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Abstract
In the Determinant Maximization problem, given an n × n positive semi-definite matrix A in
Qn×n and an integer k, we are required to find a k ×k principal submatrix of A having the maximum
determinant. This problem is known to be NP-hard and further proven to be W[1]-hard with respect
to k by Koutis [26]; i.e., a f(k)nO(1)-time algorithm is unlikely to exist for any computable function f .
However, there is still room to explore its parameterized complexity in the restricted case, in the
hope of overcoming the general-case parameterized intractability. In this study, we rule out the
fixed-parameter tractability of Determinant Maximization even if an input matrix is extremely
sparse or low rank, or an approximate solution is acceptable. We first prove that Determinant
Maximization is NP-hard and W[1]-hard even if an input matrix is an arrowhead matrix; i.e.,
the underlying graph formed by nonzero entries is a star, implying that the structural sparsity is
not helpful. By contrast, we show that Determinant Maximization is solvable in polynomial
time on tridiagonal matrices. Thereafter, we demonstrate the W[1]-hardness with respect to the
rank r of an input matrix. Our result is stronger than Koutis’ result in the sense that any k × k

principal submatrix is singular whenever k > r. We finally give evidence that it is W[1]-hard to
approximate Determinant Maximization parameterized by k within a factor of 2−c

√
k for some

universal constant c > 0. Our hardness result is conditional on the Parameterized Inapproximability
Hypothesis posed by Lokshtanov, Ramanujan, Saurab, and Zehavi [30], which asserts that a gap
version of Binary Constraint Satisfaction Problem is W[1]-hard. To complement this result,
we develop an ε-additive approximation algorithm that runs in ε−r2

· rO(r3) · nO(1) time for the rank
r of an input matrix, provided that the diagonal entries are bounded.
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1 Introduction

Background. We study the following Determinant Maximization problem: Given an
n× n positive semi-definite matrix A in Qn×n and an integer k in [n] denoting the solution
size, find a k × k principal submatrix of A having the maximum determinant; namely,
maximize det(AS) subject to S ∈

([n]
k

)
. One motivating example for this problem is a subset

selection task. Suppose we are given n items (e.g., images or products) associated with
feature vectors v1, . . . ,vn and required to select a “diverse” set of k items among them.
We can measure the diversity of a set S of k items using the principal minor det(AS) of
the Gram matrix A defined by feature vectors such that Ai,j ≜ ⟨vi,vj⟩ for all i, j ∈ [n],
resulting in Determinant Maximization. This formulation is justified by the fact that
det(AS) is equal to the squared volume of the parallelepiped spanned by {vi : i ∈ S}; that
is, a pair of vectors at a large angle is regarded as more diverse. In artificial intelligence
and machine learning communities, Determinant Maximization is also known as MAP
inference on a determinantal point process [6, 31], and has found many applications over the
past decade, including tweet timeline generation [43], object detection [29], change-point
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46:2 On the Parameterized Intractability of Determinant Maximization

detection [44], document summarization [8,27], YouTube video recommendation [42], and
active learning [5]. See the survey of Kulesza and Taskar [28] for further details. Though
Determinant Maximization is known to be NP-hard to solve exactly [25], we can achieve
an e−k-factor approximation in polynomial time [36], which is nearly optimal because a
2−ck-factor approximation for some constant c > 0 is impossible unless P = NP [11, 14,26].

Having known a nearly tight hardness-of-approximation result in the polynomial-time
regime, we resort to parameterized algorithms [13, 16, 19]. We say that a problem is fixed-
parameter tractable (FPT) with respect to a parameter k ∈ N if it can be solved in f(k)|I|O(1)

time for some computable function f and instance size |I|. One very natural parameter is the
solution size k, which is expected to be small in practice. By enumerating all k × k principal
submatrices, we can solve Determinant Maximization in nk+O(1) time; i.e., it belongs to
the class XP. Because FPT ⊊ XP [16], it is even more desirable if an FPT algorithm exists.
Unfortunately, Koutis [26] has already proven that Determinant Maximization is W[1]-
hard with respect to k. Therefore, under the widely-believed assumption that FPT ̸= W[1],
an FPT algorithm for Determinant Maximization does not exist.

However, there is still room to explore the parameterized complexity of Determinant
Maximization in the restricted case, in the hope of circumventing the general-case param-
eterized intractability. Here, we describe three possible scenarios. One can first assume
an input matrix A to be sparse. Of particular interest is the structural sparsity of the
symmetrized graph of A [9, 12] defined as the underlying graph formed by nonzero entries
of A, encouraged by numerous FPT algorithms for NP-hard graph-theoretic problems pa-
rameterized by the treewidth [13,20]. For example, in change-point detection applications,
Zhang and Ou [44] observed a small-bandwidth matrix and developed an efficient heuristic
for Determinant Maximization. In addition, one may adopt a strong parameter. The
rank of an input matrix A is such a natural candidate. We often assume that A is low-rank
in applications; for instance, the feature vectors vi are inherently low-dimensional [7] or the
largest possible subset is significantly smaller than the ground set size n. Since any k × k

principal submatrix of A is singular whenever k > rank(A), we can ensure that k ⩽ rank(A);
namely, parameterization by rank(A) is considered stronger than that by k. Intriguingly, the
partition function of product determinantal point processes is FPT with respect to rank while
#P-hard in general [40]. The last possibility to be considered is FPT-approximability. Albeit
W[1]-hardness of Determinant Maximization with parameter k, it could be possible
to obtain an approximate solution in FPT time. It has been demonstrated that several
W[1]-hard problems can be approximated in FPT time, such as Partial Vertex Cover and
Minimum k-Median [22] (refer to the survey of Marx [34] and Feldmann, Karthik, Lee, and
Manurangsi [17]). One may thus envision the existence of a 1/ρ(k)-factor FPT-approximation
algorithm for Determinant Maximization for a small function ρ. Alas, we refute the
above possibilities under a plausible assumption in parameterized complexity.

Our Results. We improve the W[1]-hardness of Determinant Maximization due to
Koutis [26] by showing that it is still W[1]-hard even if an input matrix is extremely sparse
or low rank, or an approximate solution is acceptable, along with some tractable cases.

We first prove that Determinant Maximization is NP-hard and W[1]-hard with respect
to k even if the input matrix A is an arrowhead matrix (Theorem 3.1). An arrowhead matrix
is a square matrix that can include nonzero entries only in the first row, the first column,
or the diagonal; i.e., its symmetrized graph is a star. Our hardness result implies that the
“structural sparsity” of input matrices is not helpful; in particular, it follows from Theorem 3.1
that this problem is NP-hard even if the treewidth, pathwidth, and vertex cover number of the
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symmetrized graph are all 1. The proof is based on a parameterized reduction from k-Sum,
which is a parameterized version of Subset Sum known to be W[1]-complete [1, 15], and
involves a structural feature of the determinant of arrowhead matrices. On the other hand,
we show that Determinant Maximization is solvable in polynomial time on tridiagonal
matrices (Observation 3.9), whose symmetrized graph is a path graph.

Thereafter, we demonstrate that Determinant Maximization is W[1]-hard when
parameterized by the rank of an input matrix (Corollary 4.3). In fact, we obtain the stronger
result that it is W[1]-hard to determine whether an input set of n d-dimensional vectors
includes k pairwise orthogonal vectors when parameterized by d (Theorem 4.2). Unlike
the proof of Theorem 3.1, we are allowed to construct only a f(k)-dimensional vector in
a parameterized reduction. Note that a straightforward parameterized reduction from a
canonical W[1]-complete k-Clique problem fails (see Remark 4.4). Therefore, we reduce
from a different W[1]-complete problem called Grid Tiling due to Marx [33,35]. In Grid
Tiling, we are given k2 nonempty sets of integer pairs arranged in a k× k grid, and the task
is to select k2 integer pairs such that the vertical and horizontal neighbors agree respectively
in the first and second coordinates (see Problem 4.5 for the precise definition). Grid Tiling
is favorable for our purpose because the constraint consists of simple equalities, and each cell
is adjacent to (at most) four cells. To express the consistency between adjacent cells using
only a f(k)-dimensional vector, we exploit Pythagorean triples. It is essential in Theorem 4.2
that the input vectors can include both positive and negative entries in a sense that we can
find k d-dimensional nonnegative vectors that are pairwise orthogonal in FPT time with
respect to d (Observation 4.7).

Our final contribution is to give evidence that it is W[1]-hard to determine whether the
optimal value of Determinant Maximization is equal to 1 or at most 2−c

√
k for some

universal constant c > 0; namely, Determinant Maximization is FPT-inapproximable
within a factor of 2−c

√
k (Theorem 5.1). Our result is conditional on the Parameterized

Inapproximability Hypothesis (PIH), which is a conjecture posed by Lokshtanov, Ramanujan,
Saurab, and Zehavi [30] asserting that a gap version of Binary Constraint Satisfaction
Problem is W[1]-hard when parameterized by the number of variables. PIH can be thought
of as a parameterized analogue of the PCP theorem [2,3]; e.g., Lokshtanov et al. [30] show that
assuming PIH and FPT ̸= W[1], Directed Odd Cycle Transversal does not admit a
(1−ε)-factor FPT-approximation algorithm for some ε > 0. The proof of Theorem 5.1 involves
FPT-inapproximability of Grid Tiling under PIH, which is reminiscent of Marx’s work [33]
and might be of some independent interest. Because we cannot achieve an exponential gap
by simply reusing the parameterized reduction from Grid Tiling of the second hardness
result (as inferred from Observation 5.11 below), we apply a gadget invented by Çivril and
Magdon-Ismail [11] to construct an O(k2n2)-dimensional vector for each integer pair of a
Grid Tiling instance. We further show that the same kind of hardness result does not hold
when parameterized by the rank r of an input matrix. Specifically, we develop an ε-additive
approximation algorithm that runs in ε−r2 · rO(r3) · nO(1) time for any ε > 0, provided that
the diagonal entries are bounded (Observation 5.11).

Owing to space limitations, proofs marked with ∗ are omitted and can be found in a full
version of this paper [38].

More Related Work. Determinant Maximization is not only applied in artificial in-
telligence and machine learning but also in computational geometry [21] and discrepancy
theory; refer to Nikolov [36] and references therein. On the negative side, Ko, Lee, and
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46:4 On the Parameterized Intractability of Determinant Maximization

Queyranne [25] prove that Determinant Maximization is NP-hard, and Koutis [26] proves
that it is further W[1]-hard. NP-hardness of approximating Determinant Maximiza-
tion has been investigated in [11, 14, 26, 39]. On the algorithmic side, a greedy algorithm
achieves an approximation factor of 1/k! [10]. Subsequently, Nikolov [36] gives an e−k-factor
approximation algorithm; partition constraints [37] and matroid constraints [32] are also
studied. Several #P-hard computation problems over matrices including permanents [9, 12],
hyperdeterminants [9], and partition functions of product determinantal point processes [40]
are efficiently computable if the treewidth of the symmetrized graph or the matrix rank is
bounded.

2 Preliminaries

Notations and Definitions. For two integers m,n ∈ N with m ⩽ n, let [n] ≜ {1, 2, . . . , n}
and [m .. n] ≜ {m,m+1, . . . , n−1, n}. For a finite set S and an integer k, we write

(
S
k

)
for the

family of all size-k subsets of S. For a statement P , [[P ]] is 1 if P is true, and 0 otherwise. The
base of logarithms is 2. The Euclidean norm is denoted ∥ · ∥; i.e., ∥v∥ ≜

√∑
i∈[d](v(i))2 for

a vector v ∈ Rd. We use ⟨·, ·⟩ for the standard inner product; i.e., ⟨v,w⟩ ≜
∑

i∈[d] v(i) · w(i)
for two vectors v,w ∈ Rd. For an n × n matrix A and an index set S ⊆ [n], we use AS

to denote the principal submatrix of A whose rows and columns are indexed by S. For an
m × n matrix A, the spectral norm ∥A∥2 is defined as the square root of the maximum
eigenvalue of A⊤A and the max norm is defined as ∥A∥max ≜ maxi,j |Ai,j |. It is well-known
that ∥A∥max ⩽ ∥A∥2 ⩽

√
mn · ∥A∥max. The symmetrized graph [9, 12] of an n× n matrix

A is defined as an undirected graph G that has each integer of [n] as a vertex and an edge
(i, j) ∈

([n]
2
)

if Ai,j ̸= 0 or Aj,i ̸= 0; i.e., G = ([n], {(i, j) : Ai,j ̸= 0}). For a matrix A ∈ Rn×n,
its determinant is defined as follows:

det(A) ≜
∑

σ∈Sn

sgn(σ)
∏

i∈[n]

Ai,σ(i),

where Sn denotes the symmetric group on [n], and sgn(σ) denotes the sign of a permutation
σ. We define det(A∅) ≜ 1. For a collection V = {v1, . . . ,vn} of n vectors in Rd, the volume
of the parallelepiped spanned by V is defined as follows:

vol(V) ≜ ∥v1∥ ·
∏

2⩽i⩽n

d(vi, {v1, . . . ,vi−1}). (1)

Here, d(v,P) denotes the distance of v to the subspace spanned by P; i.e., d(v,P) ≜
∥v − projP(v)∥, where projP(·) is an operator of orthogonal projection onto the subspace
spanned by P. We define vol(∅) ≜ 1 for the sake of consistency to the determinant of an
empty matrix (i.e., det(

[ ]
) = 1 = vol2(∅)). If A is the Gram matrix defined as Ai,j ≜ ⟨vi,vj⟩

for all i, j ∈ [n], we have a simple relation between the principal minor and the volume of
the parallelepiped that

det(AS) = vol2({vi : i ∈ S}) (2)

for every S ⊆ [n]. We formally define the Determinant Maximization problem as follows.1

1 Note that if we consider the decision version of Determinant Maximization, we are additionally
given a target number τ and are required to decide if maxdet(A, k) ⩾ τ .
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▶ Problem 2.1. Given a positive semi-definite matrix A in Qn×n and a positive integer
k ∈ [n], Determinant Maximization asks to find a set S ∈

([n]
k

)
such that the determi-

nant det(AS) of a k × k principal submatrix is maximized. The optimal value is denoted
maxdet(A, k) ≜ max

S∈([n]
k ) det(AS).

Due to the equivalence between squared volume and determinant in Eq. (2), Determinant
Maximization is equivalent to the following problem of volume maximization: Given a
collection of n vectors in Qd and a positive integer k ∈ [n], we are required to find k vectors
such that the volume of the parallelepiped spanned by them is maximized. We shall use the
problem definition based on the determinant and the volume interchangeably.

Parameterized Complexity. Given a parameterized problem Π consisting of a pair ⟨I, k⟩
of instance I and parameter k ∈ N, we say that Π is fixed-parameter tractable (FPT) with
respect to k if it is solvable in f(k)|I|O(1) time for some computable function f , and slice-
wise polynomial (XP) if it is solvable in |I|f(k) time; it holds that FPT ⊊ XP [16]. The
value of parameter k may be independent of the instance size |I| and may be given by
some computable function k = k(I) on instance I (e.g., the rank of an input matrix). Our
objective is to prove that a problem (i.e., Determinant Maximization) is unlikely to admit
an FPT algorithm under plausible assumptions in parameterized complexity. The central
notion for this purpose is a parameterized reduction, which is used to demonstrate that a
problem of interest is hard for a particular class of parameterized problems that is believed to
be a superclass of FPT. We say that a parameterized problem Π1 is parameterized reducible
to another parameterized problem Π2 if (i) an instance I1 with parameter k1 for Π1 can be
transformed into an instance I2 with parameter k2 for Π2 in FPT time and (ii) the value
of k2 only depends on the value of k1. Note that a parameterized reduction may not be a
polynomial-time reduction and vice versa. W[1] is a class of parameterized problems that are
parameterized reducible to k-Clique, and it is known that FPT ⊆ W[1] ⊆ XP. This class is
often regarded as a parameterized counterpart to NP of classical complexity; in particular, the
conjecture FPT ̸= W[1] is a widely-believed assumption in parameterized complexity [16, 19].
Thus, the existence of a parameterized reduction from a W[1]-complete problem to a problem
Π is a strong evidence that Π is not in FPT. In Determinant Maximization, a simple
brute-force search algorithm that examines all

([n]
k

)
subsets of size k runs in nk+O(1) time;

hence, this problem belongs to XP. On the other hand, it is proven to be W[1]-hard [26].

3 W[1]-hardness and NP-hardness on Arrowhead Matrices

We first prove the W[1]-hardness with respect to k and NP-hardness on arrowhead matrices.
A square matrix A in R[0..n]×[0..n] is an arrowhead matrix if Ai,j = 0 for all i, j ∈ [n] with
i ̸= j. In the language of graph theory, A is arrowhead if its symmetrized graph is a star K1,n.

▶ Theorem 3.1. Determinant Maximization on arrowhead matrices is NP-hard and
W[1]-hard when parameterized by k.

The proof of Theorem 3.1 requires a reduction from k-Sum, a natural parameterized version
of the NP-complete Subset Sum problem, whose membership of W[1] and W[1]-hardness
was proven by Abboud, Lewi, and Williams [1] and Downey and Fellows [15], respectively.

▶ Problem 3.2 (k-Sum due to Abboud, Lewi, and Williams [1]). Given n integers x1, . . . , xn ∈
[0 .. n2k], a target integer t ∈ [0 .. n2k], and a positive integer k ∈ [n], we are required to
decide if there exists a size-k set S ∈

([n]
k

)
such that

∑
i∈S xi = t.

ISAAC 2022



46:6 On the Parameterized Intractability of Determinant Maximization

Here, we introduce a slightly-modified version of k-Sum such that the input numbers are
rational and their sum is normalized to 1, without affecting its computational complexity.

▶ Problem 3.3 (k-Sum modified from [1]). Given n rational numbers x1, . . . , xn in (0, 1)∩Q+,
a target rational number t in (0, 1) ∩ Q+, and a positive integer k ∈ [n] such that xi’s are
integer multiples of some rational number at least 1

n2k+1 and
∑

i∈[n] xi = 1, k-Sum asks to
decide if there exists a set S ∈

([n]
k

)
such that

∑
i∈S xi = t.

Hereafter, for any set S ⊆ [0 .. n] including 0, we denote S−0 ≜ S \ {0}.

3.1 Reduction from k-SUM and Proof of Theorem 3.1
In this subsection, we give a parameterized, polynomial-time reduction from k-Sum. We first
use an explicit formula of the determinant of arrowhead matrices.

▶ Lemma 3.4 (∗). Let A be an arrowhead matrix in R[0..n]×[0..n] such that Ai,i ̸= 0 for all
i ∈ [n]. Then, for any set S ⊆ [0 .. n], it holds that

det(AS) =


∏

i∈S−0

Ai,i ·

A0,0 −
∑

i∈S−0

A0,i ·Ai,0

Ai,i

 if 0 ∈ S,

∏
i∈S

Ai,i if 0 ̸∈ S.

Lemma 3.4 shows us a way to express the product of
∏

i∈S−0
xi and 1 −C ·

∑
i∈S−0

xi for
some constant C, which is a key step in proving Theorem 3.1. Specifically, given n rational
numbers x1, . . . , xn and a target rational number t as a k-Sum instance, we construct n+ 1
2n-dimensional vectors v0, . . . ,vn in R2n

+ , each entry of which is defined as follows:

v0(j) =
{
γ · √

xj if j ⩽ n,

0 otherwise,
and vi(j) =


√
α · exi if j = i,

√
β · exi if j = i+ n,

0 otherwise,
for all i ∈ [n], (3)

where α, β, and γ are parameters, whose values are positive and will be determined later.
We calculate the principal minor of the Gram matrix defined by v0, . . . ,vn as follows.

▶ Lemma 3.5 (∗). Let A be the Gram matrix defined by n+ 1 vectors v0, . . . ,vn that are
constructed from an instance of k-Sum by Eq. (3). Then, A is an arrowhead matrix, and for
any set S ⊆ [0 .. n], it holds that

det(AS) =


(α+ β)|S|−1 · γ2 · exp

 ∑
i∈S−0

xi

 ·

1 − α

α+ β

∑
i∈S−0

xi

 if 0 ∈ S,

(α+ β)|S| · exp
(∑

i∈S

xi

)
if 0 ̸∈ S.

Moreover, if we regard the principal minor det(AS) in the case of 0 ∈ S as a function in
X ≜

∑
i∈S−0

xi, it is maximized when X = β
α .

We now determine the values of α, β, and γ. Since Lemma 3.5 demonstrates that the
principal minor for S including 0 is maximized when

∑
i∈S−0

xi = β
α , we fix α ≜ 1 and

β ≜ t. We define δ ≜ 1
n2k+1 , denoting a lower bound on the minimum possible absolute
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difference between any sum of xi’s; i.e., |
∑

i∈S xi −
∑

i∈T xi| ⩾ δ for any S, T ⊆ [n] whenever∑
i∈S xi ≠

∑
i∈T xi. For the correctness of the value of δ, refer to the definition of Problem 3.3.

We finally fix the value of γ as γ ≜ 5, so that

(1 + t)2 · e1−t · 1
e−δ · (1 + δ) ⩽ 22 · e · 1

e− 1
2 · 1

< 25 = γ2. (4)

The above inequality ensures that det(AS) is “sufficiently” small whenever 0 ̸∈ S, as validated
in the following lemma.

▶ Lemma 3.6 (∗). Let A be the Gram matrix defined by n+ 1 vectors constructed according
to Eq. (3), where α = 1, β = t, and γ = 5. Define OPT ≜ (1 + t)k−1 · γ2 · et. Then, for any
set S ∈

([0..n]
k+1

)
,

det(AS) is
{

equal to OPT if 0 ∈ S and
∑

i∈S−0
xi = t,

at most e−δ(1 + δ) · OPT otherwise.

In particular, maxdet(A, k + 1) is OPT if k-Sum has a solution, and is at most e−δ(1 + δ) ·
OPT < OPT otherwise.

We complete our reduction by approximating the Gram matrix A of n + 1 vectors
defined in Eq. (3) by a rational matrix B whose maximum determinant maintains sufficient
information to solve k-Sum.

▶ Lemma 3.7 (∗). Let B be the Gram matrix in Q(n+1)×(n+1) defined by n + 1 vectors
w0, . . . ,wn in Q2n, each entry of which is a (1±ε)-factor approximation to the corresponding
entry of n+ 1 vectors v0, . . . ,vn defined by Eq. (3), where ε = 2− O(k log(nk)). Then,

maxdet(B, k + 1) is


at least

(
2
3 + 1

3e−δ(1 + δ)
)

· OPT if k-Sum has a solution,

at most
(

1
3 + 2

3e−δ(1 + δ)
)

· OPT otherwise.

Moreover, we can calculate B in polynomial time.

The crux of its proof is to approximate A within a factor of ε = 2− O(k log(nk)). To this end,
we use the following lemma.

▶ Lemma 3.8 (cf. [4, page 107]). For two complex-valued n × n matrices A and B, the
absolute difference in the determinant of A and B is bounded from above by

| det(A) − det(B)| ⩽ n · max{∥A∥2, ∥B∥2}n−1 · ∥A − B∥2.

What remains to be done is to prove Theorem 3.1 using Lemma 3.7.

Proof of Theorem 3.1. Our parameterized reduction is as follows. Given n rational numbers
x1, . . . , xn ∈ (0, 1) ∩ Q, a target rational number t ∈ (0, 1) ∩ Q, and a positive integer k ∈ [n]
as an instance of k-Sum, we construct n + 1 rational vectors w0, . . . ,wn in Q2n

+ , each
of which is an entry-wise (1 ± ε)-factor approximation to v0, . . . ,vn defined by Eq. (3),
where ε = 2− O(k log(nk)). This construction requires polynomial time owing to Lemma 3.7.
Thereafter, we compute the Gram matrix B in Q(n+1)×(n+1) defined by w0, . . . ,wn. Consider
Determinant Maximization defined by (B, k + 1) with parameter k + 1. According to
Lemma 3.7, the maximum principal minor maxdet(B, k+1) is at least ( 2

3 + 1
3 e−δ(1+δ)) ·OPT

if and only if k-Sum has a solution. Moreover, if this is the case, the optimal solution S∗ for
Determinant Maximization satisfies that

∑
i∈S∗

−0
xi = t. The above discussion ensures

the correctness of the parameterized reduction from k-Sum to Determinant Maximization,
finishing the proof. ◀

ISAAC 2022
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3.2 Polynomial-time Algorithm for Tridiagonal Matrices
Here, we demonstrate that Determinant Maximization is polynomial-time solvable on
tridiagonal matrices. Recall that a tridiagonal matrix is a square matrix A such that Ai,j = 0
whenever |i− j| ⩾ 2; i.e., its symmetrized graph is a path graph (and thus a linear forest).
Our polynomial-time algorithm is based on dynamic programming and uses the observation
that the removal of any pair of row and column from a tridiagonal matrix renders it block
diagonal.

▶ Observation 3.9 (∗). Determinant Maximization on tridiagonal matrices can be solved
in polynomial time.

4 W[1]-hardness With Respect to Rank

We then prove the W[1]-hardness of Determinant Maximization when parameterized by
the rank of an input matrix. In fact, we obtain the stronger hardness result on the problem
of finding a set of pairwise orthogonal rational vectors, which is formally stated below.

▶ Problem 4.1. Given n d-dimensional vectors v1, . . . ,vn in Qd and a positive integer
k ∈ [n], we are required to decide if there exists a set of k vectors that is pairwise orthogonal,
i.e., a set S ∈

([n]
k

)
such that ⟨vi,vj⟩ = 0 for all i ̸= j ∈ S.

▶ Theorem 4.2. Problem 4.1 is W[1]-hard when parameterized by the dimension d of the
input vectors. Moreover, the same hardness result holds even if every vector has the same
Euclidean norm.

The following is immediate from Theorem 4.2.

▶ Corollary 4.3 (∗). Determinant Maximization is W[1]-hard when parameterized by the
rank of an input matrix.

▶ Remark 4.4. We briefly describe a failed attempt to proving Theorem 4.2 using a straightfor-
ward reduction from k-Clique. Let G = (V,E) be a graph on n vertices and k a parameter
denoting the solution size. Consider constructing a f(k)-dimensional vector vi for each
vertex i ∈ V such that ⟨vi,vj⟩ = 0 if and only if (i, j) ∈ E, which ensures that k-Clique
has a solution if and only if Problem 4.1 has a solution. When G consists of a clique of size
n− 1 and an isolated vertex o, this seems impossible: On one hand, every vector should be a
nonzero vector because vo and vi for i ≠ o are nonorthogonal; on the other hand, for n− 1
vectors in {vi : i ̸= o} to be pairwise orthogonal, they must be (at least) (n− 1)-dimensional.
The key tool to bypass this difficulty is Grid Tiling introduced in the next subsection.

4.1 GRID TILING and Pythagorean Triples
We first define Grid Tiling due to Marx [33].

▶ Problem 4.5 (Grid Tiling due to Marx [33]). For two integers n and k, given a collection
S of k2 nonempty sets Si,j ⊆ [n]2 called cells for each i, j ∈ [k], Grid Tiling asks to find
an assignment σ : [k]2 → [n]2 with σ(i, j) ∈ Si,j such that
1. vertical neighbors agree in the first coordinate; i.e., if σ(i, j) = (x, y) and σ((i+ 1) mod

k, j) = (x′, y′), then x = x′, and
2. horizontal neighbors agree in the second coordinate; i.e., if σ(i, j) = (x, y) and σ(j, (i+

1) mod k) = (x′, y′), then y = y′,
where we define (k + 1) mod k ≜ 1, and hereafter omit the symbol mod for modulo operator.
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Grid Tiling parameterized by k is proven to be W[1]-hard by Marx [33, 35]. We say
that two cells (i1, j1) and (i2, j2) are adjacent if the Manhattan distance between them is 1.
Let I be the set of all pairs of two adjacent cells; i.e.,

I ≜
{

(i1, j1, i2, j2) ∈ [n]4 : |i1 − i2| + |j1 − j2| = 1
}
. (5)

Note that |I| = 2k2. Grid Tiling has the two useful properties that (i) the constraint to be
satisfied is the equality on the first and second coordinates, which is pretty simple, and (ii)
there are only k2 cells and each cell is adjacent to (at most) four cells. By contrast, as there
are O(n2) candidates for the assignment of integer pairs, we need to represent the consistency
between adjacent cells using only f(k)-dimensional vectors. For this purpose, we exploit
rational points on the unit circle; i.e., Pythagorean triples. A Pythagorean triple is a triple of
three positive integers (a, b, c) such that a2 +b2 = c2; e.g., (a, b, c) = (3, 4, 5). It is further said
to be primitive if (a, b, c) are coprime; i.e., gcd(a, b) = gcd(b, c) = gcd(c, a) = 1. We assume
for a while that we have n primitive Pythagorean triples, denoted (a1, b1, c1), . . . , (an, bn, cn).

4.2 Reduction from GRID TILING and Proof of Theorem 4.2
We are now ready to describe a parameterized reduction from Grid Tiling to Problem 4.1.
Given an instance S = (Si,j)i,j∈[k] of Grid Tiling, we define a rational vector for each
(x, y) ∈ Si,j , whose dimension is bounded by some function in k. Each vector consists of
|I| = 2k2 blocks (indexed by an element of I), each of which is two dimensional and is
either a rational point on the unit circle or the origin O. Hence, each vector is of dimension
2|I| = 4k2. Let v(i,j)

x,y denote the vector for an element (x, y) ∈ Si,j of cell (i, j) ∈ [k]2,
let v(i,j)

x,y (i1, j1, i2, j2) denote the block of v(i,j)
x,y corresponding to each pair of adjacent cells

(i1, j1, i2, j2) ∈ I. Each bock is defined as follows:

v(i,j)
x,y (e) ≜



[
−bx/cx, ax/cx

]
if e = (i− 1, j, i, j),[

ax/cx, bx/cx

]
if e = (i, j, i+ 1, j),[

−by/cy, ay/cy

]
if e = (i, j − 1, i, j),[

ay/cy, by/cy

]
if e = (i, j, i, j + 1),

[0, 0] otherwise.

(6)

Because each vector contains exactly four points on the unit circle, its squared norm is
equal to 4. We denote by V(i,j) the set of vectors corresponding to the elements of Si,j ;
i.e., V(i,j) ≜ {v(i,j)

x,y : (x, y) ∈ Si,j}. We now define an instance (V,K) of Problem 4.1 as
V ≜

⋃
i,j∈[k] V(i,j) and K ≜ k2. Note that V consists of N ≜

∑
i,j∈[k] |Si,j | vectors. We

prove that the existence of a set of pairwise orthogonal k2 vectors yields the answer of Grid
Tiling. The key property of the above construction is that [−bx/cx, ax/cx] and [ax′/cx′ , bx′/cx′ ]
are orthogonal if and only if x = x′.

▶ Lemma 4.6 (∗). Let V be the set of vectors constructed from an instance S = (Si,j)i,j∈[k]
of Grid Tiling according to Eq. (6). Then, Grid Tiling has a solution if and only if
Problem 4.1 has a solution.

Proof of Theorem 4.2. Our parameterized reduction is as follows. Given an instance S =
(Si,j)i,j∈[k] of Grid Tiling, we first generate n primitive Pythagorean triples (a1, b1, c1),
. . . , (an, bn, cn). This can be done in O(n2) time, e.g., using Fibonacci’s method [18]. We
then construct a set V of N 4k2-dimensional rational vectors from S according to Eq. (6)
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in polynomial time, where N ≜
∑

i,j∈[k] |Si,j |. According to Lemma 4.6, S has a solution
of Grid Tiling if and only if there exists a set of k2 pairwise orthogonal vectors in V.
Since Grid Tiling is W[1]-hard with respect to k, Problem 4.1 is also W[1]-hard when
parameterized by dimension d(= 4k2). Note that every vector is of squared norm 4, completing
the proof. ◀

4.3 Problem 4.1 on Nonnegative Vectors is FPT
We note that Problem 4.1 is FPT with respect to the dimension if the input vectors are
nonnegative. Briefly speaking, Problem 4.1 on nonnegative vectors is equivalent to Set
Packing parameterized by the size of the universe, which is easily shown to be FPT.

▶ Observation 4.7 (∗). Problem 4.1 is FPT with respect to the dimension if every input
vector is entry-wise nonnegative.

5 W[1]-hardness of Approximation

Our final result is FPT-inapproximability of Determinant Maximization as stated below.

▶ Theorem 5.1. Under the Parameterized Inapproximability Hypothesis, it is W[1]-hard to
approximate Determinant Maximization within a factor of 2−c

√
k for some universal

constant c > 0 when parameterized by the number k of vectors to be selected. Moreover, the
same hardness result holds even if the diagonal entries of an input matrix are restricted to 1.

Since the above result relies on the Parameterized Inapproximability Hypothesis, Section 5.1
begins with its formal definition.

5.1 Inapproximability of GRID TILING under Parameterized
Inapproximability Hypothesis

We first introduce Binary Constraint Satisfaction Problem, for which the Param-
eterized Inapproximability Hypothesis asserts FPT-inapproximability. For two integers n
and k, we are given a set V ≜ [k] of k variables, an alphabet Σ ≜ [n] of size n, and a set
of constraints C = (Ci,j)i,j∈V such that Ci,j ⊆ Σ2.2 Each variable i ∈ V may take a value
from Σ. Each constraint Ci,j specifies the pairs of values that variables i and j can take
simultaneously, and it is said to be satisfied by an assignment ψ : V → Σ of values to the
variables if (ψ(i), ψ(j)) ∈ Ci,j .

▶ Problem 5.2. Given a set V of k variables, an alphabet set Σ of size n, and a set of
constraints C = (Ci,j)i,j∈V , Binary Constraint Satisfaction Problem (BCSP) asks
to find an assignment ψ : V → Σ that satisfies the maximum fraction of constraints.

It is well known that BCSP parameterized by the number k of variables is W[1]-complete
from a standard parameterized reduction from k-Clique. Lokshtanov et al. [30] posed a
conjecture asserting that a constant-factor gap version of BCSP is also W[1]-hard.

▶ Hypothesis 5.3 (Parameterized Inapproximability Hypothesis (PIH) [30]). There exists some
universal constant ε ∈ (0, 1) such that it is W[1]-hard to distinguish between BCSP instances
that are promised to either be satisfiable, or have a property that every assignment violates at
least ε-fraction of the constraints.

2 Though each constraint is actually indexed by an unordered pair of variables {i, j}, we use the present
notation Ci,j for sake of clarity and assume that Ci,j = Cj,i without loss of generality.
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Here, we prove that an optimization version of Grid Tiling is FPT-inapproximable
assuming PIH. Given an instance S = (Si,j)i,j∈[k] of Grid Tiling and an assignment
σ : [k]2 → [n]2, σ(i, j) and σ(i′, j′) for a pair of adjacent cells (i, j, i′, j′) ∈ I are said to be
consistent if they agree on the first coordinate when j = j′ or on the second coordinate when
i = i′, and inconsistent otherwise. The consistency of σ, denoted cons(σ), is defined as the
number of pairs of adjacent cells that are consistent; namely,

cons(σ) ≜
∑

(i1,j1,i2,j2)∈I

[[
σ(i1, j1) and σ(i2, j2) are consistent

]]
.

The inconsistency of σ is defined as the number of inconsistent pairs of adjacent cells. The
optimization version of Grid Tiling asks to find an assignment σ such that cons(σ) is
maximized.3 Note that the maximum possible consistency is |I| = 2k2. We will use opt(S)
to denote the optimal consistency among all possible assignments. We now demonstrate
that Grid Tiling is FPT-inapproximable in an additive sense under PIH, whose proof is
reminiscent of [33].

▶ Lemma 5.4 (∗). Under PIH, there exists some universal constant δ ∈ (0, 1) such that it is
W[1]-hard to distinguish Grid Tiling instances between the following cases:

Completeness: the optimal consistency is 2k2.
Soundness: the optimal consistency is at most 2k2 − δk.

It should be noted that we may not be able to significantly improve the additive term
O(k) owing to a polynomial-time εk2-additive approximation algorithm for any constant
ε > 0:

▶ Observation 5.5 (∗). Given an instance of Grid Tiling and an error tolerance parameter
ε > 0, we can find an assignment whose consistency is at least opt(S) − εk2 in ε2k2nO(1/ε2)

time.

Our technical result is a gap-preserving parameterized reduction from Grid Tiling to
Determinant Maximization, whose proof is presented in the subsequent subsection.

▶ Lemma 5.6. There is a polynomial-time, parameterized reduction from an instance
S = (Si,j)i,j∈[k] of Grid Tiling to an instance (A, k2) of Determinant Maximization
such that all diagonal entries of A are 1 and the following conditions are satisfied:

Completeness: If opt(S) = 2k2, then maxdet(A, k2) = 1.
Soundness: If opt(S) ⩽ 2k2 − δk for some δ > 0, then maxdet(A, k2) ⩽ 0.999δk.

Using Lemma 5.6, we can prove Theorem 5.1.

Proof of Theorem 5.1. Our gap-preserving parameterized reduction is as follows. Given an
instance S = (Si,j)i,j∈[k] of Grid Tiling, we construct an instance (A ∈ QN×N ,K ≜ k2)
of Determinant Maximization in polynomial time according to Lemma 5.6, where
N ≜

∑
i,j∈[k] |Si,j |. The diagonal entries of A are 1 by definition. Since K is a function only

in k, this is a parameterized reduction. According to Lemmas 5.4 and 5.6, it is W[1]-hard
to determine whether maxdet(V,K) = 1 or maxdet(V,K) ⩽ 0.999δk under PIH, where
δ ∈ (0, 1) is a constant appearing Lemma 5.4. In particular, Determinant Maximization is
W[1]-hard to approximate within a factor better than 0.999δk = 2−c

√
K when parameterized

by K, where c ∈ (0, 1) is some universal constant. This completes the proof. ◀

3 Our definition is different from Marx [33] in that the latter seeks a partial assignment such that the
number of defined cells is maximized while the former requires maximizing the number of consistent
adjacent pairs.
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5.2 Gap-preserving Reduction from GRID TILING and Proof of Lemma 5.6
To prove Lemma 5.6, we describe a gap-preserving parameterized reduction from Grid
Tiling to Determinant Maximization. Before going into its details, we introduce a
convenient gadget due to Çivril and Magdon-Ismail [11].

▶ Lemma 5.7 (Çivril and Magdon-Ismail [11, Lemma 13]). For any positive even integer ℓ, we
can construct a set of 2ℓ rational vectors B(ℓ) = {b1, . . . ,b2ℓ} of dimension 2ℓ+1 in O(4ℓ)
time such that the following conditions are satisfied:

Each entry of vectors is either 0 or 2− ℓ
2 ; ∥bi∥ = 1 for all i ∈ [2ℓ].

⟨bi,bj⟩ = 1
2 for all i, j ∈ [2ℓ] with i ̸= j.

⟨bi,bj⟩ = 1
2 for all i, j ∈ [2ℓ] with i ̸= j, where bj ≜ 2− ℓ

2 · 1 − bj.
By definition of B(ℓ), we further have the following:

⟨bi,bi⟩ = 2− ℓ
2 ⟨1,bi⟩ − ⟨bi,bi⟩ = 0,

⟨bi,bj⟩ = ⟨2− ℓ
2 1 − bi, 2− ℓ

2 1 − bj⟩ = 2−ℓ⟨1,1⟩ − 2− ℓ
2 ⟨1,bi + bj⟩ + ⟨bi,bj⟩ = ⟨bi,bj⟩.

Our reduction strategy is very similar to that of Theorem 4.2. Given an instance S =
(Si,j)i,j∈[k] of Grid Tiling, we construct a rational vector v(i,j)

x,y for each element (x, y) ∈ Si,j

of cell (i, j) ∈ [k]2. Each vector consists of |I| = 2k2 blocks indexed by I, each of which is
either a vector in the set B(2⌈log n⌉) or the zero vector 0. Hence, the dimension of the vectors
is 2k2 · 22⌈log n⌉+1 = O(k2n2). Let v(i,j)

x,y (i1, j1, i2, j2) denote the block of v(i,j)
x,y corresponding

to a pair of adjacent cells (i1, j1, i2, j2) ∈ I. Each block is subsequently defined as follows:

v(i,j)
x,y (e) ≜



bx if e = (i− 1, j, i, j),
bx if e = (i, j, i+ 1, j),
by if e = (i, j − 1, i, j),
by if e = (i, j, i, j + 1),
0 otherwise.

Hereafter, two vectors v(i,j)
x,y and v(i′,j′)

x′,y′ are said to be adjacent if (i, j) and (i′, j′) are adjacent,
and two adjacent vectors are said to be consistent if (x, y) and (x′, y′) are consistent (i.e.,
x = x′ whenever j = j′ and y = y′ whenever i = i′) and inconsistent otherwise. Since each
vector contains exactly four vectors chosen from B(2⌈log n⌉), its squared norm is equal to 4.
In addition, v(i,j)

x,y and v(i′,j′)
x′,y′ are orthogonal whenever (i, j) and (i′, j′) are not identical or

adjacent. Observe further that if two cells are adjacent, the inner product of two vectors in
V is calculated as follows:〈

v(i,j)
x,y ,v(i+1,j)

x′,y′

〉
= ⟨bx,bx′⟩ =

{
0 if they are consistent x = x′,
1
2 otherwise (i.e., x ̸= x′),

(7)

〈
v(i,j)

x,y ,v(i,j+1)
x′,y′

〉
= ⟨by,by′⟩ =

{
0 if they are consistent y = y′

1
2 otherwise (i.e., y ̸= y′).

(8)

On the other hand, the inner product of two vectors in the same cell is as follows:

〈
v(i,j)

x,y ,v(i,j)
x′,y′

〉
= 2 · ⟨bx,bx′⟩ + 2 · ⟨by,by′⟩ =


4 if x = x′ and y = y′,

3 if x = x′ xor y = y′,

2 if x ̸= x′ and y ̸= y′.

(9)
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We denote by V(i,j) the set of vectors corresponding to the elements of Si,j ; i.e., V(i,j) ≜

{v(i,j)
x,y : (x, y) ∈ Si,j} for each i, j ∈ [k]. We now define an instance (V,K) of Determinant

Maximization as V ≜
⋃

i,j∈[k] V(i,j) and K ≜ k2. Note that V contains N ≜
∑

i,j∈[k] |Si,j |
vectors.

We now proceed to the proof of (the soundness argument of) Lemma 5.6. Let S be a set of
k2 vectors from V. Define S(i,j) ≜ V(i,j) ∩ S = {v(i,j)

x,y ∈ S : (x, y) ∈ Si,j} for each i, j ∈ [k]2.
Denote by cov(S) the number of cells (i, j) ∈ [k]2 such that S includes v(i,j)

x,y for some (x, y); i.e.,
cov(S) ≜ {(i, j) ∈ [k]2 : S(i,j) ̸= ∅}, and we also define dup(S) ≜ {(i, j) ∈ [k]2 : S(i,j) = ∅}. It
follows from the definition that cov(S) + dup(S) = k2 and dup(S) counts the total number of
“duplicate” vectors in the same cell. We first present an upper bound on the volume of S in
terms of dup(S), implying that we cannot select many duplicate vectors from the same cell.

▶ Lemma 5.8 (∗). If dup(S) ⩽ k2

2 , then it holds that

vol2(S) ⩽ 4k2
·
(

3
4

)dup(S)
.

We then present another upper bound on the volume of S in terms of the inconsistency
of a partial solution of Grid Tiling constructed from the selected vectors. For a set S of k2

vectors from V, a partial assignment σS : [k]2 → [n]2 ∪ {⋆} for Grid Tiling is defined as

σS(i, j) ≜
{

any (x, y) such that v(i,j)
x,y ∈ S(i,j) if such (x, y) exists,

⋆ otherwise (i.e., S(i,j) = ∅),

where the symbol “⋆” means undefined and the choice of (x, y) is arbitrary. The inconsistency
of a partial assignment σS is defined as∑

(i1,j1,i2,j2)∈I

[[
σ(i1, j1) ̸= ⋆; σ(i2, j2) ̸= ⋆; σ(i1, j1) and σ(i2, j2) are inconsistent

]]
.

Note that the sum of the consistency and inconsistency of σS is no longer necessarily 2k2.
Using σS, we define a partition (P,Q) of S as P ≜ {v(i,j)

x,y ∈ S : i, j ∈ [k], σS(i, j) = (x, y)}
and Q ≜ S \ P. We further prepare an arbitrary ordering ≺ over [k]2; e.g., (i, j) ≺ (i′, j′) if
i < i′, or i = i′ and j < j′. We abuse the notation by writing v(i,j)

x,y ≺ v(i′,j′)
x′,y′ for any two

vectors of V whenever (i, j) ≺ (i′, j′). Define now P≺v ≜ {u ∈ P : u ≺ v}. The following
lemma states that the squared volume of k2 vectors exponentially decays in the minimum
possible inconsistency among all assignments of S.

▶ Lemma 5.9 (∗). Suppose opt(S) ⩽ 2k2 − δk for some δ > 0 and cov(S) ⩾ k2 − γk for
some γ > 0. If δk − 4γk is positive, then it holds that

vol2(S) ⩽ 4k2
·
(

63
64

) δ−4γ
4 k

.

The proof of Lemma 5.9 involves the following claim.

▷ Claim 5.10 (∗). Suppose the same conditions as in Lemma 5.9 are satisfied. Then, the
inconsistency of σS is at least δk− 4γk. Moreover, the number of vectors v in P such that v
is inconsistent with some adjacent vector of P≺v is at least δk−4γk

4 .

Using Lemmas 5.8 and 5.9, we can easily conclude Lemma 5.6 as follows.
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Proof of Lemma 5.6. Observe that the reduction described in Section 5.2 is a parameterized
reduction as it requires polynomial time and an instance S = (Si,j)i,j∈[k] of Grid Tiling is
transformed into an instance (V, k2) of Determinant Maximization. In addition, the
construction of B(2⌈log n⌉) completes in time O(42⌈log n⌉) = O(n4) by Lemma 5.7.

We now prove the correctness of the reduction. Let us begin with the completeness
argument. Suppose opt(S) = 2k2; i.e., there is an assignment σ of consistency 2k2. Then,
k2 vectors in the set S ≜ {v(i,j)

σ(i,j) : i, j ∈ [k]} are orthogonal to each other, implying that
vol2(S) = 4k2 . On the other hand, because every vector of V is of squared norm 4, the
maximum possible squared volume among k2 vectors in V is 4k2 ; namely, maxdet(V, k2) =
4k2 .

We then prove the soundness argument. Suppose opt(S) ⩽ 2k2 − δk for some constant
δ > 0. Then, for any set S of k2 vectors from V such that dup(S) > log 0.999−1

log( 3
4 )−1 · δk, we have

that by Lemma 5.8, vol2(S) < 4k2 · 0.999δk. It is thus sufficient to consider the case that

dup(S) ⩽ log 0.999−1

log( 3
4 )−1 · δk ≈ 0.0035 · δ.

In particular, it suffices to assume that dup(S) ⩽ γk for some γ ∈ (0, δ
4 ). Simple calculation

using Lemmas 5.8 and 5.9 derives that

vol2(S) ⩽ min
{

4k2
·
(

3
4

)γk

, 4k2
·
(

63
64

) δ−4γ
4 k

}
⩽ 4k2

· min
{(

63
64

)γk

,

(
63
64

) δ−4γ
4 k

}

⩽ 4k2
·
(

63
64

)min
{
γ,
δ − 4γ

4

}
︸ ︷︷ ︸

♡

·k

⩽ 4k2
·
(

63
64

) δ
8 k

⩽ 4k2
· 0.999δk,

where the second-to-last inequality is due to the fact that ♡ is maximized when γ = δ−4γ
4 ;

i.e., γ = δ
8 > 0.

Because the diagonal entries of the Gram matrix A defined by the vectors of V are 4, we
can construct another instance of Determinant Maximization as (Ã, k2), where Ã ≜ 1

4 A.
Observe finally that the diagonal entries of Ã are 1 and det(ÃS) = 4−|S| · det(AS) for any
S, which completes the proof. ◀

5.3 ε-Additive FPT-Approximation Parameterized by Rank

Here, we develop an ε-additive FPT-approximation algorithm parameterized by the rank of
an input matrix A, provided that A is the Gram matrix of vectors of infinity norm at most 1.
Our algorithm complements Lemma 5.6 in a sense that we can solve the promise problem in
FPT time with respect to rank(A). The proof uses the standard rounding technique.

▶ Observation 5.11 (∗). Let v1, . . . ,vn be n d-dimensional vectors in Qd such that ∥vi∥∞ ⩽ 1
for all i ∈ [n], A the Gram matrix defined by the vectors, k ∈ [d] a positive integer, and
ε > 0 an error tolerance parameter. Then, we can compute an approximate solution
S ∈

([n]
k

)
to Determinant Maximization in ε−d2 · dO(d3) ·nO(1) time such that det(AS) ⩾

maxdet(A, k) − ε.
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6 Open Problems

We investigated the W[1]-hardness of Determinant Maximization in the three restricted
cases, improving upon the result due to Koutis [26]. Our parameterized hardness results
leave a few natural open problems: For what kinds of sparse matrices is Determinant
Maximization FPT? Is there a (1 − ε)-factor (rather than “additive”) FPT-approximation
algorithm with respect to the matrix rank? Quantitative lower bounds can be also proved;
e.g., due to the lower bound of k-Sum [41], Determinant Maximization on tridiagonal
matrices cannot be solved in no(k) time, unless Exponential Time Hypothesis [23, 24] fails.
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