
Simon’s Congruence Pattern Matching
Sungmin Kim !

Department of Computer Science, Yonsei University, Seoul, Republic of Korea

Sang-Ki Ko !

Department of Computer Science & Engineering, Kangwon National University, Chuncheon-si,
Republic of Korea

Yo-Sub Han1 !

Department of Computer Science, Yonsei University, Seoul, Republic of Korea

Abstract
Testing Simon’s congruence asks whether two strings have the same set of subsequences of length
no greater than a given integer. In the light of the recent discovery of an optimal linear algorithm
for testing Simon’s congruence, we solve the Simon’s congruence pattern matching problem. The
problem requires finding all substrings of a text that are congruent to a pattern under the Simon’s
congruence. Our algorithm efficiently solves the problem in linear time in the length of the text
by reusing results from previous computations with the help of new data structures called X-trees
and Y-trees. Moreover, we define and solve variants of the Simon’s congruence pattern matching
problem. They require finding the longest and shortest substring of the text as well as the shortest
subsequence of the text which is congruent to the pattern under the Simon’s congruence. Two more
variants which ask for the longest congruent subsequence of the text and optimizing the pattern
matching problem are left as open problems.

2012 ACM Subject Classification Theory of computation → Pattern matching

Keywords and phrases pattern matching, Simon’s congruence, string algorithm, data structure

Digital Object Identifier 10.4230/LIPIcs.ISAAC.2022.60

Funding This research was supported by the NRF grant (NRF-2020R1A4A3079947) and the AI
Graduate School Program (No. 2020-0-01361) funded by the Korea government (MSIT).

1 Introduction

In the realm of string algorithms, subsequences are extensively studied with a lot of applica-
tions [3, 10, 14, 16]. Problems related to subsequences can be formulated using the string
equivalence operation, which has many perks such as linear pattern matching time by the
KMP algorithm [12] and linear construction of suffix trees [17]. For example, the longest
common subsequence problem requires finding the longest subsequence of a string w1 that
is equal to some subsequence of a string w2. Variants of the longest common subsequence
such as the longest common increasing subsequence [1, 4] can also be interpreted as finding
the longest common subsequence between three strings, where a string w3 is obtained by
sorting string w1w2. Meanwhile, recent findings on a congruence relation made it feasible
to construct new problems that capture stronger properties related to subsequences. This
congruence relation is called Simon’s congruence defined by Simon in his study of piecewise
testable languages [15]. The relation is based on the equivalence of the subsequence set rather
than the equivalence of individual subsequences.

Given a positive integer k and a string w, let Sk(w) denote the set of all subsequences of
w with length no more than k. We say that two strings w1 and w2 are ∼k-congruent if the
subsequence sets Sk(w1) and Sk(w2) are equal. For example, for k = 2, strings w1 = ababb

1 Corresponding author
© Sungmin Kim, Sang-Ki Ko, and Yo-Sub Han;
licensed under Creative Commons License CC-BY 4.0

33rd International Symposium on Algorithms and Computation (ISAAC 2022).
Editors: Sang Won Bae and Heejin Park; Article No. 60; pp. 60:1–60:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:rena_rio@yonsei.ac.kr
https://orcid.org/0000-0003-3153-0314
mailto:sangkiko@kangwon.ac.kr
https://orcid.org/0000-0002-5406-5104
mailto:emmous@yonsei.ac.kr
https://doi.org/10.4230/LIPIcs.ISAAC.2022.60
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

60:2 Simon’s Congruence Pattern Matching

and w2 = baba satisfy w1 ∼2 w2 because the subsequence sets Sk(w1) and Sk(w2) are both
{aa, ab, ba, bb, a, b, λ}. On the other hand, if k = 3, then there exists a string u = abb that is
a subsequence of w1 but not a subsequence of w2. Thus, we have w1 ̸∼3 w2. The Simon’s
congruence decision problem asks whether or not w1 ∼k w2.

For binary strings, Hébrard [9] presented an O(|w1|+ |w2|) algorithm. For an arbitrary
alphabet Σ, Garel [7] suggested an O(|Σ||w1|) algorithm when w1 = w2σ for a character σ;
namely, w2 is obtained from w1 by removing the last character σ. Fleischer and Kufleitner [5]
designed a normalization algorithm that reduces all ∼k-congruent strings into a single string
called the ShortLex normal form string and tested Simon’s congruence with the string
equivalence operation in O(|Σ|(|w1| + |w2|)) time. Thus, until recently, testing Simon’s
congruence for general conditions was a superlinear process, which was a giant hurdle in
formulating general problems.

Recently, Barker et al. [2] improved Fleischer and Kufleitner’s normalization algorithm
and obtained a linear time algorithm. Later, Gawrychowski et al. [8] proposed data structures
that help find the maximum k value such that w1 ∼k w2 in linear time. Since the decision
and the optimization problems for Simon’s congruence can be solved in linear time, we are
now ready to apply Simon’s congruence to practical contexts such as pattern matching.

While Gawrychowski and his co-authors [8] suggested an optimal algorithm for optimizing
k for Simon’s congruence, they also proposed three open problems, where two are based on
Simon’s congruence and the other is based on a variant of Simon’s congruence. The first
problem, named LangSimK, is a membership testing problem. Given a set S of strings,
which is either regular or context-free, a string w and an integer k, the problem asks to
decide if there is a string x ∈ S such that w ∼k x. Kim et al. [11] proved that the problem is
NP-complete in general and presented an efficient algorithm when the alphabet size is fixed.

▶ Problem 1 (Gawrychowski et al. [8]). The remaining two problems are as follows:
Simon’s Congruence Pattern Matching (MatchSimK): Given a pattern P, a text T, and
an integer k, find all substrings of T that are ∼k-congruent to P.
Subsequence Set Inclusion Problem (SubseqSetInclusion): Given two strings w1 and
w2, find the maximum integer k such that Sk(w1) ⊆ Sk(w2).

We tackle MatchSimK from the string pattern matching perspective, and design efficient
algorithms.

Our contributions
We solve MatchSimK in linear time in the size of a text T. Our linear-time algorithm
relies on data structures called X-trees and Y-trees that reduce the number of testings
and reuse the computation results of the previous computations. Then, we study possible
variants of MatchSimK with different objectives: The first two variants are called the
longest congruent substring problem (LCongStrK) and the shortest congruent substring
problem (SCongStrK).

▶ Problem 2. Since we aim to extend problems based on the string equivalence operation
into problems that use Simon’s congruence, we first modify the longest common substring
problem to use Simon’s congruence.

Longest Congruent Substring (LCongStrK): Given a pattern P, a text T, and an integer k,
find a longest substring of T that is ∼k-congruent to P.
Shortest Congruent Substring (SCongStrK): Given a pattern P, a text T, and an
integer k, find a shortest substring of T that is ∼k-congruent to P.

S. Kim, S.-K. Ko, and Y.-S. Han 60:3

LCongStrK immediately extends the longest common substring problem by specifying
that the returned substring of T should be ∼k-congruent to P, instead of being equal to
some substring of P. On the other hand, SCongStrK is interesting because its string
equivalence counterpart, the shortest common substring problem, is nonsensical. The next
set of problems, the longest congruent subsequence problem (LCongSeqK) and the shortest
congruent subsequence problem (SCongSeqK), modifies LCongStrK and SCongStrK
to consider subsequences as follows:

▶ Problem 3. The listed problems also extend the longest common subsequence problem.
Longest Congruent Subsequence (LCongSeqK): Given a pattern P, a text T, and an
integer k, find a longest subsequence of T that is ∼k-congruent to P.
Shortest Congruent Subsequence (SCongSeqK): Given a pattern P, a text T, and an
integer k, find a shortest subsequence of T that is ∼k-congruent to P.

We solve the LCongStrK, SCongStrK SCongSeqK problems, and leave the LCong-
SeqK problem as an open problem.

2 Preliminaries

String Notations
For a string w over an alphabet Σ, alph(w) denotes the set of characters that appears in
w. The length |w| of w is the number of characters in w. We denote the empty string as
λ. Given a string w = w[0]w[1] · · ·w[n − 1] over Σ such that w[i] ∈ Σ for 0 ≤ i < n, we
assign a space position of w from the space right before w[0] as 0 toward the space right
after w[n − 1] as n; namely, we map 0, 1, . . . , n to the corresponding positions. Then, we
call w[i] the corresponding character of a space position i. Given two space positions i, j

such that i ≤ j, we define a string w[i]w[i + 1] . . . w[j − 1] to be a substring of w, which
is denoted by w[i : j]. For convenience, we express the last character of w as w[−1] and
the substring w[0 : |w| − 1] as w[: −1]. A string u = w[a1]w[a2] · · ·w[ai] is a subsequence
of w if 0 ≤ a1 < a2 < · · · < ai ≤ |w| − 1. The substring relation is written as u ≺s w

and the subsequence relation is written as u ≺ w. The set of subsequences of length at
most k is denoted by Sk(w) = {u ∈ Σ∗ | u ≺ w, |u| ≤ k}. Finally, the reversal wR =
w[|w| − 1]w[|w| − 2] · · ·w[2]w[1]w[0] of string w is the string obtained by concatenating
characters of w in the reverse order of w.

Rankers and Coordinates
A function ranker is defined as follows: given a string w, a space position i of w, and a
character σ ∈ Σ, R(w, i, σ) returns a space position of w whose corresponding character is
the nearest occurrence of σ from i towards a specific direction [5, 13, 18]. There are two types
of ranker directions; from left to right (X-type) and from right to left (Y-type). Thus, an X-
ranker RX(w, i, σ) returns a space position j > i if w[j− 1] = σ and the substring w[i : j− 1]
does not contain σ. If such a position does not exist, RX(w, i, σ) = ∞. Similarly, a Y-
ranker RY (w, i, σ) returns a space position j < i if w[j] = σ and the substring w[j + 1 : i]
does not contain σ. When the output is not defined, then RY (w, i, σ) = −1. For example, for
w = aabcbabc, we have RX(w, 2, a) = 6 since w[2 : 5] = bcb does not contain a and w[5] = a.

A ranker chain R(w, i, x) is a ranker that takes a string instead of a single character for its
third argument. Ranker chains can be recursively defined as RX(w, RX(w, i, x[0]), x[1 : |x|])
or RY (w, RY (w, i, x[−1]), x[: −1]). Semantically, RX(w, 0, x) refers to the smallest space

ISAAC 2022

60:4 Simon’s Congruence Pattern Matching

position j such that x ≺ w[0 : j]. Similarly, RY (w, |w|, x) is the largest space position j such
that x ≺ w[j : |w|]. For example, the X-ranker value for w = ababaab, i = 0, and x = abb is
RX(w, 0, abb) = RX(w, 1, bb) = RX(w, 2, b) = 4.

Fleischer and Kufleitner [5] defined the X- and Y-coordinates of space position i of string w

to be the length of the shortest string x such that RX(w, 0, x) = i + 1 and RY (w, |w|, x) = i,
respectively. We denote each as X(w, i) and Y (w, i). For the same example w = ababaab, we
have X(w, 6) = 3 because x = bbb is the shortest string such that RX(w, 0, x) = 6. Kim et
al. [11] extended the notion of coordinates by defining X- and Y-vectors, which are Σ-indexed
arrays of potential X- and Y-coordinates if such a character is inserted at space position i.
Formally, −→X (w, i)[σ] = X(w[0 : i]σw[i : |w|], i) and −→Y (w, i)[σ] = Y (w[0 : i]σw[i : |w|], i).
Computing −→X (w, i+1) from −→X (w, i) or computing −→Y (w, i) from −→Y (w, i+1) is completed in |Σ|
time by incrementing the cell corresponding to character w[i] by one and then setting the value
of all cells that exceed the value at cell w[i] to that value. Recall our example w = ababaab.
We have −→X (w, 6) = [5, 3] because X(ababaaab, 6) = 5 and X(ababaabb, 6) = 3 If we compute
−→
X (w, 7) from −→X (w, 6), we first set −→X (w, 7)[b] = −→X (w, 6)[b] + 1 because w[6] = b. Since
−→
X (w, 6)[a] = 5 exceeds −→X (w, 7)[b] = 4, we set −→X (w, 7)[a] = −→X (w, 7)[b]. We refer to this
single-step vector computation as one iteration of the vector computation and denote the
function as Iter(−→v , σ) for a vector −→v and a character σ. Also, for an integer i we define
a uniform vector −→U (i) as the vector with all cell values equal to i. Vector addition and
subtraction follow the general definition for vector operations. Barker et al. [2] defined the
k-universality as follows: A string w is k-universal if Sk(w) is the set of all strings of length
no greater than k. An example of a 3-universal string over Σ = {a, b, c} is abcbacccba.

Arch Factorization

Given a string w, the jth arch of w, written as arj(w), is the minimal substring of w that
starts at the end of the j − 1th arch and satisfies alph(ari(w)) = Σ. We denote the sum of
the lengths of arches 1 to i by ArchSum(i, w) =

∑i
j=1 |arj(w)| and define ArchSum(0, w) = 0.

If no such space position j > ArchSum(i, w) satisfies alph(w[ArchSum(i, w) : j]) = Σ, then
the integer i, which is the number of arches of w, becomes the universality index ι(w) [2]
of w. The universality index refers to the maximum k for which w is k-universal. We
call the string w[ArchSum(ι(w), w) : |w|] – the suffix of w that starts at the space posi-
tion ArchSum(ι(w), w) – the rest, and denote it as rest(w). Finally, w can be decomposed
as ar1(w)ar2(w) · · · arι(w)(w)rest(w). This factorization scheme is called the arch factoriz-
ation of w [9]. The arch factorization defines the modus of a string such that modus(w) =
ar1(w)[−1]ar2(w)[−1] · · · arι(w)(w)[−1]. For example, if we have w = aacabccbcbaacbcbc

over Σ = {a, b, c}, we find ar1(w) = aacab, ar2(w) = ccbcba, and ar3(w) = acb. Since
there cannot be any more arches, we set ι(w) = 3 and rest(w) = cbc. Thus, we have
w = ar1(w)ar2(w)ar3(w)rest(w) and modus(w) = bab. Note that we can apply arch factor-
ization to wR as well as w. We call the arches of w and wR the X-arches and Y-arches of w,
respectively. From a pair of overlapping X-arch and Y-arch, we construct an arch link, which is
the maximal substring of w where the two arches overlap. They are called arch links because X-
and Y-arches are chained together by a series of arch links. There are two types of arch links.
We define YX-links of w as the substrings w[ArchSum(i, w) : |w| − ArchSum(ι(w) − i, wR)]
for all nonnegative integers i ≤ ι(w). Likewise, we define XY-links of w as the sub-
strings w[|w|−ArchSum(ι(w)−i, wR) : ArchSum(i+1, w)] for all nonnegative integers i < ι(w).
For YX-links, the Y-arch comes before the X-arch, while for XY-links, the X-arch comes
before the Y-arch. Using our example w = aacabccbcbaacbcbc, the arch factorization of the

S. Kim, S.-K. Ko, and Y.-S. Han 60:5

reverse of w results in ar1(wR)R = acbcbc, ar2(wR)R = cba, ar3(wR)R = abccb, and finally
rest(wR)R = aac. Thus, we have YX-links w[0 : 3], w[5 : 8], w[11 : 11], and w[14 : 17].
On the other hand, XY-links of w include w[3 : 5], w[8 : 11], and w[11 : 14]. A similar
factorization scheme was used by Fleischmann et al. [6] as well.

X-arches:

Y-arches:

:YX-link

:XY-link
a b c b a c a a b a c c c b a c c a a b

a a

b a

Figure 1 An illustration of X- and Y-arches of the string abcbacaabacccbaccaab. An XY-link, a
YX-link, and the arches that produce them are highlighted to emphasize the difference between the
two types of links.

Simon’s Congruence

Given two strings w1 and w2, we say w1 and w2 are ∼k-congruent if Sk(w1) = Sk(w2).
The congruence class defined by ∼k and a string w is written as Closurek(w) = {x ∈ Σ∗ |
x ∼k w}. Each congruence class Closurek(w) has a unique ShortLex normal form (SNF)
string ShortLexk(w) which is the lexicographically least string among the shortest strings
in Closurek(w). For example, for an integer k = 2 and a string w = babaabacaabba, the
SNF string of w is abcab. Thus, Closurek(w) is a set of strings u1cu2 such that u1 and u2
are strings over {a, b} and both strings contain at least one a and one b. Fleischer and
Kufleitner [5] presented a normalization algorithm that takes O(|Σ||w|) time, which performs
O(|Σ|)-time computations for each position of the input string. The algorithm was improved
by Barker et al. [2] to run in O(|w|) time.

▶ Proposition 4 (Fleischer and Kufleitner [5]). For a string w, an integer k, and a space
position i of w, if X(w, i) + Y (w, i) > k + 1, then w ∼k w[0 : i]w[i + 1 : |w|]. If no such
i satisfies the above, then the string w is length-minimal among the ∼k-congruent strings
with w. Moreover, for all length-minimal strings z ∈ Closurek(w) and any string x with
|x| = |z|, x ∼k z if and only if x can be obtained by repetitively rearranging characters
in contiguous positions i, j such that X(w, i) + Y (w, i) = k + 1, Y (w, i) = Y (w, j) and
X(w, i) = X(w, j).

Based on Proposition 4, both algorithms [2, 5] repeatedly remove characters in w to derive a
length-minimal string in Closurek(w). Then, the algorithms rearrange contiguous characters
that have the same pair of X- and Y-coordinates whose sums are k + 1, and obtain a
lexicographically smallest string among the shortest strings in Closurek(w). This two-step
procedure is called the ShortLex normalization algorithm.

▶ Proposition 5 (Barker et al. [2]). Given an integer k and two strings w1 and w2, we can
check whether or not w1 ∼k w2 in O(|w1| + |w2|) time. Moreover, for a string w, we can
obtain ShortLexk(w) in optimal time O(|w|).

Finally, in the context of MatchSimK, we say that a substring w of T is a match of P if w

is ∼k-congruent to P.

ISAAC 2022

60:6 Simon’s Congruence Pattern Matching

3 Main Contributions

3.1 Simon’s Congruence Pattern Matching
3.1.1 A simple algorithm
Before we design an efficient algorithm, let us consider a simple algorithm based on the
number of possible matches.

▶ Lemma 6. There exist a pattern P, a text T and a number k such that the total number of
matches of P is quadratic in |T|.

Note that a naive algorithm checking the congruence of all substrings of T would have a
cubic running time in |T|, since it takes O(|T|) time to check whether or not each substring
is ∼k-congruent to P. With the goal of performing fewer tests of Simon’s congruence, we
present the following lemma.

▶ Lemma 7. For a string u over Σ, let A = {a ∈ Σ | u ∼k ua}. Then, for any string w ∈ A∗

and any character b ∈ Σ \A, we have u ∼k uw and u ̸∼k uwb.

Lemma 7 implies that it is sufficient to check Simon’s congruence exactly once for each
starting space position i of T. Specifically, we can test for a shortest match candidate T[i : m]
ending at space position m for which the match candidate has a ∼k-congruent character
rearrangement of ShortLexk(P) as a subsequence. First, assume that there exists a match T[i :
l] for some space position l. Then, by Proposition 4, there exists a subsequence z of T[i : l] such
that |z| = |ShortLexk(P)| and z ∼k P. Thus, l ≥ m. Moreover, if a subsequence of T[i : m] is
∼k-congruent to P, then we have Sk(P) ⊆ Sk(T[i : m]). It follows that if T[i : m] ̸∼k P, then
there exists some u ∈ Sk(T[i : m]) that is not a member of Sk(P), and in turn, no such l

exists. Finally, if T[i : m] ∼k P, then, we can extend our match result based on Lemma 7 to
find all matches of P that start at i. Otherwise, there cannot be any match that starts at i.

On the other hand, we assume that ShortLexk(P) takes the form of a stack of sets.
Specifically, by Proposition 4, we can obtain ShortLexk(P) from the shortest subsequence of
P that is ∼k-congruent to P by rearranging characters in substrings with indices that have the
same X- and Y-coordinates whose sum equals k + 1. Thus, we construct a stack by grouping
the rearrangeable positions together into a set and repetitively pushing the sets into a stack
starting with the set with the highest indices. Note that indices that are not rearrangeable
with any other index each produce a singleton set. The peek operation returns the set at the
top of the stack. However, the pop operation removes a given character from the set at the
top of the stack and removes the set if the resulting set is empty. The stack representation of
ShortLexk(P) is convenient for finding a subsequence of T that is ∼k-congruent to P.

Based on these observations, we can solve MatchSimK in quadratic time in |T|. For each
space position i of T, we find the minimal match candidate by finding the minimum space
position m such that T[i : m] has a ∼k-congruent character rearrangement of ShortLexk(P)
as a subsequence. We use the stack representation of ShortLexk(P) to keep the testing time
linear for each iteration. Thereon, we apply Lemma 7 to obtain all matches that start at
space position i.

▶ Theorem 8. Given a pattern P, a text T, and an integer k, we can find all space position
pairs (f, b) of T for which T[f : b] ∼k P in O(|T|(|T|+ |Σ|)) time.

Note that |Σ| is usually a constant. Even without the assumption, |T| dominates |Σ| and
thus the bound becomes O(|T|2).

S. Kim, S.-K. Ko, and Y.-S. Han 60:7

3.1.2 Can we do better?
Pondering on the simple algorithm, we identify two main causes that make the algorithm
quadratic in |T|. First, we report all matches of P by putting every match in a set, one-by-one.
Recall that Lemma 6 proves that the number of matches in the worst-case is quadratic in
|T|. However, for a given space position f , Lemma 7 proves that all space positions b such
that T[f : b] ∼k P are contiguous. Thus, despite the quadratic worst-case lower bound on the
number of matches obtained in Lemma 6, we can design a faster algorithm if, instead of
listing all matching substrings, we report the intervals [f1, f2] and [b1, b2] where all starting
and ending space positions (f, b) ∈ [f1, f2]× [b1, b2] satisfy T[f : b] ∼k P.

The remaining cause of the quadratic running time of the simple algorithm is that we need
to check whether the candidate string that starts at each space position of T is ∼k-congruent
to P every time, which leads to a quadratic runtime with respect to |T|. Using the concept of
arch factorization, we can improve the running time by reusing substrings of SNF strings
of other match candidates. The following lemma illustrates how arches can be used to find
reusable substrings in T.

▶ Lemma 9. For a string w, and all non-negative integers i ≤ ι(w), the X-vector at the right
end of the ith X-arch ari(w) and the Y-vector at the left end of the ith Y-arch ari(wR)R are
[i + 1, i + 1, . . . , i + 1]. In other words,
−→
X (w, ArchSum(i, w)) = −→Y

(
w, |w| − ArchSum(i, wR)

)
= −→U (i + 1).

The key observation is that all X- or Y-vectors for space positions at the borders of
every ith X- or Y-arch are static uniform vectors. Thus, for a space position i, the X- and
Y-coordinates for i can be computed exclusively from the pair of X- and Y-arch which
i is a member of. For example, let w = aaaabaaaaaabaaaa. Position i = 8 is covered by
X-arch ar2(w) = w[5 : 12] and Y-arch ar2(wR)R = w[4 : 11]. Using Lemma 9, we can
directly let −→X (w, 5) = [2, 2] and −→Y (w, 11) = [2, 2]. Finally, we can compute X(w, 8) = 5 and
Y (w, 8) = 4 through only 6 calls of Iter(). Moreover, for a pattern P that is not k-universal,
all matches x of P must satisfy ι(x) = ι(P) and alph(rest(x)) = alph(rest(P)) by the
following lemma.

▶ Lemma 10. For two strings w1 and w2, if w1 ∼k w2 and w1 is not k-universal, then
ι(w1) = ι(w2) and alph(rest(w1)) = alph(rest(w2)).

Note that, for a k-universal pattern P, we always have ι(P) ≥ ι(ShortLexk(P)) = k. Since
we want to utilize Lemma 7 to extend borders of a minimal match, we first investigate the
substrings of T that have the same universality index as ShortLexk(P) following Lemma 10.
Let w1 and w2 be substrings of T such that ι(w1) = ι(w2). If a YX- or XY-link of w1 is
a YX- or XY-link of w2, respectively, then we can reuse the substring of ShortLexk(w1)
that corresponds to that arch link of w1 in constructing ShortLexk(w2). Specifically, let the
overlapping arch link be u. If u is a substring of the ith X-arch of w1 as well as a substring
of the jth X-arch of w2, then the X-vectors for space positions of u in w2 must differ by
exactly −→U (j − i) from the X-vector values for space positions of u in w1. The Y-arches’ and
Y-vectors’ case is symmetric. Thus, if we let w1 = v1ux1 and w2 = v2ux2, then applying the
repeated removal procedure of the ShortLex normalization algorithm on both strings will
result in z1 = v′

1u′x′
1 and z2 = v′

2u′x′
2, where v′

1 ≺ v1, v′
2 ≺ v2, x′

1 ≺ x1, x′
2 ≺ x2, and finally

u′ ≺ u.
It remains to find the borders of X- and Y-arches to determine which arch links can

be reused. We solve this problem by building two trees, named the X-tree and Y-tree. An
X-tree TX(T) or a Y-tree TY (T) is a tree with at most ι(T)|Σ| + 1 space positions of T as

ISAAC 2022

60:8 Simon’s Congruence Pattern Matching

nodes. The root is a virtual node that corresponds to space position ∞ for X-trees and −1
for Y-trees. For X-trees, each node is a right end point of an X-arch for some substring
of T. A node i’s parent is the end point of the X-arch that starts at space position i.
In other words, prnt(i) = max{RX(T, i, σ) | σ ∈ Σ}. Each node i maintains an interval
of space positions chld(i) that would have i as the end point of an X-arch. Specifically,
chld(i) = {j | i = max{RX(T, j, σ) | σ ∈ Σ}}. Finally, each node i holds a position r(i) which
is the minimum position for which rest(z) ≺ T[i : r(i)] for some ∼k-congruent character
rearrangement z of ShortLexk(P). If there is no such position, then r(i) =∞.

Conversely, a node in a Y-tree is a left end point of a Y-arch for some substring of T.
A node i’s parent prnt(i) is the starting point of the Y-arch that ends at space position i.
Formally, prnt(i) = min{RY (T, i, σ) | σ ∈ Σ}. The child set chld(i) is the interval of space
positions that would have i as a parent. Again, chld(i) = {j | i = min{RY (T, j, σ) | σ ∈ Σ}}.
Lastly, each node i holds a space position r(i) which is the maximum position for which
rest(zR)R ≺ T[r(i) : i] for some ∼k-congruent character rearrangement z of ShortLexk(P).
If there is no such position, then r(i) = −1. The notation for an edge ⟨c, p⟩ of an X- or
Y-tree follows the convention ⟨child, parent⟩, thus c < p for X-trees and c > p for Y-trees.
Finally we abuse the notation prnt(i) for every space position i so that prnt(i) = j such
that i ∈ chld(j).

Figure 2 is an example of an X-tree and a Y-tree constructed from T =
abcbacaabacccbaccaab. Arrows represent the edges ⟨c, p⟩ of each tree. Since the SNF
string abcabcabc of the pattern has rest(P) = rest(PR)R = λ, the value of r(i) for each
node i is itself.

a b c b a c a a b a c c c b a c c a a b

3
5

6
9

11
14

15

16
20 ∞

1613
12

9

8
5

3
2

0
−1

X-tree

Y-tree

Figure 2 A pair of X-tree and Y-tree constructed from T = abcbacaabacccbaccaab and
ShortLexk(P) = abcabcabc when k = 3. The X-tree is drawn in red and the Y-tree is drawn
in blue.

We establish the following result – the characterization of the number of nodes in each
interval defined by an edge of an X- or Y-tree – for a running time bound on the construction
of X-trees and Y-trees.
▶ Proposition 11. For an X-tree or Y-tree constructed from a text T, and a space position j

of T, there are at most |Σ| nodes in every half-open interval [prnt(j), prnt(prnt(j))).
Building on the characterization from Proposition 11, Lemma 12 bounds the maximum

number of edges that includes a given space position of T along with the number of nodes of
the tree.
▶ Lemma 12. For an X-tree (or a Y-tree) constructed from a text T, there are at most
|Σ| edges ⟨c, p⟩ that satisfy c < i ≤ p (or p ≤ i < c, respectively) for every position i of T.
Moreover, an X- or Y-tree has at most ι(T)|Σ|+ 1 nodes.

S. Kim, S.-K. Ko, and Y.-S. Han 60:9

Using the bound obtained above, we compute the worst-case time complexity of the
construction of an X-tree.

▶ Lemma 13. Given a preprocessed X-ranker (or Y-ranker) array and the stack representation
of ShortLexk(P), an X-tree (or Y-tree) for a text T can be constructed in O(|T||Σ|) time.

With our X- and Y-trees, we can obtain the X- and Y-arches for any minimal substring w

of T starting at space position i such that ι(w) = ι(P) and rest(P) ≺ rest(w).

a b c b a c a a b a c c c b a c c a a b

3
5

6
9

11
14

15

16
20 ∞

1613
12

9

8
5

3
2

0
−1

X-tree

Y-tree

Figure 3 Using the X- and Y-trees TX(T) and TY (T) to fetch the borders of arch links. The figure
illustrates the traversal path for ι(ShortLexk(P)) = 3 starting at space position 0. The thick arrows
and the bright nodes indicate the traversal path of the X- and Y-tree.

Figure 3 illustrates the process of fetching the borders of X- and Y-arches from our
running example T = abcbacaabacccbaccaab and ShortLexk(P) = abcabcabc. Starting with
space position i = 0, we check the X-tree to obtain the node TX(T).prnt(i) = 3. This step is
indicated by the thick arrow starting at position 0 and ends at node 3. Afterwards, we repeat
going up the X-tree for ι(ShortLexk(P))− 1 = 2 edges to visit node 6 and reach node 11. We
read TX(T).r(11), but since rest(ShortLexk(P)) = λ, we stay at space position 11. By the
definition of an X-tree, this is the smallest space position that satisfies rest(P) ≺ rest(w).
From there on, we find the node of the Y-tree that has 11 in its child range. We find that
node, which is 8, by following the thick arrow that starts at space position 11 and ends at
node 8. Again, we traverse nodes 3 and 0 by repeatedly climbing the Y-tree for ι(P)− 1 = 2
edges. The space positions that we have traversed are exactly the borders of X- and Y-arches
for a minimal match candidate of P that starts at space position 0.

However, we need Σ = alph(P) to ensure that arches from T will line up with arches from
P. Note that no substring w of T such that alph(w) ̸= alph(P) will be a match of P. Thus,
we can let Σ = alph(P) and slice T into maximal substrings T′ such that alph(T′) = alph(P).
Then, we can re-apply the same matching algorithm for each T′. Recall that arch links of w

are determined by a pair of X-arch and Y-arch. Considering that X-vectors and Y-vectors
can only be calculated in increasing or decreasing order of space positions, respectively,
YX-links have two fixed vectors by Lemma 9. However, XY-links have no fixed vectors and
thus we need a way to checkpoint and continue the application of the ShortLex normalization
algorithm.

For a string w, let z be a length-minimal subsequence of w that is ∼k-congruent to w.
Also, let space positions i and j of w (0 < i ≤ j < |w|) be borders of some X- or Y-arch and
map to space positions i′ and j′ of z such that

z ̸∼k z[0 : i′ − 1]z[i′]z[i′ − 1]z[i′ + 1 : |z|],

ISAAC 2022

60:10 Simon’s Congruence Pattern Matching

z ̸∼k z[0 : j′ − 1]z[j′]z[j′ − 1]z[j′ + 1 : |z|].

Then, we can decompose z = v1uv2 where v1 ≺ w[0 : i], u ≺ w[i : j], and v2 ≺ w[j : |w|].
Here, v1 and v2 do not share the same arches. Since Lemma 9 ensures that X-coordinate and
Y-coordinate values of different arches are independent of each other, v1 and v2 can be inde-
pendently obtained through the repeated removal procedure of the ShortLex normalization al-
gorithm. Thus, we have v1w[i : j]v2 ∼k w. Moreover, we have −→X (v1w[i : j]v2, |v1|) = −→X (z, |v1|)
as well as −→Y (v1w[i : j]v2, |v1w[i : j]|) = −→Y (z, |v1u|). It follows that we can compute u if
we surely know −→X (z, |v1|) and −→Y (z, |v1u|) without running the full ShortLex normalization
algorithm on w. We use ShortLexk(w, i, j,

−→
X,
−→
Y) to denote this checkpointed version of the

ShortLex normalization algorithm. The second and third arguments are space positions i

and j each at the border of some arch of w. They define the substring w[i : j] that needs
to be ShortLex normalized. The fourth and fifth arguments are X- and Y-vectors such that−→
X = −→X (z, |v1|) and −→Y = −→Y (z, |v1u|) following our decomposition scheme from earlier.

Using our checkpointed algorithm, let strings w1 and w2 be substrings of T that share
some arch links. Let space positions i1 and j1 of w1 and space positions i2 and j2 of w2 mark
the start and end of arch links that are shared between w1 and w2. For a length-minimal
substring z of w1 that is ∼k-congruent to w1, we let z = v1uv2 where v1 ≺ w1[0 : i1],
u ≺ w1[i1 : j1], and v2 ≺ w1[j1 : |w1|]. Moreover, let arches arx1(w1) and ary1(wR

1)R of w1
and arches arx2(w2) and ary2(wR

2)R be the X-arch and Y-arch that produces the arch link u.
First, while computing ShortLexk(w1), we must checkpoint the progress of the ShortLex

normalization algorithm for all borders of the arch links of w1. If w1[i1 : j1] is a YX-link, we
associate u, −→X (z, |v1u|)−−→U (x1), and −→Y (z, |v1|)−

−→
U (y1) to the arch pair (arx(w1), ary(wR

1)R)
using nodes in the X- and Y-tree. Later, when computing ShortLexk(w2), we can skip the
computation for ShortLexk(w2, i2, j2,

−→
X (w2, i2),−→Y (w2, j2)) and use u instead. Thus, we can

decompose the length-minimal subsequence of w2 that is ∼k-congruent to w2 as v′
1uv′

2, where

v′
1 = ShortLexk(w2, 0, i2,

−→
U (1),−→Y (z, |v1|)−

−→
U (y1) +−→U (y2)),

v′
2 = ShortLexk(w2, j2, |w2|,

−→
X (z, |v1u|)−−→U (x1) +−→U (x2),−→U (1)).

On the other hand, if w1[i1 : j1] is a XY-link, we only remember that the arch link defined
by the arch pair arx(w1) and ary(wR

1)R produces u, because −→X (w2, j2) and −→Y (z, i2) are
directly obtainable through Lemma 9. Thus, the length-minimal subsequence of w2 that is
∼k-congruent to w2 is decomposed as

ShortLexk(w2, 0, i2,
−→
U (1),−→U (y2 + 1))uShortLexk(w2, j2, |w2|,

−→
U (x2 + 1),−→U (1)).

Returning to our running example on Figure 3, the minimal match candidates that
start at space position 0 and space position 3 share the YX-link w[6 : 8]. This is because
arches TX(T).⟨6, 11⟩ and TY (T).⟨8, 3⟩ are traversed for both match candidates. This allows
us to skip the computation for w[6 : 8] if checkpoints for space positions 6 and 8 were saved
beforehand. Note that further decomposition is possible if more checkpoints are available.

Now we are ready to efficiently tackle the Simon’s congruence pattern matching problem.
Let Σ = alph(P). If alph(T) ̸⊆ Σ, arches of T will not align with arches of P. Thus, we
first split T into maximal substrings T′ of T that satisfy alph(T′) ⊆ Σ. Then, we repeat the
following for every split substring T′ of T. We construct the X- and Y-trees for T′ as well
as compute the X- and Y-ranker values beforehand. For each node n of the X-tree, we find
the minimal match candidate by traversing the nodes of the X-tree and Y-tree. Then, we
check whether the minimal match candidate is ∼k-congruent to P through the checkpointed

S. Kim, S.-K. Ko, and Y.-S. Han 60:11

ShortLex normalization algorithm. Along the way, we store checkpoints for arch links that
are not yet checkpointed to use in future computations. If the minimal match candidate is
indeed congruent to P, then we extend the starting and ending points of the minimal match
to find all matches of P which have n as the end space position of the first X-arch.

a b c b a c a a b a c c c b a c c a a b

3
5

6
9

11
14

15

16
20 ∞

1613
12

9

8
5

3
2

0
−1

X-tree

Y-tree

Figure 4 An illustration of the matching process where the current node is i = 5. If the minimal
match candidate is a match of P, the front and back of the minimal match are extended to the
colored boxes at the left and right of the minimal match.

We explain the matching procedure using our running example illustrated in Figure 4,
highlighting the matching process for candidate strings for which the first arch ends at
node i = 5 using Figure 4. Let k = 3. We have already computed sets A and B where
A = {σ | Pσ ̸∼k P} as well as B = {σ | σP ̸∼k P}. Since P is 3-universal, we have A = B = ∅.
Recall that we are searching for all pairs (f, b) of starting positions such that T[f : b] ∼k P.
All substrings of T that start at space positions in TX(T).chld(i) will have its first arch end
at node 5, using the same traversal path in the X- and Y-tree. Thus, we have space positions
in [1, 2] as our candidates for f .

Next, we use our traversal method explained with Figure 3 to obtain the arch link borders.
Note that TY (T).r(2) = 2, so we set our minimal string to start at space position 2, which
is the maximum position in TX(T).chld(i) ∩ [−1, TY (T).r(2)]. The −1 comes from B = ∅.
Moreover, our minimal string ends at space position 14, which is the largest value observed
during the X- and Y-tree traversal. The minimal match candidate is indicated by the box in
the middle of Figure 4.

Now, we check whether T[2 : 14] ∼k P. Since no checkpoints are saved at the mo-
ment, we compute the shortest subsequence of T[2 : 14] that is ∼k-congruent to T[2 : 14]
without using any checkpoints. By applying the first step of the ShortLex normalization
algorithm, we obtain z = cbacabacb. With the subsequence z, we compute checkpoints
for later use for edge pairs (⟨5, 9⟩, ⟨5, 2⟩), (⟨5, 9⟩, ⟨9, 5⟩), and (⟨9, 14⟩, ⟨9, 5⟩) as well as the
edge-rest pair (⟨9, 14⟩, ⟨14, 9⟩). Popping all characters in z from the stack representation of
ShortLexk(P) verifies that z ∼k P.

Finally, using Lemma 7, we observe that all space positions no less than 14 are values
for b that result in a match. Using Lemma 7 again on TR, we observe that space positions
in [−1, 2] ∩ [1, 2] are values for f that result in a match. The extendable range for the
starting and ending space positions are marked as the box on the left and right of Figure 4,
respectively. Thus, we obtain the space position interval pair ([1, 2], [14, 20]) for the iteration
at node i = 5.

Now that we have an idea of how the algorithm works, we prove the algorithm solves
MatchSimK in linear time in |T|.

ISAAC 2022

60:12 Simon’s Congruence Pattern Matching

▶ Theorem 14. Given a pattern P, a text T, and a number k, we can report all non-overlapping
triples ([f1, f2], [b1, b2], offset) such that for all space positions f ∈ [f1, f2] and b ∈ [b1, b2], we
have T[f + offset : b + offset] ∼k P. The computation takes O(|T||Σ|(|Σ|2 + k)) time.

Note that we need an additional offset value that denotes the starting point of each T′.
This distinguishes matches of P from different T′s and can be used to pinpoint the match
from T. Moreover, in practice, the size of an alphabet is regarded as constant. Thus, given a
fixed k, MatchSimK can be solved in O(|T||Σ|3) = O(|T|) time.

3.2 Algorithms for Pattern Matching Variants
By altering the algorithm for MatchSimK to remember the length of the shortest or longest
congruent substring while iterating every node of the X-tree, we can solve LCongStrK and
SCongStrK.

▶ Theorem 15. Given a pattern P, a text T, and a number k, we can report the longest and
shortest substring of T that is ∼k-congruent to P in O(|T||Σ|(|Σ|2 + k)) time.

On the other hand, Proposition 4 shows that if a subsequence x of T is ∼k-congruent
to P, then there must be a subsequence p′ of x that is also ∼k-congruent to P and has
length |ShortLexk(P)|. Since there does not exist a shorter string that is ∼k-congruent to
P, any algorithm that solves SCongSeqK must return a string of length |ShortLexk(P)|
if there exists a substring of T that is ∼k-congruent to P. In other words, the recognition
of a shortest congruent subsequence of T can be done by popping characters of T from the
stack representation of P. Scanning T from left to right, we pop each character and mark
the current space position if the corresponding character of the current space position is at
the top of the stack. When the stack becomes empty, the marked positions yield a shortest
subsequence of T that is ∼k-congruent to P.

▶ Theorem 16. Given a pattern P, a text T, and a number k, we can report an instance of
the shortest subsequence of T that is ∼k-congruent to P in O(|P|+ |T|) time.

Note that Sk(P) ⊆ Sk(T) if the search succeeds. Thus, one interesting idea is to use the
algorithm for SCongSeqK in solving SubseqSetInclusion. However, the existence of
an answer of SCongSeqK on strings P = w1 and T = w2 is only a sufficient condition for
Sk(P) ⊆ Sk(T). Consider the example w1 = aabc and w2 = ccacbca and let k = 2. No character
rearrangement of w1 that is ∼k-congruent to w1 is a subsequence of w2. Indeed, Closurek(w1)
is the singleton set {w1}, while w1 is not a subsequence of w2. Thus, the algorithm for
SCongSeqK will fail on this pair of strings. However, every element in the subsequence
set S2(w1) = {aa, ab, ac, bc, a, b, c, λ} is a subsequence of w2. This means that we need further
characterization of the relation Sk(w1) ⊆ Sk(w2) in order to solve SubseqSetInclusion.
Although we conjecture that the solution for the Shortest Congruent Subsequence problem
may be used in solving SubseqSetInclusion along with clever classification of w1 and
additional subprocedures, SubseqSetInclusion still remains open.

4 Conclusions

We have solved the open problem of finding all substrings of a text T that are ∼k-congruent
to a pattern P for an integer k proposed by Gawrychowski et al. [8]. We have devised tree data
structures called X-trees and Y-trees to reuse results from previous computations and lower
the asymptotic running time to be linear in the length of the text. Moreover, we have solved

S. Kim, S.-K. Ko, and Y.-S. Han 60:13

two variants of the pattern matching problem using the efficient algorithm for MatchSimK
as well as provided a linear algorithm that finds the shortest subsequence of the text that
is ∼k-congruent to the pattern. As future work, we plan to solve LCongSeqK, which is
the remaining unsolved variant of MatchSimK. Moreover, we extend MatchSimK into an
optimization problem, defined as the following:

▶ Problem 17. Simon’s Congruence Pattern Matching Optimization (ThreshMatchSimK):
Given a pattern P, a text T, and a threshold t, find the maximum integer k for which there
exist at least t congruent substrings of T that are ∼k-congruent to P.

Finally, we remark that the SubseqSetInclusion problem proposed by Gawrychowski
et al. [8] is an interesting open problem to investigate.

References
1 Anadi Agrawal and Paweł Gawrychowski. A faster subquadratic algorithm for the longest

common increasing subsequence problem. In 31st International Symposium on Algorithms
and Computation, volume 181 of LIPIcs, pages 4:1–4:12, 2020.

2 Laura Barker, Pamela Fleischmann, Katharina Harwardt, Florin Manea, and Dirk Nowotka.
Scattered factor-universality of words. In Developments in Language Theory – 24th In-
ternational Conference, volume 12086 of Lecture Notes in Computer Science, pages 14–28,
2020.

3 Richard Beal, Tazin Afrin, Aliya Farheen, and Don Adjeroh. A new algorithm for “the LCS
problem” with application in compressing genome resequencing data. BMC Genomics, 17
(Supplement 4)(544):369–381, 2016.

4 Wun-Tat Chan, Yong Zhang, Stanley P. Y. Fung, Deshi Ye, and Hong Zhu. Efficient algorithms
for finding a longest common increasing subsequence. Journal of Combinatorial Optimization,
13(3):277–288, 2007.

5 Lukas Fleischer and Manfred Kufleitner. Testing Simon’s congruence. In 43rd International
Symposium on Mathematical Foundations of Computer Science, pages 62:1–62:13, 2018.

6 Pamela Fleischmann, Lukas Haschke, Annika Huch, Annika Mayrock, and Dirk Nowotka.
Nearly k-universal words – investigating a part of Simon’s congruence. In Descriptional
Complexity of Formal Systems – 24th International Conference, Proceedings, volume 13439 of
Lecture Notes in Computer Science, pages 57–71. Springer, 2022.

7 Emmanuelle Garel. Minimal separators of two words. In 4th Annual Symposium on Combin-
atorial Pattern Matching, pages 35–53, 1993.

8 Paweł Gawrychowski, Maria Kosche, Tore Koß, Florin Manea, and Stefan Siemer. Efficiently
testing Simon’s congruence. In 38th International Symposium on Theoretical Aspects of
Computer Science, volume 187 of LIPIcs, pages 34:1–34:18, 2021.

9 Jean-Jacques Hébrard. An algorithm for distinguishing efficiently bit-strings by their sub-
sequences. Theoretical Computer Science, 82(1):35–49, 1991.

10 James W. Hunt and M. Douglas McIlroy. An algorithm for differential file comparison. In
Computer Science Technical Reports 41, 1975.

11 Sungmin Kim, Yo-Sub Han, Sang-Ki Ko, and Kai Salomaa. On Simon’s congruence closure
of a string. In Descriptional Complexity of Formal Systems – 24th International Conference,
Proceedings, volume 13439 of Lecture Notes in Computer Science, pages 127–141. Springer,
2022.

12 Donald E. Knuth, James H. Morris Jr., and Vaughan R. Pratt. Fast pattern matching in
strings. SIAM Journal on Computing, 6(2):323–350, 1977.

13 Thomas Schwentick, Denis Thérien, and Heribert Vollmer. Partially-ordered two-way automata:
A new characterization of DA. In Revised Papers from the 5th International Conference on
Developments in Language Theory, pages 239–250, 2001.

ISAAC 2022

60:14 Simon’s Congruence Pattern Matching

14 Jan Sedmidubský and Pavel Zezula. A web application for subsequence matching in 3d human
motion data. In 19th IEEE International Symposium on Multimedia, pages 372–373, 2017.

15 Imre Simon. Piecewise testable events. In Proceedings of the 2nd GI Conference on Automata
Theory and Formal Languages, pages 214–222, 1975.

16 Petra Surynková and Pavel Surynek. Application of longest common subsequence algorithms
to meshing of planar domains with quadrilaterals. In Mathematical Methods for Curves and
Surfaces – 9th International Conference, volume 10521 of Lecture Notes in Computer Science,
pages 296–311, 2016.

17 Esko Ukkonen. On-line construction of suffix trees. Algorithmica, 14(3):249–260, 1995.
18 Philipp Weis and Neil Immerman. Structure theorem and strict alternation hierarchy for FO2

on words. Logical Methods in Computer Science, 5(3), 2009.

A Appendix
Algorithm 1 O(|T|2)–MatchSimK(P, T, k) for Theorem 8.

1: Given: a pattern P, a text T, and a number k

2: Returns: all space position pairs (f, b) that satisfy T[f : b] ∼k P
3: preprocess all possible X-ranker values
4: sp ← stack representation of ShortLexk(P)
5: B ← {b ∈ Σ | P ̸∼k Pb}
6: M ← ∅
7: for i = 0, 1, . . . , |T| do
8: s′

p ← copy(sp)
9: m← i

10: while s′
p is not empty do

11: σ ← arg min
a∈peek(s′

p)
RX(T, m, a)

12: m← RX(T, m, σ)
13: pop σ from s′

p

14: end while
15: if ShortLexk(P) ∼k T[i : m] then
16: find σ ∈ B that minimizes RX(T, m, σ)
17: for all space positions j ∈ [m : RX(T, m, σ)− 1] do
18: add (i, j) to M

19: end for
20: end if
21: end for
22: return M

S. Kim, S.-K. Ko, and Y.-S. Han 60:15

Algorithm 2 X-tree construction for Lemma 13.

1: Given: preprocessed X-ranker values, ShortLexk(P) sp in stack form, and text T
2: Returns: an X-tree TX(T) constructed from T
3: TX(T).Nodes← {∞}
4: for i = 1, 2, . . . , ι(ShortLexk(P)) do
5: for j = 0, 1, . . . , |ari(ShortLexk(P))| − 1 do
6: pop ari(ShortLexk(P))[j] from sp

7: end for
8: end for
9: for i = 0, 1, 2, . . . , |T| − 1 do

10: parent ← max
σ:σ∈Σ

{RX(T, i, σ)}
11: if parent ̸∈ TX(T).Nodes then
12: add parent to TX(T).Nodes
13: s′

p ← copy(sp)
14: TX(T).r(i)← i

15: while s′
p is not empty do

16: S ← peek(s′
p)

17: σ ← arg min
c:c∈S

{RX(T, r(i), c)}

18: TX(T).r(i)← RX(T, TX(T).r(i), σ)
19: pop σ from s′

p

20: end while
21: TX(T).chld(parent)← [i, i)
22: end if
23: extend end point of TX(T).chld(parent) by one
24: if i ∈ Nodes then
25: TX(T).prnt(i)← parent
26: end if
27: end for
28: return TX(T)

ISAAC 2022

60:16 Simon’s Congruence Pattern Matching

Algorithm 3 O(|T|)–MatchSimK(P, T, k) for Theorem 14.

1: Given: a pattern P, a text T, an integer k

2: Returns: a set S of triples where, for space positions f and b of T, T[f : b] ∼k P if
and only if there exists some element e = ([f1, f2], [b1, b2], offset) in S such that space
positions f − offset ∈ [f1, f2] and b− offset ∈ [b1, b2]

3: positions← ∅
4: sp ← ShortLexk(P) in stack form
5: Slice T whenever T[i] ̸∈ alph(P)
6: A← {σ | Pσ ̸∼k P}
7: B ← {σ | σP ̸∼k P}
8: for all sliced substrings T′ of T do
9: offset ← the start space position of T′ in T

10: Map ← empty map for saving vectors and substrings
11: Preprocess X- and Y-ranker array
12: Construct X-tree TX(T′) and Y-tree TY (T′)
13: for all nodes i ∈ TX(T′).nodes do
14: From i, go up the X-tree for ι(P)− 1 edges
15: j1 ← TX(T′).r(current node)
16: if j1 =∞, break.
17: From j1, go up the Y-tree using ι(P) calls of TY (T′).prnt()
18: n← current node
19: j2 ← max(TY (T′).chld(i) ∩ [maxσ∈B RY (T′, n, σ) + 1, n])
20: if no such value exists, continue.
21: z ← ShortLexk(T′[j2 : j1]) using the checkpoint mechanism and Map
22: Save checkpoints for each arch link of T′[j2 : j1]
23: if z ∼k ShortLexk(P) then
24: interval1 ← TX(T′).chld(i) ∩ [maxσ∈B RY (T′, j2, σ) + 1, j2]
25: interval2 ← [j1, minσ∈A RX(T′, j1, σ)− 1]
26: add (interval1, interval2, offset) to positions
27: end if
28: end for
29: end for
30: return positions

S. Kim, S.-K. Ko, and Y.-S. Han 60:17

Algorithm 4 Shortest Congruent Subsequence Problem for Theorem 16.

1: Given: a pattern P, a text T, an integer k

2: Returns: an instance of the shortest subsequence of T that is ∼k-congruent to P
3: sp ← ShortLexk(P) in stack form
4: sseq ← λ

5: for all indices i = 0, 1, . . . , |T| − 1 of T do
6: if T[i] ∈ peek(sp) then
7: pop T[i] from sp

8: append T[i] to sseq
9: if sp is empty then

10: return sseq
11: end if
12: end if
13: end for
14: return None

ISAAC 2022

	1 Introduction
	2 Preliminaries
	3 Main Contributions
	3.1 Simon's Congruence Pattern Matching
	3.1.1 A simple algorithm
	3.1.2 Can we do better?

	3.2 Algorithms for Pattern Matching Variants

	4 Conclusions
	A Appendix

