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Abstract
Given two matroids M1 = (V, I1) and M2 = (V, I2) over an n-element integer-weighted ground set
V , the weighted matroid intersection problem aims to find a common independent set S∗ ∈ I1 ∩ I2

maximizing the weight of S∗. In this paper, we present a simple deterministic algorithm for weighted
matroid intersection using Õ(nr3/4 log W ) rank queries, where r is the size of the largest intersection
of M1 and M2 and W is the maximum weight. This improves upon the best previously known
Õ(nr log W ) algorithm given by Lee, Sidford, and Wong [FOCS’15], and is the first subquadratic
algorithm for polynomially-bounded weights under the standard independence or rank oracle models.
The main contribution of this paper is an efficient algorithm that computes shortest-path trees in
weighted exchange graphs.
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1 Introduction

Matroid Intersection. A matroid is an abstract structure that models the notion of in-
dependence on a given ground set V . In particular, a subset S ⊆ V is either independent
or dependent, such that the family of independent sets is well-structured (see Section 2
for a complete definition). Matroids model many fundamental combinatorial objects, and
examples of independent sets of a matroid include acyclic subgraphs of an undirected graph
and linearly independent rows of a matrix. One of the most important optimization problems
related to matroids is matroid intersection: Given two matroids, we would like to find a set
with the largest cardinality that is independent in both matroids. Similarly, in the weighted
case, each element in the ground set is associated with an integer weight, and the weighted
matroid intersection problem is to find the maximum-weight common independent set. These
problems have been extensively studied in the past since they capture many combinatorial
optimization problems such as bipartite matching and colorful spanning trees.

Oracle Model. Since we are dealing with general matroids without additional constraints,
we have to specify a way of reading the description of the two matroids. One way is to express
them directly by reading the truth table of independence. However, that would require an
exponentially-sized input. Instead, we are given oracle access to the matroids, which gives us
information about a queried set S ⊆ V . Standard oracles include the independence oracle,
which returns whether S is independent in O(Tind) time, and the rank oracle, which returns
the rank, i.e., the size of the largest independent subset, of S in O(Trank) time. In this paper,
we focus on the stronger rank oracle model.
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Prior Work. Polynomial-time algorithms for both the weighted and unweighted matroid
intersection problems have long been designed and improved. For the unweighted case,
Edmonds [10, 11, 12], Lawler [17], and also Aigner and Dowling [1] gave algorithms that run
in O(nr2 · Tind) time. Here, n denotes the number of elements in V and r denotes the size
of the largest intersection of the two matroids. Cunningham [7] obtained an O(nr3/2 · Tind)
algorithm using the “blocking-flow” idea. Lee, Sidford, and Wong [18] gave quadratic
algorithms using the cutting-plane method, running in Õ(nr · Trank + n3) and Õ(n2 · Tind + n3)
times1, respectively. This also gives rise to the “quadratic barrier” of matroid intersection:
most previous algorithms involve building exchange graphs that contain Θ(nr) edges explicitly
and therefore cannot go beyond quadratic time. Chakrabarty, Lee, Sidford, Singla, and
Wong [4] were the first to partially break the barrier. They obtained (1− ϵ)-approximation
algorithms running in Õ(n/ϵ · Trank) and Õ(n3/2/ϵ3/2 · Tind) times and an Õ(n

√
r · Trank)

exact algorithm. One of the major components of Chakrabarty et al.’s improvements is to
show that edges in exchange graphs can be efficiently discovered using binary search (this
was discovered independently by Nguyễn [19]). This technique also allows them to obtain
improved Õ(nr · Tind) exact algorithms. Combining the approximation algorithm and a faster
augmenting-path algorithm, Blikstad, van den Brand, Mukhopadhyay, and Nanongkai [3]
broke the quadratic barrier completely by giving an Õ(n9/5 · Tind) exact algorithm. This
result was later optimized by Blikstad [2] to Õ(nr3/4 · Tind) by improving the approximation
algorithm to run in Õ(n

√
r/ϵ · Tind) time.

For the weighted case, the blocking flow idea does not seem to apply anymore. Frank [13]
obtained an O(nr2 · Tind) algorithm by characterizing the optimality of a common inde-
pendent set using weight splitting. Fujishige and Zhang [14] improved the running time
to Õ(nr3/2 log W · Tind) by solving a more general independent assignment problem using a
scaling framework. The same bound was achieved by Shigeno and Iwata [23] and also by
Gabow and Xu [15]. Lee, Sidford, and Wong’s [18] algorithms work for the weighted case
as well, albeit with an extra factor of polylog W , in Õ(n2 log W · Tind + n3 polylog W ) and
Õ(nr log W · Trank + n3 polylog W ) times. Huang, Kakimura, and Kamiyama [16] obtained a
generic framework that transforms any algorithm that solves the unweighted case into one
that solves the weighted case with an extra O(W ) factor. Plugging in the state-of-the-art
algorithms of [4] and [2], we get Õ(n

√
r ·W ·Trank) and Õ(nr3/4 ·W ·Tind) algorithms. Chekuri

and Quanrud [6] also gave an Õ(n2/ϵ2 · Tind) approximation algorithm which, according
to [3], can be improved to subquadratic by applying more recent techniques. A similar
Õ(nr3/2/ϵ · Tind) approximation algorithm was obtained independently by Huang et al. [16].

Our Result. The question of whether weighted matroid intersection can be solved exactly
in subquadratic time with polylogarithmic dependence on W under either oracle model
remained open. We obtain the first subquadratic algorithm for exact weighted matroid
intersection under rank oracles. The formal statement of Theorem 1 is presented as Theorem 5
in Section 2.

▶ Theorem 1. Weighted matroid intersection can be solved in Õ(nr3/4 log W · Trank) time.

Our algorithm relies on the framework of Fujishige-Zhang [14] and Shigeno-Iwata [23],
where they first obtain an approximate solution by adjusting weights of some elements (similar
to the “auction” algorithms for bipartite matching [20]) and then refine it by augmenting
the solution iteratively.

1 For function f(n), Õ(f(n)) denotes O(f(n) polylog f(n)).
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We obtain efficient algorithms for these two phases, leading to the final subquadratic
algorithm.

2 Preliminaries

Notation. For a set S, let |S| denote the cardinality and 2S the power set of S. Let S \R

consist of elements of S which are not in R. Let e = (u, v, w) denote a weighted directed
edge directing from u to v with weight w = wE(e) and (u, v) be its unweighted counterpart.2
Let head(e) = v and tail(e) = u. For an edge set E, let head(E) = {head(e) | e ∈ E}
and tail(E) = {tail(e) | e ∈ E}. For functions f, g mapping from a set V to R, let f + g,
f − g, and f + c for c ∈ R denote functions from V to R with (f + g)(x) = f(x) + g(x),
(f − g)(x) = f(x)− g(x), and (f + c)(x) = f(x) + c for each x ∈ V . We often abuse notation
and use f to denote the function from 2V to R with f(S) =

∑
x∈S f(x) for each S ⊆ V .

Matroid. Let V be a finite set and w : V → Z be a given weight function. For S ⊆ V , let
S = V \ S. Let n = |V | and W = maxx∈V |w(x)|. An ordered pair M = (V, I) with ground
set V and a non-empty family ∅ ∈ I ⊆ 2V is a matroid if
M1. for each S ∈ I and R ⊆ S, it holds that R ∈ I, and
M2. for each R, S ∈ I with |R| < |S|, there exists an x ∈ S \R such that R ∪ {x} ∈ I.

Sets in I are independent; sets not in I are dependent. A basis is a maximal independent
set. A circuit is a minimal dependent set. It is well-known from the definition of matroid
that all bases are of the same cardinality. For an independent set S and x ̸∈ S, S ∪ {x}
contains at most one circuit C and if it does, then x ∈ C (see [21, Lemma 1.3.3]). The rank
of S ⊆ V , denoted by rank(S), is the size of the largest S′ ⊆ S such that S′ ∈ I. The rank
of M is the rank of V , i.e., the size of the bases of M. Given two matroids M1 = (V, I1)
and M2 = (V, I2) over the same ground set, the weighted matroid intersection problem is
to find an S∗ ∈ I1 ∩ I2 maximizing w(S∗). Let r = maxS∈I1∩I2 |S|. In this paper, the two
matroids are accessed through rank oracles, one for each matroid. Specifically, let rank1(·)
and rank2(·) denote the rank functions of M1 and M2, respectively. We assume that given
pointers to a linked list containing elements of S (see, e.g., [5]), the rank oracles compute
rank1(S) and rank2(S) in O(Trank) time. With the O(n

√
r log n · Trank) unweighted matroid

intersection algorithm of Chakrabarty et al. [4], we also assume that M1 and M2 are of
the same rank and share a common basis S(0) of size r by adjusting the given rank oracles
properly.3 By adding r zero-weight elements to V , we may also assume that each common
independent set S ∈ I1 ∩ I2 is contained in a common basis of the same weight.4 Therefore,
it suffices to find a common basis S∗ maximizing w(S∗). Note that elements with negative
weights can be safely discarded from V .

2 We use wE(·) to denote edge weights so that they can be unambiguously distinguished from the element
weights w(·) introduced later.

3 We can compute r via the unweighted matroid intersection algorithm and regard all sets of size greater
than r as dependent.

4 In particular, let Z = {z1, . . . , zr} be the set of newly added zero-weight elements. For each i ∈ {1, 2},
instead of working with Mi, we now work with M̃i = (V ∪ Z, Ĩi) such that for each S̃ ⊆ V ∪ Z,
S̃ ∈ Ĩi if and only if |S̃| ≤ r and S̃ \ Z ∈ Ii. This change is reflected in the new rank function
r̃anki(S̃) = min(ranki(S̃ \ Z) + |S̃ ∩ Z|, r), which can be implemented via the given oracle ranki.

ISAAC 2022
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Weight-Splitting. For weight function f : V → R, a basis S of matroid M is f -maximum
if f(S) ≥ f(R) holds for each basis R of M. Let wϵ = (wϵ

1, wϵ
2) with wϵ

i : V → R being
a weight function for each i ∈ {1, 2}. Let wϵ(x) = wϵ

1(x) + wϵ
2(x). We say that wϵ is an

ϵ-splitting (see, e.g., [23]) of w with ϵ > 0 if w(x) ≤ wϵ(x) ≤ w(x) + ϵ holds for each x ∈ V .
If wϵ is an ϵ-splitting of w and Si is a wϵ

i -maximum basis of Mi for each i ∈ {1, 2}, then
we call (wϵ, S) with S = (S1, S2) an ϵ-partial-solution of w. Note that by M1, S1 ∩ S2 is a
common independent set. If S1 = S2, then (wϵ, S) is an ϵ-solution of w. In this case, we may
abuse notation and refer to S1 as simply S.

Matroid Algorithms. The unweighted version of the following lemma was shown in [4] (it
was also mentioned in [19]), and it was extended to the weighted case implicitly in [3].

▶ Lemma 2 ([4, Lemma 13], [19], and [3]). For i ∈ {1, 2}, given S ∈ Ii, B ⊆ S (respectively,
B ⊆ S), x ∈ S (respectively, x ∈ S), and weight function f : V → R, it takes O(log |B| · Trank)
time to either obtain a b ∈ B minimizing/maximizing f(b) such that (S \ {b}) ∪ {x} ∈ Ii

(respectively, (S \ {x}) ∪ {b} ∈ Ii) or report that such an element does not exist in B.

The main idea of Lemma 2 is to perform binary search on B ordered by f(·). Throughout
this paper, we will maintain such an ordered set in a balanced binary search tree where each
element holds pointers to its successor and predecessor and each node holds pointers to the
first and the last elements in its corresponding subtree. This allows us to perform binary
search on the tree and obtain pointers to the linked list containing elements in a consecutive
range efficiently.

The following greedy algorithm for finding a maximum-weight basis is folklore.

▶ Lemma 3 (See, e.g., [9]). It takes O(n log n + nTrank) time to obtain a f-maximum basis
S of a given matroid M and weight function f : V → R.

2.1 The Framework
The core of our algorithm is the following subroutine.

▶ Theorem 4. Given a 2ϵ-solution (w2ϵ, S′) of w, it takes O(nr3/4 log n ·Trank) time to obtain
an ϵ-solution (wϵ, S).

With Theorem 4, the weighted matroid intersection algorithm follows from the standard
weight-scaling framework (see, e.g, [14, 23]). Recall that our goal is to find a maximum-weight
common basis.

▶ Theorem 5 (Weighted Matroid Intersection). Given two matroids M1 = (V, I1) and
M2 = (V, I2), it takes O(nr3/4 log n log (rW )·Trank) time to obtain an S∗ ∈ I1∩I2 maximizing
w(S∗).

Proof. Let wW = (wW
1 , wW

2 ) with wW
i (x) = W

2 for each x ∈ V and the initial common
basis S(0) obtained via the unweighted matroid intersection algorithm be a W -solution of w.
Repeatedly apply Theorem 4 for O(log rW ) iterations to obtain a 1

2r -solution (w 1
2r , S∗). For

each S ∈ I1 ∩ I2, we have

w(S) ≤ w
1

2r (S) ≤ w
1

2r (S∗) ≤ w(S∗) + r · 1
2r

< w(S∗) + 1.

Since w(S) and w(S∗) are integers, S∗ is a maximum-weight common basis. The algorithm
runs in O(nr3/4 log n log (rW ) · Trank) time. The theorem is proved. ◀

The rest of the paper proves Theorem 4.
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3 The Algorithm

As in [14] and [23], the algorithm of Theorem 4 consists of the following two parts.

3.1 Weight Adjustment
The first part of the algorithm is the following subroutine which computes two bases S1 and
S2 with a large enough intersection. This part is essentially the same as Shigeno and Iwata’s
algorithm [23], except that we replace the fundamental (co-)circuit queries in it with calls to
Lemma 2.

▶ Lemma 6. Given a 2ϵ-solution (w2ϵ, S′) and a parameter 1 ≤ k ≤ r, it takes O(nk log n ·
Trank) time to obtain an ϵ-partial-solution (wϵ, S) with |S1 ∩ S2| ≥

(
1− O(1)

k

)
r.

Since the algorithm and analysis are essentially the same as in [23], here we only describe
how we can obtain S1 and S2 in the desired time bound. Please refer to [23] or Lemma 11 in
Appendix A for the proof of |S1 ∩ S2| ≥

(
1− O(1)

k

)
r.

Algorithm of Lemma 6. Let wϵ = (w2ϵ
1 , w − w2ϵ

1 + ϵ) be the initial ϵ-splitting and Si be
the wϵ

i -maximum basis of Mi obtained by Lemma 3 in O(n log n + nTrank) time for each
i ∈ {1, 2}. Let p(x) = 0 for each x ∈ V . Repeat the following weight adjustment for an
arbitrary x ∈ S1 \ S2 with p(x) < k until such an x becomes non-existent.

If wϵ(x) = w(x) + ϵ, then set wϵ
1(x)← wϵ

1(x)− ϵ. Apply Lemma 2 to obtain a y ∈ V \ S1
maximizing wϵ

1(y) such that (S1 \ {x}) ∪ {y} ∈ I1. If wϵ
1(x) < wϵ

1(y), then set S1 ←
(S1 \ {x}) ∪ {y}.
Otherwise, set p(x) ← p(x) + 1 and wϵ

2(x) ← wϵ
2(x) + ϵ. Apply Lemma 2 to obtain a

y ∈ S2 minimizing wϵ
2(y) such that (S2 \ {y}) ∪ {x} ∈ I2. If wϵ

2(x) > wϵ
2(y), then set

S2 ← (S2 \ {y}) ∪ {x}.
Since p(x) is only incremented when x ∈ S1 \ S2, we have p(x) ≤ k for each x ∈ V when
the procedure terminates. Apparently, wϵ(x) oscillates between w(x) and w(x) + ϵ, and
thus the number of weight adjustments for x is bounded by 2p(x). We also have that Si

remains wϵ
i -maximum for each i ∈ {1, 2} due to the potential exchange of x and y after the

adjustment. Each weight adjustment takes O(Trank log n) time by Lemma 2, hence the total
running time is O(nk log n · Trank).

3.2 Augmentation
With S1 and S2 obtained from Lemma 6, we then run “few” augmentations to make these
two bases equal. To do so, we need the following notion of exchange graphs, which is
slightly different compared to previous algorithms for unweighted matroid intersection (e.g.,
[3, 4, 7, 17]).

Exchange Graph. Let (wϵ, S) be an ϵ-partial-solution of w with S1 ≠ S2. The exchange
graph with respect to (wϵ, S) is a weighted directed multi-graph Gwϵ,S = (V ∪ {s, t}, E) with
s, t ̸∈ V and E = E1 ∪ E2 ∪ Es ∪ Et, where

E1 = {(x, y, wϵ
1(x)− wϵ

1(y)) | x ∈ S1, y ̸∈ S1, and (S1 \ {x}) ∪ {y} ∈ I1},
E2 = {(y, x, wϵ

2(x)− wϵ
2(y)) | x ∈ S2, y ̸∈ S2, and (S2 \ {x}) ∪ {y} ∈ I2},

Es = {(s, x, 0) | x ∈ S1 \ S2}, and
Et = {(x, t, 0) | x ∈ S2 \ S1}.

ISAAC 2022
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Since Si is wϵ
i -maximum for each i ∈ {1, 2}, all edge weights are non-negative. Note that

this definition of exchange graph is a simplified version of the auxiliary graph defined by
Fujishige and Zhang [14] to solve the more generalized independent assignment problem5.
We have the following properties of the exchange graph, for which we also provide simplified
and more direct proofs for self-containedness in Appendix A.

▶ Lemma 7 ([14]; See Appendix A). Gwϵ,S admits an st-path.

Let d(x) be the sx-distance in Gwϵ,S for each x ∈ V (set d(x) to a large number if x is
unreachable from s; see Section 3.3 for the exact value) and P be the shortest st-path with
the least number of edges.

Let Ŝ1 = (S1 \ tail(P ∩E1))∪ head(P ∩E1) and Ŝ2 = (S2 \ head(P ∩E2))∪ tail(P ∩E2)
be S1 and S2 augmented by P . Let ŵϵ

1(x) = wϵ
1(x) + d(x) and ŵϵ

2(x) = wϵ
2(x)− d(x). We

have that (ŵϵ, Ŝ) with ŵϵ = (ŵϵ
1, ŵϵ

2) and Ŝ = (Ŝ1, Ŝ2) is a better ϵ-solution (note that ŵϵ is
indeed an ϵ-splitting). In other words, we have the following.

▶ Lemma 8 ([14]; See Appendix A). It holds that (ŵϵ, Ŝ) is an ϵ-solution with |Ŝ1 ∩ Ŝ2| >
|S1 ∩ S2|.

With the above properties and Lemma 6, we finish our algorithm with the following
shortest-path procedure. Note that in order to make the algorithm subquadratic, we do not
construct the exchange graphs explicitly. Nevertheless, we show that a partial construction
suffices to compute the shortest-path trees in them.

▶ Lemma 9. It takes O(n
√

r log n · Trank) time to obtain d(x) for each x ∈ V and the shortest
st-path with the least number of edges in Gwϵ,S.

We are now ready to prove Theorem 4.

Proof of Theorem 4. Apply Lemma 6 with k = r3/4 to obtain an ϵ-partial-solution (wϵ, S)
of w such that |S1 ∩ S2| ≥ r −O(r1/4) in O(nr3/4 log n · Trank) time. For O(r1/4) iterations,
apply Lemmas 8 and 9 to obtain (ŵϵ, Ŝ) with Ŝ1 and Ŝ2 having a larger intersection than S1
and S2 do, and set (wϵ, S)← (ŵϵ, Ŝ) until S1 = S2. This takes overall O(nr3/4 log n · Trank)
time as well. Note that wϵ(x) = wϵ

1(x) + wϵ
2(x) remains the same, completing the proof. ◀

The remainder of this section proves Lemma 9. For the ease of notation, we abbreviate
Gwϵ,S as G.

Intuitively, we would like to run Dijkstra’s algorithm [8] on G to build a shortest-path
tree. However, naïve implementation takes O(nr) time since we might need to relax O(nr)
edges. This is unlike the BFS algorithm of Chakrabarty et al. [4] for the unweighted case,
where we can immediately mark all out-neighbors of the current vertex as “visited”, leading
to a near-linear running time. To speed things up, note that using Lemma 2, for a vertex
x, we can efficiently find the vertex which is “closest” to x. Let F denote the set of visited
vertices whose exact distances are known. The closest unvisited vertex to F must be closest
to some x ∈ F . Therefore, in each iteration, it suffices to only relax the “shortest” edge from

5 Specifically, given a bipartite graph G = (V1 ∪V2, E) with V1 and V2 being copies of V and two matroids
M1 = (V, I1), M2 = (V, I2) on V , the independent assignment problem aims to find the largest S1 ∈ I1
and S2 ∈ I2 such that G admits a perfect matching between S1 ⊆ V1 and S2 ⊆ V2. Analogously, the
weighted version of the problem wants to find S1 and S2 such that the weight of the maximum-weight
perfect matching between S1 and S2 is maximized. Clearly, the (weighted) matroid intersection problem
is a special case of the (weighted) independence assignment problem with E = {(v, v) | v ∈ V }.
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each x ∈ F . This can be done efficiently by maintaining a set of “recently visited” vertices B

of size roughly
√

n and computing the distance estimate from F \B to all unvisited vertices6.
In each iteration, we relax the shortest edge from each x ∈ B, and now the vertex with the
smallest distance estimate is closest to F and therefore we include it into B (and thus F ).
When B grows too large, we clear B and recompute the distance estimates from F in Õ(n)
queries. This leads to a subquadratic algorithm. We now prove the lemma formally.

Proof of Lemma 9. The algorithm builds a shortest-path tree of G using Dijkstra’s algorithm.
We maintain a distance estimate d̂(x) for each x ∈ V ∪ {s, t}. Initially, d̂(x) = 0 for each
x ∈ (S1 \S2)∪{s} and d̂(x) =∞ for other vertices. Edge set Et is only for the convenience of
defining an st-path and thus we may ignore it here. Let F be the set of visited vertices whose
distance estimates are correct, i.e., d(x) = d̂(x) holds for each x ∈ F . Initially, F = {s}. The
algorithm runs in at most n iterations, and in the t-th iteration, we visit a new vertex vt such
that d(vt) = d̂(vt) and d(vt) ≤ d(v) for each v ̸∈ F . We maintain two buffers B1 ⊆ F ∩ S1
and B2 ⊆ F ∩ S2 containing vertices in S1 and S2 that are visited “recently”. That is, after
the t-th iteration, we have B1 = {vi, . . . , vt} ∩ S1 or B1 = ∅ and B2 = {vj , . . . , vt} ∩ S2 or
B2 = ∅ for some i, j ≤ t. Recall that E1 and E2 are the edges in G that correspond to
exchange relations in M1 and M2, respectively. For each i ∈ {1, 2} and edge e = (x, y),
let wEi

(x, y) = |wϵ
i (x)− wϵ

i (y)| be the edge weight of e in Ei if e ∈ Ei and wEi
(x, y) = ∞

otherwise. Let E(Bi) = {(x, y) ∈ Ei | x ∈ Bi and y ̸∈ F} be edges in Ei directing from Bi to
V \ F and E(B) = E(B1) ∪ E(B2). Let E(F ) = {(x, y) ∈ E1 ∪ E2 | x ∈ F and y ̸∈ F}. For
v ∈ V \F and edge set E′ such that tail(E′) ⊆ F , let d̃(v, E′) = min(x,v)∈E′{d(x)+wE(x, v)}
be the shortest distance to v “relaxed” by edges in E′ (recall that wE(x, v) is the weight of
the edge (x, v)). We maintain the following invariants after each iteration of the algorithm
except the last one.

(i) d(v) ≤ d̂(v) ≤ d̃(v, E(F ) \ E(B)) holds for each v ∈ V \ F .
(ii) There exists a v ∈ V \ F such that d̂(v) = d∗

F := minu∈V \F {d̃(u, E(F ))}.
Intuitively, Invariant (i) asserts that all edges in E(F )\E(B) are “relaxed” while Invariant (ii)
ensures that the distance estimate of the target vertex, i.e., one with the shortest distance
from s, is correct. Initially, both invariants are satisfied since d̂(x) = 0 holds for each
x ∈ S1 \ S2. We maintain a priority queue Q containing vertices in V \ F ordered by d̂(·). In
the t-th iteration, let vt be the vertex v with the smallest d̂(v). By Invariants (i) and (ii),
we have d̂(vt) = d∗

F and thus d(vt) ≤ d(v′) holds for each v′ ∈ V \ F according to Dijkstra’s
algorithm. As such, we push vt into F and update B1, B2 appropriately by checking if vt

belongs to S1 and S2. Now, we would like to modify d̂(v) for some v ∈ V \ F so that both
invariants remain true. For each i ∈ {1, 2}, depending on the size of Bi, we perform one of
the following.

1. If |Bi| ≥
√

r, then we compute d̃i(v) = d̃(v, E(B1)) and set d̂(v)← min(d̂(v), d̃i(v)) for
each v ∈ V \ F using Lemma 10 below. For i = 1, by definition of G, head(E1) ⊆ V \ S1
and thus we only need to compute d̃i(v) for v ∈ V \ S1, and therefore Lemma 10 takes
O(n log n · Trank) time. For i = 2, similarly, head(E2) ⊆ S2 and thus we only need to
compute d̃i(v) for v ∈ S2, taking O(r log n · Trank) time. Then, we set Bi ← ∅, and the
above modification ensures that Invariant (i) holds since d̃(v, E(F )) = min(d̃(v, E(F ) \
E(B)), d̃(v, E(B))).

6 In the actual algorithm, we maintain two buffers instead of one to further improve the running time to
Õ(n

√
r) from Õ(n

√
n). This makes our weighted matroid intersection algorithm o(nr) as opposed to

just o(n2).

ISAAC 2022



63:8 Subquadratic Weighted Matroid Intersection Under Rank Oracles

2. If |Bi| <
√

r, then we do not clear Bi, and therefore Invariant (i) trivially holds. For
each b ∈ Bi, we find a vb ∈ V \ F minimizing d(b) + wEi

(b, vb) via Lemma 2 as follows.
If i = 1, then we have wE1(b, vb) = wϵ

1(b)− wϵ
1(vb), and thus we find the vb maximizing

wϵ
1(vb) such that (S1 \ {b}) ∪ {vb} ∈ I1. If i = 2, then wE2(b, vb) = wϵ

2(vb)− wϵ
2(b), and

thus we find the vb minimizing wϵ
2(vb) such that (S2 \ {vb}) ∪ {b} ∈ I2. Then, we set

d̂(vb)← min(d̂(vb), d(b) + wEi(b, vb)) and update vb’s position in Q appropriately. This
takes O(

√
r log n · Trank) time.

In both cases, as argued above, Invariant (i) holds. We argue that Invariant (ii) holds
after the iteration as well. Let B

(t)
1 be B1 after the t-th iteration and define B

(t)
2 and F (t)

similarly. Let E(B(t)) denote E(B(t)
1 ) ∪ E(B(t)

2 ). Let v∗ = arg minv∈V \F (t){d̃(v, E(F (t)))}
be an unvisited vertex after the t-th iteration with the smallest distance from s and let
e∗ = (u, v∗) be the edge such that u ∈ F (t) and d(v∗) = d(u) + w(e∗). That is, e∗ is the
edge connecting v∗ and its parent in the shortest-path tree. If e∗ ∈ E(F (t−1)) \E(B(t−1)),
then Invariant (ii) trivially follows from the end of the (t− 1)-th iteration. Otherwise, we
must have either e∗ ∈ E(B(t−1)

1 ) or e∗ ∈ E(B(t−1)
2 ). Without loss of generality, let’s assume

e∗ ∈ E(B(t−1)
1 ). If |B(t−1)

1 |+ 1 ≥
√

r (i.e., Case 1), then after setting B
(t)
1 ← ∅, Invariant (ii)

follows from the fact the Invariant (i) holds for v∗ and d̃(v∗, E(F (t))\E(B(t))) ≤ d(u)+wE(e∗)
since e∗ ∈ E(F (t)) \ E(B(t)). If |B(t−1)

1 | + 1 <
√

r (i.e., Case 2), then there must exists a
b ∈ B

(t)
1 such that d(b) + wE1(b, v∗) = minv{d(b) + wE1(b, v)} and thus we have at least one

vb ∈ V \ F (t) such that d̂(vb) ≤ d(b) + wE1(b, vb) = d(v∗). This shows that Invariant (ii)
indeed holds after the t-th iteration. The correctness of the algorithm follows from the two
invariants and the analysis of Dijkstra’s algorithm.

To bound the total running time, observe that for B1, Case 1 happens at most O(r/
√

r) =
O(
√

r) times since |S1| = r. Thus, it takes O(n
√

r log n ·Trank) time in total. Similarly, for B2,
Case 1 happens at most O(n/

√
r) time, taking O(n/

√
r · r log n · Trank) = O(n

√
r log n · Trank)

time in total as well. For Case 2, each iteration takes O(
√

r log n · Trank) time, contributing
a total of O(n

√
r log n · Trank) time. As a result, the algorithm runs in O(n

√
r log n · Trank)

time, as claimed.
Finally, it is easy to maintain balanced binary search trees of elements ordered by wϵ

1, wϵ
2,

d̂ + wϵ
1, and d̂− wϵ

2 in O(n log n) time throughout the procedure so that Lemma 2 can be
applied without overhead. The shortest st-path can also be easily recovered by maintaining
the optimal parent in the shortest-path tree for each vertex. This proves the lemma. ◀

▶ Lemma 10. For each i ∈ {1, 2}, given Bi ⊆ F and R ⊆ V \ F , it takes takes O(|R| log n ·
Trank) time to compute d̃(v, E(Bi)) for all v ∈ R.

Proof. For i = 1 and e = (b, v) ∈ E(Bi), we have wE(e) = wϵ
1(b) − wϵ

1(v). Therefore,
d(v, E(B1)) can be computed by finding the b ∈ B with the smallest d(b) + wϵ

1(b) such that
(S1 \ {b})∪ {v} ∈ I1 via Lemma 2. Similarly, for i = 2, we have wE(e) = wϵ

2(v)−wϵ
2(b), and

thus d(v, E(B2)) can be computed by finding the b ∈ B with the smallest d(b)− wϵ
2(b). The

lemma simply follows by calling Lemma 2 once for each v ∈ R. ◀

3.3 Bounding the Numbers
Finally, to conclude the analysis of our algorithm, we argue that the numbers such as wϵ

1(x)
and wϵ

2(x) are bounded by Õ(poly(nW )) so that the number of bits needed to store them
and the time for a single arithmetic operation only grow by a constant factor. In the weight
adjustment stage, each number is adjusted at most O(r) times and each adjustment changes
the number by at most O(W ) since ϵ is at most W . Therefore, the accumulative change



T.-W. Tu 63:9

to a number via weight adjustments is at most O(poly(nW )). For growth incurred by
augmentations, we first assume that all vertices are reachable from s in Gwϵ,S . Consider a
single run of Lemma 9 and fix an x ∈ V . Let Px = {s, v1, . . . , vk} with vk = x be the shortest
sx-path in Gwϵ,S . Suppose that (v1, v2), (vk−1, vk) ∈ E1, then by definition, we have

d(x) = wϵ
1(v1)− wϵ

1(v2) + wϵ
2(v3)− wϵ

2(v2) + · · ·+ wϵ
1(vk−1)− wϵ

1(vk)
≤ wϵ

1(v1)− w(v2) + (w(v3) + ϵ) + · · ·+ (w(vk−1) + ϵ)− wϵ
1(vk)

≤ wϵ
1(v1)− wϵ

1(vk) +
(

k−1∑
i=2

(−1)i+1w(vi)
)

+ nW.

Since ŵϵ
1(x) = wϵ

1(x) + d(x) and ŵϵ
2(x) = wϵ

2(x)− d(x) as defined in Lemma 8, we have

|ŵϵ1(x)| ≤ |wϵ
1(v1)|+ 2nW and |ŵϵ

2(x)| ≤ |wϵ
1(v1)|+ 2nW. (1)

Similarly, if (vk−1, vk) ∈ E2, then

d(x) = wϵ
1(v1)− wϵ

1(v2) + wϵ
2(v3)− wϵ

2(v2) + · · ·+ wϵ
2(vk)− wϵ

2(vk−1)
≤ wϵ

1(v1)− w(v2) + (w(v3) + ϵ) + · · ·+ (w(vk−2) + ϵ)− w(vk−1) + wϵ
2(vk)

≤ wϵ
1(v1) + wϵ

2(vk) +
(

k−1∑
i=2

(−1)i+1w(vi)
)

+ nW,

implying (1) as well. The case when (v1, v2) ∈ E2 holds similarly, except now we have

|ŵϵ
1(x)| ≤ |wϵ

2(v1)|+ 2nW and |ŵϵ
2(x)| ≤ |wϵ

2(v1)|+ 2nW. (2)

Since the number of augmentations is Õ(r1/4), we indeed have that |wϵ
1(x)| = |wϵ

2(x)| =
O(poly(nW )) = Θ((nW )k) for some constant k. For the case where some vertex x is not
reachable from s, we can simply set d(x) to some c(nW )k+1 for a large enough constant c

and the desired bound still holds.

4 Concluding Remarks

We present a simple subquadratic algorithm for weighted matroid intersection under the
rank oracle model, providing a partial yet affirmative answer to one of the open problems
raised by Blikstad et al. [3]. Whether the same is achievable under the independence oracle
model remains open. It seems that our techniques for computing shortest-path trees do not
solely result in a subquadratic augmenting-path algorithm under the independence oracle.
Removing the dependence on log W and making the algorithm run in strongly-polynomial
time is also of interest. Finally, as noted in [3], there were very few non-trivial lower bound
results for matroid intersection. It would be helpful to see if there is any super-linear lower
bound on the number of queries for these problems or even for computing shortest-path trees
in the exchange graphs under either oracle model.
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A Omitted Proofs

A.1 Proofs of Lemmas in Section 3.1

For self-containedness, we include the proof that the two bases obtained in the weight
adjustment phase have a large intersection by Shigeno and Iwata [23] here.

▶ Lemma 11 ([23]). Let S1 and S2 be obtained from the procedure described in Lemma 6.
Then, |S1 ∩ S2| ≥

(
1− O(1)

k

)
r.

Proof. Let p(S) denote
∑

x∈S p(x). Observe that an element is never moved to S2\S1 during
weight adjustments, and therefore we have p(S2 \ S1) = 0 and p(S1 \ S2) = p(S1)− p(S2).
Recall that S′ is a common basis such that (w2ϵ, S′) is a 2ϵ-solution. Since p(x) equals the
number of adjustments of wϵ

2(x) and each such adjustment is preceded by an adjustment of
wϵ

1(x), we have

p(x) · ϵ = wϵ
2(x)− (w(x)− w2ϵ

1 (x)) ≤ w2ϵ
1 (x)− wϵ

1(x)

for each x ∈ V . Thus,

p(S1 \ S2) · ϵ = (p(S1)− p(S2)) · ϵ
≤
(
w2ϵ

1 (S1)− wϵ
1(S1)

)
−
(
wϵ

2(S2)− w(S2) + w2ϵ
1 (S2)

)
(a)
≤ w2ϵ

1 (S1)− wϵ
1(S′)− wϵ

2(S′) + w(S2)− w2ϵ
1 (S2)

(b)
≤ w2ϵ

1 (S1)− w(S′) + w(S2)− w2ϵ
1 (S2),

where (a) is because Si is wϵ
i -maximum for each i ∈ {1, 2} and (b) is because w(S′) ≤ wϵ(S′)

as wϵ is an ϵ-splitting. Since (w2ϵ, S′) is a 2ϵ-solution, w2ϵ
2 (S)−2ϵr ≤ w(S)−w2ϵ

1 (S) ≤ w2ϵ
2 (S)

holds for each basis S. This combined with the fact that S′ is w2ϵ
i -maximum for each i ∈ {1, 2}

implies

p(S1 \ S2) · ϵ ≤ 2ϵr − w2ϵ
2 (S′) + w2ϵ

2 (S2) ≤ 2ϵr =⇒ p(S1 \ S2) ≤ 2r.

When the algorithm terminates, we have p(x) = k for all x ∈ S1 \ S2, implying

p(S1 \ S2) = |S1 \ S2| · k ≤ 2r =⇒ |S1 \ S2| ≤
2r

k
.

As a result,

|S1 ∩ S2| = r − |S1 \ S2| ≥
(

1− O(1)
k

)
r. ◀
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A.2 Proofs of Lemmas in Section 3.2
In this section, we prove the properties of the exchange graphs. The proofs for the more
generalized auxiliary graph given by Fujishige and Zhang can be found in [14].

To prove Lemma 7, it would be more convenient to refer to the following definition of a
directed bipartite graph based on exchange relationships, which is heavily used in unweighted
matroid intersection algorithms. For S ∈ I1 ∩ I2, let G̃S = (V ∪ {s, t}, Ẽ) with s, t ̸∈ V

denote the directed graph with Ẽ = Ẽ1 ∪ Ẽ2 ∪ Ẽs ∪ Ẽt, where

Ẽ1 = {(x, y) | x ∈ S, y ̸∈ S, and (S \ {x}) ∪ {y} ∈ I1},

Ẽ2 = {(y, x) | x ∈ S, y ̸∈ S, and (S \ {x}) ∪ {y} ∈ I2},

Ẽs = {(s, x) | S ∪ {x} ∈ I1}, and

Ẽt = {(x, t) | S ∪ {x} ∈ I2}.

▶ Lemma 12 ([17]). G̃S for |S| < r admits an st-path.

We will use the existence of an st-path in G̃
S̃

to prove that such a path exists in Gwϵ,S ,
for S̃ = S1 ∩ S2. The following claims certify that G̃

S̃
and Gwϵ,S are almost the same.

▷ Claim 13. Let M = (V, I) be a matroid, S ⊆ S′ ∈ I, x ∈ S, and y ̸∈ S′ such that
(S \ {x}) ∪ {y} ∈ I but S ∪ {y} ̸∈ I, then (S′ \ {x}) ∪ {y} ∈ I.

Proof. Let C be the unique circuit in S ∪ {y}. Since C ⊆ S′ ∪ {y} and S′ ∪ {y} has only one
circuit, C is the unique circuit in S′ ∪ {y} as well. Moreover, (S \ {x}) ∪ {y} ∈ I if and only
if x ∈ C and therefore (S′ \ {x}) ∪ {y} ∈ I. ◁

▷ Claim 14. LetM = (V, I) be a matroid, S ⊆ S′ ∈ I where S′ is a basis ofM, and x ̸∈ S′

such that S ∪ {x} ∈ I. Then, there exists a y ∈ S′ \ S such that (S′ \ {y}) ∪ {x} ∈ I.

Proof. Let S′′ be an arbitrary basis ofM that contains S∪{x}. Since x ∈ S′′\S′, by the strong
exchange property (see, e.g., [22, Theorem 39.6]) of bases, there exists a y ∈ S′ \ S′′ ⊆ S′ \ S

such that (S′ \ {y}) ∪ {x} ∈ I, completing the proof. ◁

We are now ready to prove Lemma 7.

Proof of Lemma 7. Let P̃ = {s, v1, . . . , vk, t} be the shortest st-path in G̃
S̃

for S̃ = S1 ∩S2.
The existence of such a path is guaranteed by Lemma 12. We have S̃ ∪ {vi} ̸∈ I1 and
S̃ ∪ {vi} ̸∈ I2 for each 1 < i < k since P̃ is the shortest path. For an odd 1 ≤ i < k, we
have vi ̸∈ S and vi+1 ∈ S. If vi ̸∈ S2 \ S1, then by Claim 13, we have (vi, vi+1) ∈ E(Gwϵ,S).
Similarly, for an even 1 ≤ i < k, if vi+1 ̸∈ S1 \ S2, then we have (vi, vi+1) ∈ E(Gwϵ,S).
Suppose that v1 ̸∈ S1 \ S2, then by Claim 14, we can find a v0 ∈ S1 \ S2 such that
(S1 \ {v0})∪{v1} ∈ I1. Similarly, if vk ̸∈ S2 \S1, then we can find a vk+1 ∈ S2 \S1 such that
(S2 \ {vk+1}) ∪ {vk} ∈ I2. Therefore, without loss of generality, we may assume that there
exists the last vertex vi ∈ S1 \ S2 and the first vertex vj ∈ S2 \ S1 after vi. Now, for each
i < k < j, we have vk ̸∈ (S1 \ S2) ∪ (S2 \ S1). Therefore, (vk, vk+1) ∈ E(Gwϵ,S) holds for
each i ≤ k < j, and we obtain an st-path in Gwϵ,S as P = {s, vi, . . . , vj , t}. This concludes
the proof. ◀

Finally, to prove Lemma 8, we need the following results.

▶ Lemma 15 ([21, Proposition 2.4.1]). Given a matroid M = (V, I) and an S ∈ I. Suppose
that (a1, . . . , ap) ⊆ V \ S and (b1, . . . , bp) ⊆ S are two sequences satisfying the following
conditions:
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1. (S \ {bi}) ∪ {ai} ∈ I for each 1 ≤ i ≤ p and
2. (S \ {bj}) ∪ {ai} ̸∈ I for each 1 ≤ j < i ≤ p.

Then, (S \ {b1, . . . , bp}) ∪ {a1, . . . , ap} ∈ I holds.

▶ Lemma 16 ([21, Lemma 2.4.2]). Let M, S, (a1, . . . , ap), and (b1, . . . , bp) be the same as
in Lemma 15. Let S′ = (S \ {b1, . . . , bp}) ∪ {a1, . . . , ap}. For x ∈ S′ and y ∈ V \ S′, if
(S′ \ {x}) ∪ {y} ∈ I but either y ∈ S or (S \ {x}) ∪ {y} ̸∈ I, then there exists 1 ≤ ℓ ≤ k ≤ p

such that (S \ {x}) ∪ {ak} ∈ I and either bℓ = y or (S \ {bℓ}) ∪ {y} ∈ I.

In essence, Lemma 15 captures the validity of an augmentation while Lemma 16 models
the condition in which new exchange relationships emerge in the augmented independent set.
The following three claims imply Lemma 8. Recall that P = {s, v1, . . . , vk, t} is the shortest
st-path with the least number of edges and d(x) is the sx-distance in Gwϵ,S .

▷ Claim 17. |Ŝ1 ∩ Ŝ2| > |S1 ∩ S2| holds.

Proof. If k = 2, then either v1 ∈ Ŝ1 ∩ Ŝ2 or vk ∈ Ŝ1 ∩ Ŝ2 must hold, depending on whether
(v1, v2) ∈ E1 or (v1, v2) ∈ E2, and the claim trivially holds in this case. Thus, in the following,
we assume that k > 2. Since P is the shortest, we may assume that vi ∈ (S1 ∩S2)∪ (S1 ∩S2)
holds for each 1 < i < k. Also, for 1 < i < k − 1, if vi ∈ S1 ∩ S2, then vi+1 must be in
S1 ∩ S2 due to the way Gwϵ,S is constructed. Similarly, if vi ∈ S1 ∩ S2, then we must have
vi+1 ∈ S1 ∩ S2. Let Pmid = {v2, . . . , vk−1}, I = S1 ∩ S2, and O = S1 ∩ S2. Clearly, we have

|Ŝ1 ∩ Ŝ2| − |S1 ∩ S2| = |Pmid ∩O| − |Pmid ∩ I|+ Jv1 ∈ Ŝ1 ∩ Ŝ2K + Jvk ∈ Ŝ1 ∩ Ŝ2K. (3)

We prove the claim by considering the following four possible cases.
k is even and v2 ∈ I. We have (v1, v2) ∈ E2, (vk−1, vk) ∈ E2, and |Pmid ∩ I| = |Pmid ∩O|.

Also, v1 ∈ tail(P ∩ E2) and therefore v1 ∈ Ŝ1 ∩ Ŝ2.
k is even and v2 ∈ O. We have (v1, v2) ∈ E1, (vk−1, vk) ∈ E1, and |Pmid ∩ I| = |Pmid ∩O|.

Also, vk ∈ head(P ∩ E1) and therefore vk ∈ Ŝ1 ∩ Ŝ2.
k is odd and v2 ∈ I. We have (v1, v2) ∈ E2, (vk−1, vk) ∈ E1, and |Pmid∩I| = |Pmid∩O|+1.

Also, v1 ∈ tail(P ∩ E2), vk ∈ head(P ∩ E1) and therefore v1, vk ∈ Ŝ1 ∩ Ŝ2.
k is odd and v2 ∈ O. We have (v1, v2) ∈ E1, (vk−1, vk) ∈ E2, and |Pmid∩I| = |Pmid∩O|−1.
In all cases, we have |Ŝ1 ∩ Ŝ2| > |S1 ∩ S2| via Equation (3), concluding the proof. ◁

We prove the following claims for i = 1. The proofs for i = 2 follow analogously.

▷ Claim 18. Ŝi ∈ Ii holds for each i ∈ {1, 2}.

Proof. Let P1 = P ∩ E1 = {(b1, a1), (b2, a2), . . . (bp, ap)}, where (S1 \ {bi}) ∪ {ai} ∈ I1 holds
for each 1 ≤ i ≤ p. Since P is the shortest path,

d(bi) + wϵ
1(bi)− wϵ

1(ai) = d(ai) =⇒ d(bi) + wϵ
1(bi) = d(ai) + wϵ

1(ai)

holds for each i. Reorder P1 so that d(b1) + wϵ
1(b1) ≤ d(b2) + wϵ

1(b2) ≤ · · · ≤ d(bp) + wϵ
1(bp).

Moreover, if d(bi) + wϵ
1(bi) = d(bj) + wϵ

1(bj) for some i, j, then (bi, ai) precedes (bj , aj) in P1
if and only if (bi, ai) precedes (bj , aj) in P . It follows that for each 1 ≤ j < i ≤ p, it holds
that (S1 \ {bj}) ∪ {ai} ̸∈ I1 since otherwise we would have

d(bj) + wϵ
1(bj)− wϵ

1(ai) ≥ d(ai) =⇒ d(bj) + wϵ
1(bj) ≥ d(ai) + wϵ

1(ai). (4)

Because j < i, (4) must take equality, but this would contradict with the fact the P has the
least number of edges since the edge (bj , ai) “jumps” over vertices aj , bj+1, . . . , bi in P and
has the same weight as the subpath bj , aj , . . . , bi, ai. As such, by Lemma 15, the claim is
proved. ◁
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▷ Claim 19. Ŝi is ŵϵ
i -maximum for each i ∈ {1, 2}.

Proof. Let P1 = P ∩ E1 = {(b1, a1), . . . , (bp, ap)} be ordered the same way as in the proof
of Claim 18. It suffices to show that ŵϵ

1(x) ≥ ŵϵ
1(y) holds for each x ∈ Ŝ1 and y ̸∈ Ŝ1 with

(Ŝ1 \ {x}) ∪ {y} ∈ I1. Consider the following two cases.

1. (S1 \ {x}) ∪ {y} ∈ I1: Since (x, y) ∈ E1, it follows that

d(x) + wϵ
1(x)− wϵ

1(y) ≥ d(y) =⇒ ŵϵ
1(x) = d(x) + wϵ

1(x) ≥ d(y) + wϵ
1(y) = ŵϵ

1(y).

2. (S1 \ {x}) ∪ {y} ̸∈ I1: By Lemma 16, there exists 1 ≤ ℓ ≤ k ≤ p such that (1)
(S1 \ {x}) ∪ {ak} ∈ I1 and either (2.1) bℓ = y or (2.2) (S1 \ {bℓ}) ∪ {y} ∈ I1. (1) implies
that ŵϵ

1(x) ≥ ŵϵ
1(ak). If (2.1) holds, then ŵϵ

1(x) ≥ ŵϵ
1(ak) ≥ ŵϵ

1(bℓ) = ŵϵ
1(y). If (2.2)

holds, then ŵϵ
1(x) ≥ ŵϵ

1(ak) ≥ ŵϵ
1(bℓ) ≥ ŵϵ

1(y).

The claim is proved. ◁
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