , 1, 1, 1), (0, 1, 1, · · · , 1, 1, 1),
(0, 0, 1, · · · , 1, 1, 1), · · · , (0, 0, 0, · · · , 0, 1, 1). The first h cases mean that at most one oc-
currence of Xi is mapped to some variable Yj . In this case, Xi is called a single occurrence
variable, and the occurrences of Xi corresponding to “0” are replaced by a unique constant
(e.g., ck) not appearing in the other parts whereas the occurrence of Xi corresponding to
“1” is kept as it is. The remaining h − 1 cases mean that the first “1” corresponds to the
first occurrence of Xi that is mapped to some Yj and that at least two occurrences of Xi are
mapped to the same number of occurrences of Yj . In this case, Xi is called a multi occurrence
variable, and a unique constant (e.g., bk) is shared by Xi and Yj . For each multi occurrence
variable, only the position of the first “1” is relevant. For example, suppose that Xi is the

ISAAC 2022

44:10 Tree Edit Distance with Variables

multi occurrence variable to which “1” is assigned first in X . Then, all occurrences of Xi

are substituted by b1. Suppose also that Xi′ is the next multi occurrence variable to which
“1” is assigned. Then, all occurrences of Xi′ are substituted by b2. Yjs are handled in an
analogous way to Xis except that dk is used in place of ck.

From 0-1 assignments on variables given as above, we obtain substituted sequences of X
and Y, which are denoted by λ(X) and λ(Y), respectively. For example, let

X = (X1, X2, X3, X2, X3, X4, X5, X3, X4, X2, X5),
Y = (Y2, Y1, Y3, Y4, Y3, Y4, Y3, Y2, Y5, Y4, Y1).

Suppose that (1), (0, 1, 1), (1, 1, 1), (1, 1), and (0, 1) are assigned to X1, X2, X3, X4, and X5,
respectively. Furthermore, suppose that (1, 0), (1, 1), (0, 1, 1), (1, 1, 1), and (1) are assigned
to Y1, Y2, Y3, Y4, and Y5, respectively. Then, we have

λ(X) = (X1, b2, b1, b2, b1, b3, c1, b1, b3, b2, X5),
λ(Y) = (b1, Y1, b3, b2, b3, b2, b3, b1, Y5, b2, d1).

Note that X1 (and any other variable) can match another variable in λ(Y) with cost 0 and
can match a constant symbol with cost 1. Note also that X3’s and Y2’s are substituted by b1
because these are the multi occurrence variables to which “1” is assigned first in X and Y,
respectively. Note also that X2’s are substituted by b2 because it is the multi occurrence
variable that receives “1” after X3 receives it.

Then, we consider the following procedure.
(i) dmin← 0.
(ii) For all λ(X) and λ(Y), do step (iii).
(iii) dmin← min(dmin, DPSO(λ(X), λ(Y))).
(iv) Output dmin.

The correctness of this procedure follows from the following observation. Let M be the tree
mapping corresponding to the minimum cost edit sequence. If Xi and Yj match to each
other at two or more position pairs (i.e., both are multi occurrence variables) in M, then
there must exist a λ such that the same constant bk is assigned to Xi and Yj because bks
are used only for multi occurrence variables. If Xi and Yj match to each other at exactly
one position pair in M, both Xi and Yj are treated as single occurrence variables and 1’s
in the 0-1 assignments correspond to the matching position pair. The other occurrences
of variables correspond to deletions, insertions, or change-labels because bi, ci, and di are
constant symbols not appearing in the original input trees.

Here, we analyze the number of combinations of 0-1 assignments, which gives the
exponential factor of the algorithm. Let αlM be the total number of occurrences of variables
Xi and Yj each of which occur l times. For example, α1 = 2

22 , α2 = 8
22 , α3 = 12

22 , and αl = 0
for l ≥ 4, for the above mentioned X and Y . Note that

∑M
l=1 αl = 1 holds. For each variable

occurring h times (h = 1, . . . , M), the number of examined 0-1 assignments is 2h− 1. Since
2h− 1 = 1 for h = 1, the total number of combinations of 0-1 assignments for X and Y is

L2(α2, . . . , αM) =
M∏

h=2
(2h− 1)

αhM

h .

▷ Claim 8. f(h) = (2h− 1) 1
h is decreasing with respect to h = 2, 3, · · · .

T. Akutsu, T. Mori, N. Nakamura, S. Kozawa, Y. Ueno, and T. N. Sato 44:11

Proof. It is seen by a simple numerical calculation that (2 · 2− 1) 1
2 > (2 · 3− 1) 1

3 . For h ≥ 3,
by taking the derivative of ln(f(h)), we have

d ln(f(h))
dh

=
d(1

h ln(2h− 1))
dh

= − ln(2h− 1)
h2 + 2

(2h− 1)h < 0. ◁

Therefore, we have

L2(α2, . . . , αM) =
M∏

h=2
(2h− 1)

αhM

h ≤
M∏

h=2
(2 · 2− 1)

αhM

2

= (3)

(∑M

h=2
αh

)
M

2 ≤ 3 M
2 < (

√
3)M .

Since the other parts can be clearly done in polynomial time, the theorem holds. ◀

4 Unordered Trees

In this section, all trees are unordered rooted trees. The graph isomorphism problem is, given
two undirected graphs G1(V1, E1) and G2(V2, E2), to decide whether or not there exists a
bijection ϕ from V1 to V2 such that {u, v} ∈ E1 if and only if {ϕ(u), ϕ(v)} ∈ E2. It is unclear
whether graph isomorphism is in P or NP-complete [5]. However, it is known that graph
isomorphism can be solved in polynomial time if the maximum degree of input graphs is
bounded by a constant [9, 13].

▶ Theorem 9. For unordered trees, the problem of deciding dist(T1, T2) = 0 is graph
isomorphism complete. Furthermore, the problem can be solved in polynomial time if the
maximum outdegree of T1 and T2 is bounded by a constant.

Proof. First, we show that graph isomorphism can be reduced to the problem in polynomial
time. For each of G1 and G2, we construct trees as for T2 in the proof of Theorem 4. Then,
it is straightforward to see that G1 and G2 are isomorphic if and only if dist(T1, T2) = 0.

Next, we show that the problem can be reduced to graph isomorphism in polynomial
time (see also Figure 6). Here, we consider w.l.o.g. graph isomorphism over labeled graphs
(because it is obvious that labeled cases can be reduced to unlabeled cases in polynomial
time). We show how to construct G1(V1, E1) from T1, where an identical construction can
be used for T2. We construct G1(V1, E1) by adding vertices and edges to T1 as follows.
For each variable Xi, we create a new vertex vXi

with constant label a, connect vXi
to all

leaves in T1 having label Xi, and change the labels of these leaves to b, where a and b are
constant symbols not appearing in T1 or T2 (we use the same a and b for all variables in T1
and T2). Then, it is straightforward to see that G1 and G2 are isomorphic if and only if
dist(T1, T2) = 0.

Finally, we prove the last claim. We modify the reduction shown above (see also G′
1 in

Figure 6). For each variable Xi, we make a copy T̃1 of T1 and then delete all of the following
nodes in T̃1:

a node which is not a node with label Xi or its ancestor,
a node which is an ancestor of the lowest common ancestor of all nodes with label Xi.

Then, we apply the deletion operation to the nodes in T̃1 each of which has a single child and
change labels of all internal nodes to a. Denote the resulting tree by TXi

. Finally, we identify
leaves of TXi

with the corresponding leaves in T1. Let G′
1 be the graph obtained by applying

this procedure to all variables. We construct G′
2 in the same way. Clearly, this construction

can be done in polynomial time. Furthermore, the maximum degree of the resulting graphs is

ISAAC 2022

44:12 Tree Edit Distance with Variables

T1 c

c

c c

X X XY Y

c

c

c c

b b

a a

b b b

c

c

c c

b b

a

b b b

a

a

G1 G’1

Figure 6 Transformation from tree T1 to graph G1 of unbounded degree and graph G′
1 of bounded

degree.

bounded by the maximum degree of the input trees (if the maximum outdegree of the input
trees is no less than 2). Since the structure of each TXi does not depend on the ordering
of nodes, G′

1 and G′
2 are isomorphic if and only if dist(T1, T2) = 0. Since isomorphism of

graphs of bounded degree can be tested in polynomial time [9, 13]. the last claim holds. ◀

As in Section 3, let M be the number of occurrences of variables in T1 and T2.

▶ Proposition 10. dist(T1, T2) can be computed in O(
(

M
e

)(1
2 +δ)M · 1.26n1+n2) time for

unordered trees, where δ is any small positive constant.

Proof. Recall dist(T1, T2) = minθ dist0(T1θ, T2θ). Therefore, the problem can be solved by
computing dist0(T1θ, T2θ) for all essentially different θ, where “essentially different” θ1 and
θ2 mean that θ1 and θ2 give distinct correspondences between variables in T1 and those in T2.
Let h1 and h2 be the numbers of variables in T1 and T2, respectively. Since we consider an
upper bound, we assume w.l.o.g. that h1 = αM and h2 = (1− α)M , where 0 < α < 1

2 . The
number of one-to-one mappings from the variables in T1 to the variables in T2 is bounded by

h2!
(h2 − h1)! = ((1− α)M)!

((1− 2α)M)! . (1)

Note that some variable in T1 may not be mapped to a variable in T2 in some substitution θ.
However, the distance would not be decreased and thus such a substitution can be ignored.
By using upper and lower bounds of Stirling’s approximation

√
2πn(n

e)n ≤ n! ≤ e
√

n(n
e)n,

we have

((1− α)M)!
((1− 2α)M)! ≤

e
√

(1− α)M
(

(1−α)M
e

)(1−α)M

√
2π(1− 2α)M

(
(1−2α)M

e

)(1−2α)M

= e

√
(1− α)

2π(1− 2α)

(
(1− α)(1−α)

(1− 2α)(1−2α)

)M

·
(

M

e

)αM

Since (1−α)(1−α)

(1−2α)(1−2α) < 1.15 holds for 0 < α < 1
2 (using numerical calculations. Note that

limα→ 1
2
(1− 2α)(1−2α) = 1), the above term is O

(
1.15M ·

(
M
e

) M
2

)
for a constant α. Note

that if α is very close to 1
2 , we need to consider a factor of

√
(1−α)

2π(1−2α) because α is not
constant. In such a case, we use ((1

2 +ϵ)M)! to bound Eq.(1), where ϵ = 1
2 −α and we can use

T. Akutsu, T. Mori, N. Nakamura, S. Kozawa, Y. Ueno, and T. N. Sato 44:13

arbitrary small constant ϵ > 0. This term is smaller than O
(

(M
2e)(1

2 +δ)M
)

for δ > ϵ. Since

O
(

1.15M ·
(

M
e

) M
2

)
≤ O

(
(M

2e)(1
2 +δ)M

)
holds too, Eq.(1) is bounded by O

((
M
e

)(1
2 +δ)M

)
for

any constant δ > 0.
Since the tree edit distance between two unordered trees can be computed in O(1.26n1+n2)

time [4], the proposition holds. ◀

In the above theorem, M is defined as the number of occurrences of variables (in order to
use the same parameter as in Theorem 7). However, M can be defined as the total number
of variables in T1 and T2 in this theorem because we only consider the number of variables
in the proof.

5 Concluding Remarks

In this paper, we have introduced and studied the tree edit distance problem with variables.
We showed that the problem (decision problem version) is NP-complete even for ordered
trees, whereas it is well-known that edit distance for ordered tree can be computed in
polynomial time. We presented parameterized and exponential-time algorithms for the
ordered and unordered cases, respectively. Since these algorithms are not necessarily optimal,
improvements of these algorithms are left as open problems. As for the formalization, the unit
cost model is assumed mainly because defining an appropriate cost model via substitutions
on variables is difficult. Giving such costs and developing the corresponding algorithms
would benefit the future practical applications

In this paper, we assumed that mathematical formulas are given as rooted trees. However,
such formulas may be represented more efficiently by directed acyclic graphs (DAGs) with
reusing identical sub-trees. Since it is not straight-forward to extend the algorithms for the
tree edit distance to those for the graph edit distance for DAGs [8], it would be interesting
to study such extensions with variables.

References
1 Akiko Aizawa and Michael Kohlhase. Mathematical information retrieval. The Information

Retrieval Series (Springer), 43:169–185, 2021. doi:10.1007/978-981-15-5554-1_12.
2 Tatsuya Akutsu. A relation between edit distance for ordered trees and edit distance for Euler

strings. Information Process. Letters, 100:105–109, 2006. doi:10.1016/j.ipl.2006.06.002.
3 Tatsuya Akutsu, Jesper Jansson, Atsuhiro Takasu, and Takeyuki Tamura. On the parameter-

ized complexity of associative and commutative unification. Theoretical Computer Science,
660:57–74, 2017. doi:10.1016/j.tcs.2016.11.026.

4 Tatsuya Akutsu, Takeyuki Tamura, Daiji Fukagawa, and Atsuhiro Takasu. Efficient exponential-
time algorithms for edit distance between unordered trees. Journal of Discrete Algorithms,
25:79–93, 2014. doi:10.1016/j.jda.2013.09.001.

5 Lázló Babai. Canonical form for graphs in quasipolynomial time: preliminary report. In 51st
ACM Symp. Theory of Computing, pages 1237–1246, 2019. doi:10.1145/3313276.3316356.

6 Philip Bille. A survey on tree edit distance and related problems. Theoretical Computer
Science, 337:217–239, 2005. doi:10.1016/j.tcs.2004.12.030.

7 Erik D. Demaine, Shay Mozes, Benjamin Rossman, and Oren Weimann. An optimal decom-
position algorithm for tree edit distance. ACM Transactions on Algorithms, 6(1):2, 2009.
doi:10.1145/1644015.1644017.

8 Xinbo Gao, Bing Xiao, Dacheng Tao, and Xuelong Li. A survey of graph edit distance. Pattern
Analysis and Applications, 13:113–129, 2010. doi:10.1007/s10044-008-0141-y.

ISAAC 2022

https://doi.org/10.1007/978-981-15-5554-1_12
https://doi.org/10.1016/j.ipl.2006.06.002
https://doi.org/10.1016/j.tcs.2016.11.026
https://doi.org/10.1016/j.jda.2013.09.001
https://doi.org/10.1145/3313276.3316356
https://doi.org/10.1016/j.tcs.2004.12.030
https://doi.org/10.1145/1644015.1644017
https://doi.org/10.1007/s10044-008-0141-y

44:14 Tree Edit Distance with Variables

9 Martin Grohe, Daniel Neuen, and Pascal Schweitzer. A faster isomorphism test for graphs
of small degree. In 59th IEEE Symp. Foundations of Computer Science, pages 89–199, 2018.
doi:10.1109/FOCS.2018.00018.

10 Shahab Kamali and Frank W. Tompa. A new mathematics retrieval system. In 19th ACM
Int. Conf. Information and Knowledge Management, pages 1413–1416, 2010. doi:10.1145/
1871437.1871635.

11 Deepak Kapur and Paliath Narendran. Complexity of unification problems with associative-
commutative operators. Journal of Automated Reasoning, 9:261–288, 1992. doi:10.1007/
BF00245463.

12 Kevin Knight. Unification: a multidisciplinary survey. ACM Computing Surveys, 21:93–124,
1989. doi:10.1145/62029.62030.

13 Eugene M. Luks. Isomorphism of graphs of bounded valence can be tested in polynomial time.
Journal of Computer and System Sciences, 25(1):42–65, 1982. doi:10.1016/0022-0000(82)
90009-5.

14 Xiao Mao. Breaking the cubic barrier for (unweighted) tree edit distance. In 62nd IEEE Symp.
Foundations of Computer Science, pages 792–803, 2021. doi:10.1109/FOCS52979.2021.00082.

15 Tam T. Nguyen, Kuiyu Chang, and Siu Cheung Hu. A math-aware search engine for math
question answering system. In 21st ACM Int. Conf. Information and Knowledge Management,
pages 724–733, 2012. doi:10.1145/2396761.2396854.

16 Kuo Chung Tai. The tree-to-tree correction problem. Journal of ACM, 26:422–433, 1979.
doi:10.1145/322139.322143.

17 Sean T. Vittadello and Michael P. H. Stumpf. Model comparison via simplicial complexes
and persistent homology. Royal Society Open Science, 8(10):211361, 2020. doi:10.1098/rsos.
211361.

18 Kaizhong Zhang and Dennis Shasha. Simple fast algorithms for the editing distance between
trees and related problem. SIAM Journal on Computing, 18:1245–1262, 1989. doi:10.1137/
0218082.

19 Kaizhong Zhang, Rick Statman, and Dennis Shasha. On the editing distance between unordered
labeled trees. Information Processing Letters, 42:133–139, 1992. doi:10.1016/0020-0190(92)
90136-J.

20 Wei Zhong and Richard Zanibbi. Structural similarity search for formulas using leaf-root
paths in operator subtrees. In 41st European Conference on IR Research, pages 116–129, 2019.
doi:10.1007/978-3-030-15712-8_8.

https://doi.org/10.1109/FOCS.2018.00018
https://doi.org/10.1145/1871437.1871635
https://doi.org/10.1145/1871437.1871635
https://doi.org/10.1007/BF00245463
https://doi.org/10.1007/BF00245463
https://doi.org/10.1145/62029.62030
https://doi.org/10.1016/0022-0000(82)90009-5
https://doi.org/10.1016/0022-0000(82)90009-5
https://doi.org/10.1109/FOCS52979.2021.00082
https://doi.org/10.1145/2396761.2396854
https://doi.org/10.1145/322139.322143
https://doi.org/10.1098/rsos.211361
https://doi.org/10.1098/rsos.211361
https://doi.org/10.1137/0218082
https://doi.org/10.1137/0218082
https://doi.org/10.1016/0020-0190(92)90136-J
https://doi.org/10.1016/0020-0190(92)90136-J
https://doi.org/10.1007/978-3-030-15712-8_8

	1 Introduction
	2 Preliminaries
	3 Ordered Trees
	4 Unordered Trees
	5 Concluding Remarks

