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Abstract
We study the Traveling Salesman problem (TSP), where given a complete undirected graph G = (V, E)
with n vertices and an edge cost function c : E 7→ R⩾0, the goal is to find a minimum-cost cycle
visiting every vertex exactly once. It is well-known that unless P = NP, TSP cannot be approximated
in polynomial time within a factor of ρ(n) for any computable function ρ, while the metric case of TSP,
that the edge cost function satisfies the △-inequality, admits a polynomial-time 1.5-approximation.
We investigate TSP on general graphs from the perspective of parameterized approximability. A
parameterized ρ-approximation algorithm returns a ρ-approximation solution in f(k) · |I|O(1) time,
where f is a computable function and k is a parameter of the input I. We introduce two parameters,
which measure the distance of a given TSP-instance from the metric case, and achieve the following
two results:

A 3-approximation algorithm for TSP in O((3k1)! 8k1 · n2 + n3) time, where k1 is the number of
triangles in which the edge costs violate the △-inequality.
A 3-approximation algorithm for TSP in O(nO(k2)) time and a (6k2 +9)-approximation algorithm
for TSP in O(kO(k2)

2 · n3) time, where k2 is the minimum number of vertices, whose removal
results in a metric graph.

To our best knowledge, the above algorithms are the first non-trivial parameterized approximation
algorithms for TSP on general graphs.
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1 Introduction

The Traveling Salesman problem (TSP) is one of the most prominent combinatorial optimiz-
ation problems, where given a complete undirected graph G = (V, E) with n vertices and an
edge cost function c : E 7→ R⩾0, the goal is to find a minimum-cost cycle visiting every vertex
exactly once. TSP is NP-hard [16, 23]. Bellman [4] and Held and Karp [21] independently
proposed an exact algorithm for TSP in O(2n) time by the dynamic programming technique.

Approximation algorithms. A ρ-approximation algorithm for a minimization problem
returns a feasible solution A with c(A) ≤ ρ · c(opt) in polynomial time, where opt is an
optimal solution. Unfortunately, TSP cannot be approximated in polynomial time within a
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factor of ρ(n) for any computable function ρ, unless P = NP [34]. There is a special case
of TSP called the metric TSP, △TSP for short, where c(u, v) ≤ c(u, w) + c(w, v) for every
u, v, w ∈ V . Hereby, c(u, v) is the cost of the edge between the vertices u and v. △TSP is
NP-hard [23], but there is a 3/2-approximation algorithm for △TSP in O(n3) time, proposed
independently by Christofides [11] and Serdyukov [35]. This has been the best approximation
ratio for more than 40 years until recently Karlin, Klein and Gharan [22] gave a randomized
(3/2 − ϵ)-approximation algorithm for △TSP for some constant ϵ > 10−36. There is a
generalization of △TSP by relaxing the △-inequality to the parameterized △-inequality,
i.e., for some τ ≥ 1, c(u, v) ≤ τ [c(u, w) + c(w, v)] for every u, v, w ∈ V . The parameterized
△-inequality is denoted by △τ -inequality and TSP satisfying the △τ -inequality is denoted
by △τ TSP. Andreae and Bandelt [2] gave a (3τ2 + τ)/2-approximation algorithm for △τ TSP,
and then Bender and Chekuri [5] improved the approximation ratio to 4τ . There are some
other improved approximation algorithms for △τ TSP with τ ≤ 13/3, e.g., [1, 6, 30]. These
approximation results represent no conflict with the polynomial-time inapproximability
of TSP, since τ is not a constant and even not a function of n. Mohan [29] designed a
7/2-approximation algorithm for Biased-TSP, where all vertices can be partitioned into two
parts such that every triangle with three vertices in the same part satisfies the △-inequality,
while the triangles with vertices in different parts may violate the △-inequality. However,
not all TSP-instances admit such a partition.

Parameterized algorithms. An exact algorithm with running time of the form f(k) · |I|O(1)

is called a parameterized algorithm and a problem admitting a parameterized algorithm is
fixed-parameter tractable (FPT). The idea is to limit the exponential running time to the
parameter k instead of the input size |I|. Deineko and Hoffmann [12] studied TSP in the
2-dimensional Euclidean plane called 2DTSP that is NP-hard [32], and gave a parameterized
algorithm in O(2kk2 · n) time for 2DTSP with k inner points, where a point is inner if it lies
strictly inside the convex hull of the input. This was then improved to O(k11

√
kk1.5 · n3) by

Knauer and Spillner [26].

Parameterized approximation algorithms. A parameterized ρ-approximation algorithm
returns a ρ-approximation solution in f(k) · |I|O(1) time, where f is a computable function
and k is a parameter of the input I. Many prominent NP-hard problems have been
studied from the perspective of parameterized approximability, for instance, Independent
Set [8, 13, 18, 19, 27, 28] and Dominating Set [9, 10, 33]. Concerning TSP, Arora [3] proposed
a (1 + ϵ)-approximation algorithm for TSP in the k-dimensional Euclidean space running in
O(n(log n)O(

√
k/ϵ)k−1) time for any ϵ ≥ 0, which can be upper bounded by O(kO(

√
k/ϵ)k−1 ·n2)

as shown in [15, 24]. Some parameterized approximation algorithms for the metric TSP with
other dimensional parameters are introduced in [15, 17]. Bockenhauer and Hromkovic [7]
studied TSP with deadlines, DLTSP for short, where k vertices must be visited before a
given time. DLTSP cannot be approximated in polynomial time within a factor of ρ(n)
for any polynomial function ρ. Bockenhauer and Hromkovic [7] gave a parameterized 5/2-
approximation algorithm for the metric DLTSP running in O(k! k + n3) time, where k is the
number of deadline vertices. We refer the readers to the survey [15, 28] of the parameterized
approximation algorithms.

Our contributions. We aim at designing parameterized approximation algorithms for TSP
on general graphs. Motivated by the polynomial-time inapproximability of TSP and the
3/2-approximation algorithm for △TSP, we propose a concept for designing parameterized
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approximation algorithms, the so-called “distance from approximability”, that is, introducing
a parameter measuring the distance between the inapproximable and approximable cases
and designing approximation algorithms with the exponential running time restricted to
the parameter. A similar concept called “distance from triviality” has been used in the
parameterized algorithmics [20]. Here, we introduce two parameters to measure the distance
between a general TSP-instance and a metric TSP-instance. First, we consider the number
k1 of triangles in a general TSP-instance, which do not satisfy the △-inequality, that is, the
triangles in which the edge costs violate the △-inequality. Given a TSP-instance, the value of
k1 can be easily computed in O(n3) time. Using k1 as parameter, we achieve an approximation
of TSP with an approximation factor of 3 and a running time of O((3k1)! 8k1 · n2 + n3). Our
second parameter k2 is set equal to the minimum number of vertices, whose removal turns
a general instance into a metric instance. Clearly, we can apply a search tree [14, 31] to
determine the value of k2 in O(3k2 · n3) time. Moreover, we always have k2 ≤ k1. With k2 as
parameter, we first present an algorithm running in O(nO(k2)) time, returning a TSP-solution
with an approximation factor of 3 and then a parameterized approximation algorithm with
a factor of 6k2+9 and a running time of O(kO(k2)

2 · n3). To our best knowledge, the above
algorithms are the first non-trivial parameterized approximation algorithms for general TSP.
We are also confident that the “distance from approximability” concept might be useful for
other problems.

2 Preliminaries

We introduce some basic definitions and notations. We consider a simple undirected complete
graph G = (V, E), with an edge cost function c : E 7→ R⩾0. The graph G is metric if
c(u, v) ≤ c(u, w) + c(w, v) for every u, v, w ∈ V . A triangle △(u, v, w) is called “violating”
if it does not satisfy the △-inequality, that is, at least one of c(u, v) ≤ c(u, w) + c(w, v),
c(u, w) ≤ c(u, v) + c(v, w) and c(v, w) ≤ c(v, u) + c(u, w) does not hold. A set of vertices
whose removal transforms a non-metric graph into a metric graph, is called a violating vertex
set. For an edge set E′ ⊆ E, the cost of E′, denoted by c(E′), is the total cost of its edges,
and the vertex set of E′ is denoted by V (E′). For a vertex set V ′ ⊆ V , E(V ′) is the set of
edges that connect two vertices in V ′, and G[V ′] = (V ′, E(V ′)) is the subgraph of G induced
by V ′. For a positive integer i, set [i] = {1, · · · , i}.

An acyclic graph consisting of t connected components is called a t-forest. A spanning
subgraph of G, which is a t-forest, is called a spanning t-forest of G. A spanning t-forest
having the minimum cost is called a t-minimum spanning forest (t-MSF) of G.

3 The number of violating triangles as parameter

In this section, we consider a TSP-instance with k1 triangles violating the △-inequality. The
parameter k1 can be computed in O(n3) time by checking all triangles in the input. We
call a vertex “bad” if it is in one of the k1 triangles, and we denote by V b the set of all bad
vertices, |V b| ≤ 3k1. The remaining vertices are called “good” and we denote by V g the set
of good vertices. For bu, bv, bw ∈ V b, the triangle formed by these three vertices △(bu, bv, bw)
might violate the △-inequality, that is, c(bu, bw) + c(bw, bv) might be arbitrarily less than
c(bu, bv).

Our algorithm consists mainly of two steps. The first step “guesses” the occurrences of
bad vertices in an optimal TSP-solution, that is, the occurrence order of bad vertices and
the “gaps” between bad vertices, where the good vertices should be inserted to form the
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Figure 1 An illustration of Algorithm 1. bi’s are the bad vertices, gi’s are the good vertices and
qi’s are the subsets of the bad vertices. Top left: the cycle represents an optimal TSP-solution. Top
right: a) a permutation of bad vertices; b) a partition of bad vertices respecting the order of the
permutation in a); c) inserting good vertices into the gaps between bad vertices. Bottom: the first
graph is the MSF rooted at the end-vertices of the subsets of the partition; the second graph is a
collection of cycles (and possibly isolated vertices) obtained by doubling the edges of the MSF in
the first graph; the third graph is the paths with only good internal vertices connecting consecutive
subsets (and possibly edges directly connecting consecutive subsets).

optimal TSP-solution. This can be done by enumerating all possible permutations of bad
vertices and for each permutation, all partitions of bad vertices, which respect the order
of the permutation. This means that the bad vertices in one subset of the partition occur
together in the optimal TSP-solution and obey the order of the permutation. The subsets
also occur in the order of the permutation. The optimal TSP-solution contains at least one
good vertex between two consecutive subsets. The second step computes paths of good
vertices to fill in the gaps between the subsets in each partition of permutations. Hereby,
we compute the minimum-cost spanning forest rooted at the end-vertices of the subsets of
the partition and transform it to a collection of paths with only good internal vertices (and
possibly edges directly connecting consecutive subsets). See Figure 1 for an illustration.

We introduce some notations to describe the bad vertices. A “bad chain” denoted by
q = (b1, b2, . . . , bl) with l ≥ 1 is one bad vertex or a path consisting of distinct bad vertices,
where bi ∈ V b for i ∈ [l] and there is an edge connecting bi and bi+1 for each i ∈ [l − 1].
We use bs(q), be(q) to denote the starting and ending vertices, respectively, and use c(q) to
denote the total cost of the edges in q. In particular, if a bad chain q consists of only one
bad vertex b1, then bs(q) = b1, be(q) = b1, and c(q) = 0.

3.1 The algorithm and time complexity
The algorithm is as follows (see Figure 1 for an illustration).

Algorithm 1 Ratio-3 approximation algorithm for parameterization with k1.

1. Compute the k1 triangles violating the △-inequality, the set of bad vertices V b and the
set of good vertices V g.

2. Enumerate all possible permutations of bad vertices. For each permutation, enumerate
all possible partitions of bad vertices into t subsets for each t ∈ [|V b|], respecting the
corresponding permutation order. For each t-partition, do the following:
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(a) Connect the bad vertices in each subset of the partition in the order of the permutation,
resulting in t bad chains Q = (q1, . . . , qt), ordered according to their orders in the
permutation.

(b) Compute a t-minimum spanning forest (t-MSF) F = (T1, . . . , Tt) of G[V g ∪{be(qi)|i ∈
[t]}] rooted at {be(qi)|i ∈ [t]}.

(c) Double the edges of Ti’s. Compute an Euler tour of each Ti and shortcut repeated
vertices in the Euler tour, resulting in Ci.

(d) For each i ∈ [t], do the following: if Ci = (be(qi)), then define pi = (be(qi), bs(qi+1));
if Ci = (be(qi), gi1 , . . . , gili

, be(qi)) with li ≥ 1, then define pi = (be(qi), gi1 , . . . , gili
,

bs(qi+1)). Hereby, qt+1 = q1.
(e) Connect be(qi) and bs(qi+1) in this t-partition by pi for each i ∈ [t], and obtain a

TSP-solution A = (q1, p1, q2, p2, . . . , qt, pt).
3. Return the solution Amin with the minimum cost among all enumeration cases.

▶ Lemma 1. A minimum spanning forest of G[V ∪ V ′] rooted at V ′ can be computed in
O(|V ∪ V ′|2) time.

Proof. First, we introduce a root vertex and connect it to all vertices in V ′ by zero-cost
edges to get a new graph G̃, transforming computing a minimum spanning forest rooted at
V ′ into computing a minimum spanning tree (MST).

An MST T of G̃ can be found in O(|V (G̃)|2) time. If T does not contain all edges
connecting the root vertex to the vertices in V ′, then we can add those missing edges, remove
other edges incident to the vertices in V ′ to ensure acyclic, and obtain a new MST T ′ without
increasing costs. By removing the root vertex and all edges incident to it in T ′, we get a
minimum spanning forest of G[V ∪ V ′] rooted at V ′ in O(|V ∪ V ′|2) time. ◀

▶ Lemma 2. Algorithm 1 runs in O((3k1)! 8k1 · n2 + n3) time.

Proof. Step 1 computes k1 triangles violating the △-inequality in O(n3) time. The number
of t-partitions of permutations enumerated in Step 2 is |V b|! 2|V b| = O((3k1)! 8k1). For each
possible t-patition, Step 2(a) to Step 2(d) take O(n2) time by Lemma 1. Hence, Algorithm 1
runs in O((3k1)! 8k1 · n2 + n3) time. ◀

3.2 Analysis of approximation factor
An optimal TSP-solution opt can be decomposed into an ordered collection of 2topt many paths
qopt

1 , popt
1 , qopt

2 , . . . , popt
topt , with qopt

i being a bad chain and popt
i = (be(qopt

i ), gopt
i1

, . . . , gopt
i

l
opt
i

,

bs(qopt
i+1)) being the path connecting be(qopt

i ) and bs(qopt
i+1) with only good internal vertices.

Here lopt
i ≥ 1, qopt

topt+1 = qopt
1 . Clearly, topt ≤ 3k1. See Figure 1 for an example: topt = 3,

qopt
1 = (b1, b2, b3), qopt

2 = (b4), qopt
3 = (b5, b6). Moreover, popt

1 = (b3, g1, b4) where lopt
1 = 1,

connects be(q1) = b3 and bs(q2) = b4. Further, popt
2 = (b4, g2, g3, g4, g5, b5) and popt

3 =
(b6, g6, g7, g8, b1). Then, c(opt) =

∑topt

i=1 c(qopt
i ) +

∑topt

i=1 c(popt
i ).

We enumerate all partitions of every permutation of bad vertices in Step 2 of Algorithm 1.
Thus, there must exist an enumeration case α in Step 2, where we have topt bad chains
which contain the same bad vertices in the same order as in opt. Therefore, the solution
Aα returned in Step 2(e) of this case differs from opt only in the paths connecting the bad
chains. In the following, we give an analysis of these paths for both opt and Aα.

▶ Lemma 3. For each i ∈ [topt], c(popt
i ) ≥ c(be(qopt

i ), bs(qopt
i+1)), where qopt

topt+1 = qopt
1 .

ISAAC 2022
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Proof. Note that a triangle containing at least one good vertex satisfies the △-inequality.
Thus, △(be(qopt

i ), gopt
i1

, bs(qopt
i+1)) and △(gopt

i1
, gopt

i
l
opt
i

, bs(qopt
i+1)) satisfy the △-inequality. Here

lopt
i ≥ 1, qopt

topt+1 = qopt
1 . Thus, for each i ∈ [topt], we have

c(popt
i ) = c(be(qopt

i ), gopt
i1

) + c(gopt
i1

, . . . , gopt
i

l
opt
i

) + c(gopt
i

l
opt
i

, bs(qopt
i+1))

≥ c(be(qopt
i ), gopt

i1
) + c(gopt

i1
, gopt

i
l
opt
i

) + c(gopt
i

l
opt
i

, bs(qopt
i+1))

≥ c(be(qopt
i ), gopt

i1
) + c(gopt

i1
, bs(qopt

i+1))
≥ c(be(qopt

i ), bs(qopt
i+1)). ◀

In Step 2(b) of the case α, we obtain a topt-MSF F α = (T α
1 , . . . , T α

topt) of G[V g ∪
{be(qopt

i )|i ∈ [topt]}] rooted at {be(qopt
i )|i ∈ [topt]}. Then, let Cα

i for i ∈ [topt] be the resulting
cycle (or the isolated vertex) in Step 2(c) of the case α. Let pα

i for i ∈ [topt] be the path
returned in Step 2(d) of the case α. Then c(Aα) =

∑topt

i=1 c(qopt
i ) +

∑topt

i=1 c(pα
i ). The following

lemma establishes the relation of the cost of pα
i with the cost of popt

i .

▶ Lemma 4. For each i ∈ [topt], c(pα
i ) ≤ c(popt

i ) + 2c(T α
i ).

Proof. For each i ∈ [topt], if Cα
i = (be(qopt

i )), then as defined in Step 2(d) of the case α,
pα

i = (be(qopt
i ), bs(qopt

i+1)), thus c(pα
i ) ≤ c(popt

i ) by Lemma 3.
Otherwise, Cα

i = (be(qopt
i ), gα

i1
, . . . , gα

ilα
i

, be(qopt
i )) with lα

i ≥ 1, Step 2(d) of the case α defines

pα
i = (be(qopt

i ), gα
i1

, . . . , gα
ilα

i

, bs(qopt
i+1)). Note that a triangle containing at least one good

vertex satisfies the △-inequality, and as shown in Lemma 3, we have

c(pα
i ) = c(be(qopt

i ), gα
i1

, . . . , gα
ilα

i

) + c(gα
ilα

i

, bs(qopt
i+1))

≤ c(be(qopt
i ), gα

i1
, . . . , gilα

i
) + c(gα

ilα
i

, be(qopt
i )) + c(be(qopt

i ), bs(qopt
i+1))

= c(Cα
i ) + c(be(qopt

i ), bs(qopt
i+1))

≤ 2c(T α
i ) + c(popt

i ). ◀

Next, we compare the cost of opt with the cost of F α, the following lemma is easy to see.

▶ Lemma 5. c(opt) ≥ c(F α).

Proof. We remove all bad vertices not in {be(qopt
i )|i ∈ [topt]} and all edges incident to them

from opt. Then for each i ∈ [topt], if qopt
i consists of only one bad vertex, then we remove

the edge connecting it and its preceding good vertex. The above removal process results in
a spanning topt-forest of G[V g ∪ {be(qopt

i )|i ∈ [topt]}] rooted at {be(qopt
i )|i ∈ [topt]}. Thus,

c(opt) ≥ c(F α). ◀

Finally, we arrive at proving the main result of this section.

▶ Theorem 6. Algorithm 1 is a parameterized 3-approximation algorithm for TSP running
in O((3k1)! 8k1 · n3) time, where k1 is the number of triangles in which edge costs violate the
△-inequality.

Proof. Algorithm 1 returns Amin in O((3k1)! 8k1 · n2 + n3) time by Lemma 2 and clearly
provides a cycle over all vertices. The approximation factor follows from Lemmas 4
and 5: c(Amin) ≤ c(Aα) =

∑topt

i=1 c(qopt
i ) +

∑topt

i=1 c(pα
i ) ≤

∑topt

i=1 c(qopt
i ) +

∑topt

i=1 c(popt
i ) +

2
∑topt

i=1 c(T α
i ) = c(opt) + 2c(F α) ≤ c(opt) + 2c(opt) = 3c(opt). ◀
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4 The minimum size of violating vertex sets as parameter

In this section, we consider the minimum size k2 of violating vertex sets, that is, the
minimum number of vertices whose removal transforms a given graph into a metric graph.
The violating vertex set with at most k2 vertices can be found in O(3k2 · n3) time by the
search tree technique [14, 31]. The basic idea is that at least one vertex of every triangle
violating the △-inequality has to be added to the violating vertex set, which also implies
that k2 ≤ k1. We use the bad vertices to refer to the vertices in the violating vertex set and
thus, there are k2 bad vertices. The remaining vertices are called good. A bad chain also
consists solely of bad vertices.

In contrast to Section 3, a triangle violating the △-inequality might contain only one or
two bad vertices, leading to the consequence that the idea of Algorithm 1 does not directly
apply to the parameterization of k2. In Section 3, triangles containing at least one good
vertex satisfy the △-inequality, which provides the foundation of Lemmas 3 and 4. Notice
that, as shown in Lemma 3, the cost of the edge directly connecting two consecutive bad
chains in opt does not exceed the cost of the path in opt connecting the same two bad
chains. Here, this property does not hold. However, by a closer observation, we can conclude
that a path connecting bad chains only involves the starting and ending bad vertices of bad
chains. If we can fix the two good vertices, which are the direct neighbors of the bad chains
in the optimal TSP-solution, then we can extend bad chains to paths, which are between
two good vertices and whose internal vertices are all bad vertices. Then, we use the same
strategy as in Steps 2(b)-2(d) in Algorithm 1 to find paths of good vertices to connect these
paths, where we deal only with edges between good vertices, to which we can apply the
analysis in Section 3. We show in the following that a brute-force way of fixing the direct
neighbors of bad chains, which is Algorithm 2, leads to a 3-approximation with the running
time of O(nO(k2)), while a more involved selection of the direct neighbors, i.e., Algorithm 3,
gives a parameterized approximation with the running time of O(kO(k2)

2 · n3) but a worse
approximation factor 6k2 + 9.

To this end, we need the following notations. An “alternating chain” denoted by h =
(g1, q1, g2, . . . , gl, ql, gl+1) with l ≥ 1, is a path consisting alternatively of distinct good
vertices and bad chains. Here, g1, . . . , gl+1 ∈ V g, and q1, . . . , ql are vertex-disjoint bad chains.
Moreover, gi+1 for i ∈ [l − 1] is connected by edges to be(qi) and bs(qi+1), g1 is adjacent
to bs(q1), and gl+1 is adjacent to be(ql). We use gs(h), ge(h) to denote the starting and
ending good vertices, respectively, and use c(h) to denote the total cost of the edges in h,
i.e., c(h) =

∑l
i=1 c(qi) +

∑l
i=1 c(gi, bs(qi)) +

∑l
i=1 c(be(qi), gi+1).

4.1 A 3-approximation algorithm
In this section, we use a brute-force strategy to fix the direct good neighbors of the bad
chains in the optimal TSP-solution.

Algorithm 2 Ratio-3 approximation algorithm for parameterization with k2.

1. Compute the violating vertex set of k2 vertices V b by the search tree technique and the
set of good vertices V g.

2. Enumerate all possible permutations of bad vertices. For each permutation, enumerate
all possible partitions of bad vertices into t1 subsets for each t1 ∈ [k2], respecting the
corresponding permutation order. For each t1-partition, do the following:
(a) Connect the bad vertices in each subset of the partition in the order of the permutation,

resulting in t1 bad chains Q = (q1, . . . , qt1), ordered according to their orders in the
permutation.
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(b) For all possible t1-tuples of pairs of good vertices ((x1, y1), (x2, y2), . . . , (xt1 , yt1))
satisfying xi, yi ∈ V g\

⋃i−1
j=1{xj , yj} for each i ∈ [t1]: (Note that it might be xi = yi

for some i.)
(i) Transform qi for each i ∈ [t1] to an alternating chain hi = (yi−1, qi, xi). Here,

y0 = yt1 . If xi = yi, then merge two alternating chains hi and hi+1 into one,
resulting in H = (h1, . . . , ht2) with t2 ≤ t1 and no two consecutive alternating
chains being mergeable.

(ii) Apply the following FindPaths procedure.
Procedure FindPaths:
(1) Compute a t2-minimum spanning forest (t2-MSF) F = (T1, . . . , Tt2) of

G[V g\
⋃t2

j=1(V (hj)\{ge(hj)})] rooted at {ge(hj)|j ∈ [t2]}.
(2) Double the edges of Tj ’s. Compute an Euler tour of each Tj and shortcut

repeated vertices in the Euler tour, resulting in Cj .
(3) For each j ∈ [t2], do the following: if Cj = (ge(hj)), then define pj =

(ge(hj), gs(hj+1)); if Cj = (ge(hj), gj1 , . . . , gjlj
, ge(hj)) with lj ≥ 1, then

define pj = (ge(hj), gj1 , . . . , gjlj
, gs(hj+1)). Hereby, ht2+1 = h1.

(4) Connect ge(hj) and gs(hj+1) in this t2-partition by pj for each j ∈ [t2], and
obtain a TSP-solution A = (h1, p1, h2, p2, . . . , ht2 , pt2).

3. Return the solution Amin with the minimum cost among all enumeration cases.

The running time of this algorithm is dominated by the enumeration of the tuples of
pairs of good vertices in Step 2(b).

▶ Lemma 7. Algorithm 2 runs in O(nO(k2)) time.

Proof. Step 1 computes k2 bad vertices by search tree technique in O(3k2 · n3) time. The
number of t1-partitions of permutations enumerated in Step 2 is the same as in Lemma 2,
k2! 2k2 . For each possible t1-partition, the number of the t1-tuples enumerated in Step 2(b)
is O(n2t1) = O(n2k2). By the same argument as in Lemma 1, Algorithm 2 needs O(n2) time
in Step 2(b)(ii). Hence, Algorithm 2 runs in O(3k2 · n3 + k2! 2k2 · n2k2 · n2) = O(nO(k2))
time. ◀

Given an ordered collection of vertex-disjoint alternating chains H = (h1, . . . , ht2) con-
taining all bad vertices, the FindPaths procedure deals only with edges between good vertices,
to which we can apply the similar analysis as in Lemmas 3-5 and Theorem 6. Let optH be a
minimum-cost TSP-solution, where the vertices in

⋃t2
i=1 V (hi) occur in the same alternating

chains with the same order as specified in H. The following lemma is easy to see.

▶ Lemma 8. Given an ordered collection of vertex-disjoint alternating chains H =(h1, . . . , ht2)
containing all bad vertices, the FindPaths procedure returns a TSP-solution A with c(A) ≤
3c(optH).

We obtain the main result of this subsection as a consequence of Lemmas 7 and 8.

▶ Theorem 9. Algorithm 2 is a 3-approximation algorithm for TSP running in O(nO(k2))
time, where k2 is the minimum number of vertices whose removal results in a metric graph.

Proof. Algorithm 2 returns Amin in O(nO(k2)) time by Lemma 7 and the output Amin is
clearly a cycle over all vertices. Given an optimal TSP-solution opt, let Qopt denote the
ordered collection of all bad chains in opt, and Hopt denote the corresponding ordered
collection of all alternating chains in opt. By the same analysis as in Section 3, there is a
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case enumerated in Step 2, which gives the same order of bad chains as Qopt in Step 2(a).
Since good vertices occur only once in opt, there must be case α enumerated in Step 2(b),
where we have the same alternating chains and they are in the same order as Hopt in
Step 2(b)(i). By Lemma 8, in this case, the FindPaths procedure returns a TSP-solution Aα

with c(Aα) ≤ 3c(optHopt) = 3c(opt). Thus, c(Amin) ≤ c(Aα) ≤ 3c(opt). ◀

4.2 A parameterized (6k2 + 9)-approximation algorithm
In this section, we apply a more involved strategy to fix the good vertices, that are direct
neighbors of the bad chains in the optimal TSP-solution. We give an upper bound f(k2)
on the number of possible good neighbors with f being a polynomial function. To achieve
this, we slightly modify Algorithm 2. Given t1 bad chains, we divide all good vertices into
t1 connected components with minimum edge costs by computing a t1-minimum spanning
forest. For each bad chain, we choose some good vertices from each connected component to
form a set of good vertices that may be direct neighbors of the bad chain.

4.2.1 The algorithm and time complexity
The Step 1 and Step 2(a) of the parameterized approximation algorithm (Algorithm 3) are
the same as Algorithm 2. Thus, we skip them in the description of Algorithm 3.

Algorithm 3 Ratio-6k2 + 9 approximation algorithm for parameterization with k2.

2. (b) Use Khachay and Neznakhina’s algorithm [25] to get a t1-minimum spanning forest
of G[V g], F = (T1, . . . , Tt1). Let Vj = V (Tj) for j ∈ [t1].
For each bad vertex b, let N(b, Vj) be the set of min{4t1, |Vj |} good vertices in Vj ,
which are closest to b. That is, ∀g′ ∈ Vj\N(b, Vj) and ∀g ∈ N(b, Vj), c(g′, b) ≥ c(g, b).
Set N(b) =

⋃t1
j=1 N(b, Vj).

(c) For all possible t1-tuples of pairs of good vertices ((x1, y1), (x2, y2), . . . , (xt1 , yt1))
satisfying xi ∈ N(be(qi))\

⋃i−1
j=1{xj , yj} and yi ∈ N(bs(qi+1))\

⋃i−1
j=1{xj , yj} for each

i ∈ [t1]: (Note that it might be xi = yi for some i and qt1+1 = q1.)
(i) Transform qi for each i ∈ [t1] to an alternating chain hi = (yi−1, qi, xi). Here,

y0 = yt1 . If xi = yi, then merge two alternating chains hi and hi+1 into one,
resulting in H = (h1, . . . , ht2) with t2 ≤ t1 and no two consecutive alternating
chains being mergeable.

(ii) Apply the FindPaths procedure.
3. Return the solution Amin with the minimum cost among all enumeration cases.

▶ Lemma 10. Algorithm 3 runs in O(kO(k2)
2 · n3) time.

Proof. As for Algorithm 2, Step 1 needs O(3k2 · n3) time. The number of t1-partitions of
permutations enumerated in Step 2 is k2! 2k2 . For each possible t1-partition, a t1-MSF of the
graph G[V g] can be computed in O(n2 log n) time [25]. The number of t1-tuples enumerated
in Step 2(c) is bounded by O((t1 · 4t1)2t1) = O((2k2)4k2). FindPaths needs O(n2) time.
Hence, Algorithm 3 runs in O(3k2 · n3 + k2! 2k2 · (n2 log n + (2k2)4k2 · n2)) = O(kO(k2)

2 · n3)
time. ◀

4.2.2 Analysis of approximation factor
Again, for an optimal TSP-solution opt with an order of bad chains, Qopt = (qopt

1 , . . . , qopt
topt

1
),

we have a case α in Step 2 of Algorithm 3 with the same order of bad chains. In Step 2(b) of
this case α, we obtain a topt

1 -MSF Fα = (T α
1 , . . . , T α

topt
1

) of the graph G[V g], and V α
j = V (T α

j )
for j ∈ [topt

1 ]. The following lemma is easy to see.
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▶ Lemma 11. c(opt) ≥ c(Fα).

Proof. We remove all bad vertices and all edges incident to them from opt, resulting in a
spanning topt

1 -forest of the graph G[V g]. Thus, c(opt) ≥ c(Fα). ◀

The main difficulty with the analysis of Algorithm 3, compared with Algorithm 2, lies in
that the order of alternating chains Hopt might not be enumerated in Step 2(c). Therefore, we
have to adopt a different approach. Hereby, we modify opt to construct another TSP-solution
Ã, which satisfies on the one hand c(Ã) = O(k2 · c(opt)), and whose order of alternating
chains on the other hand occurs in the case α′ enumerated by Step 2(c). Thus, we know
from Lemma 8 that Step 2(c)(ii) returns a solution Aα′ in the case α′ with c(Aα′) ≤ 3c(Ã),
which completes the proof of approximation ratio.

Construction of opt∗ from opt. The construction of Ã consists of three steps. The first
step constructs a cycle opt∗ from opt. For each j ∈ [topt

1 ], we partition V α
j = V (T α

j ) into
three disjoint subsets X1

j , X2
j and Yj . The subset X1

j contains the good vertices in V α
j , each

of which is adjacent to one bad vertex and one good vertex in opt. The subset X2
j contains

the good vertices in V α
j , each of which is adjacent to two bad vertices in opt. The subset

Yj contains the good vertices in V α
j , each of which is adjacent to two good vertices in opt.

We aim to remove the vertices in Yj ’s to get opt∗. If Yj ̸= ∅ and X1
j ̸= ∅ for j ∈ [topt

1 ], then
shortcut in opt all vertices in Yj . If Yj ̸= ∅ and X1

j = ∅, then pick an arbitrary vertex in Yj ,
say yj , and shortcut in opt all vertices in Yj\{yj}. After completing the above operation for
all j ∈ [topt

1 ], we get a new cycle, denoted by opt∗.
Since we shortcut no bad vertex and no good vertex adjacent to bad vertices in opt, we

have c(opt∗) ≤ c(opt). The vertices in X1
j ∪ X2

j and the possibly existing vertices in Yj in
opt∗ still keep their properties in opt: each good vertex in X1

j is adjacent to one bad vertex
and one good vertex in opt∗, each good vertex in X2

j is adjacent to two bad vertices in opt∗,
and if exists, yj is adjacent to two good vertices in opt∗.

Next, we partition X1
j into two disjoint subsets Z0

j and Z1
j . The subset Z0

j contains
vertices in X1

j , which are adjacent in opt∗ to no vertex in V α
j′ with j′ ̸= j, i.e., each vertex in

Z0
j is adjacent to one bad vertex and one good vertex in Z0

j . The subset Z1
j contains vertices

in X1
j , which are adjacent in opt∗ to one vertex in V α

j′ with j′ ̸= j, i.e., each vertex in Z1
j is

adjacent to one bad vertex and one good vertex in Yj′ ∪ Z1
j′ for some j′ ̸= j. The following

two simple lemmas concerning opt∗ are useful.

▶ Lemma 12.
∑topt

1
j=1(2|X2

j | + |Z0
j | + |Z1

j |) = 2topt
1 .

Proof. This lemma follows from the definitions of Z0
j , Z1

j and X2
j . ◀

▶ Lemma 13. For each j ∈ [topt
1 ], 1 ≤ |V α

j ∩ V (opt∗)| ≤ 2topt
1 .

Proof. For each j ∈ [topt
1 ], exact one of the following three cases applies:

(a) If Yj = ∅, then V α
j = Z0

j ∪ Z1
j ∪ X2

j ⊆ V (opt∗) and 1 ≤ |V α
j ∩ V (opt∗)| = |V α

j | =
|Z0

j | + |Z1
j | + |X2

j | ≤ 2topt
1 .

(b) If Yj ̸= ∅ and X1
j = Z0

j ∪ Z1
j ̸= ∅, then V α

j ∩ V (opt∗) = Z0
j ∪ Z1

j ∪ X2
j and 1 ≤

|V α
j ∩ V (opt∗)| = |Z0

j | + |Z1
j | + |X2

j | ≤ 2topt
1 .

(c) If Yj ̸= ∅ and X1
j = Z0

j ∪Z1
j = ∅, then V α

j ∩V (opt∗) = X2
j ∪{yj} and 1 ≤ |V α

j ∩V (opt∗)| =
|X2

j | + 1 ≤ topt
1 + 1 ≤ 2topt

1 . ◀
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Construction of A∗ from opt∗. Next we construct a cycle A∗ from opt∗. Since we shortcut
no bad vertex and no good vertex adjacent to bad vertices in opt, bs(qopt

i ) and be(qopt
i ) for

each i ∈ [topt
1 ] are adjacent in opt∗ to the same good vertices as in opt, denoted by gs(qopt

i )
and ge(qopt

i ). As defined in Step 2(b) of the case α, for each bad vertex b, N(b, V α
j ) is the

set of min{4topt
1 , |V α

j |} good vertices in V α
j , which are closest to b, i.e., ∀g′ ∈ V α

j \N(b, V α
j )

and ∀g ∈ N(b, V α
j ), c(g′, b) ≥ c(g, b). And N(b) =

⋃topt
1

j=1 N(b, V α
j ). We apply the following

procedure to opt∗. Initially, set W ∗ = ∅. Here, qopt
topt

1 +1 = qopt
1 .

From i = 1 to i = topt
1 , do the following operations to opt∗:

1. Consider V α
j with ge(qopt

i ) ∈ V α
j .

If ge(qopt
i ) /∈ N(be(qopt

i ), V α
j ), then

(a) Pick an arbitrary vertex denoted by g∗
e(qopt

i ) from N(be(qopt
i ), V α

j )\(W ∗ ∪ V (opt∗)).
(b) Insert g∗

e(qopt
i ) between be(qopt

i ) and ge(qopt
i ) in opt∗.

(c) If ge(qopt
i ) ∈ Z0

j , then shortcut ge(qopt
i ).

2. Consider V α
j′ with gs(qopt

i+1) ∈ V α
j′ .

If gs(qopt
i+1) /∈ N(bs(qopt

i+1), V α
j′ ), then

(a) Pick an arbitrary vertex denoted by g∗
s (qopt

i+1) from N(bs(qopt
i+1), V α

j′ )\(W ∗ ∪ V (opt∗) ∪
{g∗

e(qopt
i )}).

(b) Insert g∗
s (qopt

i+1) between bs(qopt
i+1) and gs(qopt

i+1) in opt∗.
(c) If gs(qopt

i+1) ∈ Z0
j′ , then shortcut gs(qopt

i+1).
3. Add g∗

e(qopt
i ) and g∗

s (qopt
i+1) to W ∗.

The above procedure returns a cycle A∗ for the following reason. If for some i ∈
[topt

1 ], we have ge(qopt
i ) ∈ V α

j and ge(qopt
i ) /∈ N(be(qopt

i ), V α
j ), then |N(be(qopt

i ), V α
j )| ≥

4topt
1 by the definition of N(be(qopt

i ), V α
j ). By the fact that |W ∗| ≤ 2topt

1 − 2 during the
procedure and Lemma 13, N(be(qopt

i ), V α
j )\(W ∗ ∪ V (opt∗)) ̸= ∅. By the same argument,

N(bs(qopt
i+1), V α

j′ )\(W ∗ ∪ V (opt∗) ∪ {g∗
e (qopt

i )}) ̸= ∅. Thus, the output is a cycle. Observe that
c(be(qopt

i ), g∗
e(qopt

i )) ≤ c(be(qopt
i ), ge(qopt

i )) and c(bs(qopt
i+1), g∗

s (qopt
i+1)) ≤ c(bs(qopt

i+1), gs(qopt
i+1)).

Let H∗ = (h∗
1, . . . , h∗

t∗
2
) be the ordered collection of all alternating chains in A∗. Let

optH∗ be a minimum-cost TSP-solution, where the vertices in
⋃t∗

2
i=1 V (h∗

i ) occur in the same
alternating chains with the same order as specified in H∗. We get the following lemma as a
consequence of Lemma 8.

▶ Lemma 14. c(Amin) ≤ 3c(optH∗), where Amin is the output of Algorithm 3.

Proof. It is easy to observe that all good vertices in A∗, which are direct neighbors of the topt
1

bad chains, are from N(be(qopt
i )) and N(bs(qopt

i )) for i ∈ [topt
1 ]. Thus, there is a case α′ in

Step 2(c) where we get an order of alternating chains equal to H∗ and by Lemma 8, we have in
this case a solution Aα′ with c(Aα′) ≤ 3c(optH∗). Finally, c(Amin) ≤ c(Aα′) ≤ 3c(optH∗). ◀

Before moving to the third step, we give an upper bound on c(A∗). Let EA∗

jj′ be the set of
edges in A∗ connecting a good vertex in V α

j and a good vertex in V α
j′ for j, j′ ∈ [topt

1 ]. Then

c(A∗) =
∑t∗

2
i=1 c(h∗

i )+
∑

j,j′:1≤j<j′≤topt
1

c(EA∗

jj′ )+
∑topt

1
j=1 c(EA∗

jj ). According to the construction
of A∗ from opt∗, the following three lemmas are easy to see, which provide the foundation of
upper-bounding c(A∗).

▶ Lemma 15.
∑t∗

2
i=1 c(h∗

i ) ≤
∑topt

2
i=1 c(hopt

i ), where Hopt = (hopt
1 , . . . , hopt

topt
2

) is the ordered
collection of all alternating chains in opt.
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Proof. For each i ∈ [topt
1 ], (be(qopt

i ), ge(qopt
i )) ∈ E(opt), and exact one of the following two

cases applies:
(a) be(qopt

i ) is adjacent to ge(qopt
i ) in A∗.

(b) be(qopt
i ) is adjacent to g∗

e(qopt
i ) in A∗, and c(be(qopt

i ), g∗
e(qopt

i )) ≤ c((be(qopt
i ), ge(qopt

i )).
This property also holds for the good vertex in A∗ adjacent to bs(qopt

i ), for each i ∈ [topt
1 ]. At

the same time, A∗ contains the same bad chains as opt. Thus,
∑t∗

2
i=1 c(h∗

i ) ≤
∑topt

2
i=1 c(hopt

i ). ◀

▶ Lemma 16. For all j′ ̸= j and j, j′ ∈ [topt
1 ], EA∗

jj′ = Eopt∗

jj′ , where Eopt∗

jj′ is the set of edges
in opt∗ that connect a vertex in V α

j and a vertex in V α
j′ .

Proof. For each i ∈ [topt
1 ], there exists some j ∈ [topt

1 ] such that ge(qopt
i ) ∈ V α

j and g∗
e (qopt

i ) ∈
V α

j . Inserting g∗
e (qopt

i ) between be(qopt
i ) and ge(qopt

i ) does not add or remove an edge between
a good vertex in V α

j′′ and a good vertex V α
j′′′ with j′′ ̸= j′′′. This property also holds for

inserting g∗
s (qopt

i ) between bs(qopt
i ) and gs(qopt

i ), for each i ∈ [topt
1 ].

For each edge (g, g′) ∈ Eopt∗

jj′ (j′ ̸= j) where g ∈ V α
j and g′ ∈ V α

j′ , g /∈ Z0
j and g′ /∈ Z0

j′ .
Then, according to the construction of A∗ from opt∗, we do not shortcut g or g′. ◀

▶ Lemma 17. For each j ∈ [topt
1 ], |EA∗

jj | ≤ 2|X2
j | + |Z0

j | + |Z1
j | ≤ 2topt

1 .

Proof. According to the construction of A∗ from opt∗, it is easy to see that |EA∗

jj | ≤
2|X2

j | + |Z0
j | + |Z1

j |. By Lemma 12, 2|X2
j | + |Z0

j | + |Z1
j | ≤ 2topt

1 , and thus, |EA∗

jj | ≤ 2topt
1 . ◀

▶ Lemma 18. c(A∗) ≤ (2k2 + 1)c(opt).

Proof. Recall that Fα = (T α
1 , . . . , T α

topt
1

) is the minimum-cost spanning topt
1 -forest of the

graph G[V g], and V α
j = V (T α

j ) for each j ∈ [topt
1 ]. Thus, for each (g, g′) ∈ EA∗

jj , it
trivially holds c(g, g′) ≤ c(T α

j ). Since opt∗ has the order Hopt, c(opt∗) ≥
∑topt

2
i=1 c(hopt

i ) +∑
j,j′:1≤j<j′≤topt

1
c(Eopt∗

jj′ ). By Lemmas 11, 15, 16, and 17, we have

c(A∗) =
t∗

2∑
i=1

c(h∗
i ) +

∑
j,j′:1≤j<j′≤topt

1

c(EA∗

jj′ ) +
topt

1∑
j=1

c(EA∗

jj )

≤
topt

2∑
i=1

c(hopt
i ) +

∑
j,j′:1≤j<j′≤topt

1

c(Eopt∗

jj′ ) +
topt

1∑
j=1

(|EA∗

jj | · c(T α
j ))

≤ c(opt∗) + 2topt
1

topt
1∑

j=1
c(T α

j )

= c(opt∗) + 2topt
1 · c(Fα)

≤ c(opt) + 2k2 · c(opt)
= (2k2 + 1)c(opt). ◀

Construction of Ã from A∗. Finally, we insert all remaining vertices in V α
j \V (A∗) into A∗

for all j ∈ [topt
1 ] to get a TSP-solution Ã. By the analysis of cases, we obtain the following

lemma, which is useful for the choice of locations of insertions.

▶ Lemma 19. For each j ∈ [topt
1 ], at least one of the following three cases applies:

(a) V α
j ⊆ V (A∗).

(b) EA∗

jj ̸= ∅.
(c) There exists j′ ̸= j such that EA∗

jj′ ̸= ∅.
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Proof. For each j ∈ [topt
1 ], at least one of the following four cases applies:

(a) If Yj = ∅, then V α
j = Z0

j ∪Z1
j ∪X2

j ⊆ V (opt∗) and |V α
j | = |Z0

j |+|Z1
j |+|X2

j | ≤ 2topt
1 < 4topt

1 .
For each i ∈ [topt

1 ], N(be(qopt
i ), V α

j ) = V α
j and N(bs(qopt

i ), V α
j ) = V α

j . According to the
construction of A∗ from opt∗, we insert or shortcut no vertex in V α

j . Thus, V α
j ⊆ V (A∗).

(b) If Yj ̸= ∅ and Z0
j ≠ ∅, then Eopt∗

jj ̸= ∅. According to the construction of A∗ from opt∗,
EA∗

jj ̸= ∅.
(c) If Yj ̸= ∅ and Z1

j ̸= ∅, then there exists j′ ̸= j such that Eopt∗

jj′ ̸= ∅. By Lemma 16,
EA∗

jj′ = Eopt∗

jj′ ̸= ∅.
(d) If Yj ̸= ∅ and X1

j = Z0
j ∪ Z1

j = ∅, then Yj ∩ V (opt∗) = {yj}. There exists j′ ̸= j such
that Eopt∗

jj′ ̸= ∅. By Lemma 16, EA∗

jj′ = Eopt∗

jj′ ̸= ∅. ◀

We insert the vertices in V α
j \V (A∗) as follows. We double the edges in T α

j and shortcut
repeated vertices on the T α

j ’s Euler tour, resulting in a cycle Cα
j , where V (Cα

j ) = V α
j and

c(Cα
j ) ≤ 2c(T α

j ) for each j ∈ [topt
1 ]. We insert the remaining vertices in V α

j \V (A∗) into A∗

according to their orders in Cα
j .

From j = 1 to j = topt
1 , do the following operation to A∗:

1. If V α
j ⊆ V (A∗), then go to the next iteration.

2. If EA∗

jj ̸= ∅, then let (gjs , gje) be an arbitrary edge in EA∗

jj . Traverse the cycle Cα
j ,

starting from gjs
and shortcutting all vertices not in (V α

j \V (A∗)) ∪ {gjs
}. Let C ′

j =
(gjs , gj1 , . . . , gjlj

, gjs) be the resulting cycle. Insert the path (gj1 , . . . , gjlj
) between gjs

and gje
in A∗ and remove (gjs

, gje
). Go to the next iteration.

3. If there is a j′ ̸= j with EA∗

jj′ ̸= ∅, then let (gjs
, gj′

e
) be an arbitrary edge in EA∗

jj′ , where
gjs ∈ V α

j and gj′
e

∈ V α
j′ . Traverse the cycle Cα

j , starting from gjs and shortcutting all
vertices not in (V α

j \V (A∗))
⋃

{gjs
}. Let C ′

j = (gjs
, gj1 , . . . , gjlj

, gjs
) be the resulting cycle.

(a) If V α
j′ ⊆ V (A∗), then insert the path (gj1 , . . . , gjlj

) between gjs
and gj′

e
in A∗ and

remove (gjs
, gj′

e
).

(b) If V α
j′ \V (A∗) ̸= ∅, then traverse the cycle Cα

j′ , starting from gj′
e

and shortcutting all
vertices not in (V α

j′ \V (A∗))
⋃

{gj′
e
}. Let C ′

j′ = (gj′
e
, gj′

1
, . . . , gj′

l
j′

, gj′
e
) be the resulting

cycle. Then insert the path (gj1 , . . . , gjlj
, gj′

1
, . . . , gj′

l
j′

) between gjs
and gj′

e
in A∗

and remove (gjs
, gj′

e
).

After the above iteration, we obtain a new cycle Ã. By Lemma 19, Ã is a TSP-solution.
For each j ∈ [topt

1 ], since c(Cα
j ) ≤ 2c(T α

j ), there is only a small cost increase caused by the
insertion of all remaining vertices in V α

j \V (A∗).

▶ Lemma 20. c(Ã) ≤ (2k2 + 3)c(opt).

Proof. We use ∆cj to denote the cost increase caused by the insertion of the vertices in
V α

j \V (A∗) and give an upper bound on ∆cj . In the first case, ∆cj is clearly 0. In the
second case, we insert the path (gj1 , . . . , gjlj

) between gjs
and gje

in A∗. Thus, ∆cj =
c(C ′

j) − c(gjlj
, gjs) − c(gjs , gje) + c(gjlj

, gje) ≤ c(C ′
j) ≤ c(Cα

j ) ≤ 2c(T α
j ). Case 3(a) is

identical to the second case. In Case 3(b) we add two paths in A∗ involving V α
j and V α

j′ .
By a similar analysis, we have both ∆cj ≤ 2c(T α

j ) and ∆cj′ ≤ 2c(T α
j′ ). By Lemmas 11

and 18, we conclude c(Ã) = c(A∗) +
∑topt

1
j=1 ∆cj ≤ c(A∗) + 2

∑topt
1

j=1 c(T α
j ) = c(A∗) + 2c(Fα) ≤

(2k2 + 1)c(opt) + 2c(opt) = (2k2 + 3)c(opt). ◀

Now, we have all tools to prove the main result of this subsection.
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▶ Theorem 21. Algorithm 3 is a parameterized (6k2 + 9)-approximation algorithm for TSP
running in O(kO(k2)

2 · n3) time, where k2 is the minimum number of vertices whose removal
results in a metric graph.

Proof. Recall that H∗ is the order of all alternating chains in A∗. From A∗ to Ã, we insert
the remaining good vertices between two good vertices without changing the good vertices
which are direct neighbors of bad chains. Thus, the alternating chains in Ã occur in the
same order in A∗, and then c(Ã) ≥ c(optH∗). By Lemmas 14 and 20, c(Amin) ≤ 3c(optH∗) ≤
3c(Ã) ≤ (6k2 + 9)c(opt). Combining with Lemma 10, we conclude that Algorithm 3 returns
a (6k2 + 9)-approximation solution in O(kO(k2)

2 · n3) time. ◀

5 Conclusion

Based on the concept of “distance from approximability”, we present two parameterized
approximation algorithms for TSP on general graphs, parameterized by the number k1 of
violating triangles or the minimum size k2 of violating vertex sets, which achieve approx-
imation factors of 3 and 6k2+9, respectively. These seem to be the first parameterized
approximation algorithms for TSP on general graphs. It remains open whether the factor
6k2+9 can be improved to a constant. Moreover, in comparison with the O(2n)-time exact
algorithm [4, 21], it is crucial to improve the running time of the approximation algorithms
to increase their practical relevance. Finally, it is an interesting research direction to apply
the concept of “distance from approximability” to other optimization problems.
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