
Package Delivery Using Drones with Restricted
Movement Areas
Thomas Erlebach #

Department of Computer Science, Durham University, UK

Kelin Luo #

Institute of Computer Science, Universität Bonn, Germany

Frits C.R. Spieksma #

Department of Mathematics and Computer Science,
Eindhoven University of Technology, The Netherlands

Abstract
For the problem of delivering a package from a source node to a destination node in a graph using a
set of drones, we study the setting where the movements of each drone are restricted to a certain
subgraph of the given graph. We consider the objectives of minimizing the delivery time (problem
DDT) and of minimizing the total energy consumption (problem DDC). For general graphs, we
show a strong inapproximability result and a matching approximation algorithm for DDT as well as
NP-hardness and a 2-approximation algorithm for DDC. For the special case of a path, we show
that DDT is NP-hard if the drones have different speeds. For trees, we give optimal algorithms
under the assumption that all drones have the same speed or the same energy consumption rate.
The results for trees extend to arbitrary graphs if the subgraph of each drone is isometric.

2012 ACM Subject Classification Theory of computation → Design and analysis of algorithms

Keywords and phrases Mobile agents, approximation algorithm, inapproximability

Digital Object Identifier 10.4230/LIPIcs.ISAAC.2022.49

Related Version Full Version: https://arxiv.org/abs/2209.12314

Funding Thomas Erlebach: Supported by EPSRC grants EP/S033483/2 and EP/T01461X/1.
Kelin Luo: Supported by the National Natural Science Foundation of China, Grant No. 72071157.
Frits C.R. Spieksma: Supported by NWO Gravitation Project NETWORKS, Grant Number
024.002.003.

1 Introduction

Problem settings where multiple drones collaborate to deliver a package from a source
location to a target location have received significant attention recently. One motivation for
the study of such problems comes from companies considering the possibility of delivering
parcels to consumers via drones, e.g., Amazon Prime Air [1]. In previous work in this
area [8, 9, 3, 4, 2, 6, 7], the drones are typically modeled as agents that move along the
edges of a graph, and the package has to be transported from a source node to a target
node in that graph. Optimization objectives that have been considered include minimizing
the delivery time, minimizing the energy consumption by the agents, or a combination of
the two. A common assumption has been that every agent can travel freely throughout the
whole graph [3, 4, 6], possibly with a restriction of each agent’s travel distance due to energy
constraints [8, 9, 2, 7]. In this paper, we study for the first time a variation of the problem
in which each agent is only allowed to travel in a certain subgraph of the given graph.

We remark that the previously considered problem in which each agent has an energy
budget that constrains its total distance traveled [8, 9, 2, 7] is fundamentally different from
the problem considered here in which each agent can only travel in a certain subgraph: In

© Thomas Erlebach, Kelin Luo, and Frits C.R. Spieksma;
licensed under Creative Commons License CC-BY 4.0

33rd International Symposium on Algorithms and Computation (ISAAC 2022).
Editors: Sang Won Bae and Heejin Park; Article No. 49; pp. 49:1–49:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:thomas.erlebach@durham.ac.uk
https://orcid.org/0000-0002-4470-5868
mailto:kluo@uni-bonn.de
https://orcid.org/0000-0003-2006-0601
mailto:f.c.r.spieksma@tue.nl
https://orcid.org/0000-0002-2547-3782
https://doi.org/10.4230/LIPIcs.ISAAC.2022.49
https://arxiv.org/abs/2209.12314
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

49:2 Package Delivery Using Drones with Restricted Movement Areas

our problem, an agent can still travel an arbitrary distance by moving back and forth many
times within its subgraph. Furthermore, the subgraph in which an agent can travel cannot
necessarily be defined via a budget constraint. This means that neither hardness results nor
algorithmic results translate directly between the two problems.

As motivation for considering agents with movement restrictions, we note that in a
realistic setting, the usage of drones may be regulated by licenses that forbid some drones
from flying in certain areas. The license of a drone operator may only allow that operator to
cover a certain area. Furthermore, densely populated areas may have restrictions on which
drones are allowed to operate there. Package delivery with multiple collaborating agents
might also involve different types of agents (boats, cars, flying drones, etc.), where it is
natural to consider the case that each agent can traverse only a certain part of the graph:
For example, a boat can only traverse edges that represent waterways.

In our setting, we are given an undirected graph G = (V, E) with a source node s and a
target node y of the package as well as a set of k agents. The subgraph in which an agent a

is allowed to operate is denoted by Ga = (Va, Ea). Each agent can pick up the package at its
source location or from another drone, and it can deliver the package to the target location
or hand it to another drone. We consider the objective of minimizing the delivery time, i.e.,
the time when the package reaches y, as well as the objective of minimizing the total energy
consumption of the drones. We only consider the problem for a single package.

Related work. Collaborative delivery of a package from a source node s to a target node y

with the goal of minimizing the delivery time was considered by Bärtschi et al. [4]. For k

agents in a graph with n nodes and m edges, they showed that the problem can be solved in
O(k2m + kn2 + APSP) time for a single package, where APSP is the time for computing
all-pairs shortest paths in a graph with n nodes and m edges. Carvalho et al. [6] improved
the time complexity for the problem to O(kn log n + km) and showed that the problem is
NP-hard if two packages must be delivered.

For minimizing the energy consumption for the delivery of a package, Bärtschi et al. [3]
gave a polynomial algorithm for one package and showed that the problem is NP-hard for
several packages.

The combined optimization of delivery time T and energy consumption E for the collab-
orative delivery of a single package has also been considered. Lexicographically minimizing
(E , T) can be done in polynomial time [5], but lexicographically minimizing (T , E) or minim-
izing any linear combination of T and E is NP-hard [4].

Delivering a package using k energy-constrained agents has been shown to be strongly NP-
hard in general graphs [8] and weakly NP-hard on a path [9]. Bärtschi et al. [2] showed that
the variant where each agent must return to its initial location can be solved in polynomial
time for tree networks. The variant in which the package must travel via a fixed path in a
general graph has been studied by Chalopin et al. [7].

Our results. In Section 2, we introduce definitions and give some auxiliary results. In
Section 3, we show that movement restrictions make the drone delivery problem harder for
both objectives: For minimizing the delivery time, we show that the problem is NP-hard to
approximate within ratio O(n1−ϵ) or O(k1−ϵ). For minimizing the energy consumption, we
show NP-hardness. These results hold even if all agents have the same speed and the same
energy consumption rate.

In Section 4, we propose an O(min{n, k})-approximation algorithm for the problem of
minimizing the delivery time. The algorithm first computes a schedule with minimum delivery
time for the problem variant where an arbitrary number of copies of each agent is available.

T. Erlebach, K. Luo, and F. C. Spieksma 49:3

Then it transforms the schedule into one that is feasible for the problem with a single copy
of each agent. The algorithm can also handle handovers on edges. In Section 5, we give a
2-approximation algorithm for the problem of minimizing the total energy consumption. We
again first compute an optimal schedule that may use several copies of each agent and then
transform the schedule into one with a single copy of each agent.

In Section 6, we first consider the special case where the graph is a path (line) and the
subgraph of each agent is a subpath. For this case, we show that the problem of minimizing
the delivery time is NP-hard if the agents have different speeds. If the agents have the
same speed or the same energy consumption rate, we show that the problem of minimizing
the delivery time and the problem of minimizing the total energy consumption are both
polynomial-time solvable even for the more general case when the graph is a tree, or when
the graph is arbitrary but the subgraph of every agent is isometric (defined in Section 6).
Conclusions are presented in Section 7. Proofs omitted due to space restrictions can be found
in the full version [11].

2 Preliminaries

We now define the drone delivery (DD) problem formally. We are given a connected graph
G = (V, E) with edge lengths ℓ : E → R≥0, where ℓ(u, v) represents the distance between u

and v along edge {u, v}. (We sometimes write G = (V, E, ℓ) to include an explicit reference
to ℓ.) Let n = |V | and m = |E|. We are also given a set A containing k ≥ 1 mobile agents
(representing drones). Each agent a ∈ A is specified by a = (pa, va, wa, Va, Ea), where pa ∈ V

is the agent’s initial position, and va > 0 and wa ≥ 0 are the agent’s velocity (or speed)
and energy consumption rate, respectively. To traverse a path of length x, agent a takes
time x/va and consumes x · wa units of energy. Furthermore, Va ⊆ V and Ea ⊆ E are the
node-range and edge-range of agent a, respectively. Agent a can only travel to/via nodes
in Va and edges in Ea. We require pa ∈ Va. To ensure meaningful solutions, we make the
following two natural assumptions:

For each agent a, the graph Ga = (Va, Ea) is a connected subgraph of G.
The union of the subgraphs Ga over all agents is the graph G, i.e.,

⋃
a∈A Va = V and⋃

a∈A Ea = E. This implies that there is a feasible schedule for any package (s, y).
The package is specified by (s, y), where s, y ∈ V are the start node (start location) and
destination node (target location), respectively. The task is to find a schedule for delivering the
package from the start node to the destination node while achieving a specific objective. The
problem of minimizing the delivery time is denoted by DDT, and the problem of minimizing
the consumption by DDC.

To describe solutions of the problems, we need to define how a schedule can be represented.
A schedule is given as a list of trips S = {S1, S2, . . . , Sh}:

{(a1, t1, ⟨o1, . . . , u0⟩, ⟨u0, . . . , u1⟩), . . . , (ah, th, ⟨oh, . . . , uh−1⟩, ⟨uh−1, . . . , uh⟩)}

The i-th trip Si = (ai, ti, ⟨oi, . . . , ui−1⟩, ⟨ui−1, . . . , ui⟩) represents two consecutive trips taken
by agent ai starting at time ti ≥ 0: an empty movement trip traversing nodes Oi =
⟨oi, . . . , ui−1⟩, and a delivery trip (during which ai carries the package) of traversing nodes
Ui = ⟨ui−1, . . . , ui⟩. The agent ai picks up the package at node ui−1 and drops it off at
node ui. With slight abuse of notation, we also use Oi and Ui to denote the set of edges
in each of these two trips. If Si is the first trip of agent ai, then oi is the agent’s initial
location. Otherwise, oi is the location where the agent dropped off the package at the end
of its previous trip. Initially, each agent a ∈ A is at node pa at time 0. In the definition of

ISAAC 2022

49:4 Package Delivery Using Drones with Restricted Movement Areas

schedules, when we allow two agents to meet on an edge to hand over the package, we allow
the nodes also to be points on edges: For example, a node ui could be the point on an edge
{u, v} with length 5 that is at distance 2 from u (and hence at distance 3 from v).

Let T (ui) (resp. C(ui)) denote the time passed (resp. the energy consumed) until the
package is delivered to node ui in schedule S, i.e.,

T (ui) = max
{

T (ui−1), ti +
∑

e∈Oi

ℓ(e)
vai

}
+

∑
e∈Ui

ℓ(e)
vai

,

C(ui) = C(ui−1) + wai ·
∑

e∈Oi

ℓ(e) + wai ·
∑
e∈Ui

ℓ(e).

The pick-up location of the first agent must be the start node, i.e., u0 = s, and the
drop-off location of the last agent must be the destination node, uh = y. We let T (u0) = 0
and C(u0) = 0. The goal of the DDT problem is to find a feasible schedule S that minimizes
the delivery time T (y), and the goal of the DDC problem is to find a feasible schedule S that
minimizes the energy consumption C(y).

So far, we have defined the DDT and DDC problem. As in previous studies [6], we further
distinguish variants of these problems based on the handover manner.

Handover manner. The handover of the package between two agents may occur at a node
or at some interior point of an edge. When the handovers are restricted to be on nodes, we
say the drone delivery problem is handled with node handovers, and when the handover can
be done on a node or at an interior point of an edge, we say that the drone delivery problem
is handled with edge handovers. We use the subscripts N and E to represent node handovers
and edge handovers, respectively. Thus, we get four variants of the drone delivery problem:
DDTN, DDTE, DDCN and DDCE.

With or without initial positions. We additionally consider problem variants in which the
initial positions of the agents are not fixed (given), which means that the initial positions pa

for a ∈ A can be chosen by the algorithm. When the initial positions are fixed, we say that
the problem is with initial positions, and when the initial positions are not fixed, we say that
the problem is without initial positions. When we do not specify that a problem is without
initial positions, we always refer to the problem with initial positions by default.

In the rest of the paper, in order to simplify notation, the i-th trip in a schedule S is
usually written in simplified form as (ai, ui−1, ui), where ai is the agent, ui−1 is the pick-up
location of the package, and ui is the drop-off location of the package. We can omit the
agent’s empty movement trip (including its previous position) and its start time because the
agent ai always takes the path in Gai

= (Vai
, Eai

) with minimum cost (travel time or energy
consumption) from its previous position to the current pick-up location ui−1 and then from
ui−1 to ui.

For each node v ∈ V , we use A(v) to denote the set of agents that can visit the node v;
and for every edge {u, v} in E, we use A(u, v) to denote the set of agents that can traverse
the edge {u, v}. For any pair of nodes u, v ∈ Va for some a ∈ A, we denote by dista(u, v) the
length of the shortest path between node u and v in the graph Ga = (Va, Ea).

Useful properties. We show some basic properties for the drone delivery problem. The
following lemma can be shown by an exchange argument: If an agent was involved in the
package delivery at least twice, letting that agent keep the package from its first involvement
to its last involvement does not increase the delivery time nor the energy consumption.

T. Erlebach, K. Luo, and F. C. Spieksma 49:5

▶ Lemma 1. For every instance of DDTN, DDTE, DDCN and DDCE (with or without initial
positions), there is an optimal solution in which each of the involved agents picks up and
drops off the package exactly once.

For DDC, we can show that handovers at interior points of edges cannot reduce the energy
consumption. If two agents carry the package consecutively over parts of the same edge,
letting one of the two agents carry the package over those parts can be shown not to increase
the energy consumption.

▶ Lemma 2. For any instance of DDCN and DDCE (with or without initial positions), there
is a solution that is simultaneously optimal for both problems. In other words, there is an
optimal solution for DDCE in which all handovers of the package take place at nodes of the
graph.

For the case that Ga = G for all a ∈ A, it has been observed in previous work [4, 6] that
there is an optimal schedule for DDTN and DDTE in which the velocities of the involved
agents are strictly increasing, and an optimal schedule for DDCN and DDCE in which the
consumption rates of the involved agents are strictly decreasing. We remark that this very
useful property does not necessarily hold in our setting with agent movement restrictions.
This is the main reason why the problem becomes harder, as shown by our hardness results
in Section 3 and, even for path networks, in Section 6.

3 Hardness results

In this section, we prove several hardness results for DDT and DDC via reductions from the
NP-complete 3-dimensional matching problem (3DM) [12]. All of them apply to the case
where all agents have the same speed and the same energy consumption rate. We first present
the construction of a base instance of DDT, which we then adapt to obtain the hardness
results for DDT and DDC. The instances that we create have the property that every edge e

of the graph is only in the set Ea of a single agent a. Therefore, handovers on edges are not
possible for these instances, and so the variants of the problems with node handovers and
with edge handovers are equivalent for these instances. Hence, we only need to consider the
problem variant with node handovers in the proofs.

The problem 3DM is defined as follows: Given are three sets X, Y, Z, each of size n, and
a set F ⊆ X × Y × Z consisting of m triples. Each triple in F is of the form (x, y, z) with
x ∈ X, y ∈ Y , and z ∈ Z. The question is: Is there a set of n triples in F such that each
element of X ∪ Y ∪ Z is contained in exactly one of these n triples?

Let an instance of 3DM be given by X, Y, Z and F . Assume X = {x1, x2, . . . , xn},
Y = {y1, y2, . . . , yn} and Z = {z1, z2, . . . , zn}. Number the triples in F from 1 to m = |F|
arbitrarily, and let the j-th triple be tj = (xf(j), yg(j), zh(j)) for suitable functions f, g, h :
[m] → [n]. We create from this a base instance I of DDTN that consists of n selection
gadgets and 3n agent gadgets. Carrying the package through a selection gadget corresponds
to selecting one of the m triples of F . The n selection gadgets are placed consecutively, so
that the package travels through all of them (unless it makes a detour that increases the
delivery time). For each element q of X ∪ Y ∪ Z, there is an agent gadget containing the
start position of a unique agent. The agent gadget for element q ensures that the agent can
carry the package on the edge corresponding to element q on a path through a selection
gadget if and only if that path corresponds to a triple that contains q. If the instance of 3DM
is a yes instance, then each of the agents from the agent gadgets only needs to transport

ISAAC 2022

49:6 Package Delivery Using Drones with Restricted Movement Areas

s1 s2 s3 ... sn+1

v1,x1 v1,y1 v1,z1

v1,xm v1,ym v1,zm

v1,x2 v1,y2 v1,z2

v2,x1 v2,y1 v2,z1

v2,x2 v2,y2 v2,z2

v2,xm v2,ym v2,zm

x1 y1 z1 x2 y2 z2 xn yn zn

...

Figure 1 The graph Ḡ = (V̄ , Ē) used for the inapproximability and hardness proofs for DDT and
DDC. The inner edges have length 0, and the outer edges have length M . Each square node represents
a drone’s initial location. Each colored (red, blue, and orange) path represents a set of edges that
can be visited by the same agent which is initially located at a location in {xi, yi, zi | i ∈ [n]}. For
each i ∈ [n], there is an additional agent that is initially located at si and which can visit edges
{{si, vi,x

x } | j ∈ [m]}.

the package on one edge. Otherwise, an agent must travel (with or without the package)
from one selection gadget to another one, and the extra time consumed by this movement
increases the delivery time.

Formally, the instance of DDTN with graph Ḡ = (V̄ , Ē) is created as follows. See Figure 1
for an illustration. The vertex set V̄ contains 3n agent nodes and n(3m + 1) + 1 nodes in
selection gadgets, a total of 4n + 3mn + 1 nodes. The agent nodes comprise a node xi for
each xi ∈ X, a node yi for each yi ∈ Y , and a node zi for each zi ∈ Z. The node set of
selection gadget i, for 1 ≤ i ≤ n, is {si, si+1} ∪ {vi,x

j , vi,y
j , vi,z

j | 1 ≤ j ≤ m}, a set containing
3m + 2 nodes. For 1 ≤ i < n, the node si+1 is contained in selection gadget i and in selection
gadget i + 1. The path through the three nodes vi,x

j , vi,y
j , vi,z

j (in selection gadget i for any
i) represents the triple tj in F . The package is initially located at node s1 and must be
delivered to node sn+1.

The edge set Ē contains two types of edges: inner edges, each of which connects two
nodes in a selection gadget, and outer edges, each of which connects an agent node and a
node in a selection gadget. For every i ∈ [n] and j ∈ [m], there are four inner edges {si, vi,x

j },
{vi,x

j , vi,y
j }, {v

i,y
j , vi,z

j } and {vi,z
j , si+1} of length 0.1 So there are 4mn inner edges. The

outer edges are as follows: For every i ∈ [n] and j ∈ [m], there are the three outer edges
{xf(j), vi,x

j }, {yg(j), vi,y
j }, {zh(j), vi,z

j } of length M for some M > 0. (We can set M = 1.)
This completes the description of the graph Ḡ = (V̄ , Ē) with edge lengths.
Now we define the set of agents. We have 4n agents with unit speed and unit energy

consumption rate. Their initial locations are {xi, yi, zi, si | i ∈ [n]}. The agents with initial
location in {xi, yi, zi | i ∈ [n]} are called element agents. For each i ∈ [n], the node ranges
and edge ranges of the agents with initial location with subscript i are defined as follows:

1 We could set the lengths of these edges to a small ϵ > 0 if we wanted to avoid edges of length 0.

T. Erlebach, K. Luo, and F. C. Spieksma 49:7

The agent located at xi has node range {xi, vi′,x
j , vi′,y

j | i′ ∈ [n], j ∈ [m], f(j) = i} and
edge range {{xi, vi′,x

j }, {vi′,x
j , vi′,y

j } | i′ ∈ [n], j ∈ [m], f(j) = i}.
The agent located at yi has node range {yi, vi′,y

j , vi′,z
j | i′ ∈ [n], j ∈ [m], g(j) = i} and

edge range {{yi, vi′,y
j }, {vi′,y

j , vi′,z
j } | i′ ∈ [n], j ∈ [m], g(j) = i}.

The agent located at zi has node range {zi, vi′,z
j , si′+1 | i′ ∈ [n], j ∈ [m], h(j) = i} and

edge range {{zi, vi′,z
j }, {v

i′,z
j , si+1} | i′ ∈ [n], j ∈ [m], h(j) = i}.

The agent located at si has node range {si, vi,x
j | j ∈ [m]} and edge range {{si, vi,x

j } |
j ∈ [m]}.

We now show that the given instance of 3DM is a yes-instance if and only if the constructed
base instance of DDTN has an optimal schedule with delivery time M . First, assume that
the given instance of 3DM is a yes-instance, and let {tk1 , tk2 , . . . , tkn} ⊆ F be a perfect
matching. We let the package travel from s1 to sn+1 via the n selection gadgets, using the
path via nodes vi,x

ki
, vi,y

ki
, vi,z

ki
in selection gadget i, for i ∈ [n]. This path consists of 4n edges.

Each of the 4n agents needs to carry the package on exactly one edge of this path. All the
element agents reach the node where they pick up the package at time M . As all edges in
the selection gadgets have length 0, this shows that the package reaches sn+1 at time M . It
is clear that this solution is optimal because at least one element agent must take part in the
delivery and cannot pick up the package before time M .

Now, assume that the base instance of DDTN admits a schedule with delivery time M . It
is not hard to see that the schedule must be of the above format, using each agent on exactly
one edge in one selection gadget. This is because it takes time 2M for an element agent to
move from one selection gadget to another one via its initial location.

This shows that there is a schedule with delivery time M if and only if the given instance
of 3DM is a yes-instance. Furthermore, as any element agent needs time M to reach a
pick-up point in a selection gadget and time 2M to move to a different selection gadget (with
or without the package), it is clear that the optimal schedule will have length at least 3M if
the given instance of 3DM is a no-instance. This already shows that DDTN is NP-hard and
does not admit a polynomial-time approximation algorithm with approximation ratio smaller
than 3 unless P = NP, but we can strengthen the inapproximability result by concatenating
q = (4n+3mn)c copies of the base instance (identifying node sn+1 of one copy with node s1 of
the next copy) for an arbitrarily large constant c and letting the package be transported from
s1 in the first copy to sn+1 in the last copy. If the given instance of 3DM is a yes-instance,
the delivery time is still M , but if it is a no-instance, it is M + 2Mq = M(2q + 1).

▶ Theorem 3. For any constant ϵ > 0, it is NP-hard to approximate DDTN (or DDTE)
within a factor of O(min{n1−ϵ, k1−ϵ}) even if all agents have the same speed.

To show NP-hardness for DDC, we adapt the base instance by numbering the columns of
the selection gadgets to which outer edges are attached from 1 to 3n (from left to right) and
letting the outer edges attached to column i have length 23n+1−i. If the given instance of
3DM is a yes-instance, exactly one outer edge attached to each column will be used, for a
total energy consumption of 23n+1 − 2. Otherwise, some column will be the first column in
which an outer edge is used twice, and the total energy consumption will be at least 23n+1.

▶ Theorem 4. The problems DDCN (and DDCE) are NP-hard even if all agents have the
same energy consumption.

Finally, for the problem variants without initial positions, we observe that the base
instance admits a delivery schedule with delivery time 0 and energy consumption 0 if and
only if the given instance of 3DM is a yes-instance. This shows that there cannot be any

ISAAC 2022

49:8 Package Delivery Using Drones with Restricted Movement Areas

polynomial-time approximation algorithm for any of the DDT and DDC problem variants
without initial positions. This holds since we allow zero-length edges. If we were to require
strictly positive edge lengths, it would be possible to obtain approximation algorithms with
ratios that depend on the ratio of maximum to minimum edge length.

4 Approximation algorithm for the DDT problem

We first present an optimal algorithm for DDTN under the assumption that there are as
many copies of each agent as we need. We start by introducing some notation used in
the algorithm. For any edge {u, v} ∈ Ea for some a ∈ A, we denote by eTa(v, u ≺ v)
the earliest time for the package to arrive at v if the package is carried over the edge
{u, v} by a copy of agent a. In addition, we use eT(v, u ≺ v) to denote the earliest
time for the package to arrive at node v if the package is carried over the edge {u, v}
by some agent, i.e., eT(v, u ≺ v) = min{eTa(v, u ≺ v) | {u, v} ∈ Ea, a ∈ A}. For every
v ∈ V , we use eT(v) to denote the earliest arrival time for the package at node v, i.e.,
eT(v) = min{eT(v, u ≺ v) | {u, v} ∈ E}. Note that the package is initially at location s at
time 0, i.e., eT(s) = 0. Given a node v, we denote by S(v) the schedule for carrying the
package from s to v, i.e., S(v) = {(a1, s, u1), (a2, u1, u2), . . . , (ah, uh−1, v)}.

Our algorithm adapts the approach of a time-dependent Dijkstra’s algorithm [4, 6].
Algorithm 1 shows the pseudo-code. For each node v ∈ V , we maintain a value eT(v) that
represents the current upper bound on the earliest time when the package can reach v (line
3–4). Initially, we set the earliest arrival time for s to 0 and for all other nodes to ∞. We
maintain a priority queue Q of nodes v with finite eT(v) value that have not been processed
yet (line 8). In each iteration of the while-loop, we process a node u in Q having the earliest
arrival time (line 10), where u = s in the first iteration. For each unprocessed neighbor node
v of u, we calculate the earliest arrival time eT(v, u ≺ v) at node v if the package is carried
over the edge between u and v by some agent (and we store the identity of that agent in
L(v, u ≺ v)), by calling the subroutine NeiDelivery(u, v, t) (Algorithm 2). If this earliest
arrival time is smaller than eT(v), then eT(v) is updated and v is inserted into Q (if it is not
yet in Q) or its priority reduced to the new value of eT(v). The algorithm terminates and
returns the value eT(y) when the node being processed is y (line 12). The schedule S = S(y)
can be constructed in a backward manner because we store for each node v the involved
agent L(v) and its predecessor node prev(v) (line 20 and 21).

To compute eT(v, u ≺ v) in line 17 of Algorithm 1, we call NeiDelivery(u, v, t) (Al-
gorithm 2): That subroutine calculates for each agent a ∈ A with {u, v} ∈ Ea, i.e., for all
a ∈ A(u, v), the time when the package reaches v if that agent picks it up at u and carries it
over {u, v} to v. The earliest arrival time at v via the edge {u, v} is returned as eT(v, u ≺ v),
and the agent a∗ achieving that arrival time is returned as L(v, u ≺ v).

▶ Lemma 5. The following statements hold for the schedule found by Algorithm 1.
(i) It may happen that an agent picks up and drops off the package more than once. Each

time an agent a carries the package over a path of consecutive edges, a copy of the
agent starts at pa, travels to the start node u of the path, picks up the package at time
max{eT(u), dista(pa,u)

va
}, and then carries the package over the edges of the path.

(ii) The package is carried to each node v ∈ V at most once, and thus the schedule carries
the package over at most |V | − 1 edges.

▶ Lemma 6. There is an algorithm that computes an optimal schedule in time O(k(m +
n log n)) for DDTN under the assumption that an arbitrary number of copies of each agent
can be used. The package gets delivered from s to y along a simple path with at most |V | − 1
edges.

T. Erlebach, K. Luo, and F. C. Spieksma 49:9

Algorithm 1 Algorithm for DDT.

Data: Graph G = (V, E, ℓ); package source node s and target node y; agent a with
velocity va and initial location pa for a ∈ A

Result: earliest arrival time for package at target location y, i.e., eT(y)
1 begin
2 compute dista(pa, v) for a ∈ A and v ∈ Va

3 eT(s)← 0
4 eT(v)←∞ for all v ∈ V \ {s}
5 L(v)← ∅ for all v ∈ V // agent bringing the package to v

6 proc(v)← 0 for all v ∈ V // all nodes v are unprocessed
7 prev(v)← ∅ for all v ∈ V // previous node on optimal package path to v

8 Q← {s} // priority queue of pending nodes
9 while Q ̸= ∅ do

10 u← arg min{eT(v) | v ∈ Q} // node with minimum arrival time in Q

11 Q← Q \ {u} and proc(u)← 1
12 if u = y then
13 break
14 end
15 t← eT(u) // arrival time when package reaches u

16 for neighbors v of u with proc(v) = 0 and A(u, v) ̸= ∅ do
17 {eT(v, u ≺ v), L(v, u ≺ v)} ← NeiDelivery(u, v, t)
18 if eT(v, u ≺ v) < eT(v) then
19 eT(v)← eT(v, u ≺ v)
20 L(v)← L(v, u ≺ v)
21 prev(v)← {u}
22 if v /∈ Q then
23 Q← Q ∪ {v} with earliest arrival time eT(v)
24 end
25 end
26 end
27 end
28 return eT(y)
29 end

Proof. We claim that the arrival time eT(u) for each node u is minimum by the time u gets
processed. Obviously, the first processed node s has arrival time eT(s) = 0. Whenever a node
u is processed, the earliest arrival time for each unprocessed neighbor is updated (line 19 of
Algorithm 1) if the package can reach that neighbor earlier via node u (line 4 in Algorithm 2
identifies the agent a∗ that can bring the package from u to the neighbor the fastest). At
the time when a node u is removed from the priority queue Q and starts to be processed, all
nodes v with eT(v) < eT(u) have already been processed, and so its value eT(u) must be
equal to the earliest time when the package can reach u. The algorithm terminates when y

is removed from Q.
In lines 19–21 of Algorithm 1, we update the arrival time eT(v) and the agent L(v) as

well as the predecessor node prev(v) without explicitly maintaining the schedules S(v). The
schedule S(v) can be retraced from L(·) and prev(·) since the schedule found for eT(v) visits
each node in V at most once, cf. Lemma 5. This also shows that the package gets delivered
from s to y along a simple path (with at most |V | − 1 edges) in G.

ISAAC 2022

49:10 Package Delivery Using Drones with Restricted Movement Areas

Algorithm 2 Algorithm NeiDelivery(u, v, t) for DDTN.

Data: Edge {u, v}, arrival time for node u eT(u) = t, agents A(u, v)
Result: eT(v, u ≺ v)

1 for a ∈ A(u, v) do
2 eTa(v, u ≺ v) = max{t, dista(pa,u)

va
}+ ℓ(u,v)

va

3 end
4 a∗ = arg min{eTa(v, u ≺ v) | a ∈ A(u, v)};
5 eT(v, u ≺ v)← eTa∗(v, u ≺ v)
6 L(v, u ≺ v)← a∗

7 return eT(v, u ≺ v) and L(v, u ≺ v)

We can analyze the running-time of Algorithm 1 as follows. The distances dista(pa, v)
can be pre-computed by running Dijkstra’s algorithm with Fibonacci heaps in time O(m +
n log n) [10] for each agent a with source node pa in the graph Ga, taking total time
O(k(m + n log n)) (line 2). Selecting and removing a minimum element from the priority
queue Q in lines 10–11 takes time O(log n). At most n nodes will be added into Q (and
later removed from Q), so the running time for inserting and removing elements from Q

is O(n log n). For each processed node u, we compute the value eT(v, u ≺ v) for each
unprocessed adjacent node v with A(u, v) ̸= ∅ in time O(|A(u, v)|). Overall we get a running
time of O(k(m + n log n) + n log n + km) = O(k(m + n log n)). ◀

Next, we can show how to convert the delivery schedule S with delivery time T produced
by the algorithm of Lemma 6 into a schedule that is feasible with a single copy per agent, and
we bound the resulting increase in the delivery time T to obtain an approximation algorithm
for DDTN. The conversion consists of the repeated application of modification steps. Each
step considers the first agent a that is used at least twice. Let a pick up the package at ui−1
in its first trip and carry it from uj−1 to uj in its last trip. We then modify the schedule so
that a picks up the package at ui−1 and carries it all the way to uj along a shortest path
in Ga. We have 1

va
dista(pa, ui−1) ≤ T and 1

va
(dista(pa, uj−1) + dista(uj−1, uj)) ≤ T . By the

triangle inequality, dista(ui−1, uj) ≤ dista(ui−1, pa) + dista(pa, uj−1) + dista(uj−1, uj). Hence,
agent a needs time at most 2T to carry the package from ui−1 to uj , and so the delivery
time increases by at most 2T . Furthermore, we can bound the number of modification steps
by min{n−1

3 , k − 1}.

▶ Theorem 7. There is a min{2n/3 + 1/3, 2k − 1}-approximation algorithm for DDTN.

To adapt the approach from DDTN to DDTE, we can adapt the algorithm of Lemma 6 to
edge handovers by using as a subroutine the FastLineDelivery(u, v, t) method from [6],
which calculates in O(k log k) time an optimal delivery schedule using the agents in A(u, v)
to transport the package that arrives at u at time t from u to v over the edge {u, v}. When
transforming the resulting package delivery schedule into one that uses each agent at most
once, the number of modification steps can be bounded by min{n− 1, k − 1}.

▶ Theorem 8. There is a min{2n− 1, 2k − 1}-approximation algorithm for DDTE.

5 Approximation algorithm for the DDC problem

By Lemma 2, handovers on interior points of edges are not needed for DDC, so the results
for DDCN that we present in this section automatically apply to DDCE as well. Therefore,
we only consider DDCN in the proofs. We first give an algorithm that solves DDCN optimally
if there is a sufficient number of copies of every agent.

T. Erlebach, K. Luo, and F. C. Spieksma 49:11

Let an instance of DDCN be given by a graph G = (V, E, ℓ), package start node s and
destination node y, and a set A of k agents where a = (pa, va, wa, Va, Ea) for a ∈ A. We
create a directed graph G′ in which a shortest path from s′ to y′ corresponds to an optimal
delivery schedule. This approach is motivated by a method used by Bärtschi et al. [3]. We
construct the directed edge-weighted graph G′ = (V ′, E′, ℓ′) as follows:

For each node u ∈ V and each agent a ∈ A with u ∈ Va, create a node ua in V ′. In
addition, add a node s′ and a node y′.
For all a ∈ A with s ∈ Va, add an arc (s′, sa) with ℓ′(s′, sa) = wa · dista(pa, s). For all
a ∈ A with y ∈ Va, add an arc (ya, y′) with ℓ′(ya, y′) = 0.
For {u, x} ∈ E, for each a with {u, x} ∈ Ea, create two arcs (ua, xa) and (xa, ua) with
ℓ′(xa, ua) = ℓ′(ua, xa) = wa · ℓ(u, x).
For u ∈ V and agents a, ā ∈ A(u), create the following two arcs: (ua, uā) with ℓ′(ua, uā) =
wā · distā(pā, u), and (uā, ua) with ℓ′(uā, ua) = wa · dista(pa, u).

Intuitively, a node ua in G′ represents the agent a carrying the package at node u in G. An
arc (ua, xa) represent the agent a carrying the package over edge {u, x} from u to x. An
arc (ua, uā) represents a copy of agent ā traveling from pā to u and taking over the package
from agent a there. We can show that a shortest s′-y′ path in G′ corresponds to an optimal
schedule with multiple copies per agent.

▶ Lemma 9. An optimal schedule for DDCN (and DDCE) can be computed in time O(nk2 +
n2k) under the assumption that an arbitrary number of copies of each agent can be used.

Proof. We claim that a shortest s′-y′ path in G′ corresponds to an optimal delivery schedule.
First, assume that an optimal delivery schedule S is

{(a1, s, u1), (a2, u1, u2), . . . , (ah, uh−1, y)},

where it is possible that ai = aj for j > i + 1 because we allow copies of agents to be used.
Then we can construct an s′-y′ path in G′ whose length equals the total energy consumption
of S as follows: Start with the arc (s′, sa1). Then use the arcs (sa1 , z

(1)
a1), . . . , (z(g)

a1 , u1a1)
corresponding to the path s, z(1), . . . , z(g), u1 (for some g ≥ 0) along which agent a1 carries
the package from s to u1 in S. Next, use the arc (u1a1 , u1a2) representing the handover from
a1 to a2 at u1. Continue in this way until node yah

is reached, and then follow the arc from
there to y′. Similarly, any s′-y′ path P in G′ can be translated into a delivery schedule in G

whose total energy consumption is equal to the length of P in G′.
Finally, let us consider the running-time of the algorithm. First, we compute dista(pa, v) for

each agent a and each node v ∈ V by running Dijkstra’s algorithm with Fibonacci heaps [10]
once in Ga with source node pa for each a ∈ A, taking time O(k(n log n+m)) = O(kn2). The
graph G′ has at most n ·k+2 ∈ O(nk) vertices and at most 2k+(n2 ·k+n ·k2) ∈ O(nk2 +n2k)
arcs. It can be constructed in O(nk2 + n2k) time as we have pre-computed the values
dista(pa, v). We can compute the shortest s′-y′ path in G′ in time O(nk2+n2k+nk log(nk)) =
O(nk2 + n2k) time using Dijkstra’s algorithm. ◀

▶ Theorem 10. There is a 2-approximation algorithm for DDCN (and DDCE).

Proof. Let an instance of DDCN be given by a graph G = (V, E, ℓ), package start node s

and destination node y, and a set A of k agents where a = (pa, va, wa, Va, Ea) for a ∈ A.
Compute an optimal delivery schedule that may use multiple copies of agents using the
algorithm of Lemma 9. Then we transform the schedule into one that uses each agent at most
once as follows: Let a be the first agent that is used more than once in the delivery schedule.

ISAAC 2022

49:12 Package Delivery Using Drones with Restricted Movement Areas

Assume that a carries the package from node u to node v during its first involvement in the
delivery and from node u′ to node v′ during its last involvement in the delivery. The energy
consumed by these two copies of agent a is:

Wa = wa(dista(pa, u) + dista(u, v) + dista(pa, u′) + dista(u′, v′))

We modify the schedule and let agent a pick up the package at u and carry it along a shortest
path in Ga from u to v′. The trips in the original schedule that bring the package from v to
u′ are removed. The new energy consumption by agent a is wa(dista(pa, u) + dista(u, v′)). By
the triangle inequality, dista(u, v′) ≤ dista(u, pa) + dista(pa, u′) + dista(u′, v′). Hence, the new
energy consumption is bounded by 2Wa. As long as there is an agent that is used more than
once, we apply the same modification step to the first such agent. The procedure terminates
after at most k − 1 modification steps. During the execution of the procedure, the energy
consumption of every agent at most doubles. Therefore, the total energy consumption of
the resulting schedule for DDCN with a single copy of each agent is at most twice the total
energy consumption of S, which is a lower bound on the optimal energy consumption.

The algorithm of Lemma 9 takes O(nk2 + n2k) time, which dominates the time needed
to carry out the modification steps. Thus, the overall running time is O(nk2 + n2k). ◀

6 Drone delivery on path and tree networks

In Section 6.1, we present hardness results for the drone delivery problems if the graph is
a path. In Section 6.2, we show that the problems can be solved optimally in polynomial
time for trees (and even for arbitrary graphs if the subgraphs of the agents satisfy a certain
condition) provided that all agents have the same speed or the same energy consumption
rate.

6.1 Hardness of DDT on the path
▶ Theorem 11. DDTN and DDTE with initial positions are NP-complete if the given graph
is a path.

Proof. We give a reduction from the NP-complete Even-Odd Partition (EOP) problem
[12] that is defined as follows: Given a set of 2n positive integers X = {x1, x2, . . . , x2n},
is there a partition of X into two subsets X1 and X2 such that

∑
xi∈X1

xi =
∑

xi∈X2
xi

and such that, for each i ∈ 1, 2, . . . , n, X1 (and also X2) contains exactly one element of
{x2i−1, x2i}?

Let an instance of EOP be given by 2n numbers {x1, x2, . . . , x2n−1, x2n}. Construct a
path (see Figure 2) with set of nodes {s, b1, b2, . . . , b2n, z, z′, c2n, c2n−1, . . . , c1, y, u} ordered
from left to right. The length of each edge corresponds to the Euclidean distance between its
endpoints. We let z′−z = b2i−b2i−1 = 1, c2i−1−c2i = 1/2, z−b2n = c2n−z′ = y−c1 = L, and
b2i+1−b2i = c2i−c2i+1 = L for all i ∈ [n−1] where L = 3Cn/2+7/4+1. Furthermore, we let
b1−s = S, where S > 0 is specified later. The node u is placed so that u−z = b1−s+Cn+0.5,
where C is a constant that we can set to C = 3. There are 4n + 3 agents:

Two agents h1, h2: These agents have speed 1. Agent h1 is initially at node s and can
traverse the interval [s, b1]. Agent h2 is initially at node u and can traverse the interval
[z, u].
2n agents p1, p2, . . . , p2n: These agents are initially at node z; each agent pi has speed
vpi = 1

C+xi/M where M =
∑

i∈[2n] xi. Agents p2i−1 and p2i for i ∈ [n] can traverse the
interval [b2i−1, c2i−1].

T. Erlebach, K. Luo, and F. C. Spieksma 49:13

s b1 b2 b3 b4 b2n−1 b2n z z′

p1, p2

p3, p4

p2n−1, p2n

f1 fn

h2

h1

yc4 c3 c2 c1c2n c2n−1

fn+1 f2n f2n+1

u

Figure 2 Instance of DDTN on a path.

2n + 1 agents f1, f2, . . . , f2n, f2n+1: These agents have infinite speed. Each agent fi

for i < n is initially at node b2i and can traverse the interval [b2i, b2i+1]; agent fn is
initially at node b2n and can traverse the interval [b2n, z]; agent fn+1 is initially at node
z′ and can traverse the interval [z′, c2n]; each agent fi for n + 1 < i ≤ 2n is initially at
node c2(2n+1−i)+1 and can traverse the interval [c2(2n+1−i)+1, c2(2n+1−i)]; agent f2n+1 is
initially at node c1 and can traverse the interval [c1, y].

The goal is to deliver a package from s to y as quickly as possible. We claim that there
is a schedule with delivery time at most T = S + 3Cn/2 + 7/4 if and only if the original
instance of EOP is a yes-instance.

First, assume that the instance of EOP is a yes-instance with partition (X1, X2). Let
(P1, P2) be the corresponding partition of the set containing the 2n agents pi. We construct
a delivery schedule for the package as follows (the colors we mention refer to those shown
in Figure 2). Until time S = b1 − s, the agent h1 carries the package to b1, and all agents
pi pick a bold purple interval and arrive at its left endpoint. This is done in such a way
that agent pi picks its left bold purple interval (the interval of length 1 at the left end of
its range) if pi ∈ P1, and its right bold purple interval (the interval of length 1

2 at the right
end of its range) otherwise. To guarantee that any agent pi arrives at the left endpoint of
its interval by time S, we set S = maxi∈[n]

(n+1−i)(L+1)
min{p2i−1,p2i} . Next, the package travels from

b1 to z by always being alternatingly carried by an agent pi over a bold purple interval of
length 1 and an infinite speed agent f over a blue interval of length L. The package thus
reaches z at time S + Cn + 1/2 (because

∑
xi∈X1

xi/M = 1/2). As u− z = S + Cn + 1/2,
the agent h2 arrives at z at exactly the same time. Then, the agent h2 carries the package
from z to z′ in time 1. After that, the package is alternatingly carried by an infinite speed
agent and an agent pi until it reaches y, taking time Cn/2 + 1/4. The total delivery time is
S + Cn + 1/2 + 1 + Cn/2 + 1/4 = S + 3Cn/2 + 7/4 = T as required.

Now consider the case that the original EOP instance is a no-instance. Assume that
there exists a delivery schedule with delivery time T = S + 3Cn/2 + 7/4. First, we claim
that neither an agent pi nor the agent h2 can carry the package over an interval of length L

(these are the intervals [b2n, z], [z′, c2n], [c1, y], and the intervals [b2i, b2i+1], [c2i+1, c2i] for
any i ∈ [n−1]). Otherwise, the delivery time is larger than S +L > S +3Cn/2+7/4 because
these agents have speed at most 1 and these blue intervals have length L = 3Cn/2 + 7/4 + 1.
Therefore, it is clear that each of the 2n agents pi and the agent h2 will carry the package
over exactly one of the following 2n + 1 intervals: the interval [b1, b2], and the 2n intervals
that lie between two consecutive blue intervals. Next, we claim that h2 must carry the
package over the interval [z, z′] with length 1. Otherwise, h2 would have to carry the package
over an interval [c2i, c2i−1] with length 1/2, and an agent pi with speed less than 1/C would

ISAAC 2022

49:14 Package Delivery Using Drones with Restricted Movement Areas

have to carry the package through [z, z′] with length 1 instead. Even if we assume that
all agents pi have the faster speed 1/C, the resulting schedule would have delivery time
at least S + nC + C + (n − 1)C/2 + 1/2 = S + 3Cn/2 + C/2 + 1/2, which is larger than
T = S + 3Cn/2 + 7/4 as C = 3 > 5/2.

This implies that agent h2 carries the package over [z, z′] and, for each i ∈ [n], one agent
among {p2i−1, p2i} carries the package on a bold purple interval to the left of z and the
other agent carries the package on a bold purple interval to the right of z′. Let the resulting
partition of the agents pi be (P1, P2), and let the corresponding partition of the original
EOP instance be (X1, X2). Suppose the package arrives at node z at time S + W . Since
the instance of EOP is a no-instance, either W > Cn + 1/2 or W < Cn + 1/2 holds. As the
agents pi that carry the package to the left of z take time W in total, the agents pi that
carry the package over intervals to the right of z′ take time 2Cn+1−W

2 in total. Consider the
two cases:

W > Cn + 1/2. As agent h2 carries the package from z to z′, the delivery time is
S + W + 1 + 2Cn+1−W

2 = S + Cn + W/2 + 3/2 > S + 3Cn/2 + 7/4 = T , a contradiction.
W < Cn + 1/2. As agent h2 carries the package from z to z′, the package must wait at z

until time S + Cn + 1/2 when h2 reaches z. The delivery time is S + Cn + 1/2 + 1 +
2Cn+1−W

2 = S + 2Cn + 2−W/2 > S + 2Cn + 2− (Cn + 1/2)/2 = S + 3Cn/2 + 7/4 = T ,
a contradiction.

Finally, we observe that in the constructed instance of DDT, the availability of edge
handovers has no impact on the existence of a schedule with delivery time S + 3Cn/2 + 7/4.
Therefore, the reduction establishes NP-hardness of both DDTN and DDTE. ◀

6.2 Algorithms for drone delivery on a tree
Now, we show that all variants of the drone delivery problem can be solved optimally in
polynomial time if the graph is a tree and all agents have the same speed (for minimizing
the delivery time) or the same energy consumption rate (for minimizing the total energy
consumption). In fact, the algorithms extend to the case of general graphs if the subgraph
Ga = (Va, Ea) of each agent is isometric, i.e., it satisfies the following condition: For any
two nodes u, v ∈ Va, the length of the shortest u-v path in Ga is equal to the length of the
shortest u-v path in G. If the given graph is a tree, the subgraph Ga of every agent a is
necessarily isometric because we assume that Ga is connected and there is a unique path
between any two nodes in a tree.

If all agents have the same speed (for DDT) or the same consumption rate (for DDC),
handovers at internal points of edges can never improve the objective value. Therefore,
we only need to consider DDTN and DDCN in the following. The crucial ingredient of our
algorithms for the case of isometric subgraphs Ga is:

▶ Lemma 12. Consider a delivery schedule S that may use an arbitrary number of copies of
each agent. If the subgraph of each agent is isometric and all agents have the same speed (or
the same energy consumption rate), then S can be transformed in time O(k(m + n log n))
into a schedule in which each agent is used at most once without increasing the delivery time
(or the energy consumption).

Proof. Consider the first agent a that is used at least twice in S. Assume that it carries
the package from ui−1 to ui in its first trip and from uj−1 to uj in its last trip. Change
the schedule so that a carries the package from ui−1 to uj , and discard the trips by agents
i + 1, . . . , j − 1. As Ga is isometric, the agent a carries the package from ui−1 to uj along

T. Erlebach, K. Luo, and F. C. Spieksma 49:15

a shortest path in G, and hence neither the time (in case of equal speed) nor the energy
consumption (in case of equal energy consumption rate) increase by this modification. Repeat
the modification step until every agent is used at most once.

There are at most k − 1 modification steps, and each of them can be implemented in
O(m + n log n) time using Dijkstra’s algorithm with Fibonacci heaps [10]. ◀

▶ Theorem 13. DDTN (and DDTE) can be solved optimally in time O(k(n log n + m)) if all
agents have the same speed and the subgraph of every agent is isometric.

Proof. Compute an optimal delivery schedule that may use multiple copies of each agent
using Lemma 6 and then apply Lemma 12. ◀

▶ Theorem 14. DDCN (and DDCE) can be solved optimally in time O(nk2 + n2k) if all
agents have the same speed and the subgraph of every agent is isometric.

Proof. Compute an optimal delivery schedule that may use multiple copies of each agent
using Lemma 9 and then apply Lemma 12. ◀

The problem variants without initial positions can also be solved optimally in polynomial
time: We simply compute a shortest s-y-path P and place on each edge e of P a copy of an
arbitrary agent in A(e) and then apply Lemma 12.

For the special case where G is a tree, the running-time for DDTN can be improved to
O(kn) by using a simple algorithm that can even be implemented in a distributed way: The
package acts as a magnet, and each agent moves towards the package until it meets the
package and then follows it (or carries it) towards y as long as its range allows. When several
agents are at the same location as the package, the one whose range extends furthest towards
y carries the package. We refer to the full version [11] for details.

7 Conclusions

In this paper we have studied drone delivery problems in a setting where the movement area
of each drone is restricted to a subgraph of the whole graph. For DDT, we have presented a
strong inapproximability result and given a matching approximation algorithm. For DDC,
we have shown NP-hardness and presented a 2-approximation algorithm. For the interesting
special case of a path, we have shown that DDT is NP-hard if the agents can have different
speeds. For trees (or, more generally, the case where the subgraph of each agent is isometric),
we have shown that all problem variants can be solved optimally in polynomial time if the
agents have the same speed or the same energy consumption.

We leave open the complexity of DDC on a path. For the case without initial positions, the
complexity of both DDC and DDT on a path remains open. For DDT with initial positions
on a path, a very interesting question is how well the problem can be approximated.

References
1 Amazon Staff. Amazon Prime Air prepares for drone deliveries. https://www.aboutamazon.

com/news/transportation/amazon-prime-air-prepares-for-drone-deliveries, 13 june
2022. Accessed: 2022-06-19.

2 Andreas Bärtschi, Jérémie Chalopin, Shantanu Das, Yann Disser, Barbara Geissmann, Daniel
Graf, Arnaud Labourel, and Matús Mihalák. Collaborative delivery with energy-constrained
mobile robots. Theor. Comput. Sci., 810:2–14, 2020. doi:10.1016/j.tcs.2017.04.018.

ISAAC 2022

https://www.aboutamazon.com/news/transportation/amazon-prime-air-prepares-for-drone-deliveries
https://www.aboutamazon.com/news/transportation/amazon-prime-air-prepares-for-drone-deliveries
https://doi.org/10.1016/j.tcs.2017.04.018

49:16 Package Delivery Using Drones with Restricted Movement Areas

3 Andreas Bärtschi, Jérémie Chalopin, Shantanu Das, Yann Disser, Daniel Graf, Jan Hackfeld,
and Paolo Penna. Energy-efficient delivery by heterogeneous mobile agents. In Heribert
Vollmer and Brigitte Vallée, editors, 34th Symposium on Theoretical Aspects of Computer
Science, STACS 2017, March 8-11, 2017, Hannover, Germany, volume 66 of LIPIcs, pages
10:1–10:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2017. doi:10.4230/LIPIcs.
STACS.2017.10.

4 Andreas Bärtschi, Daniel Graf, and Matús Mihalák. Collective fast delivery by energy-efficient
agents. In Igor Potapov, Paul G. Spirakis, and James Worrell, editors, 43rd International
Symposium on Mathematical Foundations of Computer Science, MFCS 2018, volume 117
of LIPIcs, pages 56:1–56:16. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2018. doi:
10.4230/LIPIcs.MFCS.2018.56.

5 Andreas Bärtschi and Thomas Tschager. Energy-efficient fast delivery by mobile agents.
In Ralf Klasing and Marc Zeitoun, editors, Fundamentals of Computation Theory - 21st
International Symposium, FCT 2017, Bordeaux, France, September 11-13, 2017, Proceedings,
volume 10472 of Lecture Notes in Computer Science, pages 82–95. Springer, 2017. doi:
10.1007/978-3-662-55751-8_8.

6 Iago A. Carvalho, Thomas Erlebach, and Kleitos Papadopoulos. On the fast delivery problem
with one or two packages. J. Comput. Syst. Sci., 115:246–263, 2021. doi:10.1016/j.jcss.
2020.09.002.

7 Jérémie Chalopin, Shantanu Das, Yann Disser, Arnaud Labourel, and Matús Mihalák. Collab-
orative delivery on a fixed path with homogeneous energy-constrained agents. Theor. Comput.
Sci., 868:87–96, 2021. doi:10.1016/j.tcs.2021.04.004.

8 Jérémie Chalopin, Shantanu Das, Matúš Mihalák, Paolo Penna, and Peter Widmayer. Data
delivery by energy-constrained mobile agents. In International Symposium on Algorithms and
Experiments for Sensor Systems, Wireless Networks and Distributed Robotics (ALGOSENSORS
2013), volume 8243 of Lecture Notes in Computer Science, pages 111–122. Springer, 2013.
doi:10.1007/978-3-642-45346-5_9.

9 Jérémie Chalopin, Riko Jacob, Matúš Mihalák, and Peter Widmayer. Data delivery by energy-
constrained mobile agents on a line. In 41st International Colloquium on Automata, Languages,
and Programming (ICALP 2014), volume 8573 of Lecture Notes in Computer Science, pages
423–434. Springer, 2014. doi:10.1007/978-3-662-43951-7_36.

10 Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. Introduction
to Algorithms, 4th Edition. MIT Press, 2022. URL: https://mitpress.mit.edu/books/
introduction-algorithms-fourth-edition.

11 Thomas Erlebach, Kelin Luo, and Frits C.R. Spieksma. Package delivery using drones with
restricted movement areas. CoRR, abs/2209.12314, 2022. doi:10.48550/arXiv.2209.12314.

12 M. R. Garey and David S. Johnson. Computers and Intractability: A Guide to the Theory of
NP-Completeness. W. H. Freeman, 1979.

https://doi.org/10.4230/LIPIcs.STACS.2017.10
https://doi.org/10.4230/LIPIcs.STACS.2017.10
https://doi.org/10.4230/LIPIcs.MFCS.2018.56
https://doi.org/10.4230/LIPIcs.MFCS.2018.56
https://doi.org/10.1007/978-3-662-55751-8_8
https://doi.org/10.1007/978-3-662-55751-8_8
https://doi.org/10.1016/j.jcss.2020.09.002
https://doi.org/10.1016/j.jcss.2020.09.002
https://doi.org/10.1016/j.tcs.2021.04.004
https://doi.org/10.1007/978-3-642-45346-5_9
https://doi.org/10.1007/978-3-662-43951-7_36
https://mitpress.mit.edu/books/introduction-algorithms-fourth-edition
https://mitpress.mit.edu/books/introduction-algorithms-fourth-edition
https://doi.org/10.48550/arXiv.2209.12314

	1 Introduction
	2 Preliminaries
	3 Hardness results
	4 Approximation algorithm for the DDT problem
	5 Approximation algorithm for the DDC problem
	6 Drone delivery on path and tree networks
	6.1 Hardness of DDT on the path
	6.2 Algorithms for drone delivery on a tree

	7 Conclusions

