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Abstract
We introduce a new variant of the art gallery problem that comes from safety issues. In this variant
we are not interested in guard sets of smallest cardinality, but in guard sets with largest possible
distances between these guards. To the best of our knowledge, this variant has not been considered
before. We call it the Dispersive Art Gallery Problem. In particular, in the dispersive art
gallery problem we are given a polygon P and a real number ℓ, and want to decide whether P has a
guard set such that every pair of guards in this set is at least a distance of ℓ apart.

In this paper, we study the vertex guard variant of this problem for the class of polyominoes.
We consider rectangular visibility and distances as geodesics in the L1-metric. Our results are
as follows. We give a (simple) thin polyomino such that every guard set has minimum pairwise
distances of at most 3. On the positive side, we describe an algorithm that computes guard sets for
simple polyominoes that match this upper bound, i.e., the algorithm constructs worst-case optimal
solutions. We also study the computational complexity of computing guard sets that maximize the
smallest distance between all pairs of guards within the guard sets. We prove that deciding whether
there exists a guard set realizing a minimum pairwise distance for all pairs of guards of at least 5 in
a given polyomino is NP-complete.

We were also able to find an optimal dynamic programming approach that computes a guard set
that maximizes the minimum pairwise distance between guards in tree-shaped polyominoes, i.e.,
computes optimal solutions; due to space constraints, details can be found in the full version of our
paper [42]. Because the shapes constructed in the NP-hardness reduction are thin as well (but have
holes), this result completes the case for thin polyominoes.
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1 Introduction

How many guards are necessary to guard an art gallery? This question was first posed by
Victor Klee in 1973 and opened a flourishing field of research in computational geometry; see
for example the book by O’Rourke [41], or the surveys by Shermer [44], and Urrutia [46]. This
question states the classic Art Gallery Problem as follows: Given a (simple) polygon
P and an integer k, decide whether there is a guard set of cardinality k such that every
point p ∈ P is seen by at least one guard, where a point is seen by a guard if and only if the
connecting line segment is inside the polygon.

Suppose the following situation: Your art gallery is the victim of a robbery, or there is
a fire outbreak and heavy smoke development in one part of the building. Because guards
in an optimal solution to instances of the classic art gallery problem can be really close
together, many cameras can be affected at the same time, see Figure 1. From safety and
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67:2 The Dispersive Art Gallery Problem

security issues this would be a catastrophic scenario. We want to address these issues, i.e.,
for a given shape, we are interested in a guard set that realizes preferably large distances
between any two guards of the respective set, rather than focusing on the minimum number
of guards needed. Problems of this kind are called Dispersion Problems, and are typically
stated as follows: Given a set of n objects in the plane and an integer k, decide if there is a
subset of k such objects, such that the distances between any pair in this subset is at least
as large as a given threshold. We assume that the shortest paths that realize the distances
between guards are within the shape, i.e., they do not leave and enter the shape.

In this paper, we introduce the following problem that combines art gallery and dispersion
problems and is described as follows.

Dispersive Art Gallery Problem. Given a polygon P and a real number ℓ, decide whether
there exists a guard set G for P such that the pairwise geodesic distances between any
two guards in G are at least ℓ.

Note that in this problem we are not interested in the size of a particular guard set, but
only in the distances between guards realized by the guard set. To the best of our knowledge,
this problem has not been considered before. Additionally, a first intuitive thought might
be that solutions to the classic art gallery problem are also solutions to this variant, since
small cardinality guard sets should somehow yield larger pairwise distances. However, this is
nowhere near the truth, see for example Figure 1 where doubling the size of the guard set
results in an arbitrary growth of the dispersion distance.

Figure 1 An adaption of the comb-like polyomino. The black vertices realize an optimal guard
set for the classic AGP, while the dark cyan set is optimal for the dispersive AGP.

1.1 Our contributions
In this paper, we introduce the dispersive art gallery problem and investigate it for vertex
guards in polyominoes, i.e., orthogonal polygons whose vertices have integer coordinates.

We describe a (simple) thin polyomino where the minimum pairwise distance between
any two guards in every feasible guard set is at most 3.
We give a worst-case optimal algorithm for placing a set of guards at the vertices of a
simple polyomino such that the pairwise distances between any two guards are at least 3.
It is NP-complete to decide whether a pairwise distance of at least 5 can be guaranteed.
We describe a dynamic programming approach that computes a guard set that maximizes
the minimum pairwise distance between any two guards for tree-shaped polyominoes.

1.2 Previous work
The famous question from Klee was answered relatively quickly by Chvátal [17]. Not least
because of the beautiful proof from Fisk [28] it is almost common knowledge that ⌊n/3⌋
guards are sufficient but sometimes necessary to monitor a simple polygonal region with
n edges. Through their typical orthogonality, “traditional” galleries actually require less



C. Rieck and C. Scheffer 67:3

guards, i.e., for orthogonal polygons with n vertices already ⌊n/4⌋ guards are sufficient, but
also sometimes necessary [30, 35, 40]. However, finding the optimal solution even in simple
polygons is proven to be NP-hard by Lee and Lin [37], and by Schuchardt and Hecker [43] for
simple orthogonal polygons. In the special case of r-visibility, computing the minimum guard
set is polynomial in orthogonal polygons [11, 47]. More recently, Abrahamsen et al. [2, 3] first
showed that irrational guards are sometimes needed in an optimal guard set (in general and
orthogonal polygons), and subsequently that the art gallery problem is actually ∃R-complete.

Restricting the class of galleries to polyominoes intuitively makes the problem a lot easier.
However, as shown by Biedl et al. [8, 9] the problem remains NP-hard. On the positive
side they showed that ⌊(m+1)/3⌋ point guards are always sufficient and sometimes necessary,
where m is the number of squares of the polyomino. Additionally, they give an algorithm for
computing optimal guard sets in the case of thin polyomino trees.

By now, there are many variations of the classic art gallery problem. At least in two of
them the number of placed guards is irrelevant, as it is also the case in our problem setting.
These are the Chromatic AGP [21, 22, 25, 33] where guards are associated by a color
and no two guards of the same color class are allowed to have overlapping visibility regions,
and the Conflict-free chromatic AGP [4, 5, 31] in which the overlapping constraint is
relaxed in a way that at every point within the polygon a unique color must be visible. In
both of these problems, only the number of used colors in a feasible guard set is of interest.

Other variations regard the region that has to be covered, e.g., the Terrain Guarding
Problem [12, 36], or problems that arrive from restricting the visibility of the guards to
cones of a certain angle, that can be summarized under the generic term of Floodlight
Problems [1, 13, 18, 24, 32, 39, 45].

Dispersion problems are related to packing problems and involve arranging a set of
objects “far away” from one another, or choosing a subset of objects that are “far apart”.
These naturally arrive as obnoxious facility location problems (see, e.g., the surveys by
Cappanera [15], or Erkut and Neuman [23]), and as problems of distant representatives [27].
For more recent work in many different settings, e.g., in disks [20, 27], or on intervals [10, 38];
see also [6, 7, 14, 16, 26, 29, 34] for various other settings.

1.3 Preliminaries
We consider polyominoes, that are orthogonal polygons formed by joining unit squares edge
to edge. These unit squares are called cells, and the edges of the cells are denoted as sides.
The boundary ∂P of the polyomino P is the sequence of all cell sides each one lying between
one cell from P and one cell not being part of P. The vertices of a polyomino P are the
vertices of the boundary of P. A point p ∈ P covers or sees another point q ∈ P if there
is an axis-aligned rectangle defined by p and q that is a subset of P. In the literature this
notion of visibility is called r-visibility. The area that is visible from a point p is its visibility
region V(p). The distance d(p, q) between two points p, q ∈ P is given by the L1 geodesic
shortest path connecting these two points, i.e., the distance is measured entirely within the
interior of P . A guard set G is a set of points of P such that every point of P is covered by at
least on point of G. We will restrict ourselves to vertex guards, i.e., guards that are placed on
vertices of P. The minimum over all pairwise distances between any two guards in a guard
set G is called its dispersion distance. The dual graph of a polyomino P has a vertex for
every cell of P, and edges between vertices if their corresponding cells share a side. We say
that a polyomino is simple if it has no holes, thin if it does not contain a 2 × 2 polyomino as
a subpolyomino, and tree-shaped if its dual graph is a tree. We call a cell a niche if it is a
degree 1 vertex in the dual graph of P.

ISAAC 2022
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2 Worst-case optimality

In this section we prove that a dispersion distance of 3 is worst-case optimal for simple
polyominoes. In particular, we describe the construction of thin polyominoes for which
no guard set can have larger dispersion distance than 3, and describe an algorithm that
constructs such guard sets for any simple polyomino.

▶ Lemma 1. There are (simple) thin polyominoes such that every guard set has dispersion
distance at most 3.

Proof. Consider the dark magenta region in Figure 2. Note that this region has to be
guarded by a guard g that is placed on one of the four vertices incident to this region. Let Π
be one of the four niches that is closest to g. The guard g′ that covers Π has distance at
most 3 to g. ◀

...

Figure 2 A simple, thin polyomino in that every guard set has dispersion distance at most 3.

Note that the polyomino given in Figure 2 can be used as a “building block”, i.e., it can
be extended (as indicated by orange arrows) and therefore be used to construct arbitrarily
large polyominoes (as well as non-simple ones) in which the same upper bound holds.

In the remainder of this section we show that every simple polyomino allows for a guard
set with a dispersion distance of at least 3, implying worst-case optimality.

▶ Theorem 2. For every simple polyomino there exists a guard set that has dispersion
distance at least 3.

In particular, we prove Theorem 2 constructively by giving an algorithm that constructs
a guard set with dispersion distance of at least 3 in polynomial time. In a nutshell, the
algorithm places guards greedily until the whole polyomino is guarded. The algorithm starts
with a guard on an arbitrary vertex. Then the region that is visible from this guard is
removed from the polyomino. This leads to a set of disjoint subpolyominoes that are guarded
recursively, maintaining a distance of at least 3 between any two guards, see Figure 3.

2.1 Preliminaries for the algorithm
Let P ′ be a subpolyomino of P , i.e., P ′ ⊆ P . The boundary ∂P ′ of P ′ is the union of all sides
being part of exactly one cell from P ′. Note that the definition of ∂P ′ does not depend on P .
Assume that the guard g cannot see the entire polygon P , i.e., V(g) ̸= P . By removing V(g)
from P we obtain k ≥ 1 subpolyominoes P1, . . . , Pk ⊂ P, being maximal subsets of unit
squares such that each subset forms an orthogonal polygon. The gate Gi corresponding to
Pi is ∂V(g) ∩ ∂Pi. Without loss of generality we assume G1, . . . , Gk to be ordered clockwise
on ∂P starting from g. The walls of a gate Gi are the two sides from ∂P \ Gi being adjacent
to Gi, see the red segments in Figure 5. Note that the first (second) wall of Gi can lie on
∂Pi−1 (∂Pi+1) where from now on the indices i + 1 and i − 1 are considered modulo k.
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Figure 3 (a) A guard with its visibility region (orange), and the subpolyominoes P1, . . . , P10.
The corresponding gates G1 and G2 are clockwise, and G3, . . . , G10 are counterclockwise. (b) The
recursion tree T and a guarding computed by our algorithm.

2.2 Description of the algorithm
Based on the preliminaries above we provide the details of our algorithm. As initialization,
we consider a guard g placed on an arbitrary vertex of the given polyomino P.

A recursion step. Consider the subshapes P1, . . . , Pk and the corresponding gates as defined
above, see Figure 3(a). Let α and β be the number of sides from ∂P when walking
clockwise along ∂P from g to G1, and from Gk to g, respectively. Note that α, β ≥ 1.
In the following we declare each gate to be (oriented) clockwise or counterclockwise.
For this, we consider different cases regarding k, see Figure 4.
(1) If k = 1:

(1.1) if α = 1, we declare G1 to be clockwise
(1.2) otherwise, we declare G1 to be counterclockwise.

(2) If k = 2:
(2.1) if α = 1 = β, we declare G1 to be clockwise and G2 to be counterclockwise,
(2.2) if α = 1 < β, we declare G1 and G2 to be clockwise,
(2.3) if α > 1 = β, we declare G1 and G2 to be counterclockwise.

(3) If k ≥ 3, let Gℓ be the first gate being not adjacent to its successor Gℓ+1, i.e., Gℓ

and Gℓ+1 are not sharing an endpoint. We declare G1, . . . , Gℓ to be clockwise and
Gℓ+1, . . . , Gk to be counterclockwise, see Figure 3(a).

(1.1) (1.2) (2.1) (2.2) (2.3) (3)

G`g

Figure 4 Case distinction for gate orientations (orange: guard g, green: guard g placed after g

and whose position is influenced by orientation of corresponding gate).

For each Pi we make a recursive call for covering Pi separately. In particular, we make the
following distinction: A gate is parallel (orthogonal) when its walls lie parallel (orthogonal)
to each other.

ISAAC 2022
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Pi
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(a)

T

Pi
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Pi

(c)

L
Pi

(d)

Figure 5 Placements of a guard g (green) depending on the gate’s type and orientation (dashed
line): (a) A parallel counterclockwise gate. (b) An orthogonal clockwise gate. (c) An orthogonal
counterclockwise gate. (d) An orthogonal counterclockwise gate, and L degenerates to a single point.

A recursive call for a parallel gate. Without loss of generality, we assume that Gi is hori-
zontal and V(g) lies below Gi, see Figure 5(a). Let T ⊆ Pi be the axis aligned rectangle
with maximal height and bottom side Gi. If Gi is clockwise (counterclockwise), we choose
the guard g as an arbitrary vertex on the boundary of T not lying on Gi and not lying
on the left (right) side of T . Finally, we recurse on P := Pi ∪ V(g) and g := g.

A recursive call for an orthogonal gate. Without loss of generality, we assume that Pi lies
above and to the left of Gi, see Figure 5(b)+(c). We distinguish two cases.
(1) Gi is counterclockwise: Let ℓ ⊆ Gi be the vertical segment of Gi. Note that ℓ denotes

the left endpoint of Gi if it only consists of a horizontal segment, see Figure 5(d). Let
L ⊆ Pi be maximal rectangle with right side ℓ, see Figure 5(c)+(d). We choose g as a
vertex from the boundary of L not lying on Gi and not lying on the right side of L.

(2) Gi is clockwise: Consider by t ⊂ Gi the horizontal segment of Gi. Note that t denotes
the top endpoint of Gi if it consists only of a vertical segment. Let T ⊆ Pi be the
maximal rectangle with bottom side t, see Figure 5(b). We choose g as a vertex from
the boundary of T not lying on Gi.

Finally, we again recurse on P := Pi ∪ V(g) and g := g.

2.3 Analysis of the algorithm
We consider the recursion tree T of our algorithm. In particular, each guard placed in the
corresponding recursion step is a node in T . An edge between a father node g and a child
node g exists if g creates a subpolyomino Pi causing a recursive call on Pi ∪ V(g) and g.
We say that g2 is an indirect child of g1 if there is a sequence of nodes g1 = g1, . . . , gℓ = g2
such that gi is the father of gi+1 for i = 1, . . . , ℓ − 1.

For a clearer presentation, we say that g1 is a direct child of g2, if ℓ = 1.
As g is chosen from the segment resulting from pushing a vertical or horizontal line of Gi

until a vertex of P is hit for the first time, we obtain the following:

▶ Observation 3. All cells from Pi sharing at least one point or a side with Gi are seen
by g, see the dark green areas in Figure 6.

As our algorithm recurses on Pi ∪ V(g), we obtain the following as a direct consequence
of Observation 3.

▶ Corollary 4. For each recursive call on Pi ∪ V(g) and g the guard g is placed inside Pi

within a distance of at least 1 to the corresponding gate Gi.

The next lemma addresses neighbored gates and their orientations and is a key in the
analysis of the algorithm:
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(a) (b) (c) (d)

Figure 6 All cells from Pi that share at least a point or a side with Gi are seen by g.

▶ Lemma 5. Let G1 and G2 be two gates created in the same recursion step. If G1 and G2
share an endpoint, they have the same orientation.

Proof. The proof follows the case distinction of the recursion step, and let k be the number
of gates created in the considered recursion step. As k ≥ 2, Case (1) is not relevant. If k = 2,
the Cases (2.2) and (2.3) directly imply the same orientation of G1 and G2. In Case (2.1)
both gates are connected via one side of the boundary of P, i.e., γ1 = γ2. Thus, G1 and G2
cannot share an endpoint, see Figure 4 (2.1). Finally, let at least k = 3 gates be created
during the considered recursion step. If G1 and G2 share an endpoint, the description of the
case ensures that they are oriented in the same direction. ◀

We now consider the geometric form of gates and their positions relative to one another.

▶ Lemma 6. If two gates G1, G2 created in the same recursion step share an endpoint, both
G1 and G2 are parallel gates lying orthogonal to one another.

Proof. The proof is by contradiction. Assume that at least G1 is orthogonal. Two adjacent
segments from different gates cannot be collinear, because otherwise there is a side from the
boundary of P lying between cells from the polygon, see Figure 7b. As G1 is orthogonal and
adjacent to G2, there is a sequence of consecutive segments s1, s2, s3 from these gates, where
s1, s2 and s2, s3 are adjacent to one another, see Figure 7c. As the guard g lies to the right
of s1, s2, and s3, it sees at least one cell outside of V(g) being a contradiction. ◀

Pright

Pleft

(a)

G1 G2

s

(b)

s 1

s2

s
3

(c)

π2 π
1π

3

(d) (e)

π
g1

g2

q

Gq

G2

(f)

Figure 7 (a) A segment of a gate separates P into a left and a right polyomino. (b) Two
parallel gates lying collinear are not possible. (c) Two gates laying adjacent where at least one is
an orthogonal gate is not possible. (d) A shortest path connecting two guards not being (indirect)
children of each other where the corresponding gates are not adjacent. (e) Two guards being not
(indirect) children of each other where the corresponding gates are adjacent. (f) Sequence of children.

We now analyze the dispersion distance of the guard set constructed by our approach
based on Corollary 4 and Lemmas 5 and 6.

▶ Lemma 7. The constructed guard set has a dispersion distance of at least 3.

Proof. In order to prove the lemma we consider an arbitrary pair of placed guards g1, g2 and
distinguish three cases: (1) Neither g1 is an indirect child of g2 nor vice versa. (2) g1 is an
indirect but not a direct child of g2 or vice versa. (3) g1 is a direct child of g2 or vice versa.

ISAAC 2022
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In the following, we consider all three cases separately. The intuitions for the three cases are
the following: (1) If g1 and g2 have the common father g let G1, G2 be the corresponding
gates. If G1, G2 are not adjacent these gates are within a distance of at least 1. Hence,
applying Corollary 4 twice leads to a distance of at least 3, see Figure 7(d). If G1, G2 are
adjacent, Lemma 5 implies a distance of at least 3, see Figure 7(e). If g1 or g2 ist not a direct
child of g, similar arguments apply. (2) Applying Observation 3 yields two gates G1, G2
between g1 and g2 where each path between G1 and G2 has a length of 1, see Figure 7(f).
Finally, applying Corollary 4 and the observation that g2 does not lie on a gate caused by
g2 yields a distance of at least 3. (3) Intuitively speaking Figure 6 implies that the same
arguments as used in (2) apply to (3).

Neither g1 is an indirect child of g2, nor vice versa. First consider the case in which g1
and g2 are direct children of the same father g. Let G1 and G2 be the gates created by g

corresponding to g1 and g2. Let π be a shortest path connecting g1 and g2. Note that
π = (π1, π2, π3) contains three subpaths, where π1 connects g1 and G1, π2 connects G1
and G2, and π3 connects G2 and g2. Corollary 4 implies that π1 and π3 have a length of
at least 1. If G1 and G2 do not share an endpoint, we obtain that π2 has a length of at
least 1, implying that π has a length of at least 3, see Figure 7(d).
If G1 and G2 share an endpoint, Lemma 5 implies that G1 and G2 have the same
orientation. Without loss of generality, assume that G1, G2 are oriented clockwise. Fur-
thermore, Lemma 6 implies that G1, G2 are parallel gates, whose segments lie orthogonal
to one another. Without loss of generality, assume that G1, G2 are ordered clockwise
and that G1 (G2) is horizontal (vertical), see Figure 7(e). As G1 and G2 are oriented
clockwise, applying Corollary 4 simultaneously to g1 and g2 implies that the x-coordinate
of g1 is at least one larger than the x-coordinate of g2 and the y-coordinate of g1 is at
least two smaller than the y-coordinate of g2. Thus, g1 and g2 have a distance of at
least 3.

g1 is an indirect but not a direct child of g2, or vice versa. Without loss of generality, as-
sume that g1 is an indirect child of g2. Thus, there is at least one further guard q being
placed between g1 and g2, i.e., such that q is a direct or indirect child of g1 and g2 is
a direct or indirect child of q, see Figure 7(f). This implies that the shortest path π

connecting g1 and g2 has to cross the visibility region V(q) of q. Observation 3 implies
that this subpath of π has a length of at least 1. Let Gq and G2 be the gates between
g1, q and q, g2. Corollary 4 implies that the length of the subpath of π connecting G2
with g2 is at least 1. Furthermore, g1 cannot lie on Gq implying that the length of the
subpath of π connecting g1 and Gq also has a length of 1. Hence, π has a length of at
least 3.

g1 is a direct child of g2, or vice versa. Without loss of generality, assume that each seg-
ment of the gate G1 corresponding to g1 has a length of 1, see Figure 8 for the different
cases. In the case of a parallel gate, assume without loss of generality that g2 lies adjacent
to an endpoint G1 resulting in a distance of 3, see Figure 8(a). In the case of an orthogonal
gate, and that G1 consist of two segments, assume without loss of generality that g2
lies as close as possible to both segments of G1 resulting in a distance of 4 between g1
and g2, see Figure 8(b)+(c). Finally, in the case of an orthogonal gate that consist of a
single segment, assume without loss of generality that g2 lies on the wall collinear with
G1 resulting in a distance of at least 3, see Figure 8(d).

This concludes the proof of Lemma 7. ◀
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(a) (b) (c) (d)

Figure 8 Assuming a position for g decreasing at most its distance to q: (a) A parallel gate. (b)
A clockwise oriented orthogonal gate made up of two segments. (c) A counterclockwise oriented
orthogonal gate made up of two segments. (d) An orthogonal gate made up of one segment.

As Lemma 1 provides an upper bound on the dispersion distance in simple polyominoes
and Lemma 7 the matching lower bound, these lemmata together prove Theorem 2.

3 Computational complexity

In this section we study the computational complexity of computing guard sets that maximize
the smallest distance between all pairs of guards within the guard set. In particular, we show
the following.

▶ Theorem 8. Deciding whether there exists a guard set with a dispersion distance of 5 for
a given polyomino is NP-complete.

3.1 Outline of the NP-hardness reduction
For showing NP-hardness we utilize the problem Planar Monotone 3Sat that is shown to
be NP-complete by de Berg and Khosravi [19]. This problem asks to decide the satisfiability
of a Boolean 3-CNF formula for which the literals in each clause are either all negated or all
unnegated, and the corresponding variable-clause incidence graph is planar.

To this end, we will construct polyominoes that will represent variables and clauses.
Because a variable may contribute to multiple clauses, we model a specific shape that
duplicates the given assignment. Furthermore, we describe simple shapes that are used
to connect different subshapes, while maintaining the given assignment from the variables.
Figure 9 gives a high-level overview of the construction and the main gadgets.

Figure 9 Symbolic overview of the NP-hardness reduction. The depicted instance is due to the
Planar Monotone 3Sat formula φ = (x1∨x2∨x4)∧(x2∨x4)∧(x1∨x4∨x5)∧(x1∨x3)∧(x3∨x4∨x5).
Variables are in dark cyan, clauses in magenta, duplicator gadgets in orange, and connectors as lines.

The idea of the reduction is as follows: As shown in Figure 9, all gadgets have open ends
(depicted by arrows) where they are connected to one another. These openings are distin-
guished as input and output depending on how the arrows are oriented. Starting from the

ISAAC 2022
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variable gadgets there is a sequence of outputs and inputs that ends in the clauses gadgets.
Through intensive use of niches, we force the possible guard sets within gadgets to essentially
two sets. In particular, the first set covers the output of a gadget from within the gadget,
and therefore also already the input of the next gadget in the sequence. The second set have
to cover the input from within the gadget (because it is not already covered from before).
We use these constraints and observations to propagate variable assignments through the
construction, i.e., to obtain a guarding direction.

3.2 Setting up the gadgets
We now give the description of the involved gadgets. In addition we prove several lemma
that will then put together to yield a proof of Theorem 8.

Variable gadget The gadget that is depicted in Figure 10 allows exactly two guard sets with
a dispersion distance of 5, so it models true and false assignments. In order to do so,
we force guards to unique positions within specific subregions, which results in the fact
that all other feasible guard positions are restricted to two disjoint sets.

true

(a)

false

(b)

Figure 10 The figure shows the variable gadget, and regions that are used in Lemmas 9 and 10.
(a) shows the guard set for a true assignment, while (b) shows the respective set for a false assignment.

▶ Lemma 9. Within the variable gadget, no guard set has dispersion distance larger than 5.

Proof. Consider the dark magenta regions (“T-shapes”) in Figure 10a. No guard set with at
least two guards realizes a dispersion distance larger than 5 within such a region. The only
vertex that could partly cover such a T-shape from the outside, is itself a vertex from another
T-shape. Therefore, both these regions have to be covered from uniquely from within it.
Thus, the largest possible distance between these guards is 5, as shown by cyan squares. ◀

▶ Lemma 10. Within the variable gadget there are exactly two guard sets realizing a dispersion
distance of 5.

Proof. As the guard placement within the T-shapes is unique (see Lemma 9), the only
variability lies within the magenta region shown in Figure 10b. However, by maintaining
a distance of 5 to the necessary guards placed within the T-shapes, there are exactly two
vertices that remain for covering this region. By choosing one, all the other positions follow
uniquely. Hence, there are exactly two guard sets with a dispersion distance of 5. ◀

Clause gadget. The clause gadget is depicted in Figure 11. The overall idea of this gadget
is that it does not allow for a guard set with a dispersion distance of at least 5 if guards
have to be placed only on vertices of this subshape. Hence, some specific cells have to be
already covered from outside the shape, what will be related to satisfying the clause.
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Π0
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Figure 11 (a) The depicted shape represents a clause gadget containing three literals, while
(b) shows a clause with two literals. The cells labeled with ζ can be covered from outside the gadget.

Note that a clause gadget “contains” basically two types of T-shapes, as shown in Figure 11.
We call them prospects if they can partly be covered from outside, and checkers otherwise.

▶ Lemma 11. There is no guard set with a dispersion distance of at least 5 for the shape
representing the clause gadget when placing guards only within this shape.

Proof. We will only argue this in detail for the case that the clause contains three literals;
similar arguments hold for the remaining case. Consider one of the colored T-shapes
in Figure 11a. Only a single guard can be placed within such a region if a dispersion distance
of at least 5 is required. Consider three consecutive T-shapes, such that two of them are
prospects. The shortest path connecting the six potential guard locations has a length of 9.
Hence, no guard set with a dispersion distance of 5 exists. ◀

▶ Lemma 12. If at least one cell of the clause gadget is covered from outside the gadget,
a feasible guard set with a dispersion distance of 5 exists.

Proof. Again, we will only argue the more complicated case, i.e., a clause containing three
literals. For this, consider the marked region in Figure 11a and distinguish the following.

First assume that the central connector is covered from outside the gadget. Thus, in
particular cell ζc is already covered, and we can place a guard in a bottom corner of this
prospect. This results in two disjoint pairs of uncovered T-shapes, such that each of these
pairs share a vertex of the shape. Without loss of generality, consider the left pair. Two
guards can be placed at the bottom left vertex of ζℓ and bottom right of Π1 with a distance
of 5. Because the guard that covers Π1 already covers the bottom part of the other checker,
we can place a guard in its niche, i.e., at the top right vertex of Π2. Placing a guard at the
bottom right vertex of ζr completes the guard set.

On the other hand, without loss of generality, let the left connector be already covered,
i.e., the cell ζℓ is covered. A guard can be placed in the leftmost niche Π0 to cover the bottom
part of both checker. Therefore, we only have to cover Π1 and Π2 by placing guards at their
respective top vertices. It remains to cover the prospects. Because guards are placed at the
top vertices of the checker’s niches, we can place guards in appropriate distances to obtain a
guard set with dispersion distance 5. ◀

Due to the respective embedding of the overall shape it may be necessary to enlarge the
clause gadget, see Figure 12.

▶ Lemma 13. A clause gadget can be enlarged in a way that all functionalities are maintained.

Proof. If the clause contains three literals, we replace the T-shape checker by the colored
region in Figure 12a. Note that this region is mirrored vertically along the center connector,
and that the region between Π2 and Π3 can be enlarged arbitrarily.
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A crucial observation is that the niches Π1 and Π3 coincide in the short clause gadget,
and therefore apply the same restrictions as before. The additional niche Π2 guarantees that
we cannot place a guard at the bottom right vertex of Π1, assuming that the clause is not
satisfied through an assignment.

If the clause only contains two literals, the T-shape checker will be replaced by the colored
region in Figure 12b. The correctness follows analogously. ◀

Π1 Π2 Π3

ζ` ζc

Π0

(a)

Π1 Π2 Π3

ζ` ζr

Π0

(b)

Figure 12 (a) shows the left part of an enlarged clause gadget containing three literals, while
(b) shows the respective enlarged shape for clauses containing two literals.

Duplicator gadget. Because a variable may contribute to more than one clause, we need
to duplicate the respective assignment. For this purpose, we construct the duplicator
gadget that is depicted in Figure 13. It works as follows: if the incoming connector is
covered from outside the gadget, both outgoing connectors can be covered from within
the gadget. Similarly, if the incoming connector has to be covered from within the gadget,
the outgoing connectors must be covered from outside the gadget.

Π1 Π2

Π0

Π3 Π4

ζ

(a)

Π1 Π2

Π0

Π3 Π4

ζ

(b)

Figure 13 The figure shows the duplicator gadget. (a) shows a set of guards duplicating a true
assignment, while (b) shows the respective guard set for a false assignment.

▶ Lemma 14. The duplicator gadget is correct, i.e., any output is equal to the input.

Proof. First consider the situation given in Figure 13a. Because the incoming connector is
covered from the outside, we want to cover the outgoing connectors from the inside. We will
argue that the configuration in the marked region is unique and fulfills the requirements.
Because of niche Π3, covering Π1 by a guard placed at vertices of ζ is not possible, and
because of Π0 and Π2 the guard covering Π1 is uniquely defined. Because this position is
fixed, all other positions follow.

Now consider the situation in Figure 13b. The incoming connector has to be covered
from the inside. Because of Π0, the position of the guard covering the incoming connector
is uniquely defined. Therefore, there are two positions left to cover the niche Π1; however,
because of Π3, we cannot choose the vertex of ζ. It follows that the positions for guarding
Π1 and Π2 are uniquely defined. Because ζ cannot be covered from the outside, the guard
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covering this square is also uniquely defined and also covers Π3 simultaneously. This again
leaves only a single position to cover Π4. Overall, this leaves some squares of the outgoing
connectors uncovered, so that they have to be covered from outside the gadget. ◀

Because a necessary condition to the problem is that the guard set have to cover the
polyomino completely, we have to ensure that visibility regions that are induced by guards
from clause gadgets do not interfere the assignment given due to guards from within the
variable gadgets. So, if a clause Ci = (xj , xk, xℓ) is satisfied by say xj , we have to make sure
that other clauses containing xk or xℓ but not xj are not become automatically satisfied by
backward guarding from guards in Ci. Preventing this is also the job of the duplicator gadget.

▶ Lemma 15. Backward guarding of an output of the duplicator gadget cannot result in
covering the other output from within the gadget.

Proof. Consider without loss of generality that the duplicator gadget propagates false from
the respective variable. A critical situation would occur if the assignment could be flipped
within a duplicator gadget due to the coverage coming from a clause gadget, i.e., propagating
true to the other output.

As argued above, due to the positions of the niches, the positions for guards are highly
restricted. The coverage from the outside does not cover any of these niches. Therefore, it
does not change the possible set of guard positions. ◀

Connector gadget. Now that we have the main components, we need to connect them. For
this, we introduce two different connector gadgets, see Figure 14.

(a) (b)

Figure 14 (a) shows an L-connector, and (b) shows a Z-connector. The dark cyan and red colored
guard sets propagate whether a variable is set to true or false, respectively.

▶ Lemma 16. All connector gadgets fulfill the property that either the input, or the output
can be guarded from within the gadgets by a guard set with a dispersion distance of 5.

Proof. As these gadgets connect the previous ones, we distinguish between the cases that
their input is already covered or not. Remark that if the input is already covered, we want
to cover the output within the connector, and vice versa.

We prove this by providing specific sets of guards, regarding the different settings. For the
case that the input is already covered, consider the dark cyan placed guards. The distance
between guards is at least 5, and everything is covered. For the case that the input has to be
covered, consider the red guarding positions. The placement of the niches force the position
of the guard that covers the input. All other positions follow uniquely. It is easy to see that
no more guards can be placed, so the output remains uncovered. ◀

3.3 Completing the NP-hardness proof
We described several gadgets that will now be used to construct an instance Pφ of the
Dispersive Art Gallery Problem from any Boolean formula φ that is an instance of
Planar Monotone 3SAT; this yields a proof for Theorem 8 that we restate here.
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▶ Theorem 8. Deciding whether there exists a guard set with a dispersion distance of 5 for
a given polyomino is NP-complete.

Proof. Note that the problem is obviously in NP. It is easy to verify whether a potential set
of vertices is in fact a guard set for the given polyomino. Furthermore we can compute the
dispersion distance of a guard set in polynomial time.

To show that the problem is NP-hard, we reduce from Planar Monotone 3Sat. For a
given formula φ we create an instance Pφ of dispersive AGP as follows; again, see Figure 9
for the high-level idea of the construction.

Consider the rectilinear embedding of the graph given by φ. For every variable, we place
a variable gadget horizontally in a row. Each clause is represented by a clause gadget. Due to
the rectilinear embedding, we can place them vertically behind one another, and expand them
appropriately if necessary as shown above. Without loss of generality, we place the clauses
containing only unnegated literals above the variables, and below otherwise. If a literal xi

occurs in mi many clauses, we construct mi −1 duplicator gadgets between vertically between
clauses and variables. We properly place a set of connector gadgets to connect variables to
duplicator gadgets, as well as the outputs of duplicator gadgets to respective inputs, and
duplicator gadgets to the respective clauses. Note that variables are connected to clauses if
they contribute only to a single clause.

If φ is satisfiable, then there is a guard set with dispersion distance 5 for Pφ.

Consider a satisfying assignment of φ. A guard set with a dispersion distance of 5 for Pφ

can be constructed as follows: From the given assignment of the variable xi the respective set
of guards within the variable gadget is chosen. For every connector and duplicator gadget,
there is a set of guards that maintains the assignment. Because we propagate the satisfying
assignment through the gadgets, at least one literal satisfies each clause. Hence, we can
choose guards within each clause gadget that has dispersion distance of 5, because in each of
these gadgets at least one of the cells are covered from the outside.

If there is a guard set with dispersion distance 5 for Pφ, then φ is satisfiable.

Consider a guard set for Pφ that has a dispersion distance of 5. As argued above, at least
one cell of each clause gadget are covered from outside of the respective gadget, because
otherwise there is no such desired guard set. Furthermore, there is no guard set for the
variable gadget that has a dispersion distance larger than 5, and there are only two sets
that realize this pairwise minimum distance. For every path from variables to clauses,
the duplicator and connector gadgets provide specific locations for guards that maintain
a dispersion distance of 5. Hence, the guards within the variable gadget of Pφ realize a
satisfying assignment for φ.

This concludes the proof. ◀

4 Trees

While computing guard sets with maximum dispersion distance is NP-hard in general, we
present a linear-time algorithm to compute optimal solutions in tree-shaped polyominoes.
Recall that a polyomino P is tree-shaped if the dual graph of P is a tree. In particular, these
polyominoes do not contain a 2 × 2 subpolyomino.

▶ Theorem 17. Given a tree-shaped polyomino P with n vertices, there is an O(n) dynamic
programming approach for computing guard sets of maximum dispersion distance.
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(a)

b b1

b2

b3
b4

b5 b6

(b) (c)

Figure 15 (a) The directed tree (gray dots and black directed edges) and borders (red and green
segments) of a tree-shaped polyomino. (b) The unique path from an outer border b to the inner
border b6 of the “root cell”. (c) An optimal guard set (black squares) generated by our approach,
with “screening” directions (orange arrows).

The main structure used in our algorithm are borders, which are defined as follows:
Let R ⊆ P be the set of all maximal rectangles, see Figure 15. Note that R covers P.
We refer to the part of the boundary of a rectangle to be an inner border if it is not part of
the boundary of the polyomino, see the green segments in Figure 15a. The two boundary parts
of each rectangle having length 1 are called outer borders, see the red segments in Figure 15a.
Note that every outer border is on the boundary of P , and every border is either an inner or
an outer border.

For every border we consider states describing (1) which of its endpoints are chosen as
guards, (2) weather there is already a guard placed “behind” this border, and (3) the ratio
of the shortest distances of its endpoints to a placed guard.

Applying a straightforward dynamic programming approach on a directed tree structure
induced by the above-mentioned borders yields an algorithm for computing guard sets of
maximum dispersion distance for the class of tree-shaped polyominoes. The observation that
(3) does not cause Ω(n) but only a constant many states, results in the fact that the runtime
of this algorithm is linear in the number of vertices of the input polyomino.

For the detailed description of the algorithm we refer to the full version [42].

5 Conclusion and future work

In this paper we introduced the dispersive AGP and investigated it for vertex guards in
polyominoes. We described an algorithm that constructs worst-case optimal solutions of
dispersion distance 3, and showed that it is NP-complete to decide whether a dispersion
distance of 5 can be achieved. We were also able to find a linear-time dynamic programming
approach to compute guard sets of maximum dispersion distance for tree-shaped polyominoes,
see the full version [42].

Several open questions remain. Is it possible to close the gap to the worst-case, i.e., is
deciding whether a dispersion distance of 4 can be achieved NP-hard as well? Is it possible to
compute worst-case solutions in the case of non-simple polyominoes? It seems very promising
that our method can be extended. Other open questions concern approximation algorithms.
Is there a constant-factor approximation for this problem?

What can be said about the ratio between the cardinality of guard sets in optimal
solutions for the dispersive and the classic art gallery problem? As shown in Figure 1 this
ratio is at least 2, while the ratio between the dispersion distances increases arbitrarily.

What can be said about the dispersive art gallery problem in terrains, or general polygons?
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