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Abstract
In this paper, we consider a general notion of convolution. Let D be a finite domain and let Dn

be the set of n-length vectors (tuples) of D. Let f : D × D → D be a function and let ⊕f be a
coordinate-wise application of f . The f -Convolution of two functions g, h : Dn → {−M, . . . , M} is

(g ⊛f h)(v) :=
∑

vg,vh∈Dn

s.t. v=vg⊕f vh

g(vg) · h(vh)

for every v ∈ Dn. This problem generalizes many fundamental convolutions such as Subset
Convolution, XOR Product, Covering Product or Packing Product, etc. For arbitrary function f and
domain D we can compute f -Convolution via brute-force enumeration in Õ(|D|2n · polylog(M))
time.

Our main result is an improvement over this naive algorithm. We show that f -Convolution
can be computed exactly in Õ((c · |D|2)n · polylog(M)) for constant c := 5/6 when D has even
cardinality. Our main observation is that a cyclic partition of a function f : D × D → D can be used
to speed up the computation of f -Convolution, and we show that an appropriate cyclic partition
exists for every f .

Furthermore, we demonstrate that a single entry of the f -Convolution can be computed more
efficiently. In this variant, we are given two functions g, h : Dn → {−M, . . . , M} alongside with a
vector v ∈ Dn and the task of the f -Query problem is to compute integer (g ⊛f h)(v). This is
a generalization of the well-known Orthogonal Vectors problem. We show that f -Query can be
computed in Õ(|D|

ω
2 n · polylog(M)) time, where ω ∈ [2, 2.373) is the exponent of currently fastest

matrix multiplication algorithm.
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12:2 Computing Generalized Convolutions Faster Than Brute Force

1 Introduction

Convolutions occur naturally in many algorithmic applications, especially in the exact and
parameterized algorithms. The most prominent example is a subset convolution procedure [23,
37], for which an efficient Õ(2n ·polylog(M)) time algorithm for subset convolution dates back
to Yates [40] but in the context of exact algorithms it was first used by Björklund et al. [6].1
Researchers considered a plethora of other variants of convolutions, such as: Cover Product,
XOR Product, Packing Product, Generalized Subset Convolution, or Discriminantal Subset
Convolution [6, 8, 7, 10, 35, 21, 11]. These subroutines are crucial ingredients in the design of
efficient algorithms for many exact and parameterized algorithms such as Hamiltonian Cycle,
Feedback Vertex Set, Steiner Tree, Connected Vertex Cover, Chromatic Number, Max k-Cut
or Bin Packing [20, 10, 41, 28, 5, 39]. These convolutions are especially useful for dynamic
programming algorithms on tree decompositions and occur naturally during join operations
(e.g., [35, 20, 34]). Usually, in the process of algorithm design, the researcher needs to design
a different type of convolution from scratch to solve each of these problems. Often this is a
highly technical and laborious task. Ideally, we would like to have a single tool that can be
used as a blackbox in all of these cases. This motivates the following ambitious goal in this
paper:

Goal: Unify convolution procedures under one general umbrella.

Towards this goal, we consider the problem of computing f -Generalized Convolution (f -
Convolution) introduced by van Rooij [34]. Let D be a finite domain and let Dn be the
n length vectors (tuples) of D. Let f : D × D → D be an arbitrary function and let ⊕f

be a coordinate-wise application of the function f .2 For two functions g, h : Dn → Z the
f -Convolution, denoted by (g ⊛f h) : Dn → Z, is defined for all v ∈ Dn as

(g ⊛f h)(v) :=
∑

vg,vh∈Dn

s.t. v=vg⊕f vh

g(vg) · h(vh).

Here we consider a standard Z(+, ·) ring. Through the paper we assume that M is the
absolute value of the maximum integer given on the input.

In the f -Convolution problem the functions g, h : Dn → {−M, . . . , M} are given as
an input and the output is the function (g ⊛f h). Note, that the input and output of
the f -Convolution problem consist of 3 · |D|n integers. Hence it is conceivable that
f -Convolution could be solved in Õ(|D|n · polylog(M)). Such a result for arbitrary f

would be a real breakthrough in how we design parameterized algorithms. So far, however,
researchers have focused on characterizing functions f for which f -Convolution can be
solved in Õ(|D|n · polylog(M)) time. In [34] van Rooij considered specific instances of this
setting, where for some constant r ∈ N the function f is defined as either (i) standard addition:
f(x, y) := x+y, or (ii) addition with a maximum: f(x, y) := min(x+y, r−1), or (iii) addition
modulo r, or (iv) maximum: f(x, y) := max(x, y). Van Rooij [34] showed that for these
special cases the f -Convolution can be solved in Õ(|D|n · polylog(M)) time. His results
allow the function f to differ between coordinates. A recent result regarding generalized

1 We use Õ(·) notation to hide polylogarithmic factors. We assume that M is the maximum absolute
value of the integers on the input.

2 We provide a formal definition of ⊕f in Section 2.
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Discrete Fourier Transform [32] can be used in conjunction with Yates algorithm [40] to
compute f -Convolution in Õ(|D|ω·n/2 ·polylog(M)) time when f is a finite-group operation
and ω is the exponent of the currently fastest matrix-multiplication algorithms.3 To the best
of our knowledge these are the most general settings where convolution has been considered
so far.

Nevertheless, for an arbitrary function f , to the best of our knowledge the state-of-the-art
for f -Convolution is a straightforward quadratic time enumeration.

Question 1: Is the naive Õ(|D|2n · polylog(M)) algorithm for f -Convolution
optimal?

Similar questions were studied from the point of view of the Fine-Grained Complexity. In
that setting the focus is on convolutions with sparse representations, where the input size is
only the size of the support of the functions g and h. It is conjectured that even subquadratic
algorithms are highly unlikely for these representations [19, 25]. However, these lower bounds
do not answer Question 1, because they are highly dependent on the sparsity of the input.

1.1 Our Results
We provide a positive answer to Question 1 and show an exponential improvement (in n)
over a naive Õ(|D|2n · polylog(M)) algorithm for every function f .

▶ Theorem 1.1 (Generalized Convolution). Let D be a finite set and f : D × D →
D. There is an algorithm for f -Convolution with the following running time
Õ
(( 5

6 · |D|2
)n · polylog(M)

)
when |D| is even, or Õ

(( 5
6 · |D|2 + 1

6 · |D|
)n · polylog(M)

)
when |D| is odd.

Observe that the running time obtained by Theorem 1.1 improves upon the brute-force
for every |D| ≥ 2. Our technique works in a more general setting when g : Ln → Z and
h : Rn → Z and f : L × R → T for arbitrary domains L, R and T (see Section 2 for the exact
running time dependence).

Our Technique: Cyclic Partition. Now, we briefly sketch the idea behind the proof of
Theorem 1.1. We say that a function is k-cyclic if it can be represented as an addition modulo
k (after relabeling the entries of the domain and image). These functions are somehow simple,
because as observed in [34, 33] f -Convolution can be computed in Õ(kn · polylog(M))
time if f is k-cyclic. In a nutshell, our idea is to partition the function f : D × D → D into
cyclic functions and compute the convolution on these parts independently.

More formally, a cyclic minor of the function f : D×D → D is a (combinatorial) rectangle
A × B with A, B ⊆ D and a number k ∈ N such that f restricted to A, B is a k-cyclic
function. The cost of the cyclic minor (A, B, k) is cost(A, B) := k. A cyclic partition is
a set {(A1, B1, k1), . . . , (Am, Bm, km)} of cyclic minors such that for every (a, b) ∈ D × D

there exists a unique i ∈ [m] with (a, b) ∈ Ai × Bi. The cost of the cyclic partition
P = {(A1, B1, k1), . . . , (Am, Bm, km)} is cost(P) :=

∑m
i=1 ki. See Figure 1.1 for an example

of a cyclic partition.
Our first technical contribution is an algorithm to compute f -Convolution when the

cost of a cyclic partition is small.

3 This observation was brought to our attention by Jesper Nederlof [27].

IPEC 2022



12:4 Computing Generalized Convolutions Faster Than Brute Force

Figure 1.1 Left figure illustrates exemplar function f : D × D → D over domain D := {a, b, c, d}.
We highlighted a cyclic partition with red, blue, yellow and blue colors. Each color represents a
different minor of f . On the right figure we demonstrate that the red-highlighted minor can be
represented as addition modulo 3 (after relabeling a 7→ 0, b 7→ 1 and c 7→ 2). Hence the red minor
has cost 3. The reader can further verify that green and blue minors have cost 2 and yellow minor
has cost 1, hence the cost of that particular partition is 3 + 2 + 2 + 1 = 8.

▶ Lemma 1.2 (Algorithm for f -Convolution). Let D be an arbitrary finite set, f : D×D →
D and let P be the cyclic partition of f . Then there exists an algorithm which given
g, h : Dn → Z computes (g ⊛f h) in Õ((cost(P)n + |D|n) · polylog(M)) time.

The idea behind the proof of Lemma 1.2 is as follows. Based on the partition P, for any
pair of vectors u, w ∈ Dn, we can define a type p ∈ [m]n such that (ui, wi) ∈ Api

× Bpi
for

every i ∈ [n]. Our main idea is to go over each type p and compute the sum in the definition
of f -Convolution only for pairs (vg, vh) that have type p. In order to do this, first we
select the vectors vg and vh that are compatible with this type p. For instance, consider the
example in Figure 1.1. Whenever pi refers to, say, the red-colored minor, then we consider vg

only if its i-th coordinate is in {b, c, d} and consider vh only if its i-th coordinate is in {b, d}.
After computing all these vectors vg and vh, we can transform them according to the cyclic
minor at each coordinate. Continuing our example, as the red-colored minor is 3-cyclic, we
can represent the i-th coordinate of vg and vh as {0, 1, 2} and then the problem reduces to
addition modulo 3 at that coordinate. Therefore, using the algorithm of van Rooij [34] for
cyclic convolution we can handle all pairs of type p in Õ((

∏n
i=1 kpi

) · polylog(M)) time. As
we go over all mn types p the sum of mn terms is

∑
p∈[m]n

(
n∏

i=1
kpi

)
=
(

m∑
i=1

ki

)n

= cost(P)n.

Hence, the overall running time is Õ(cost(P)n ·polylog(M)). This running time evaluation
ignores the generation of the vectors given as input for the cyclic convolution algorithm. The
efficient computation of these vectors is nontrivial and requires further techniques that we
explain in Section 3.

It remains to provide the low-cost cyclic partition of an arbitrary function f .

▶ Lemma 1.3. For any finite set D and any function f : D × D → D there is a cyclic
partition P of f such that cost(P) ≤ 5

6 |D|2 when |D| is even, or cost(P) ≤ 5
6 |D|2 + 1

6 |D|
when |D| is odd.

For the sake of presentation let us assume that |D| is even. In order to show Lemma 1.3,
we partition D into pairs A1, . . . , Ak where k := |D|/2 and consider the restrictions of f to
Aj × D one by one. This allows us to encode f on Aj × D as a directed graph G with |D|
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edges and |D| vertices. We observe that for certain classes of subgraphs (i.e., paths, out-stars,
in-stars, and cycles) there is a corresponding cyclic minor. Our goal is to partition this graph
G into such subgraphs in a way that the total cost of the resulting cyclic partition is small.
Following this argument, the proof of Lemma 1.3 becomes a graph theoretic analysis. The
proof of Lemma 1.3 is included in Section 4. Our method applies for more general functions
f : L × R → T , where domains L, R, T can be different and have arbitrary cardinality. We
note that a weaker variant of Lemma 1.3 in which the guarantee is cost(Pf ) ≤ 7

8 |D|2 is easier
to attain.

Efficient Algorithm for Convolution Query. Our next contribution is an efficient algorithm
to query a single value of f -Convolution. In the f -Query problem, the input is g, h : Dn →
Z and a single vector v ∈ Dn. The task is to compute a value (g ⊛f h)(v). Observe that this
task generalizes4 the fundamental problem of Orthogonal Vectors. We show that computing
f -Query is much faster than computing the full output of f -Convolution.

▶ Theorem 1.4 (Convolution Query). For any finite set D and function f : D × D → D there
is a Õ(|D|ω·n/2 · polylog(M)) time algorithm for the f -Query problem.

Here Õ(nω ·polylog(M)) is the time needed to multiply two n×n integer matrices with values
in {−M, . . . , M} and currently ω ∈ [2, 2.373) [2]. Note, that under the assumption that two
matrices can be multiplied in the linear in the input time (i.e., ω = 2) then Theorem 1.4
runs in the nearly-optimal Õ(|D|n · polylog(M)) time. Theorem 1.4 is significantly faster
than Theorem 1.1 even when we plug-in the naive algorithm for matrix multiplication (i.e.,
ω = 3). The proof of Theorem 1.4 is inspired by an interpretation of the f -Query problem
as counting length-4 cycles in a graph.

1.2 Related Work
Arguably, the problem of computing the Discrete Fourier Transform (DFT) is the prime
example of convolution-type problems in computer science. Cooley and Tukey [18] proposed
the fast algorithm to compute DFT. Later, Beth [4] and Clausen [17] initiated the study
of generalized DFTs whose goal has been to obtain a fast algorithm for DFT where the
underlying group is arbitrary. After a long line of works (see [31] for the survey), the currently
best algorithm for generalized DFT concerning group G runs in O(|G|ω/2+ϵ) operations for
every ϵ > 0 [32].

A similar technique to ours was introduced by Björklund et al. [9]. The paper gave a
characterization of lattices that admit a fast zeta transform and a fast Möbius transform.
Their paper used the notion of covering pairs, which is similar to cyclic partitions used in
this paper but with a completely different goal.

From the lower-bounds perspective to the best of our knowledge only a naive Ω(|D|n)
lower bound is known for f -Convolution (as this is the output size). We note that known
lower bounds for different convolution-type problems, such as (min, +)-convolution [19, 25],
(min, max)-convolution [13], min-witness convolution [26], convolution-3SUM [14] or even
skew-convolution [12] cannot be easily adapted to f -Convolution as the hardness of these
problems comes primarily from the ring operations.

The Orthogonal Vector problem is related to the f -Query problem. In the Orthogonal
Vector problem we are given two sets of n vectors A, B ⊆ {0, 1}d and the task is to decide
if there is a pair a ∈ A, b ∈ B such that a · b = 0. In [38] it was shown that no n2−ϵ · 2o(d)

4 It is a special case with D = {0, 1}, v = 0n and f(x, y) = x · y

IPEC 2022



12:6 Computing Generalized Convolutions Faster Than Brute Force

algorithm for Orthogonal Vectors is possible for any ϵ > 0 assuming SETH [36]. The currently
best algorithm for Orthogonal Vectors run in n2−1/O(log(d)/ log(n)) time [1, 15], O(n · 2cd) for
some constant c < 0.5 [30], or O(|↓A| + |↓B|) [7] (where |↓F | is the total number of vectors
whose support is a subset of the support of input vectors).

1.3 Organization
In Section 2 we provide the formal definitions of the problems alongside the general statements
of our results. In Section 3 we give an algorithm for f -Convolution that uses a given cyclic
partition. In Section 4 we show that for every function f : D × D → D there exists a cyclic
partition of low cost. In Section 5 we conclude the paper and discuss future work.

In Appendix A we give an algorithm for f -Query and prove Theorem 1.4. In Appendix C
and Appendix B we include the missing proofs.

2 Preliminaries

Throughout the paper, we use Iverson bracket notation, where for the logic expression P ,
the value of JP K is 1 when P is true and 0 otherwise. For n ∈ N we use [n] to denote
{1, . . . , n}. Through the paper we denote vectors in bold, for example, q ∈ Zk denotes a
k-dimensional vector of integers. We use subscripts to denote the entries of the vectors, e.g.,
q := (q1, . . . , qk).

Let L, R and T be arbitrary sets and let f : L × R → T be an arbitrary function. We
extend the definition of such an arbitrary function f to vectors as follows. For two vectors
u ∈ Ln and w ∈ Rn we define

u ⊕f w := (f(u1, w1), . . . , f(un, wn)).

In this paper, we consider the f -Convolution problem with a more general domain
and image. We define it formally as follows:

▶ Definition 2.1 (f -Convolution). Let L, R and T be arbitrary sets and let f : L × R → T be
an arbitrary function. The f -Convolution of two functions g : Ln → Z and h : Rn → Z,
where n ∈ N, is the function (g ⊛f h) : T n → Z defined by

(g ⊛f h)(v) :=
∑

u∈Ln, w∈Rn

Jv = u ⊕f wK · g(u) · h(w)

for every v ∈ T n.

As before the operations are taken in the standard Z(+, ·) ring and M is the maximum
absolute value of the integers given on the input.

Now, we formally define the input and output to the f -Convolution problem.

▶ Definition 2.2 (f-Convolution Problem (f -Convolution)). Let L, R and T be
arbitrary finite sets and let f : L × R → T be an arbitrary function. The f-Convolution
Problem is the following.
Input: Two functions g : Rn → {−M, . . . , M} and h : Ln → {−M, . . . , M}.
Task: Compute g ⊛f h.

Our main result stated in the most general form is the following.
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▶ Theorem 2.3. Let f : L × R → T such that L, R and T are finite. There is an algorithm
for the f -Convolution problem with Õ(cn · polylog(M)) time, where

c :=
{

|L|
2 · 4·|R|+|T |

3 if |L| is even
|L|−1

2 · 4·|R|+|T |
3 + |R| otherwise.

Theorem 1.1 is a corollary of Theorem 2.3 by setting L = R = T = D.
The proof of Theorem 2.3 utilizes the notion of cyclic partition. For any k ∈ N, let

Zk = {0, 1, . . . , k − 1}. We say a function f : A × B → C is k-cyclic if, up to a relabeling
of the sets A, B and C, it is an addition modulo k. Formally, f : A × B → C is k-cyclic if
there are σA : A → Zk, σB : B → Zk, and σC : Zk → C such that

∀a ∈ A, b ∈ B : f(a, b) = σC (σA(a) + σB(b) mod k) .

We refer to the functions σA, σB and σC as the relabeling functions of f .
The restriction of f : L × R → T to A ⊆ L and B ⊆ R is the function g : A × B → T

defined by g(a, b) = f(a, b) for all a ∈ A and b ∈ B. We say (A, B, k) is a cyclic minor of
f : L × R → T if the restriction of f to A and B is a k-cyclic function.

A cyclic partition of f : L×R → T is a set of minors P = {(A1, B1, k1), . . . , (Am, Bm, km)}
such that (Ai, Bi, ki) is a cyclic minor of f and for every (a, b) ∈ L × R there is a unique
1 ≤ i ≤ m such that (a, b) ∈ Ai × Bi. The cost of the cyclic partition is cost(P) =

∑m
i=1 ki.

Theorem 2.3 follows from the following lemmas.

▶ Lemma 3.1 (Algorithm for Generalized Convolution). Let L, R and T be finite sets. Also,
let f : L × R → T be a function and let P be a cyclic partition of f . Then there is an
Õ((cost(P)n + |L|n + |R|n + |T |n) · polylog(M)) time algorithm for f -Convolution.

▶ Lemma 4.1. Let f : L × R → T where L, R and T are finite sets. Then there is a
cyclic partition P of f such that cost(P) ≤ |L|

2 · 4·|R|+|T |
3 when |L| is even, and cost(P) ≤

|R| + |L|−1
2 · 4·|R|+|T |

3 when |L| is odd.

The proof of Lemma 3.1 is included in Section 3 and proof of Lemma 4.1 is included in
Section 4. The proof of Lemma 3.1 uses an algorithm for Cyclic Convolution.

▶ Definition 2.4 (Cyclic Convolution). The Cyclic Convolution problem is the
following.
Input: Vector r ∈ Nk and functions g, h : Z → {−M, . . . , M} where Z = Zr1 × . . . × Zrk

.
Task: Compute the function g ⊙ h : Z → Z defined by

(g ⊙ h)(v) =
∑

u,w∈Z

(
k∏

i=1
Jui + wi = vi mod riK

)
· g(u) · h(w).

Van Rooij [33] showed that Cyclic Convolution can be solved in
Õ
((∏k

i=1 ri

)
· polylog(M)

)
time. However, his algorithm relies on finding an ap-

propriate large prime p. In order to circumvent the discussion on how such a prime can be
found efficiently and deterministically, we can use multiple smaller primes and the Chinese
Reminder Theorem. We include the details in Appendix B.

▶ Theorem 2.5 (Cyclic Convolution). There is an Õ
(

(
∏k

i=1 ri) · polylog(M)
)

algorithm
for the Cyclic Convolution problem.

IPEC 2022



12:8 Computing Generalized Convolutions Faster Than Brute Force

3 Generalized Convolution

In this section we prove Lemma 3.1.

▶ Lemma 3.1 (Algorithm for Generalized Convolution). Let L, R and T be finite sets. Also,
let f : L × R → T be a function and let P be a cyclic partition of f . Then there is an
Õ((cost(P)n + |L|n + |R|n + |T |n) · polylog(M)) time algorithm for f -Convolution.

Throughout the section we fix L, R and T , and f : L × R → T to be as in the statement
of Lemma 3.1. Additionally, fix a cyclic partition P = {(A1, B1, k1), . . . , (Am, Bm, km)}.
Furthermore, let σA,i, σB,i and σC,i be the relabeling functions of the cyclic minor (Ai, Bi, ki)
for every i ∈ [m]. We assume the labeling functions are also fixed throughout this section.

In order to describe our algorithm for Lemma 3.1, we first need to establish several
technical definitions.

▶ Definition 3.2 (Type). The type of two vectors u ∈ Ln and w ∈ Rn is the unique vector
p ∈ [m]n for which ui ∈ Api

and wi ∈ Bpi
for all i ∈ [n].

Observe that the type of two vectors is well defined as P is a cyclic partition. For any type
p ∈ {1, . . . , m}n we define

Lp := Ap1 × · · · × Apn
, Rp := Bp1 × · · · × Bpn

, Zp := Zkp1
× · · · × Zkpn

to be vector domains restricted to type p. For any type p we introduce relabeling functions
on its restricted domains. The relabeling functions of p are the functions σL

p : Lp → Zp,
σR

p : Rp → Zp, and σT
p : Zp → T n defined as follows:

σL
p (v) :=

(
σA,p1(v1), . . . , σA,pn

(vn)
)

∀v ∈ Lp,

σR
p (v) :=

(
σB,p1(v1), . . . , σB,pn

(vn)
)

∀v ∈ Rp,

σT
p (q) :=

(
σC,p1(q1), . . . , σC,pn

(qn)
)

∀q ∈ Zp.

Our algorithm heavily depends on constructing the following projections.

▶ Definition 3.3 (Projection of a Function). The projection of a function g : Ln → Z with
respect to the type p ∈ [m]n, is the function gp : Zp → Z defined as

gp(q) :=
∑

u∈Lp

JσL
p (u) = qK · g(u) for every q ∈ Zp.

Similarly, the projection hp : Zp → Z of a function h : Rn → Z with respect to the type
p ∈ [m]n is defined as

hp(q) :=
∑

w∈Rp

JσR
p (w) = qK · h(w) for every q ∈ Zp.

The projections are useful due to the following connection with g ⊛f h.

▶ Lemma 3.4. Let g : Ln → Z and h : Rn → Z, then for every v ∈ T n it holds that:

(g ⊛f h) (v) =
∑

p∈[m]n

∑
q∈Zp

JσT
p (q) = vK · (gp ⊙ hp) (q),

where gp ⊙ hp is the cyclic convolution of gp and hp.
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We give the proof of Lemma 3.4 in Section 3.1. It should be noted that the naive computation
of the projection functions of g and h with respect to all types p is significantly slower than
the running time stated in Lemma 3.1. To adhere to the stated running time we use a
dynamic programming procedure for the computations, as stated in the following lemma.

▶ Lemma 3.5. There exists an algorithm which given a function g : Ln → {−M, . . . , M}
returns the set of its projections, {gp | p ∈ [m]n}, in time Õ ((cost(P)n + |L|n) · polylog(M)).

▶ Remark 3.6. Analogously, we can also construct every projection of a function h : Rn →
{−M, . . . , M} in Õ ((cost(P)n + |R|n) · polylog(M)) time.
The proof of Lemma 3.5 in given in Appendix C.

Our algorithm for f -Convolution (see Algorithm 1 for the pseudocode) is a direct
implication of Lemma 3.4 and Lemma 3.5. First, the algorithm computes the projections
of g and h with respect to every type p. Subsequently, the cyclic convolution of gp and
hp is computed efficiently as described in Theorem 2.5. Finally, the values of (g ⊛f h) are
reconstructed by the formula in Lemma 3.4.

Algorithm 1 Cyclic Partition Algorithm for the f -Convolution problem.

Setting : Finite sets L, R and T , f : L × R → T and a cyclic partition P of f , of
size m.

Input: g : Ln → {−M, . . . , M}, h : Rn → {−M, . . . , M}
1 Construct the projections of g and h w.r.t p, for all p ∈ [m]n ▷ Lemma 3.5
2 For every p ∈ [m]n compute cp = gp ⊙ hp ▷ Cyclic convolutions (Definition 2.4)
3 Define r : T n → Z by

r(v) =
∑

p∈[m]n

∑
q∈Zp s.t. σT

p
(q)=v

cp(q) for all v ∈ T n.

4 return r

Proof of Lemma 3.1. Observe that Algorithm 1 returns r : T n → Z such that for every
v ∈ T n it holds that

r(v) =
∑

p∈[m]n

∑
q∈Zp

s.t. σT
p

(q)=v

cp(q) =
∑

p∈[m]n

∑
q∈Zp

JσT
p (q) = vK · (gp ⊙ hp) (q) = (g ⊛f h) (v),

where the last equality is by Lemma 3.4. Thus, the algorithm returns (g ⊛f h) as required.
It therefore remains to bound the running time of the algorithm.

By Lemma 3.5, Line 1 of Algorithm 1 runs in time Õ((cost(P)n + |L|n + |R|n) ·
polylog(M)). By Theorem 2.5, for any type p ∈ [m]n the computation of gp ⊙ hp in
Line 2 runs in time Õ((

∏n
i=1 kpi

) · polylog(M)). Thus the overall running time of Line 2 is
Õ
(

(
∑

p∈[m]n

∏n
i=1 kpi

) · polylog(M)
)

.
Finally, observe that the construction of r in Line 3 can be implemented by initializing

r to be zeros and iteratively adding the value of cp(q) to r(σT
p (q)) for every p ∈ [m]n and

q ∈ Zp. The required running time is thus Õ(|T |n · polylog(M)) for the initialization and
Õ
(

(
∑

p∈[m]n |Zp|) · polylog(M)
)

= Õ
(

(
∑

p∈[m]n

∏n
i=1 kpi

) · polylog(M)
)

for the addition
operations. Thus, the overall running time of Line 3 is

Õ

|T |n +
∑

p∈[m]n

n∏
i=1

kpi

 · polylog(M)

 .
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Combining the above, with
∑

p∈[m]n

∏n
i=1 kpi

= (
∑m

i=1 ki)
n = (cost(P))n means that the

running time of Algorithm 1 is

Õ ((|T |n + |R|n + |L|n + cost(P)n) · polylog(M))

This concludes the proof of Lemma 3.1. ◀

3.1 Properties of Projections
In this section we provide the proof for Lemma 3.4. The proof of Lemma 3.4 uses the
following definitions of coordinate-wise addition with respect to a type p.

▶ Definition 3.7 (Coordinate-wise Addition Modulo for Type). For any p ∈ [m]n we define a
coordinate-wise addition modulo as

q +p r :=
(
(q1 + r1 mod kp1), . . . , (qn + rn mod kpn

)
)

for every q, r ∈ Zp.

Proof of Lemma 3.4. By Definition 2.1 it holds that:

(g ⊛f h) (v) =
∑

u∈Ln,w∈Rn

Jv = u ⊕f wK · g(u) · h(w). (3.1)

Recall that the type of every two vectors (u, w) ∈ Ln × Rn is unique and [m]n contains all
possible types and hence, we can rewrite (3.1) as

(g ⊛f h)(v) =
∑

p∈[m]n

∑
u∈Lp,w∈Rp

g(u) · h(w) · Jv = u ⊕f wK (3.2)

By the properties of the relabeling functions, we get

=
∑

p∈[m]n

∑
u∈Lp,w∈Rp

g(u) · h(w) · Jv = σT
p

(
σL

p (u) +p σR
p (w)

)
K

=
∑

p∈[m]n

∑
q∈Zp

∑
u∈Lp,w∈Rp

g(u) · h(w) · Jv = σT
p (q)K · Jq = σL

p (u) +p σR
p (w)K

=
∑

p∈[m]n

∑
q∈Zp

s.t. σT
p

(q)=v

∑
u∈Lp,w∈Rp

g(u) · h(w) · Jq = σL
p (u) +p σR

p (w)K.

Observe that we can partition Lp (respectively Rp) by considering the inverse images of
r ∈ Zp under σL

p (respectively σR
p ), i.e. Lp =

⊎
r∈Zp

{u ∈ Lp | σL
p (u) = r}. Hence, for every

p ∈ [m]n and q ∈ Zp it holds that∑
u∈Lp,v∈Rp

g(u) · h(w) · Jq = σL
p (u) +p σR

p (w)K

=
∑

r,s∈Zp

∑
u∈Lp,w∈Rp

g(u) · h(w) · Jq = r +p sK · Jr = σL
p (u)K · Js = σR

p (w)K

=
∑

r,s∈Zp

Jq = r +p sK

∑
u∈Lp

Jr = σL
p (u)K · g(u)

 ·

 ∑
w∈Rp

Js = σR
p (w)K · h(w)


=
∑

r,s∈Zp

Jq = r +p sK · gp(r) · hp(s)

= (gp ⊙ hp)(q). (3.3)
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By plugging (3.3) into (3.2) we get

(g ⊛f h) (v) =
∑

p∈[m]n

∑
q∈Zp

s.t. σT
p

(q)=v

(gp ⊙ hp)(q) =
∑

p∈[m]n

∑
q∈Zp

JσT
p (q) = vK · (gp ⊙ hp) (q),

as required. ◀

4 Existence of Low-Cost Cyclic Partition

In this section we prove Lemma 4.1.

▶ Lemma 4.1. Let f : L × R → T where L, R and T are finite sets. Then there is a
cyclic partition P of f such that cost(P) ≤ |L|

2 · 4·|R|+|T |
3 when |L| is even, and cost(P) ≤

|R| + |L|−1
2 · 4·|R|+|T |

3 when |L| is odd.

We first consider the special case when |L| = 2. Later we reduce the general case to this
scenario and use the result as a black-box.

As a warm-up we construct a cyclic partition of cost at most 7
8 |D|2 assuming that

L = R = T = D and that |D| is even. For this, we first partition D into pairs d
(i)
1 , d

(i)
2 where

i ∈ [|D|/2] and show for each such pair that f restricted to {d
(i)
1 , d

(i)
2 } and D has a cyclic

partition of cost at most 7
4 |D|. The union of these cyclic partitions forms a cyclic partition

of f with cost at most |D|
2 · 7

4 |D|.
To construct the cyclic partition for a fixed i ∈ [|D|/2], we find a maximal number r

of pairwise disjoint pairs e
(j)
1 , e

(j)
2 ∈ D such that |{f(d(i)

a , e
(j)
b ) | a, b = 1, 2}| ≤ 3 for each

j ∈ [r], i.e. for each j at least one of the four values repeats. With this assumption, f

restricted to {d
(i)
1 , d

(i)
2 } and {e

(j)
1 , e

(j)
2 } is either a cyclic minor of cost at most 3 or can be

decomposed into 3 trivial cyclic minors of the total cost at most 3. We claim that r ≥ |D|/4.
Indeed, assume that there are fewer than |D|/4 such pairs, i.e. r < |D|/4. Let D denote the
|D| − 2 · r > |D|/2 remaining values in D. As the set {f(d(i)

a , d) | d ∈ D, a = 1, 2} can only
contain at most |D| values, we can find another pair e

(r+1)
1 , e

(r+1)
2 with the above constraints.

Note that f restricted to {d
(i)
1 , d

(i)
2 } and D can be decomposed into at most 2|D| trivial

minors. Hence, the cyclic partition for f restricted to {d
(i)
1 , d

(i)
2 } and D has cost at most

3r + 2 · |D| ≤ 3 · |D|
4 + 2 · |D|

2 ≤ 7
4 |D|.

4.1 Special Case
In this section, we prove the following lemma that is a special case of Lemma 4.1.

▶ Lemma 4.2. If f : L × R → T with |L| = 2, then there is a cyclic partition P of f such
that cost(P) ≤ (4|R| + |T |)/3.

To construct the cyclic partition we proceed as follows. First we define, for a function f ,
the representation graph Gf . Next we show that if this graph has a special structure, which
we later call nice, then we can easily find a cyclic partition for the function f . Afterwards we
decompose (the edges of) an arbitrary representation graph Gf into nice structures and then
combine the cyclic partitions coming from these parts to a cyclic partition for the original
function f .
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r1 r2 r3 r4 r5 r6 r7 r8 r9 r10 r11 r12

ℓ0 a b c a e f g h i j k l

ℓ1 b c a d d d d d d k l m

Figure 4.1 Example of the construction of a representation graph from the function f to obtain
a cyclic partition. We put an edge between vertices u and v if there is an ri with u = f(ℓ0, ri)
and v = f(ℓ1, ri). We highlight the partition of the graph into cycle (red), in-star (blue) and path
(green). The cost of this cyclic partition is 3 + 7 + 4 = 14.

▶ Definition 4.3. Let f : L × R → T be a such that |L| = 2 with L = {ℓ0, ℓ1}.
We define a function λf : R → T ×T with λf : r 7→ (f(ℓ0, r), f(ℓ1, r)) as the edge mapping

of f .
We define a directed graph Gf (which might have loops) with vertex set V (Gf ) := T and

edge set E(Gf ) := {λf (r) | r ∈ R}. We say that Gf is the representation graph of f .
We say that a representation graph Gf is nice if it is a cycle, a path (potentially with

only one edge), an in-star, or an out-star.5
Let E′ ⊆ E(Gf ) be a subset of edges inducing the subgraph G′ of Gf . With T ′ := V (G′)

and R′ := {r ∈ R | λf (r) ∈ E′}, we define f ′ : L × R′ → T ′ as the restriction of f such that
the representation graph of f ′ is G′. Formally, f ′(ℓ, r) = f(ℓ, r) for all ℓ ∈ L and r ∈ R′.
We say that f ′ is the function represented by G′ or E′, respectively.

A decomposition of a directed graph G is a set C of edge-disjoint subgraphs of G, such
that each edge belongs to exactly one set in C. For ease of notation, we identify the set of
edges E′ with the induced graph G′. For a graph G, the line graph L(G) is a graph where
the set of edges E(G) is the vertex set of L(G) and e1, e2 ∈ V (L(G)) are adjacent in L(G) if
edges e1, e2 share an endpoint in graph G.

The following observation follows directly from the previous definition.

▶ Observation 4.4. Let G1, . . . , Gp be decomposition of the graph Gf into p subgraphs, let fi

be the function represented by Gi, and let Pi be a cyclic partition of fi. Then P =
⋃

i∈[p] Pi

is a cyclic partition of f with cost cost(P) =
∑

i∈[p] cost(Pi).

Cyclic Partitions Given Nice Representation Graphs. As a next step, we show that
functions admit cyclic partitions if the representation graph is nice. Afterwards we show
how to decompose (the representation) graphs into nice (representation) graphs. Finally, we
combine these results to obtain a cyclic partition for the original function f . See Figure 4.1
for an example.

▶ Lemma 4.5. Let f : L × R → T be a function such that Gf is nice. Then f has a cyclic
partition of cost at most |T |.

5 A star graph where either all edges are directed to the central vertex or all edges are directed away
from it, respectively.
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Proof. By definition, a nice graph is either a path, a cycle or an in-star or out-star. We
handle each case separately in the following. Let L = {ℓ0, ℓ1}.
Gf is a cycle. We first define the relabeling functions of f to show that f is |T |-cyclic.

For the elements in L, let σL : L → Z2 with σL(ℓi) = i. To define σR and σT , fix an
arbitrary t0 ∈ T . Let t1, . . . , t|T | be the elements in T with t|T | = t0 such that, for all
i ∈ Z|T |, there is some ri ∈ R with λf (ri) = (ti, ti+1).6 Note that these ri exist since Gf

is a cycle. Using this notation, we define σT : Z|T | → T with σT (i) = ti, for all i ∈ Z|T |.
For the elements in R we define σR : R → Z|R| with σR(r) = i whenever λf (r) = (ti, ti+1)
for some i.
It is easy to check that f can be seen as addition modulo |T |. Indeed, let j ∈ {0, 1} and
r ∈ R with λf (r) = (ti, ti+1). Then we get

σT (σL(ℓj)+σR(r) mod |T |) = σT (j+i mod |T |) = tj+i mod |T | = f(ℓj , ri) = f(ℓj , r).

Thus, f is |T |-cyclic and {(L, R, |T |)} is a cyclic partition of f .
Gf is a path. Similarly to the previous case, f can be represented as addition modulo |T |.

As the proof is essentially identical to the cyclic case, we omit the details here.
Gf is a star. We only consider the out-star as the in-star follows symmetrically by swapping

the roles of ℓ0 and ℓ1. We define the following cyclic partition P as

P := {({ℓ0}, R, 1)} ∪ {({ℓ1}, {r}, 1) | r ∈ R}.

Note that every (ℓ, r) ∈ L × R appears in exactly one minor of P. Hence, P is indeed
a cyclic partition. Next, we observe that each minor contains exactly one element of T .
Thus, no addition is needed and hence f is 1-cyclic for each minor of P . Thus the cost of
each minor of P is 1.
By the structure of Gf , the cost of cyclic partition P is |R| + 1 = |T |. ◀

Decomposition into Nice Graphs. We first decompose the graph into cycles and acyclic
components. The later parts are then decomposed further using the next two results.

▷ Claim 4.6. Every directed graph G can be decomposed into cycles and acyclic graphs.

Proof. We remove an arbitrary cycle from the graph and add it as a new component to the
decomposition. We repeat this procedure until the graph is acyclic. ◁

Next, we decompose the acyclic graph further. First, we decompose it into pairs of edges
that share at least one endpoint.

▷ Claim 4.7. Every directed graph G = (V, E) whose undirected version is connected can
be decomposed into ⌊|E|/2⌋ pairs of edges which share (at least) one endpoint and, if and
only if |E| is odd, one additional single edge.

Proof. If the graph has an odd number of edges, then we find one edge e, such that the
removal of e does not disconnect the graph (except for maybe one isolated vertex). Next,
we include this edge into the decomposition and apply the procedure for the case when the
number of edges is even.

Chartrand et al. [16, Theorem 1] showed that if a graph G has an even number of edges,
then there is a perfect matching in the line graph L(G) of G. This perfect matching directly
gives us a partition of the edges of G into ⌊|E|/2⌋ pairs which share at least one endpoint.

◁

6 Note that there might be multiple r ∈ R with λf (r) = (ti, ti+1).
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Next, we present a different way to decompose the graph into nice structures.

▷ Claim 4.8. Every directed acyclic graph G = (V, E) can be decomposed into at most
|V | − 1 out-stars.

Proof. The sets of out-going edges from each vertex form a partition of all edges of the graph
G. Moreover, each such non-empty set of edges describes an out-star. As in every directed
acyclic graph, there is at least one sink vertex, there are at most |V | − 1 such out-stars. ◁

Combining the Results. Finally, we are ready to combine the above results and prove
Lemma 4.2.

Proof of Lemma 4.2. We first use Claim 4.6 to decompose Gf into c cycles C1, . . . , Cc and
d connected, acyclic graphs G1, . . . , Gd.

For each Ci, Lemma 4.5 gives us a cyclic partition P ′
i for the associated function with

cost at most |E(Ci)| = |V (Ci)|. For the remaining components, we use the following claim.

▷ Claim 4.9. For each Gi, there is a cyclic partition Pi for the function represented by Gi

with the cost at most

cost(Pi) ≤ 4|E(Gi)| + |V (Gi)|
3 . (4.1)

Proof. Fix some i ∈ [d] in the following. We show the claim by considering two cases. For
ease of notation, let Ei = E(Gi) and Vi = V (Gi).

In the case when 2|Vi| ≥ |Ei| + 3, we decompose the graph Gi via Claim 4.7. This
decomposes Gi into ⌊|Ei|/2⌋ pairs of edges that share an endpoint (plus an extra edge when
|Ei| is odd). Observe that a pair of edges that share an endpoint is either a directed path,
an in-star, or an out-star. Hence, by Lemma 4.5 each pair contributes a cost of 3 to the
cyclic partition. Therefore, by Observation 4.4, the function represented by Gi has a cyclic
partition with a cost at most 3|Ei|/2 if |Ei| is even and with cost at most 3(|Ei| − 1)/2 + 2 if
|Ei| is odd. As the latter bound is the larger one, it can be easily checked that the claimed
bound for the cyclic partition follows.

It remains to analyze case 2|Vi| < |Ei| + 3. Here, we use Claim 4.8 to decompose the
graph Gi into out-stars. By Observation 4.4 and as there is at least one sink vertex, there is
a cyclic partition of the function represented by Gi with cost at most |Ei| + |Vi| − 1. By the
assumption that 2|Vi| ≤ |Ei|+3, the cost of the cyclic partition is bounded by (4|Ei|+ |Vi|)/3
which settles (4.1). ◁

With the notation from the claim and by Observation 4.4, we define the cyclic partition
P for f as

P :=
⋃

i∈[c]

P ′
i ∪

⋃
i∈[d]

Pi.

Because the Gis are connected components of Gf after the removal of C1 . . . Cc, they are
vertex-disjoint and it holds that

∑
i∈[d] |V (Gi)| ≤ |V (Gf )|. Moreover, by Lemma 4.5 the cost

of each cycle Ci is |E(Ci)|. Hence, we get

cost(P) ≤
∑
i∈[c]

|E(Ci)| +
∑
i∈[d]

4|E(Gi)| + |V (Gi)|
3 ≤ 4|E(Gf )| + |V (Gf )|

3 .

Because |E(Gf )| ≤ |R| and |V (Gf )| = |T | the cost of this cyclic partition is bounded which
finishes the proof. ◀
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4.2 General Case
Now we have everything ready to prove the main result of this section.

Proof of Lemma 4.1. We first handle the case when |L| is even. We partition L into
λ = |L|/2 sets L1, . . . , Lλ consisting of exactly two elements. We use Lemma 4.2 to find a
cyclic partition Pi for each fi : Li×R → T . By definition of the cyclic partition, P =

⋃
i∈[λ] Pi

is a cyclic partition for f , hence it remains to analyze the cost of P.
Observe that for each Gi we have that |Vi| ≤ |T | and |Ei| ≤ |R|. By the definition of the

cost of the cyclic partition, we immediately get that

cost(P) ≤
λ∑

i=1
cost(Pi) ≤ λ · 4 · |R| + |T |

3 .

If |L| is odd, then we remove one element ℓ from L and let L0 = {ℓ}. There is a trivial cyclic
partition P0 for f0 : L0 × R → T of cost at most |R|. Then we use the above procedure to
find a cyclic partition P ′ for the restriction of f to L \ {ℓ} and R. Hence, setting P = P0 ∪ P ′

gives a cyclic partition for f with cost

cost(P) ≤ cost(P0) + cost(P ′) ≤ |R| +
⌊

|L|
2

⌋(
4 · |R| + |T |

3

)
. ◀

▶ Remark 4.10. If |L| and |R| are both even, one can easily achieve the following cost

min
(

L

2 · 4 · |R| + |T |
3 ,

R

2 · 4 · |L| + |T |
3

)
by swapping the role of L and R and considering the function f ′ : R × L → T with f ′(r, ℓ) =
f(ℓ, r) for all ℓ ∈ L and r ∈ R.

5 Conclusion and Future Work

In this paper, we studied the f -Convolution problem and demonstrated that the naive
brute-force algorithm can be improved for every f : D × D → D. We achieve that by
introducing a cyclic partition of a function and showing that there always exists a cyclic
partition of bounded cost. We give an Õ((c|D|2)n ·polylog(M)) time algorithm that computes
f -Convolution for c := 5/6 when |D| is even.

The cyclic partition is a very general tool and potentially it can be used to achieve greater
improvements for certain functions f . For example, in multiple applications (e.g., [20, 34,
24, 29]) the function f has a cyclic partition with a single cyclic minor. Nevertheless, in our
proof we only use cyclic minors where one dimension is at most 2. We suspect that better
results can be obtained by considering larger minors.

We leave several open problems. Our algorithm offers an exponential (in n) improvement
over a naive algorithm for domains D of constant size. Can we hope for an Õ(|D|(2−ϵ)n ·
polylog(M)) time algorithm for f -Convolution for some ϵ > 0? We are not aware of any
lower bounds, so in principle even an Õ(|D|n · polylog(M)) time algorithm is plausible.

Ideally, we would expect that the f -Convolution problem can be solved in Õ((|L|n +
|R|n + |T |n) · polylog(M)) for any function f : L × R → T . In Figure 5.1 we include three
examples of functions that are especially difficult for our methods.

Finally, we gave an Õ(|D|ω·n/2 · polylog(M)) time algorithm for f -Query problem.
For ω = 2 this algorithm runs in almost linear-time, however for the current bound ω <

2.373 our algorithm runs in time Õ(|D|1.19n · polylog(M)). Can f -Query be solved in
Õ(|D|n · polylog(M)) time without assuming ω = 2?
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Figure 5.1 Here are three concrete examples of functions f for which we expect that the running
times for f -Convolution should be Õ(3n ·polylog(M)), Õ(3n ·polylog(M)) and Õ(4n ·polylog(M)).
However, the best cyclic partitions for this functions have costs 4, 4 and 5 (the partitions are
highlighted appropriately). This implies that the best running time, which may be attained using
our techniques are Õ(4n · polylog(M)), Õ(4n · polylog(M)) and Õ(5n · polylog(M)).
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A Querying a Generalized Convolution

In this section, we prove Theorem 1.4. The main idea is to represent the f -Query problem
as a matrix multiplication problem, inspired by a graph interpretation of f -Query.

Let D be an arbitrary set and f : D × D → D. We assume D and f are fixed throughout
this section. Let g, h : Dn → {−M, . . . , M} and v ∈ Dn be a f -Query instance. We use a∥b
to denote the concatenation of a ∈ Dm and b ∈ Dk. That is (a1, . . . , am)∥(b1, . . . , bk) =
(a1, . . . , am, b1, . . . , bk). If we assume that n is even, then, for a vector v ∈ Dn, let
v(high), v(low) ∈ Dn/2 be the unique vectors such that v(high)∥v(low) = v. Indeed, to achieve
this assumption let n be odd, fix an arbitrary d ∈ D, and define g̃, h̃ : Dn+1 → {−M, . . . , M}
as g̃(u1, . . . un+1) = Jun+1 = dK ·g(u1, . . . un) and h̃(u1, . . . un+1) = Jun+1 = dK ·h(u1, . . . un)
for all u ∈ Dn+1. It can be easily verified that (g ⊛f h)(v) = (g̃ ⊛f h̃)(v∥(f(d, d))). Thus,
we can solve the f -Query instance g̃, h̃ and v∥(f(d, d)) and obtain the correct result.

We first provide the intuition behind the algorithm and then formally show the existence.

Intuition. We define a directed multigraph G where the vertices are partitioned into four
layers L(high), L(low), R(low), and R(high). Each of these sets consists of |D|n/2 vertices
representing every vector in Dn/2. For ease of notation, we use the vectors to denote the
associated vertices; furthermore, the intuition assumes g and h are non-negative. The
multigraph G contains the following edges:

g(w∥x) parallel edges from w ∈ Dn/2 in L(high) to x ∈ Dn/2 in L(low).
One edge from x ∈ Dn/2 in L(low) to y ∈ Dn/2 in R(low) if and only if x ⊕f y = v(low).
h(z∥y) parallel edges from y ∈ Dn/2 in R(low) to z ∈ Dn/2 in R(high).
One edge from z ∈ Dn/2 in R(high) to w ∈ Dn/2 in L(high) if and only if w ⊕f z = v(high).

In the formal proof, we denote the adjacency matrix between L(high) and L(low) by W ,
between L(low) and R(low) by X, between R(low) and R(high) by Y , and between R(high) and
L(high) by Z. See Figure A.1 for an example of this construction.

Let w, x, y, z ∈ Dn/2 be vertices in L(high), L(low), R(low), and R(high). It can be observed
that if (w∥x) ⊕f (y∥z) ̸= v, then G does not contain any cycle of the form w → x →
y → z → w as one of the edges (x, y) or (z, w) is not present in the graph. Conversely, if
(w∥x) ⊕f (y∥z) = v, then one can verify that there are g(w∥x) · h(z∥y) cycles of the form
w → x → y → z → w. We therefore expect that (g ⊛f h)(v) is the number of cycles in G

that start at some w ∈ Dn/2 in L(high), have length four, and end at the same vertex w in
L(high) again.

Formal Proof. We use the notation MatZ(Dn/2 × Dn/2) to refer to a |D|n/2 ×|D|n/2 matrix
of integers where we use the values in Dn/2 as indices. The transition matrices of g, h and v
are the matrices W, X, Y, Z ∈ MatZ(Dn/2 × Dn/2) defined by

Ww,x := g(w∥x) ∀w, x ∈ Dn/2

Xx,y := Jx ⊕f y = v(low)K ∀x, y ∈ Dn/2

Yy,z := h(z∥y) ∀y, z ∈ Dn/2

Zz,w := Jw ⊕f z = v(high)K ∀z, w ∈ Dn/2

Recall that the trace tr(A) of a matrix A ∈ MatZ(m × m) is defined as tr(A) :=
∑m

i=1 Ai,i.
The next lemma formalizes the correctness of this construction.
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Figure A.1 Construction of the directed multigraph G. Each vertex in a layer corresponds to the
vector in Dn/2. We highlighted 4 vectors w, x, y, z ∈ Dn/2 each in a different layer. Note that the
number of 4 cycles that go through all four w, x, y, z is equal to g(w∥x) · h(z∥y). The total number
of directed 4-cycles in this graph corresponds to the value (g ⊛f h)(v) and tr(W · X · Y · Z).

▶ Lemma A.1. Let n ∈ N be an even number, g, h : Dn → Z and v ∈ Dn. Also, let
W, X, Y, Z ∈ MatZ(Dn/2 × Dn/2) be the transition matrices of g, h and v. Then,

(g ⊛f h)(v) = tr(W · X · Y · Z).

Proof. For any w, y ∈ Dn/2 it holds that,

(W · X)w,y =
∑

x∈Dn/2

Ww,x · Xx,y =
∑

x∈Dn/2

Jx ⊕f y = v(low)K · g(w∥x). (A.1)

Similarly, for any y, w ∈ Dn/2 it holds that,

(Y · Z)y,w =
∑

z∈Dn/2

Yy,z · Zz,w =
∑

z∈Dn/2

Jw ⊕f z = v(high)K · h(z∥y). (A.2)

Therefore, for any w ∈ Dn/2,

(W · X · Y · Z)w,w =
∑

y∈Dn/2

(W · X)w,y · (Y · Z)y,w

=
∑

y∈Dn/2

 ∑
x∈Dn/2

Jx ⊕f y = v(low)K · g(w∥x)

 ∑
z∈Dn/2

Jw ⊕f z = v(high)K · h(z∥y)


=

∑
x,y,z∈Dn/2

Jx ⊕f y = v(low)K · Jw ⊕f z = v(high) K · g(w∥x) · h(z∥y)

=
∑

x,y,z∈Dn/2

J(w∥x) ⊕f (z∥y) = v(high)∥v(low)K · g(w∥x) · h(z∥y),
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where the second equality follows by (A.1) and (A.2). Thus,

tr(W · X · Y · Z) =
∑

w∈Dn/2

(W · X · Y · Z)w,w

=
∑

w∈Dn/2

∑
x,y,z∈Dn/2

J(w∥x) ⊕f (z∥y) = vK · g(w∥x) · h(z∥y)

=
∑

u,t∈Dn

Ju ⊕f t = vK · g(u) · h(t)

= (g ⊛f h)(v). ◀

Now we have everything ready to give the algorithm for f -Query.

Proof of Theorem 1.4. The algorithm for solving f -Query works in two steps:
1. Compute the transition matrices W , X, Y , and Z of g, h and v as described above.
2. Compute and return tr(W · X · Y · Z).
By Lemma A.1 this algorithm returns (g ⊛f h)(v). Computing the transition matrices in
Step 1 requires Õ(|D|n ·polylog(M)) time. Observe the maximal absolute values of an entry in
the transition matrices is M . The computation of W ·X ·Y ·Z in Step 2 requires three matrix
multiplications of |D|n/2 × |D|n/2 matrices, which can be done in Õ((|D|n/2)ω · polylog(M))
time. Thus, the overall running time of the algorithm is Õ(|D|ω·n/2 · polylog(M)). ◀

B Proof of Theorem 2.5

In this section we prove Theorem 2.5. We let M be the absolute value of largest integer on
the output of functions g : Ln → Z and h : Rn → Z. We let K :=

∏n
i=1 ri. We crucially rely

on the following result by van Rooij [33].

▶ Theorem B.1 ([33, Lemma 3]). Let p denote a prime such that in the field Fp, the ri-th
root of unity exists for each i ∈ [n]. For two given functions g, h : Zr1 × · · · × Zrn

→ Z,
we can compute their cyclic convolution modulo p (that is, return a function ϕ such that
ϕ(q) = (g ⊙ h)(v) mod p for every q ∈ Zr1 × · · · × Zrn

) in time O(K log(Kp)) (assuming a
ri-th primitive root of unity ωi in the field Fp is given for all i ∈ [n]).

The basic idea behind the proof is to compute g ⊙ h modulo pi for a sufficiently large
number of distinct small primes pi. If

∏
i pi > 2n, then the values of g ⊙ h can be uniquely

recovered using the Chinese Remainder Theorem.

▶ Theorem B.2 (Chinese Remainder Theorem). Let m1, . . . , mℓ denote a sequence of integers
that are pairwise coprime and define M :=

∏
i∈[ℓ] mi. Also let 0 ≤ ai < mi for all i ∈ [ℓ].

Then there is a unique number 0 ≤ s < M such that

s ≡ ai (mod mi)

for all i ∈ [ℓ]. Moreover, there is an algorithm that, given m1, . . . , mℓ and a1, . . . , aℓ, computes
the number s in time O((log M)2).

Let m := ⌈log(3·|L|n ·|R|n ·M2)⌉ . We compute the list of the first m primes p1 < · · · < pm

such that pi ≡ 1 (mod K) for all i ∈ [m]. By the Prime Number Theorem for Arithmetic
Progressions (see, e.g., [3]) we get that pm = O(φ(K) · m · log m) where φ denotes Euler’s
totient function. In particular, pm = O(K ·m · log m) because φ(K) ≤ K. Since prime testing
can be done in polynomial time, we can find the sequence p1, . . . , pm in time O(K ·m·(log m)c)
for some constant c.
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Next, for every i ∈ [m] and j ∈ [n], we compute a rj-th root of unity in Fpi as follows.
First observe that such a root of unity exists since rj divides pi − 1. For every i ∈ [m] we
first find the prime factors qi,1, . . . , qi,ℓi

of pi − 1 by iterating over every number in Zpi
and

checking if it is both prime and divides pi − 1. This can be done in time O(pi · polylog pi).
Next, we simply iterate over all elements x ∈ Fpi

and test whether a given element x is a
rj-th root of unity in time (log pi)O(1). So overall, computing all roots of unity for every pi

(i ∈ [m]) can be done in time
m∑

i=1

(
O(pi · polylog pi) +

n∑
j=1

pi · (log pi)O(1)

)
= m ·n ·pm ·(log pm)O(1) = K ·(n+m+log K)O(1).

Now, for every i ∈ [m] and q ∈ Zr1 × · · · × Zrn
, we compute

(g ⊙ h)(q)(i) := (g ⊙ h)(q) (mod pi)

using Theorem B.1 in time O(m · K · log(K · pm)) = K · (m + log K)O(1).
Finally, we can recover (g ⊙ h)(q) for every q by the Chinese Remainder Theorem in

time O(K · m2). Note that
∏

i∈[m] pi > 2m ≥ M which implies that all numbers are indeed
uniquely recovered. In total, this achieves the desired running time. ◀

C Proof of Lemma 3.5

The idea is to use a dynamic programming algorithm loosely inspired by Yates algorithm [40].
Define X(ℓ) =

{
(p, q)

∣∣ p ∈ [m]ℓ, q ∈ Zp1 × · · · × Zpℓ

}
for every ℓ ∈ {0, . . . , n}. We use

X(ℓ) to define a dynamic programming table DP(ℓ) : X(ℓ) × Ln−ℓ → Z for every ℓ ∈ {0, . . . n}
by:

DP(ℓ)[(p1, . . . , pℓ), (q1, . . . , qℓ)][tℓ+1, . . . , tn] :=
∑

t1∈Ap1...
tℓ∈Apℓ

(
ℓ∏

i=1

Jσpi
(ti) = qiK

)
· g(t1, . . . , tn).

The tables DP(0), DP(1), . . . , DP(n) are computed consecutively where the computa-
tion of DP(ℓ) relies on the values of DP(ℓ−1) for any ℓ ∈ [n]. Observe that gp(q) =
DP(n)[(p1, . . . , pn), (q1, . . . , qn)][ε] for every p and q, which means that computing DP(n) is
equivalent to computing the projection functions gp of g for every type p.7

It holds that DP(0)[ε, ε][t] = g(t). Hence, DP(0) can be trivially computed in |L|n time.
We use the following straightforward recurrence to compute DP(ℓ):

DP(ℓ)[(p1, . . . , pℓ), (q1, . . . , qℓ)][tℓ+1, . . . , tn] =∑
tℓ∈Apℓ

Jσpℓ
(tℓ) = qℓK · DP(ℓ−1)[(p1, . . . , pℓ−1), (q1, . . . , qℓ−1)][tℓ, . . . , tn]. (C.1)

A dynamic programming algorithm which computes DP(n) can be easily derived from (C.1)
and the formula for DP(0). The total number of states in the dynamic programming table
DP(ℓ) is ∑

p∈[m]ℓ

(
kp1 · . . . · kpℓ

) · |L|n−ℓ = (k1 + · · · + km)ℓ · |L|n−ℓ = cost(P)ℓ · |L|n−ℓ.

This is bounded by cost(P)n + |L|n for every ℓ ∈ [n]. To transition between states we spend
polynomial time per entry because we assume that |L| = O(1). Hence, we can compute gp

for every p in Õ((cost(P)n + |L|n) · polylog(M)) time. ◀

7 We use ε to denote the vector of length 0.
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