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Abstract
In the popular edge problem, the input is a bipartite graph G = (A ∪ B, E) where A and B denote a
set of men and a set of women respectively, and each vertex in A ∪ B has a strict preference ordering
over its neighbours. A matching M in G is said to be popular if there is no other matching M ′ such
that the number of vertices that prefer M ′ to M is more than the number of vertices that prefer M

to M ′. The goal is to determine, whether a given edge e belongs to some popular matching in G. A
polynomial-time algorithm for this problem appears in [5].

We consider the popular edge problem when some men or women are prioritized or critical.
A matching that matches all the critical nodes is termed as a feasible matching. It follows from
[15, 20, 25, 24] that, when G admits a feasible matching, there always exists a matching that is
popular among all feasible matchings.

We give a polynomial-time algorithm for the popular edge problem in the presence of critical
men or women. We also show that an analogous result does not hold in the many-to-one setting,
which is known as the Hospital-Residents Problem in literature, even when there are no critical
nodes.
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1 Introduction

The stable marriage problem is well-studied in literature. The input instance is a bipartite
graph G = (A ∪ B, E) where A and B denote the sets of men and women respectively, and
each vertex has a strict preference ordering on its neighbors. The preference ordering is
referred to as the preference list of the vertex. Such an instance is referred to as a marriage
instance. A matching M in G is said to be stable if there is no pair (a, b) ∈ E such that
both a and b prefer each other over their respective partners in M , denoted as M(a) and
M(b) respectively. A matching is called unstable if such a pair (a, b) exists, and such a pair
(a, b) is called a blocking pair. In their seminal paper, Gale and Shapley showed that stable
matchings always exist and can be computed in linear time [8]. However, all the stable
matchings match the same set of vertices [9] and they can be as small as half the size of a
maximum matching [13]. Hence popularity has been considered as an alternative to stability.

1 Work was done when the author was a Master’s student in Chennai Mathematical Institute.
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54:2 Popular Edges with Critical Nodes

▶ Definition 1 (Popular Matching). A matching M is said to be popular in a marriage
instance G if, for all matchings N in G, the number of vertices that prefer N over M is no
more than the number of vertices that prefer M over N . We denote the number of vertices
preferring the matching M over N using the symbol ϕ(M, N).

In other words, M is popular if it does not lose a head-to-head election with any other
matching N where votes are cast by vertices. This notion was introduced by Gärdenfors [10]
and has been well-studied since then (see Section 1.3). Popular matchings always exist
since stable matchings are popular, in fact, stable matchings are minimum size popular
matchings [13]. A subclass of maximum size popular matchings called dominant matchings
was identified in [5].

▶ Definition 2 (Dominant Matching). A matching M in a marriage instance G is called a
dominant matching if M is popular, and for each N such that |N | > |M |, the number of
vertices that prefer M to N is more than the number of vertices that prefer N to M .

Informally, a matching M is a dominant matching if M is popular and M wins against
any other matching N which is larger than M . Note that a dominant matching is clearly
a maximum size popular matching but a maximum size popular matching need not be a
dominant matching.

Cseh and Kavitha [5] addressed the problem of determining whether there is a popular
matching containing a given edge e, referred to as the popular edge problem. They gave a
polynomial-time algorithm for this problem. This is surprising since, in [7], it was shown
that stable matchings and dominant matchings are the only two tractable subclasses of
popular matchings, and it is NP-hard to find a popular matching which is neither stable nor
dominant.

Popular matchings find applications in situations where certain nodes are prioritized or
critical and they are required to be matched. A real-life example of this scenario is assignment
of sailors to billets in the US Navy [26, 29, 20] where certain billets are required to be matched.
Rural hospitals often face the problem of understaffing in the National Resident Matching
Program in the USA [27, 28]. Thus marking some positions in these hospitals as critical and
finding a critical matching provides a way to address this issue. While matching students to
mentors, it may be required to assign mentors to all the students whose past performance
is below a certain threshold. In several other applications, a subset of people needs to be
prioritized based on their economic, ethnic, geographic, or medical backgrounds. A matching
that matches all the prioritized or critical nodes is termed as a feasible matching. Such a
scenario has been considered in [24] and [25] in the many-to-one setting, and it is shown that
there always exists a matching that is popular within the set of feasible matchings. In [20], a
matching that matches as many critical nodes as possible has been referred to as a critical
matching. It is shown in [20] that a matching that is popular in the set of critical matchings,
called a popular critical matching, always exists and a polynomial time algorithm is given for
the same. A special case of this is addressed in [15], where all the nodes are critical, and
hence a critical matching is a matching that is popular amongst all maximum size matchings.
A polynomial-time algorithm is given in [15] for this problem. In the presence of critical
men or women, popular edge problem for feasible matchings is a natural question that arises
in this context. Thus, given a marriage instance G = (A ∪ B, E), a set of critical nodes
C ⊆ A, and an edge e, the problem is to determine whether there is a feasible matching
containing e that is popular within the set of feasible matchings. We call this the popular
feasible edge problem. In our work we only look for the case when C ⊆ A we keep the case
when C ⊆ (A ∪ B) as an interesting open problem.
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▶ Definition 3 (Popular feasible matching). Given a marriage instance G = (A ∪ B, E), and
a set of critical nodes C, a feasible matching that is popular among all the feasible matchings
is called a popular feasible matching.

We also define dominant feasible matchings below.

▶ Definition 4 (Dominant feasible matching). Given a marriage instance G = (A ∪ B, E)
and a set of critical nodes C, a matching M is called a dominant feasible matching if M is a
popular feasible matching, and for all the feasible matchings N such that |N | > |M |, M gets
strictly more votes than N .

1.1 Our contributions
We show the following main result in this paper:

▶ Theorem 5. Given a marriage instance G = (A ∪ B, E) along with a set of critical nodes
C ⊆ A, an edge e ∈ E belongs to a popular feasible matching in G if and only if e belongs to
a minimum size popular feasible matching or a dominant feasible matching in G.

Theorem 5, along with the following results, leads to a polynomial-time algorithm for the
popular critical edge problem.

▶ Theorem 6. There are polynomial-time reductions from a given instance G with a set
of critical nodes C to marriage instances G′ and G′′ such that there is a surjective map
from stable matchings in G′ to minimum size popular feasible matchings in G and there is a
surjective map from stable matchings in G′′ to dominant feasible matchings in G.

The reductions are similar to those in [24, 25, 20], however, the surjectivity of the maps is
not shown there. In [21], a similar reduction is given and the surjectivity of the map is shown
using dual certificates, whereas our proofs of surjectivity are combinatorial.

Counter-example for the many-to-one setting. We show that a result analogous to
Theorem 5 does not generalize to the many-to-one setting referred to as the Hospital-
Residents problem in literature, even when there are no critical nodes. Figure 1 shows such an
example. Informally, popularity in the many-to-one setting is defined as follows. To compare
two matchings M and N , a hospital casts as many votes as its upper quota. It compares
the sets of residents M(h) and N(h) that it gets in the matchings M and N respectively by
fixing any correspondence function between M(h) \ N(h) and N(h) \ M(h). For the formal
definition of popularity in the many-to-one setting in the presence of critical nodes, we refer
the reader to [25, 24], where it is shown that the respective algorithms output a matching
that is popular under any choice of the correspondence function.

1.2 Overview of our algorithm
We give a brief outline of our algorithm. After proving Theorem 5, the algorithm to determine
whether an edge e belongs to a popular feasible matching goes as follows:

(i) Check whether e belongs to a minimum size popular feasible matching. If so, output
yes and stop, otherwise go to the next step.

(ii) Check whether e belongs to a dominant feasible matching. If so, then output yes and
stop. If not, then conclude that e does not belong to a popular feasible matching in
that instance by Theorem 5.

ISAAC 2022
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Figure 1 Here H and R are the sets of hospitals and residents respectively, h has upper quota or
capacity 2, other hospitals have upper quota 1. The only stable matching is M = {(p, h), (q, h)} of
size 2 whereas the only dominant matching is M2, of size 4. The edge (q, h′) belongs to a popular
matching M1 of size 3, but does not belong to the stable matching M or to the dominant matching
M2. Thus Theorem 5 does not hold for this instance.

For steps (i) and (ii) above, we use the reductions mentioned in Theorem 6. For an
edge e in G, there are multiple edges in G′ and G′′ corresponding to e. The stable edge
algorithm of [23] can be used to determine whether any of the edges that correspond to
e in G′ or G′′ is contained in some stable matching in G′ or G′′. The details are given
in Section 3. To prove Theorem 5, we assume that e is contained in a popular feasible
matching M which is neither a minimum size popular feasible matching nor a dominant
feasible matching. We give a Partition Method in Section 3.1 which partitions the given
instance into three parts. We call the restrictions of M on the three parts as Md, Mm and
Mr. Since e is contained in M , e must belong to one of the three parts viz. Md, Mm and Mr.
If e ∈ (Md ∪ Mr), we convert the matching Mm to another matching M ′

d which is a dominant
feasible matching in that part, and show that M∗

d = (Md ∪ M ′
d ∪ Mr) is a dominant feasible

matching in the whole instance. Thus e is contained in a dominant feasible matching, namely
M∗

d . Similarly, if e ∈ (Mm ∪ Mr) then we convert the matching Md to another matching
M ′

m which is a minimum size popular feasible matching in the respective part, and moreover,
M∗

m = (M ′
m ∪ Mm ∪ Mr) is a minimum size popular feasible matching in the whole instance.

Thus e belongs to the minimum size popular feasible matching M∗
m.

1.3 Related Results
Gale and Shapley proposed an algorithm to find a stable matching in a marriage instance
in their seminal paper [8]. The notion of popular matching was introduced by Gärdenfors
[10]. Popular matchings in the marriage instance have been considered first in [1, 13, 15].
An O(|E|)-time algorithm to find a dominant matching in a marriage instance is given in
[15]. In [15], a size-popularity tradeoff has been considered, and a polynomial-time algorithm
for finding a maximum matching that is popular among all maximum matchings is given.
The popular edge problem is inspired by the stable edge problem. The stable edge problem
involves deciding whether a given edge e belongs to a stable matching in a Stable Marriage
instance. A polynomial-time algorithm for the stable edge problem is given in the book by
Knuth[23]. Cseh and Kavitha [5] addressed the popular edge problem and gave an O(|E|)
time algorithm for the same. Later, Faenza et. al [7] show that the problem of deciding
whether an instance admits a popular matching containing a set of two or more edges is
NP-Hard. In that paper, the authors also show that finding a popular matching in a stable
marriage instance, which is neither stable nor dominant is NP-Hard.
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In [24], the authors showed that a popular feasible matching always exists in an HRLQ
instance. This has been further generalized by Nasre et al. [25] to the HRLQ case with
critical residents. While our work and [24, 25] deal with instances that admit a feasible
matching, the work of Kavitha [20] contains an algorithm to find a popular critical matching
i.e., a matching that matches maximum possible number of critical nodes and is popular
among all such matchings. Problems related to HRLQ have also been considered in [12] and
[2] in different settings. Besides this, there has been a lot of recent work on various aspects of
popular matchings and their generalizations e.g. weighted popular matchings, quasi-popular
matchings, extended formulations, popular matchings with one-sided bias, dual certificates to
popularity, popular matchings polytope and its extension complexity, hardness and algorithms
for popular matchings in case of ties in preferences etc. [21, 18, 19, 22, 6, 17, 14, 16, 4, 11].

A comparison with [5]. Cseh and Kavitha in their paper [5] presented an O(|E|)-time
algorithm for the popular edge problem. Our result follows a similar template as theirs,
although unlike that in [5] where nodes are divided into two levels, we have nodes divided into
a number of levels proportional to the number of critical nodes. Also, we need to partition
the given instance into three parts, all of which can have blocking pairs, whereas in [5], all
the blocking pairs can be put into only one of the two parts straight away.

1.4 Organization of the paper

In Section 2, we give the reductions from a marriage instance with critical men to marriage
instances without critical nodes. In Section 3, we prove Theorem 5 and discuss the popular
edge algorithm.

2 The Reductions

We describe the reductions from a marriage instance G = (A ∪ B, E) with a critical node
set C ⊆ A to marriage instances G′ and G′′ such that there is a surjective map from the
set of stable matchings in G′ to the set of minimum size popular feasible matchings in G,
and a surjective map from the set of stable matchings in G′′ to the set of dominant feasible
matchings in G, thereby proving Theorem 6. We recall some notation below, that is standard
in popular matchings literature (e.g. [13, 15, 5] etc.)

▶ Definition 7 (Edge labels). Given a matching M in G, a vertex u assigns a label +1
(respectively −1) to an edge (u, v) incident on it if (u, v) /∈ M and u prefers v over its partner
in M denoted by M(u) (respectively M(u) over v). Thus each edge (u, v) gets two labels, one
from u and the other from v.

By above definition, an edge not present in a given matching M can get one of the four
labels (+1, +1), (+1, −1), (−1, +1), (−1, −1). We use the convention that the first label in
the pair is from a vertex in A and the second label is from a vertex in B. Any vertex prefers
to be matched to one of its neighbors over remaining unmatched.

2.1 Reduction from G to G′

Given an instance G, the instance G′ is constructed as follows. Let C ⊆ A be the set of
critical nodes and ℓ = |C|.

ISAAC 2022
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The set A′: For each m ∈ C, A′ has (ℓ + 1) copies of m, denoted by the set A′
m =

{m0, m1, ..., mℓ}. We refer to mi ∈ A′ as the level i copy of m ∈ A. For each m ∈ A \ C,
A′ has only one copy of m, denoted A′

m = {m0}. Now, A′ =
⋃

m∈A

A′
m.

The set B′: All the women in B are present in B′. Additionally, corresponding to
each m ∈ C, B′ contains ℓ dummy women denoted by the set Dm = {d1

m, d2
m, d3

m, ..., dℓ
m}.

We call di
m as the level i dummy woman for m. For m ∈ A \ C, Dm = ∅. Now,

B′ = B ∪
⋃

m∈A

Dm.

We denote by Pref(m) and Pref(w) the preference lists of m ∈ A and w ∈ B respectively.
Let Pref(w)i be the list of level i copies of men present in Pref(w), if these copies exist. We
now describe the preference lists in G′. Here ◦ denotes the concatenation of two lists.

m0 s.t. m ∈ A \ C : Pref(m)
m ∈ C, i ∈ {0, . . . , ℓ}:
m0 : Pref(m), d1

m

mi : di
m, Pref(m), di+1

m , i ∈ {1, ℓ − 1})
mℓ : dℓ

m, Pref(m)
w s.t. w ∈ B : Pref(w)ℓ◦ Pref(w)ℓ−1 ◦ . . . ◦Pref(w)0

di
m,i ∈ {1, . . . , ℓ} : mi−1, mi

2.2 Correctness of the reduction
After constructing G′, the mapping of a stable matching M ′ in G′ to a minimum size
popular feasible matching M in G is a simple and natural one: For m ∈ A, define the set
M(m) = B ∩

⋃
m∈A

M ′(mi), which is the set of non-dummy women matched to any copy of

m in A′. In the rest of this section, the term image always refers to the image under this
map. It remains to prove that M is a minimum size popular feasible matching i.e., M is
a matching in G, it is feasible, popular, and no matching smaller than M is popular. We
define some terminology first. A man m ∈ A and his matched partner w ∈ B in M are said
to be at level i if (mi, w) ∈ M ′. A man m ∈ A which is unmatched in M is said to be at
level i if mi in A′ is unmatched in M ′. All unmatched women are said to be at level 0. Now
we give a sufficient condition for a minimum size popular feasible matching in G, the proof
appears in [3].

▶ Theorem 8. The image M of a stable matching M ′ in G′ is a minimum size popular
feasible matching in G and it satisfies the following conditions. Moreover, any matching
M that satisfies the following conditions for some assignment of levels to vertices of G is a
minimum size popular feasible matching.
1. All (+1, +1) edges are present in between a man at level i and a woman w at level j

where j > i.
2. All edges between a man at level i and a woman at level (i − 1) are (−1, −1) edges.
3. No edge is present between a man at level i and a woman at level j where j ≤ (i − 2),

and all the edges of M are between vertices at the same level.
4. All unmatched men are at level 0.

2.3 Surjectivity of the map
In this section, the goal is to prove the following theorem:

▶ Theorem 9. For every minimum size popular feasible matching M in G, there exists a
stable matching M ′ in G′ such that M is the image of M ′.
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To show the surjectivity i.e. the fact that every minimum size popular feasible matching M

in G has a stable matching M ′ in G′ as its pre-image, we first assign levels to nodes in G

with respect to M . From the assignment of levels to nodes in G, the pre-image M ′ is then
immediate. The assignment of levels is described in Algorithm 1. In the pseudocode for
Algorithm 1, we denote the level of a vertex v by level(v), and the matched partner of v

in M as M(v). The proof of Theorem 9 is immediate from the correctness of Algorithm 1,
proved below.

Algorithm 1 Leveling Algorithm for minimum size popular feasible matching.
Input: A marriage instance G, set of critical nodes C ⊆ A, a minimum size popular

feasible matching M in G

Output: Assignment of levels to the vertices in G based on the matching M .
1: Initially all the men and the women are assigned level 0
2: flag = true
3: while flag = true do
4: check1 = 0, check2 = 0, check3 = 0
5: while ∃ m ∈ A, w ∈ B s.t. level(m) = i, level(w) = j, j ≤ i, and (m, w) is a (+1, +1)

edge do
6: Set level(w) = level(M(w)) = i + 1 ▷ Note that w cannot be unmatched in M

because then M \ (m, M(m)) ∪ (m, w) is more popular than M and hence M would not
be a popular feasible matching.

7: check1 = 1
8: while ∃ m ∈ A, w ∈ B, s.t. level(m) = i, level(w) = j, j < i and (m, w) is a (+1, −1)

or a (−1, +1) edge do
9: Set level(w) = level(M(w)) = i ▷ Note that w cannot be unmatched in M

because then M would not be a popular feasible matching.
10: check2 = 1
11: while ∃m ∈ A, w ∈ B s.t. level(m) = i, level(w) = j, j ≤ (i − 2) and (m, w) is a

(−1, −1) edge do
12: Set level(w) = level(M(w)) = i − 1 ▷ Note that w cannot be unmatched in M

because then M would not be a PFM.
13: check3 = 1
14: if check1 = 0 and check2 = 0 and check3 = 0 then
15: flag = false

In Algorithm 1, the Boolean variables check1, check2 and check3 are used to check whether
the assignment of levels at any point violates one of the conditions of Theorem 8. If not,
then we set flag to false and the algorithm terminates. In Theorem 10 below, we show that
no level is empty. Since level of a vertex never reduces during the execution of Algorithm 1,
it implies that the algorithm terminates.

▶ Theorem 10. For a man m at level i there exists (i) either a woman w at each level j,
where j < i, or (ii) an unmatched man m0, if j = 0 such that there is an alternating path
from w to m or from m0 to m which consists of (i − j) more (+1, +1) edges than (−1, −1)
edges.

The following corollary is a straight forward consequence of Theorem 10 and the fact that
M is a minimum size popular feasible matching.

ISAAC 2022
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▶ Corollary 11. All non-critical men and unmatched women are assigned level zero and the
critical men are assigned level less than or equal to |C| by Algorithm 1.

Proof of Corollary 11. Suppose there is a non-critical man mi at level i, i > 0. Now, from
Theorem 10, there is an alternating path, say ρ, from a woman w0 at level 0 or from an
unmatched man m0 to mi which has i more (+1, +1) edges than (−1, −1) edges. Let
N = M ⊕ ρ. Observe that Algorithm 1 assigns level 0 to all the unmatched men in M , so mi

is matched. Now, it is easy to see that N is also a popular feasible matching. But |N | < |M |,
so this contradicts the assumption that M is a minimum size popular feasible matching. ◀

After assigning levels to the vertices in G, the pre-image of M i.e. a stable matching M ′ in
G′ is constructed as follows. If a man m in G gets assigned level i then M ′(mi) = M(m). If
m is unmatched in M , then m /∈ C by feasibility of M , and m gets level 0 by Corollary 11.
Then we leave m unmatched in M ′ as well. For j < i, mj gets matched to the dummy
woman dj+1

m and for j > i, mj gets matched to the dummy woman dj
m. We give the proof of

Theorem 12 in [3], where we prove that M ′ is stable in G′.

▶ Theorem 12. The matching M ′ is a stable matching in G′.

Similar reduction and proofs for dominant feasible matching appear in [3].

3 The Popular Edge Algorithm

Now we are ready to prove Theorem 5, from which, the popular edge algorithm is as follows.
For a given edge e = (m, w), we construct G′, G′′ using reductions from Section 2 and check
if any of the edges (mi, w) in G′ or G′′ belong to a stable matching in the respective instance
using Knuth’s algorithm for stable edges [23] If there is a minimum size popular feasible
matching or a dominant feasible matching containing e then there is nothing to prove. So we
need to prove the theorem for an edge e that is contained in a popular feasible matching M

that is neither a minimum size popular feasible matching nor a dominant feasible matching,
and show that there is also a minimum size popular feasible matching or a dominant feasible
matching containing e. The proof of Theorem 5 involves the following two results:

▶ Theorem 13. If M is neither a minimum size popular feasible matching or a dominant
feasible matching, then A ∪ B can be partitioned into three parts Ad ∪ Bd, Am ∪ Bm and
Ar ∪ Br such that no edge of M is present in Ai × Bj, i ̸= j, where i, j ∈ {d, m, r}.

We prove Theorem 13 in Section 3.1. Because of Theorem 13, it follows that the partition
of A ∪ B also induces a partition of M into three parts, say Md, Mm, Mr respectively. The
following theorem shows that either Md or Mm can be transformed into another matching
so that the resulting matching is a minimum size popular feasible matching or a dominant
feasible matching in G.

▶ Theorem 14. There exist algorithms to transform:
1. the matching Md to another matching M ′

m in Ad ∪ Bd such that M∗
m = M ′

m∪̇Mm∪̇Mr is
a minimum size popular feasible matching in G

2. the matching Mm to another matching M ′
d in Am ∪ Bm such that M∗

d = Md∪̇M ′
d∪̇Mr is

a dominant feasible matching in G.
A proof of Theorem 14 is given in Section 3.2. From Theorems 13 and 14, Theorem 5 follows:

Proof of Theorem 5. Depending on the part that contains the given edge e, one of the two
transformations mentioned in Theorem 14 can be applied: If e ∈ Mm (respectively e ∈ Md),
apply the first (respectively, second) transformation from Theorem 14 i.e. convert the
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matching Md to M ′
m (Mm to M ′

d). Then, by Theorem 14, the resulting matching M∗
m (M∗

d )
is a minimum size popular feasible matching (dominant feasible matching) in G containing
e. If e ∈ Mr, we can apply any one of the two transformations mentioned in Theorem 14.
Thus, in all the three cases, we get a minimum size popular feasible matching or a dominant
feasible matching containing e. This completes the proof of Theorem 5. ◀

3.1 Partition Method
We prove Theorem 13 now. For partitioning A ∪ B and M , we first assign levels to the
vertices of A ∪ B using Algorithm 1 described in Section 2.1. We refer to the level of a
vertex u ∈ A ∪ B as level(u). Since M is a popular feasible matching but not a minimum
size popular feasible matching by assumption, all the non-critical men may not be at level 0.
However, the following holds:

▶ Lemma 15. After applying Algorithm 1 on a popular feasible matching M all non-critical
men are assigned levels 0 or 1.

Proof. If there is a non-critical man m who is assigned level i ≥ 2, then according to
Theorem 10 there exists a woman at level 0 such that m has an alternating path ρ from w

with i more (+1, +1) edges than (−1, −1) edges. Since i ≥ 2, the matching M ⊕ ρ is feasible
and is more popular than M , contradicting the assumption that M is a popular feasible
matching . Hence, all non-critical men are assigned levels 0 or 1. ◀

The following notions will be used in the partitioning procedure.

▶ Definition 16 (Size Reducing Alternating Path (SRAP)). An alternating path ρ with respect
to a matching M is called as SRAP if the following conditions are satisfied:
1. The number of (+1, +1) edges in ρ is one more than the number of (−1, −1) edges in ρ,
2. It starts in a matched woman at level 0.
3. It ends in a matched non-critical man at level 1.

▶ Definition 17 (Size Increasing Alternating Path (SIAP)). An alternating path ρ with respect
to a matching M is called an SIAP if the following conditions are satisfied.
1. There are an equal number of (+1, +1) and (−1, −1) edges in ρ.
2. Its end-points are an unmatched man and an unmatched woman.
Intuitively, if ρ is an SIAP (respectively an SRAP), then M ⊕ ρ gives a larger (respectively,
smaller) popular feasible matching. Theorem 18 below shows that an SRAP and an SIAP
must exist if M is not a minimum size popular feasible matching or a dominant feasible
matching. We give the detailed proof in [3].

▶ Theorem 18. If a popular feasible matching M is neither a minimum size popular feasible
matching nor a dominant feasible matching, then G must contain an SRAP and an SIAP
with respect to M .

Proof. Suppose Mmin is a minimum size popular feasible matching. Consider M ⊕ Mmin

which is a disjoint union of alternating paths and cycles. Since |Mmin| < |M |, there
exists an alternating path ρ in M ⊕ Mmin whose both end-points are matched in M . By
popularity of M and Mmin, ρ must have one more (+1, +1) edge than (−1, −1) edges so
that ϕ(M ⊕ ρ, M) = ϕ(M, M ⊕ ρ). By feasibility of Mmin, ρ must have a non-critical man m

as one of its end-points, since m is unmatched in Mmin. The level assigned to m has to be 1
because non-critical men can only be assigned levels 0 or 1 by Lemma 15. Moreover, since ρ

has 1 more (+1, +1) edge than (−1, −1) edges, the level assigned to the other end-point w is
0. Recall that w is matched in M and unmatched in Mmin. Hence ρ is an SRAP.
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Now suppose Md is a dominant feasible matching in G. The graph M ⊕ Md is a disjoint
union of alternating paths and cycles. Since |M | < |Md|, there must exist an alternating
path ρ in M ⊕ Md whose end-points are unmatched in M and matched in Md. Here, ρ must
have an equal number of (+1, +1) and (−1, −1) edges, otherwise (M ⊕ ρ) becomes a more
popular matching than M . Hence M has an SIAP. ◀

The partitioning is based on SIAP and SRAP, so the following theorem is essential for
the partitioning to be well-defined. Theorem 19 below shows that no vertex belongs to both
an SRAP and an SIAP:

▶ Theorem 19. Given a popular feasible matching M , no vertex in G belongs to both an
SIAP and an SRAP.

Proof. Note that if a man m belongs to both an SIAP ρ and an SRAP σ, then his matched
partner M(m) must belong to both ρ and σ too. Also note that no man or woman unmatched
in M can belong to both ρ and σ because all the men and women in an SRAP are matched
in M . Suppose a matched pair (m, w) in M belongs to both ρ and σ. Let mI and wI be the
end-points of ρ and mR and wR be the end-points of σ. Let the level assigned to the pair
(m, w) be i(m,w). Since mI and wI are unmatched in M , both of them are assigned level 0
by Corollary 11. Now, the alternating subpath ρI of ρ from wI to m must contain i(m,w)
more (−1, −1) edges than (+1, +1) edges. This is because all the adjacent vertices of the
women present in level i must be present at a level j where j ≤ (i + 1). So, ρI can go up by
only one level that is from a level i woman it can only go to a level i + 1 man and, from the
properties of Algorithm 1, we also know that all the edges between level i women and level
(i + 1) men are (−1, −1) edges. Now, since an SIAP has an equal number of (+1, +1) and
(−1, −1) edges, we have that the alternating subpath ρI′ of ρ from mI to m must contain
i(m,w) more (+1, +1) edges than (−1, −1) edges.

By a similar argument, the alternating subpath σR of σ starting from m to mR consists
of (i(m,w) − 1) more (−1, −1) edges than (+1, +1) edges. Thus the path β = ρI′ ◦ σR, where
◦ denotes concatenation, contains more (+1, +1) edges than (−1, −1) edges. This is because
ρI′ contains i(m,w) more (+1, +1) edges than (−1, −1) edges, and then ρR has (i(m,w) − 1)
more (−1, −1) edges than (+1, +1) edges. The matching M ⊕ β is more popular than M

because β has one more (+1, +1) edge than the number of (−1, −1) edges, and M ⊕ β has
the same size as that of M . This contradicts the fact that M is a popular feasible matching.
Hence, no vertex in G can belong to both an SIAP and an SRAP for a given matching M . ◀

Now we give the method to partition A ∪ B below, as required by Theorem 13.

3.1.1 Partitioning A ∪ B

(a) Initialize Ad, Am, Ar, Bd, Bm, Br to empty sets.
(b) For all unmatched men (mu) and unmatched women (wu) in M we do: Am = Am ∪{mu}

and Bm = Bm ∪ {wu}
(c) From Theorem 18, we know that M must have an SRAP and an SIAP. For all men md

and women wd in each SRAP do: Ad = Ad ∪ {md} and Bd = Bd ∪ {wd}
(d) For all men m and women w in each SIAP do: Am = Am ∪ {m} and Bm = Bm ∪ {w}
(e) While there exists a (+1, +1) edge (m, w) such that m ∈ A\(Ad ∪ Am), level(m) = i,

level(w) = j, j ≤ i + 1 do: Ad = Ad ∪ {m} and Bd = Bd ∪ {M(m)}
(f) While there exists a (+1, +1) edge (m, w) such that m ∈ Am, level(m) = i, w ∈

B\(Bd ∪ Bm), level(w) = j, j ≤ i + 1, do: Bm = Bm ∪ {w} and Am = Am ∪ {M(w)}
(g) Ar = A\(Ad ∪ Am) and Br = B\(Bd ∪ Bm). Let Md, Mm, Mr be the parts of M present

in the induced subgraph on Ad ∪ Bd, Am ∪ Bm, and Ar ∪ Br respectively.



K. Chatterjee and P. Nimbhorkar 54:11

To complete the proof of Theorem 13, we need to show that the above procedure partitions
A ∪ B i.e., the three sets Ad ∪ Bd, Am ∪ Bm, Ar ∪ Br are disjoint. The partition procedure
always puts a vertex and its matched partner in the same partition. So it is immediate that
Md, Mm, Mr partition M . Lemmas 20, 21, 22,23 are useful in showing that the partitioning
is well-defined, and in proving correctness of the transformations mentioned in Theorem 14.
We retain the same assignment of levels to all the vertices as was done before partitioning.
We state Lemmas here. The proofs of the lemmas are given in [3].

▶ Lemma 20. For a man m ∈ Am at level i, there is an alternating path with i more (+1, +1)
edges than (−1, −1) edges which starts at mI and ends in m where mI is an unmatched man
and also an endpoint of an SIAP with respect to M . Analogously, for a woman w ∈ Bd at
level i there is an alternating path with (i − 1) more (−1, −1) edges than (+1, +1) edges
which starts at mR and ends in w where mR is a non-critical man and also an endpoint of
an SRAP with respect to M .

▶ Lemma 21. For an edge (m, w) ∈ Am × Bd in G we have the following
(i) If m is at level i and w is at level (i + 1) then the edge (m, w) is not a (+1, +1) edge.
(ii) If m is at level i then w cannot be at level (i − 1) or below.
(iii) If m is at level i and w is at level i then (m, w) is a (−1, −1) edge.

▶ Lemma 22. For an edge (m, w) ∈ Ar × Bd in G we have the following
(i) If m is at level i and w is at level (i + 1) then the edge (m, w) is not a (+1, +1) edge.
(ii) If m is at level i then w cannot be at level (i − 1) or below.
(iii) If m is at level i and w is at level i then (m, w) is a (−1, −1) edge.

▶ Lemma 23. For a pair (m, w) ∈ Am × Br we have the following
(i) If m is at level i and w is at level (i + 1) then the edge (m, w) is not a (+1, +1) edge.
(ii) If m is at level i then w cannot be at level (i − 1) or below.
(iii) If m is at level i and w is at level i then (m, w) is a (−1, −1) edge.

3.2 Transformation Procedures
We prove Theorem 14 now. Recall that, before partitioning A ∪ B, we have assigned levels,
denoted by level(u) to all the vertices u ∈ A ∪ B according to M using Algorithm 1, and
that level(u) = level(M(u)). Our transformation procedures use these levels.

3.2.1 Transformation of Md to M ′
m

Following are the steps involved in the transformation, we refer to this as Transformation 1.
(a) For m ∈ Ad, M(m) ∈ Bd, if level(m) = level(M(m)) = i, i ≥ 1, then set level(m) =

level(M(m)) = i − 1
(b) Mark the matched edges present among level 0 vertices as unmatched edges. So all the

level 0 men in Ad are not assigned to any partner now.
(c) Execute a proposal algorithm now. The men at level 0 start proposing from the beginning

of their preference lists. A woman prefers a man at level j more than a man at level i

where j > i. If a man m proposes to a woman w then w will accept m’s proposal iff w is
unmatched or if w prefers m more than her matched partner.

(d) If a critical man m at level i where i < |C| exhausts his preference list while proposing
and remains unmatched then we assign level (i + 1) to m and m starts proposing again
from the beginning of his preference list.

Let M ′
m be the matching obtained after applying the above steps on the induced subgraph

on Ad ∪ Bd, and let M∗
m = M ′

m∪̇Mm∪̇Mr be the resulting matching in G.
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3.2.2 Transformation of Mm to M ′
d

This is referred to as Transformation 2 here onwards, and involves promoting all the unmatched
men to level 1 and executing a similar proposal algorithm as above. Men that get unmatched
during the course of the proposal algorithm continue proposing to women further down in
their preference list. If they exhaust their preference list without getting matched, then they
are promoted to the next higher level and continue proposing, however, non-critical men are
not promoted beyond level 1. We give the formal transformation in [3]. Let the resulting
matching in G be M∗

d = M ′
m∪̇Md∪̇Mr.

The following property is crucially used in proving that M∗
m is a minimum size popular

feasible matching in G whereas M∗
d is a dominant feasible matching in G.

▶ Lemma 24. For a man m ∈ Ad, if level(m) = i, i > 0 before applying Transformation 1
on Ad ∪ Bd then, after applying Transformation 1, level(m) ∈ {i − 1, i}. The same holds
for a woman w ∈ Bd. Similarly, for a man m ∈ Am, if level(m) = i before applying
Transformation 2 on Am ∪ Bm then, after applying Transformation 2, level(m) ∈ {i, i + 1}.
The same holds for a woman w ∈ Bm.

Proof. We prove the property for Transformation 2. The proof for Transformation 1 is
analogous.

Suppose there exists a man m ∈ Am who was assigned level i before applying Transform-
ation 2 on Am ∪ Bm but after applying Transformation 2 suppose m is assigned level (i + 2)
or more. In Transformation 2 we convert the matching Mm to M∗

d . If m is unmatched in
Mm then the level of m in Mm was 0 and it can be at most at level 1 in M∗

d because m is a
non-critical man. So, m cannot be an unmatched man because it contradicts our assumption
that the level of m in M∗

d is (i + 2) or more. Suppose m is matched to a woman w in Mm

and the level of m is i. While applying Transformation 2 w rejected m because w got a
proposal from some man m′ who is better than m and is at level i. Note that w must have
rejected m while applying Transformation 2 because after applying Transformation 2 level
of m changes to (i + 2) or more from i. Now, since m is assigned level (i + 2) or more so
m exhausts his preference list while proposing and remains unmatched at level i. So, m

gets promoted to level (i + 1) and he starts proposing from the beginning of his preference
list. Again since m is assigned level (i + 2) or more so m exhausts his preference list while
proposing and remains unmatched at level i + 1 but this is not possible because in the worst
case m can propose to w and get matched to her. This is because w would reject m′ which
is at level i and m is at level (i + 1). Hence w would accept m’s proposal and the level of w

changes to (i + 1). Note that no man m′′ can get promoted from level i to level (i + 1) and
breaks the engagement of m and w because if this happens then in Mm the edge (m′′, w)
is a (+1, +1) edge but since both m′′ and w are in the same level i in Mm hence (m′′, w)
cannot be a (+1, +1) edge. Hence, m does not exhaust his preference list while proposing at
level i + 1. So, after applying Transformation 2 the level of m can be either i or (i + 1). ◀

Theorems 25 and 26 show that the matchings output by the transformations are a
minimum size popular feasible matching and a dominant feasible matching in G respectively.
We prove Theorem 26 in [3].

▶ Theorem 25. M∗
m = (M ′

m ∪ Mm ∪ Mr) is a minimum size popular feasible matching.

Proof. The four conditions given in Theorem 8 are sufficient to show that a matching is a
minimum size popular feasible matching. We show that M ′ satisfies all of them.

Before applying the Transformation 1, M satisfied conditions 1 to 3 of Theorem 8 because
of the way Algorithm 1 assigns levels.After applying Transformation 1, the matching Md

changes to M ′
m and the levels of the vertices in Ad ∪ Bd decrease by at most 1 (Lemma 24).
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So, if M ′ does not satisfy conditions 1 − 3 of Theorem 8 then it has to be because of the
pairs present in Am × Bd and Ar × Bd. Now we show that the conditions are still satisfied.
Below the proofs are given only for the pairs in Am × Bd. Proofs for the pairs in Ar × Bd

are similar.
Let (m, w) be an edge in Am × Bd. From Lemma 21 (ii), if the level of w is i with respect

to M , then m has level j ≤ i. Now, after applying the Transformation 1, the level of w

either remains i or becomes (i − 1). In the former case, the first condition of Theorem 8 is
satisfied.In the later case, we have three possibilities: (a) either j < (i − 1) or (b) j = (i − 1),
or (c) j = i. In case (b), (m, w) is not a (+1, +1) edge (Lemma 21 (i)), in case (c), (m, w)
is a (−1, −1) edge (Lemma 21 (iii)). Hence, there is no (+1, +1) edge in between a pair
(m, w) ∈ Am × Bd in the matching M ′ where m is at level j and w is at level i such that
j ≤ i. Hence, condition 1 is satisfied.

From Lemma 21 (ii), if the level of w is i in M , then m has level j ≤ i. If level of w

changes to (i − 1) after applying the Transformation 1, and if level of m is i, then due to
Lemma 21(iii), (m, w) is a (−1, −1) edge. Thus the condition 2 of Theorem 8 is satisfied.

From Lemma 21 (i), if w is at level i with respect to M , then level of m is j ≤ i. If level
of w changes to (i − 1), the conditions of Theorem 8 are still satisfied because no man in Am

adjacent to w is present at level (i + 1) or above.
We know that all the unmatched men are non-critical men. In the first step of Transform-

ation 1, we decrease the level of each vertex by 1. Since the level of a non-critical man is at
most 1 to begin with, and they are never promoted to a higher level in the Transformation 1,
all the vertices unmatched in M∗

m remain at level 0. Since all the conditions of Theorem 8
are satisfied, M∗

m is a minimum size popular feasible matching. ◀

The following is an analogous result for Transformation 2. We refer the proof to [3].

▶ Theorem 26. M∗
d = (Md ∪ M ′

d ∪ Mr) is a dominant feasible matching in G.
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