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—— Abstract

The leafage of a chordal graph G is the minimum integer ¢ such that G can be realized as an
intersection graph of subtrees of a tree with ¢ leaves. We consider structural parameterization by
the leafage of classical domination and cut problems on chordal graphs. Fomin, Golovach, and
Raymond [ESA 2018, Algorithmica 2020] proved, among other things, that DOMINATING SET on

) 0 We present a conceptually much

chordal graphs admits an algorithm running in time 2°
simpler algorithm that runs in time 29 .n®M | We extend our approach to obtain similar results for
CONNECTED DOMINATING SET and STEINER TREE. We then consider the two classical cut problems
MurTiCuT WITH UNDELETABLE TERMINALS and MULTIWAY CUT WITH UNDELETABLE TERMINALS.
We prove that the former is W[1]-hard when parameterized by the leafage and complement this
result by presenting a simple n®®_time algorithm. To our surprise, we find that MuLTIwAY CUT

WITH UNDELETABLE TERMINALS on chordal graphs can be solved, in contrast, in n°®-time.
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1 Introduction

The intersection graph of a family F of nonempty sets is the graph whose vertices are the
elements of F with two vertices being adjacent if and only if their corresponding sets intersect.
The most natural and famous example of such intersection graphs are interval graphs where F
is a collection of subpaths of a path. Due to their applicability in scheduling, interval graphs
have received a considerable attention in the realm of algorithmic graph theory. One useful
characterization of an interval graph is that its maximal cliques can be linearly ordered such
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that for every vertex, the maximal cliques containing that vertex occur consecutively [25].
This property proves very useful for the design of polynomial-time dynamic programming
based or greedy algorithms on interval graphs.

Consider the generalization where F is a collection of subtrees of a tree instead of subpaths
of a path. In this case, the corresponding class of intersection graphs is exactly that of
chordal graphs [47, 24, 11]. Recall that a graph is chordal if every cycle of length at least
4 has a chord. Often, the algorithms of the types mentioned in the previous paragraph
fail to generalize to this superclass as witnessed by the following problems that admit
polynomial-time algorithms on interval graphs but are NP-complete on chordal graphs:
DOMINATING SET [13, 8], CONNECTED DOMINATING SET [3, 48], STEINER TREE |[3, 48],
MuLTICUT WITH UNDELETABLE TERMINALS [28, 44], SUBSET FEEDBACK VERTEX SET
(SUBSET FVS) [45, 21], LONGEST CYCLE [34, 27]!, LONGEST PATH [32], COMPONENT ORDER
CONNECTIVITY [19], s-CLUB CONTRACTION [26], INDEPENDENT SET RECONFIGURATION [5],
BANDWIDTH [36], CLUSTER VERTEX DELETION [35]. Also, GRAPH ISOMORPHISM on chordal
graphs is polynomial-time equivalent to the problem on general graphs whereas it admits a
linear-time algorithm on interval graphs [40].

The problems above remain hard even on split graphs, another well-studied subclass of
chordal graphs. A graph is a split graph if its vertex set can be partitioned into a clique
and an independent set. The collection of split graphs is a (proper) subset of the class of
intersection graphs where F is a collection of substars of a star. As interval graphs are
intersection graphs of subpaths of a path (a tree with two leaves) and split graphs are
intersection graphs of substars of a star (a tree with arbitrary number of leaves), a natural
question to consider is what happens to these problems on subclasses of chordal graphs that
are intersection graphs of subtrees of a tree with a bounded number of leaves. Motivated by
such questions, we consider the notion of leafage introduced by Lin et al. [39]: the leafage of
a chordal graph G is the minimum integer ¢ such that G can be realized as an intersection
graph of a collection F of subtrees of a tree that has ¢ leaves. Note that the leafage of
interval graphs is at most 2 while split graphs have unbounded leafage. Thus the leafage
measures, in some sense, how close a chordal graph is to an interval graph. Alternately, an
FPT or XP algorithm parameterized by the leafage can be seen as a generalization of the
algorithm on interval graphs.

Related Work. Habib and Stacho [29] showed that we can compute the leafage of a
connected chordal graph in polynomial time. Their algorithm also constructs a corresponding
representation tree’? T with the minimum number of leaves. In recent years, researchers
have studied the structural parameterization of various graph problems on chordal graphs
parameterized by the leafage. Fomin et al. [20] and Arvind et al. [2] proved, respectively,
that the DOMINATING SET and GRAPH ISOMORPHISM problems on chordal graphs are
FPT parameterized by the leafage. Barnetson et al. [4] and Papadopoulos and Tzimas
[46] presented XP-algorithms running in time n®®) for FIRE BREAK and SUBSET FVS on
chordal graphs, respectively. Papadopoulos and Tzimas [46] also proved that SUBSET FVS
is W[1]-hard when parameterized by the leafage. Hochstéttler et al [31] showed that we can
compute the neighborhood polynomial of a chordal graph in n®®-time.

It is known that the size of asteroidal set in a chordal graph is upper bounded by its
leafage [39]. See [30, 1] for the relationship between leafage and other structural properties
of chordal graphs. Kratsch and Stewart [37] proved that we can effectively 2¢-approximate

1 See Exercise 2 in Chapter 6 in [27].
2 We present formal definitions of the terms used in this section in Section 2.
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bandwidth of chordal graphs of leafage ¢. Chaplick and Stacho [14] generalized the notion of
leafage to vertex leafage and proved that, unlike leafage, it is hard to determine the optimal
vertex leafage of a given chordal graph. Figueiredo et al. [18] proved that DOMINATING
SET, CONNECTED DOMINATING SET and STEINER TREE are FPT on chordal graphs when
parameterized by the size of the solution plus the vertex leafage, provided that a tree
representation with optimal vertex leafage is given as part of the input.

Our Results. We consider well-studied domination and cut problems on chordal graphs.

As our first result, we prove that DOMINATING SET on chordal graphs of leafage at most ¢
admits an algorithm running in time 2°® . n@M)  This improves upon the existing algorithm
by Fomin et al. [20, Theorem 9] which runs in time 20(8%) . o), Despite being significantly
simpler than the algorithm in [20], our algorithm in fact solves the RED-BLUE DOMINATING
SET problem, a well-known generalization of DOMINATING SET. In this generalized version,
an input is a graph G with a partition (R, B) of its vertex set and an integer k, and the
objective is to find a subset D of R that dominates every vertex in B, i.e., B C N(D). We
further use this algorithm to solve other related domination problems.

» Theorem 1. DOMINATING SET, CONNECTED DOMINATING SET, and STEINER TREE can
be solved in 20 . n®M) on chordal graphs of leafage at most (.

The reductions in [8] and [48] used to prove that these problems are NP-complete
on chordal graphs imply that these problems do not admit 2°(™), and hence 2°() . @),
algorithms unless the ETH fails.

Arguably, the two most studied cut problems are MULTICUT and MULTIWAY CUT. In
the MULTICUT problem, an input is graph G, a set of terminal pairs P C V(G) x V(G)
and an integer k, and the objective is to find a subset S C V(G) of size at most k such
that no pair of vertices in P is connected in G — S. In the MuLTIwWAY CUT problem,
instead of terminal pairs, we are given a terminal set P and the objective is to find a subset
S C V(G) of size at most k such that no two vertices in P are connected in G — S. These
problems and variations of them have received a considerable attention which lead to the
development of new techniques [41, 42, 9, 16, 15]. Misra et al. [43] studied the parameterized
complexity of these problems on chordal graphs. Guo et al. [28] proved that MuLTICUT
WITH DELETABLE TERMINALS is NP-complete on interval graphs, thereby implying that this
problem is paraNP-hard when parameterized by the leafage. We consider the MuLTICUT
WITH UNDELETABLE TERMINALS problem and prove the following result.

» Theorem 2. MULTICUT WITH UNDELETABLE TERMINALS on chordal graphs is W[1]-hard
when parameterized by the leafage £ and assuming the ETH, does not admit an algorithm
running in time f(£)-n°® for any computable function f. However, it admits an XP-algorithm
running in time no®,

Next, we focus on the MULTIWAY CUT WITH UNDELETABLE TERMINALS problem. We
find it somewhat surprising that the classical complexity of this problem on chordal graphs
was not known. Bergougnoux et al. [7], using the result in [20], proved that the problem
admits an XP-algorithm when parameterized by the leafage®. Our next result significantly
improves upon this and [43, Theorem 2] which states that the problem admits a polynomial
kernel when parameterized by the solution size.

3 See the discussion after Corollary 2 on page 1388 in [7].
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» Theorem 3. MuLTIWAY CUT WITH UNDELETABLE TERMINALS can be solved in n®®) -time
on chordal graphs.

A well-known trick to convert an instance of MULTIWAY CUT WITH DELETABLE TER-
MINALS into an instance of MULTIWAY CUT WITH UNDELETABLE TERMINALS is to add a
pendant vertex to each terminal, remove that vertex from the set of terminals, and make
the newly added vertex a terminal. As this reduction converts a chordal graph into another
chordal graph, Theorem 3 implies that MULTIWAY CUT WITH DELETABLE TERMINALS is
also polynomial-time solvable on chordal graphs. Another closely related problem is SUBSET
FVS which is NP-complete on split graphs [45]. To the best of our knowledge, this is the
first graph class on which the classical complexity of these two problems differ.

Next, we revisit the problems on chordal graphs with bounded leafage and examine how
far we can generalize this class. An asteroidal triple of a graph G is a set of three vertices
such that each pair is connected by some path that avoids the closed neighborhood of the
third vertex. Lekkerkerker and Boland [38] showed that a graph is an interval graph if and
only if it is chordal and does not contain an asteroidal triple. They also listed all minimal
chordal graphs that contain an asteroidal triple (see, for instance, [12, Figure 1]). Among
this list, we found the net graph to be the most natural to generalize. For a positive integer
¢ >3, we define Hy as a split graph on 2¢ vertices with split partition (C,I) such that the
only edges across C, I are a perfect matching. Note that Hs is the net graph. As interval
graphs are a proper subset of the collection of chordal graphs that do not contain a net
graph as an induced subgraph, the collection of the chordal graph of leafage ¢ is a proper
subset of the collection of chordal graphs that do not contain Hy,; as an induced subgraph
(see the full version [23]). We show that, although the considered domination problems are
polynomial-time solvable for constant ¢, the fixed-parameter tractability results are unlikely
to extend to this larger class. Let us mention that the core reason these problems admit
XP-algorithms parameterized by £ lies in the fact that H,-induced-subgraph-free chordal
graphs have mim-width at most £ —1 [33] (all three problems are indeed known to be solvable
in n®™) on graphs of mim-width at most m [6, 10]). Nonetheless, we present alternative
algorithms which we believe to be simpler and more insightful. In fact, we give a n®®
algorithm for the more general RED-BLUE DOMINATING SET problem and obtain the other
results by simple reductions.

» Theorem 4. DOMINATING SET, CONNECTED DOMINATING SET and STEINER TREE on
Hy-induced-subgraph-free chordal graphs are W[1]-hard when parameterized by ¢ and assuming
the ETH, do not admit an algorithm running in time f(£) -n°®) for any computable function
f. However, they all admit XP-algorithms running in time n©©.

We observe a similar trend with respect to MULTICUT WITH UNDELETABLE TERMINALS
as its parameterized complexity jumps from W[1]-hard on chordal graph of leafage ¢ to
paraNP-hard on Hy-induced-subgraph-free chordal graphs when parameterized by /.

» Theorem 5. MULTICUT WITH UNDELETABLE TERMINALS is NP-hard even when restricted
to Hs-induced-subgraph-free chordal graphs.

Table 1 summarizes our results.

Our Methods. We briefly discuss the methods used in our two main algorithms, namely
the algorithm for DOMINATING SET and the one for MuLTIWAY CUT.
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Table 1 Overview of the known results and our contributions. Every graph class mentioned in

the first column is a proper subset of the graph class mentioned below.

Input graph Dom SeT, ConnDowm | MurtiCut wiTH UNDEL | MULTIWAYCUT
SET, STEINER TREE TERM
Interval Graphs Poly-time [13, 3] Poly-time [28] Poly-time [7]

Chordal graphs of
leafage ¢

20(%) . 0 algo [20]
2°0.n0M algo (Thm 1)

WI[1]-hard
n°® algo (Thm 2)

n®® algo [7]
Poly-time (Thm 3)

H-induced W(1]-hard (Thm 4); NP-hard for ¢ > 3 Poly-time (Thm 3)
subgraph-free n®® algo (Thm 5)
chordal (Thm 4, [33] + [6, 10])

Chordal graphs NP-complete [8] NP-complete [48] Poly-time (Thm 3)

Red-Blue Dominating Set in Chordal Graphs.
cliques in interval graphs is particularly useful for the design of polynomial-time algorithms.
Such an ordering is not possible even if G is a chordal graph whose representation tree T is
a star. Consider the case where the model of every red vertex in G includes the center of the
star T' (and possibly some leaves) and the model of every blue vertex is (only) a leaf. We
can solve this instance by converting it to an instance of SET COVER and solving it using
the FPT algorithm parameterized by the size of the universe. In this case, the size of the
universe is at most the number of leaves which is upper bounded by the leafage. In the other
case where the properties of red vertices and blue vertices are reversed, we obtain a similar
result by creating an equivalent instance of HITTING SET.

As mentioned earlier, the linear ordering of

These ideas can be used in a more general setting as long as the following two properties
are satisfied: (1) the model of each vertex is local, that is, it contains at most one branching
node, and (2) each branching node is contained only in models of either red vertices or blue
vertices. Based on this observation, we introduce a restricted version of the problem in
which the input graph is required to satisfy these two conditions. We then show that the
general case reduces to this restricted version: indeed, we prove that there is a branching
algorithm that constructs 2°) many instances (where £ is the leafage of the input graph)
of the restricted version of the problem such that the input instance is a YES-instance if
and only if one of these newly created instances is a YES-instance. These two properties
ensure that the graph induced by the red and blue vertices whose model intersect the subtree
rooted at a farthest branching node (from some fixed root) satisfies the premise of at least
one of the cases mentioned in the previous paragraph. We then present a greedy procedure,
based on solving the SET COVER and HITTING SET problems, that identifies some part
of an optimum solution. Apart from this greedy selection procedure, all other steps of the
algorithm run in polynomial time.

Multiway Cut in Chordal Graphs. We give a polynomial-time algorithm for MULTIWAY
CuT on chordal graphs by solving several instances of the (s,t)-CUT problem (not necessarily
with unit capacities). Our strategy is based on a bottom-up dynamic programming (DP) on
a tree representation of a chordal graph. An interesting aspect of our DP is that we need to
look-up all DP table values that are already computed to compute a new entry. This is in
contrast to typical DP-based algorithms that do computations only based on local entries.

14:5
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We remark that we do not expect to design an algorithm for MULTIWAY CUT on chordal
graphs using much simpler arguments (like a simple dynamic programming procedure etc.)
as the problem generalizes some well-studied cut-flow based problems. As an example, recall
the VERTEX COVER problem on bipartite graphs where given a bipartite graph G with
bipartition (A, B), the goal is to find A’ C A and B’ C B such that |A’ U B’| is minimum
and N(A\ A’) C B’. The set A’ U B’ is called a vertex cover of G. The VERTEX COVER
problem on bipartite graphs reduces to the MULTIWAY CUT problem on chordal graphs:
indeed, let G’ be the graph obtained from G by making B a clique, adding new pendant
vertex t, to each vertex a € A, and further adding another new vertex ¢ that is adjacent to
all vertices of B. Then G’ is a chordal graph and letting T =t U {t, | a € A}, it is easy
to see that S C V(G) is a vertex cover of G if and only if S is a T-multiway-cut in G’. As
mentioned earlier, our algorithm solves several instances of the (s,t)-CuUT problem, which
also sits at the heart of some algorithms for VERTEX COVER on bipartite graphs. The above
reduction suggests that an algorithm for MuLTIWAY CUT on chordal graphs using much
simpler techniques, would imply an algorithm for VERTEX COVER on bipartite graphs that
uses much simpler techniques as well.

Note that a similar reduction would work from the weighted variant of the VERTEX
COVER problem on bipartite graphs. This can be achieved by further replacing each vertex
of the graph G by a clique of size proportional to the weight of this vertex and making each
vertex of the clique adjacent to all the neighbors of this vertex. This reduction still preserves
the chordality of the resulting graph.

2 Preliminaries

For a directed graph H, we denote, for all v € V(H), by N;;(’U) the out-neighbors of v and by
N (v) the in-neighbors of v. If H is clear from the context, we omit the subscript H. Given
a (directed) path P and two vertices u,v € V(P), we denote by P[u,v] the subpath of P from
u to v. For a tree T rooted at r, we define the function parent(¢,T) : V(T) \ {r} — V(T)
to specify the unique parent of the nodes in T. For any node t € T, we denote by T; the
subtree rooted at t.

It is well-known that a chordal graph GG can be represented as intersection graphs of
subtrees in a tree T. The pair (T, M) is called a tree representation of G where for every
v € V(G), we denote by M (v) the subtree corresponding to v and refer to M(v) as the
model of v in T. The leafage of G, denoted by 1£(G), is defined as the minimum number of
leaves in the tree of a tree representation of G.

For every node a € V(T), we let ver(a) = {v € V(G) | a € M(v)} be the set of vertices
in G that contain the node « is their model. A vertex v € V(G) whose model contains
« may also be referred to as an «-vertex. Similarly, for every edge e € E(T), we define
ver(e) = {v € V(G) | e € M(v)}. Given a subtree T" of T', we denote by G|7, the subgraph
of G induced by those vertices x € V(G) such that V(M(x)) C V(T").

3 Dominating Set

For a graph G, a set X C V(G) is a dominating set if every vertex in V(G) \ X has at least
one neighbor in X, that is, V(G) = N[X]. In the DOMINATING SET problem (DOMSET for
short), the input is a graph G and an integer k, and the objective is to decide whether G
has a dominating set of size at most k. We assume that the leafage of the input graph is
given as part of the input. If not, recall that it can be computed in polynomial time [29].
We consider a generalized version of this problem as defined below.
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RED-BLUE DOMINATING SET (RED-BLUE-DOMSET)
Input: A graph G, a partition (R, B) of V(G), and an integer k.
Question: Does there exist a set X C R of size at most k such that B C N(X)?

To solve DOMSET, it is sufficient to solve RED-BLUE-DOMSET even when the input
is restricted to chordal graphs of leafage . A simple reduction, which is given in the full
version [23], suffices to prove the following result.

» Lemma 6. There is a polynomial-time algorithm that given an instance (G, k) of DOMSET
constructs an equivalent instance (G', (R', B'), k) of RED-BLUE-DOMSET such that if G has
leafage at most £, then so does G'.

In the remainder of this section, we present an FPT algorithm for RED-BLUE-DOMSET
when parameterized by the leafage £ of the input graph. The algorithm consists of two parts.
In the first part, the algorithm constructs 2°) many instances of a “restricted version” of
the problem such that the input instance is a YES-instance if and only if one of these newly
created instances is a YES-instance. Moreover, the graphs in the newly created instances
satisfy certain properties that allow us to design a fast algorithm. See Lemma 7 for the
formal statement. In the second part (cf. Lemma 8), the algorithm solves the restricted
version of RED-BLUE-DOMSET which is defined as follows.

RESTRICTED-RED-BLUE DOMINATING SET (REST-RED-BLUE-DOMSET)
Input: A chordal graph G, a partition (R, B) of V(G), an integer k and tree representation
(T, M) of G such that
for every vertex in G, its model contains at most one branching node of T, and
for all branching nodes v € V(T'), there are either only red «-vertices or only blue
~y-vertices.
Question: Does there exist a set D C R of size at most k such that B C N(D)?

The first step of the algorithm is summarized in the following lemma which is proven in
Appendix A.

» Lemma 7. Let T = (G, (R, B), k) be an instance of RED-BLUE-DOMSET where G is a

chordal graph of leafage at most £. We can construct, in time 200 . n©M) 4 collection

{Z; = (G4, (Ry, By), k) | i € [2°D]} of REST-RED-BLUE-DOMSET instances such that
for every i € [20(4)], G; is a chordal graph of leafage at most 2¢, and
T is a YES-instance of RED-BLUE-DOMSET if and only if at least one of the instances in
the collection is a YES-instance of REST-RED-BLUE-DOMSET.

The second step of the algorithm solves REST-RED-BLUE-DOMSET. Formally, we prove
the following lemma.

» Lemma 8. REST-RED-BLUE-DOMSET admits an algorithm running in time 200 . n01)

We first state some easy reduction rules before we handle two cases based on whether
the farthest branching node* is contained only in the models of red vertices or blue vertices.
We present Greedy Select 14 and Greedy Select 16 to handle these cases. The proof of the
lemma follows from the correctness of the Greedy Select 14 and 16 and the fact that each
application of the greedy selection procedure deletes some vertices in the graph.

4 We assume that the tree in the tree representation is rooted and thus, by farthest branching node, we
mean farthest from the root.

14:7
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We first introduce some notations. Recall that an instance of REST-RED-BLUE-DOMSET
contains a chordal graph G, a partition (R, B) of V(G), an integer k and tree representation
(T, M) of G such that for every vertex in G, its model contains at most one branching node
of T, and for all branching nodes v € V(T'), there are either only red y-vertices or only blue
~v-vertices. We assume, without loss of generality, that the tree T is rooted at node r. Unless
mentioned otherwise, o denotes the farthest branching node in T' from the root, that is, each
proper subtree of T, is a path. If there are more than one branching node that satisfy the
property, we arbitrarily select one of them. Let 5 be the closest branching ancestor of «,
that is, no internal node in the unique path from « to 3 is a branching node in 7.5 Recall
that for a vertex v € V(G), we define top ,,(v) as the node n € M(v) that is closest to the
root. Likewise if a leaf \ is fixed, we define bot?},(v) as the node n € M(v) that is closest to
A. For ease of notation, we omit A as it is always clear from the context.

» Definition 9. Let v be a node of the tree T'. We define the following sets of vertices in G.
Bl R0, VI are the sets of, respectively, blue, red, all vertices v € V(G) whose models
intersect the tree rooted at vy, i.e., M(v) NV (T,) # 0.

B,%, R%, Vﬂ{g are the sets of, respectively, blue, red, all vertices v € V(G) whose models
are completely contained inside the tree rooted at vy, i.e., M(v) C V(T5).

B%T, R%T, va are the sets of blue, red, all vertices v € V(G) where the model is completely
contained inside the tree rooted at v but does not contain v, respectively, i.e. M(v) C
V(L)) = V(T)\ {).

BS, RS, V.E are the sets of, respectively, blue, red, all vertices v € V(G) whose models
contains v, i.e., 7 € M(v).

Simplifications. We first apply the following easy reduction rules whose correctness readily
follows from the definition of the problem. It is also easy to see that the reduction rules
can be applied in polynomial time and the reduced instance is also a valid instance of
REST-RED-BLUE-DOMSET.

» Reduction Rule 10. If there is a blue vertex, which is not adjacent to a red vertex, or if
k < 0, then return a trivial NO-instance.

» Reduction Rule 11.
If there are two blue vertices u,v such that M(u) C M(v), then delete v.
If there are two red vertices u,v such that M(u) C M(v), then delete u.

Consider a blue vertex v in G whose model is contained in the subtree rooted at «.
Moreover, let v be such a vertex for which top,,(v) is farthest from the root and v is not
adjacent to a red vertex whose model contains «. Hence, there is a natural ordering amongst
the red neighbors of v. Note that such an ordering is not possible if some of its neighbors
contain « in their models. As any solution contains a red neighbor of v, it is safe to include
its neighbor v, for which top ,,(v,) is closest to a.

» Reduction Rule 12. Suppose that there is a blue vertex v € BT such that top y,(v) is
farthest from the root and v is not adjacent to any red a-vertices. Moreover, amongst all the
red neighbors of v, let v, be the node such that top,(v,) is closest to o. Then, remove v,
and all of its blue neighbors and decrease k by 1.

5 If o is the root of the tree, then we can add an artificial new root 3 which is not contained in the model
of any vertex.
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We remark that the above reduction rule is applicable irrespective of the fact whether
either all a-vertices are red or all a-vertices are blue.

Case-1: All the vertices that contain « in their models are red vertices. Let 3 be
the closest branching ancestor of ce. Consider the blue vertices whose model intersect the
path from « to 5. Note that there may not be any such blue vertex; however, we find it
convenient to present an uniform argument. With a slight abuse of notation, let by, ..., by
be these blue vertices ordered according to their endpoint in the direction of «, that is, for
i < j we have either botaq(b;) = botag(b;) or bota(b;) is closer to a than bota(b;). For
each i € [d], we compute an optimal solution for dominating the vertices whose model is
in the tree rooted at a (i.e., the vertices of BS') and the vertex b; while only using red
a-vertices. Formally, we want to compute an optimal solution for the following instance:
T, = G[R] U BS U {b;}]. We also define instance Zy := G[Rf] U BS] to handle the cases
when there are no blue vertices whose model intersects the path from « to 8 or when by
(and hence, the other blue vertices mentioned above) are not dominated by red a-vertices

in an optimum solution. To simplify notation we set OPT; := OPT(Z;) in the following.

If Z; is not defined, then we set OPT; = co. Note that the solution OPT; also dominates
the blue vertices by, ...,b;—1 due to the ordering of the b;s. Hence, for any i, j € [0, d] such
that ¢ < j, we have |OPT;| < |OPT;|. We use this monotonicity to prove the following
structural lemma.

» Lemma 13. Let g € [0,d] be the largest value such that |OPT,| = |OPTy|. If there is a
solution, then there is an optimum solution containing OPTy.

Proof. Let OPT be an optimum solution of (G, (R, B), k). Let S denote the collection of

vertices in OPT whose model contains nodes in the subtree rooted at a, i.e., S :== OPTNRY.

We claim that we can replace S by a super-set S’ of OPT,, of equal size to obtain another
solution.

Let j € [0,d] be the largest integer such that b; is dominated by some vertex in S. If
j < g, then by our choice of ¢, |S| = |OPT,|. By the definition of the Z;s, we get that OPT|

is also a solution for Z;. Hence, we can replace S by OPT, to get another optimal solution.

Suppose therefore that j > ¢. By our choice of g, we have |S| > |OPT,|. Let r; be the red
a-vertex with top,,(r;) closest to 3 such that b; is a neighbor of ;. Such a vertex exists,
as by assumption, S contains one of these vertices which dominates b;. Then we replace
S by S’ = OPT, U {r;}. As |S| > |OPT,|, we have |S’| < |S|. Moreover, observe that
S"UOPT\ S is still a solution as all vertices in B$T and the vertices by, ..., b, are dominated
by some vertex in OPT, vertex r; dominates the vertices bg11,...,b; and, by the choice of
j, the vertices bjy1,...,bqs are dominated by some vertex not contained in S. <

We devise a greedy selection step based on the above lemma which can be completed in
time 2°) . nOM) (cf. full version in [23]).

> Greedy Select 14. Let g € [0,d] be the largest value such that |OPTy| = |OPTy|. Include
the vertices of OPT, in the solution, i.e., delete the red vertices in OPTy, the blue vertices
that are adjacent to vertices in OPT,, and decrease k by |OPT,|.

Case-2: All the vertices that contain « in their models are blue vertices. Let 3 be the
closest branching ancestor of . We consider two cases depending on whether there is a red
vertex whose model intersects the path from a to 3. If there is no such red vertex, then we
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consider the graph induced by all the red vertices whose model is (properly) contained in the
subtree rooted at o and the blue vertices whose model intersects the subtree rooted at a.
Formally, we define Zo = G[RS U BY).

Consider the other case and suppose that there are d > 1 many red vertices whose model
intersects the path from « to 8. Let r1,...,rq be these vertices ordered according to their
endpoints in the direction of «, that is, for ¢ < j, we have either bot(r;) = bota(r;)
or bot(r;) is closer to a than bota(r;). For each such red vertex v;, we compute the
optimal solution to dominate the vertices in Bf) by vertices in RS assuming that v; is already
selected. Note that we only have to focus on the blue vertices in B! which are not adjacent
to v;. Formally we define Z; = G[RS U (B \ N[v;])]. It is possible that the optimum
solution does not include any of the vertices in {ry,rs,...,74}. To handle this case, we define
T4+1 = G[RS U BY)]. To simplify notation, we set OPT; := OPT(Z;) in the following. Note
that for the instance defined above, R; is same for every instance whereas B; C B;41 because
of the ordering. Hence, for any 4, j € [d+ 1] such that i < j, we have |OPT;| < |OPT,|. We
use this monotonicity to prove the following structural lemma.

» Lemma 15. If there is a red vertex whose model intersects the path from « to 8, let g € [d+1]
be the largest value such that |OPTy| = |OPT:|. Otherwise, define OPT, = OPT,. If
there is a solution for the instance, then there is an optimum solution OPT such that

OPTN RS = OPT,.

Proof. If there is no red vertices whose model intersects the path from « to 3, then all the
red vertices in GG that are adjacent to blue vertices in Z; are the red vertices in Zy. Hence,
the statement of the lemma follows.

We now consider the case where there are red vertices whose model intersects the path
from « to 8. Let OPT be an optimum solution of (G, (R, B), k). Let S denote the collection
of vertices in OPT whose model is (properly) contained in the subtree rooted at a, i.e.,
S = OPT N RST. We claim that we can replace S by a super-set S’ of OPT, of equal size
to obtain another optimum solution.

Let j € [d] be the smallest index such that v; is contained in OPT. Note that, by
definition, j # d + 1 as there are only d red vertices with the said property. If j < ¢, then by
our choice of ¢, |S| > |OPT;|. By the definition of Z; and the fact blue vertices in Z; are
subset of blue vertices in Z,, OPT, is also a solution for Z;. Hence, we can replace S by
OPT, to get another optimal solution. Suppose therefore that j > ¢. By our choice of ¢, we
have |[OPT;| > |OPT,|. As OPT is a solution, all vertices in Bl must be covered by OPT.
Hence, we can replace S by S’ = OPT, U {r,} and get a solution of not larger size which
still dominates all vertices in Bl). Indeed, the vertices which are not dominated by OPT,
are dominated by 7. <

We devise a greedy selection step based on the above lemma which can be completed in
time 2°() . nOM) (cf. full version in [23]).

» Greedy Select 16. If there is a red vertex whose model intersects the path from « to
B, let g € [d+ 1] be the largest value such that |OPT,| = |OPT:|. Otherwise, define
OPT, = OPTy. Include OPT, in the solution, i.e., delete the red vertices in OPTy, the
blue vertices that are adjacent to vertices in OPTy, and decrease k by |OPT,|.
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Kl K2 - Kn
P1 P2 b3 Pn Pn+1

Figure 1 The auxiliary graph B. Rectangles represent cliques and thick edges indicate that the
corresponding vertex is complete to the corresponding cliques.

4 Multicut with Undeletable Terminals

This section considers the MULTICUT WITH UNDELETABLE TERMINALS problem formally
defined as follows.

MuLTICUT WITH UNDELETABLE TERMINALS (MULTICUT WITH UNDEL TERM)

Input: An undirected graph G, a set P C V(G) x V(G), and an integer k.

Question: Is there a set S C V(G) \ V(P) such that |S| < k and for all (p,p’) € P,
there is no path between p and p’ in G — 57

In the following, a set S C V(G) \ V(P) such that for all (p,p’) € P, there is no path
between p and p’ in G — S is called a P-multicut in G. We first prove that when the
input is restricted to chordal graphs, the problem is unlikely to admit an FPT algorithm
when parameterized by the leafage. We then complement this result with an XP-algorithm
parameterized by the leafage. We restate the theorem with the precise statement for the
reader’s convenience.

» Theorem 2. MULTICUT WITH UNDELETABLE TERMINALS on chordal graphs is W[1]-hard
when parameterized by the leafage { and assuming the ETH, does not admit an algorithm
running in time f(£)-n°® for any computable function f. However, it admits an XP-algorithm
running in time nf®.

To prove that the problem is W[1]-hard, we present a parameter preserving reduction from
MULTICOLORED CLIQUE. An instance of this problem consists of a simple graph G, an integer
¢, and a partition (V1,Va,...,V,) of V(G). The objective is to determine whether there is
a clique in G that contains exactly one vertex from each part V;. Such a clique is called a
multicolored clique. We assume, without loss of generality, that each V; is an independent set
and that [V =...=|V,| = n.% This implies, in particular, that |E(G)| < n? - ¢*. For every
i € [g], we denote by vi,... vl the vertex set of V; and for every i # j € [q], we denote by
E; ; C E(G) the set of edges between V; and V;. We define M = (n+ 1)% - ¢%.

Reduction. The reduction takes as input an instance (G, ¢, (V1, ..., V;)) of MULTICOLORED
CLIQUE and outputs an instance (H, P, k) of MULTICUT WITH UNDEL TERM which is
constructed as follows.
The reduction starts by constructing an auxiliary graph B. The vertex set of B consists of
n—+1 vertices p1, ..., pn+1 and n vertex-disjoint cliques K1, ..., K, such that |K,| = a-M
for every a € [n]. Then, it adds edges so that p; is complete to K1, p,4+1 complete to K,
and p, complete to K,_1 UK, for every a € [n] \ {1}. This completes the construction
of B (see Figure 1).

6 Unlike in the rest of the article, we do not use n to denote the total number of vertices in G to keep
notation simple while presenting the reduction.
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Figure 2 A tree representation of the graph H restricted to the gadgets representing Vi, Vo> and

F1,9 where n =4 and Fy 2 = {e = vivl, ¢/ = vivi}.

= Foreachi € [g], the reduction introduces two vertex-disjoint copies B and B"P of B. For
every i € [q], let py®, ..., p,;§, denote the copies of p1, ..., pny1 in B»* and K’ o KR
denote the copies of K1,..., K, in B»*. Moreover, for every 1 < a; < as S n—+1, we
define, for notational convenience,

P a1, az] = {p>* | a1 < a < ay} and K%“[ay,as] = U Kb,

a1<a<ag

We define p%?, K8 pBlay,as], and K*P[ay, ag] in a similar way.

= For i € [q] and a € [n], the reduction uses p%*, pnf_l W Kb and K/ ’+1 . to encode
vertex v,.

= For every edge e = vflivgj € E(G), the reduction introduces an edge-vertex v, and adds
edges so that v, is complete to the following sets.
= p"a; + 1,n + 1] and K%“[a;,n + 1] in V(B%®).
= pPa; +1,n+1] and K**[aj,n+ 1] in V(B7®).
= p"PIn+1—a;+1,n+1 and K*’n+1—a; +1,n+ 1] in V(B"9).
- pPPn+1—a;+1,n+1]and K*P[n+1—a; + 1,n+ 1] in V(BP).
Note that v, is adjacent to vertices in K"®[a;] U K?*[a;] but not to any vertex in
K¥n+1-a)UK»n+1-a;.

= The reduction introduces a central clique K of size 2M? and makes it complete to
{pn+17pn+1 | i € [¢]} and Vg where Vg = {v. | e € E(G)} is the set of edge-vertices.
This completes the construction of H.

m The reduction further defines

P={(pi*pis_ o) la€n]and i€ [g]}, and k= q(n+1)M+|E(G)|—q(g—1)/2.

The reduction returns (H, P, k) as the instance of MULTICUT WITH UNDEL TERM. This
completes the reduction. It is easy to see that H is chordal and has leafage at most 2¢q. See
Figure 2 for a tree representation of H.

Intuition. We first provide the intuition behind the reduction. Recall that the reduction
uses pi©, pn’f_l w Kb, and Kflfl . to encode vertex v} where i € [¢] and a € [n]. Hence,

for a,b € [n], if a+b=n+1, then p>~ and pZ’B correspond to the same vertex. Note that the



E. Galby, D. Marx, P. Schepper, R. Sharma, and P. Tale

pairs in P do not correspond to the vertices associated with v%. Rather, pz’il is paired with
pf;f_l_a. Conversely, for a,b € [n], if a + b =n+ 2, then (pﬁ;a,pz’ﬁ) € P. By the construction
of H and P, for a P-multicut S of H, if there is a path from p%® to pz’ﬁ in H — S, then
a+b>n+3.

Now, consider the terminal pairs (pi’a7piﬁ1) in P for some i € [g]. Because of the
size constraints, S cannot contain all the vertices of the central clique K. Since S cannot
contain a terminal, it needs to include one clique from B““. Let a; € [n] be the largest
index such that Kéf“ C S. Using similar arguments, there must also exist b; € [n] such that
Kgﬁ C S and b; is largest such index. By definition of a;, b; and construction of H, there is
a path from pr’f‘H to pé’ﬁ_l in H — S. The discussion in the previous paragraph implies that
a;+14+b;,+1>n+3,ie, a; +b; > n+ 1. However, by definition of the solution size k
and the size of the cliques, we have a; + b; < n + 1. Hence, the structure of the auxiliary
graphs and the terminal pairs ensure that the selected cliques in SNV (B»*) and SNV (B"?)
encode selecting a vertex in V; in G.

Suppose that {v} ,vZ ,... ,vd } are the vertices in G that are selected by S. Recall that
Vg is the collection of edge-vertices in H. Considering the remaining budget, a solution S
can include at most |E(G)| — ¢(g — 1)/2 many vertices in V. We argue that ¢(¢ — 1)/2 edges
in G corresponding to vertices in Vp \ S should have their endpoints in {v} ,v2,,..., vd }as
otherwise some terminal pair is connected in H — S. Hence, a P-multicut S of H corresponds
to a multicolored clique in G. We give the formal proof in the full version [23].

Finally, it is known that, assuming the ETH, there is no algorithm that can solve
MuLTICOLORED CLIQUE on instance (G, q, (Vi, Va,...V,)) in time f(q) - |[V(G)[*@ for any
computable function f (see, e.g., [17, Corollary 14.23]). Thus, together with the fact that
the reduction takes polynomial time in the size of the input, the proof of correctness, and
arguments that are standard for parameter preserving reductions, we conclude that the
following holds.

» Lemma 17. MuLTICUT WITH UNDELETABLE TERMINALS on chordal graphs is W[1]-hard
when parameterized by leafage ¢ and assuming the ETH, does not admit an algorithm running
in time f(£) -n°® for any computable function f.

We defer the XP-algorithm for MuLTICUT WiTH UNDEL TERM on chordal graphs to the
full version of this paper [23]. Together with Lemma 17 this proves Theorem 2.

5 Multiway Cut with Undeletable Terminals on Chordal Graphs

In this section, we consider the MULTIWAY CUT WITH UNDELETABLE TERMINALS problem
formally defined below. Given a graph G and a set P C V(G), a set S C V(G)\ P is a called
a P-multiway-cut in G if G — S has no (p, p’)-path for any two distinct p,p’ € P.

MULTIWAY CUT WITH UNDELETABLE TERMINALS (MWC)
Input: An undirected graph G and a set P C V(QG) of terminals.
Question: Find the size of a minimum P-multiway-cut in G.

The aim of this section is to prove Theorem 3 which states that MUuLTIWAY CUT WITH
UNDELETABLE TERMINALS can be solved in n®M-time on chordal graphs. Before turning to
the proof, we first start with a few definitions. Let (T, M) a tree representation of a chordal
graph G where T is rooted at an arbitrary node r € V(T'). Given a subtree 77 of T" and a set
Q CV(G), we let Q7w € Q be the set of vertices € @ such that M(x) C V(T"). Now let
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Q@ C V(G) be an independent set of G such that for every leaf n of T, ver(n) N @Q # 0. Then
the truncated tree w.r.t. @ is the tree Tg““c obtained from T as follows. Let {n1,...,n4} be
the set of leaves of T'. For each i € [¢], let Q; C @\ ver(r) be the set of vertices p € @\ ver(r)
such that top ,(p) is on the (1;,r)-path in T, and let p; € Q; be the vertex of @; such that
top(p:) is closest to r. Then TG is obtained from T' by deleting the subtrees rooted at
the children of the nodes in {top,(p;) | ¢ € [¢]}. Note that, by construction, the set of leaves
of T is {top(pi) | i € [¢]} and that, apart from the vertices in {p; | i € [g]}, there is at
most one other vertex in @ whose model intersects V (T, 5““), namely the potential vertex in
Q Nver(r) (note that if such a vertex exists, its model is in fact fully contained in TG"").
Finally, given a set P C V(G), a P-multiway-cut X in G is said to destroy an edge e € E(T)
if ver(e) C X.

We now turn to the proof of Theorem 3. Throughout the remaining of this section, we let
(G, P) be an instance of MWC, where G is a n-vertex chordal graph, and further let (T, M)
be a tree representation of G. First, we may assume that P is an independent set: indeed, if
there exist p,p’ € P such that pp’ € E(G), then (G, P) is a No-instance. Furthermore, if a
vertex v € V(G) does not belong to any (p, p’)-path in G, where p,p’ € P, then it can be
safely deleted as no minimal P-multiway-cut in G may contain v. Hence, we assume that
every vertex in G participates in some (p,p’)-path where p,p’ € P; in particular, we may
assume that for every leaf  of T, ver(n) N P # (). Note that, consequently, for every internal
node a € V(T), the truncation of T, w.r.t. Py, exists.

Now let Ty be the tree obtained by adding a new node rg and connecting it to an arbitrary
node r € V(T). Observe that (Tp, M) is also a tree representation of G. In the following,
we root Ty at rg. To prove Theorem 3, we design a dynamic program that computes, in a
bottom-up traversal of Ty, the entries of a table A whose content is defined as follows. The
table A is indexed over the edges of E(Tp). For each node o € V(T'), A[aparenty, ()] stores
the size of a minimum P 7, -multiway-cut in G|z,,. The size of a minimum P-multiway-cut in
G may then be found in Afrrg]. We describe below how to compute the entries of A.

Update Procedure. For every leaf n of T', we set A[nparenty, (1)] = 0. Consider now an
internal node a of T'. We show how to compute Ao parent;, (a)] assuming that for every
edge e € E(T,), the entry Ale] is correctly filled.

Let T be the truncation of T,, w.r.t. Py, and let G = G\f' Denote by 71, ...,n, the

leaves of T. Recall that, by construction, for every i € [q], there exists p; € Pz, such that
n; = top(pi): we let P = {p; | i € [q]}. Furthermore, it may be that Pir, Nver(r) is
nonempty: we let P, = Pyr, Nver(r). Note that |P,| < 1: if P, # 0 then we refer to the
terminal in P, as the root terminal. Observe that V(G) N Pr, = V(G)NP =PUP, by
construction. To compute A[a parent;, ()], we distinguish two cases:

(1) if P, # () then we construct a unique instance (Hy, s, t,wto) of (s,t)-CUT;

(2) otherwise, for every ¢ € [0, g], we construct an instance (H;, s, t,wt;) of (s,¢)-CUT.

We describe below how such instances are constructed. First, recall that an instance of
the (s,¢)-CuT problem consists of a digraph D, vertices s,t € V(D), a weight function
wt : F(D) = NU {oo}, and the goal is to find a set X C E(D) such that D — X has no
(s,t)-path and wt(X) is minimum with this property, where wt(X) = >y wt(u).

Construction of the (s,t)-Cut Instances. For every i € [g], let us denote by P, = P\ {p;}
and let Py = P. Consider ¢ € [0,q]. Before turning to the formal construction of the
instance (H;,s,t,wt;), let us first give an intuitive idea of the construction. The digraph H;
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is obtained from 7' by orienting all edges of T towards its root ¥ = o and further adding
vertices and weighted arcs to encode the graph G|, . The arcs in H; corresponding to the
edges of T are called the tree arcs and the nodes in H; corresponding to the nodes of T
are called the tree nodes. The idea is that we separate, for each terminal p € ]Si, the node
top(p) from the root ¥. To achieve this, we add a source node s and source arcs from s
to top,,(p) (of infinite weight) and look for an (s,¥)-cut in H;. Since the edges of T' can
presumably not be independently destroyed in a P-multiway-cut, we need some additional
vertices to encode these dependencies. For each vertex v € V(é) \ P;, we introduce a node
~v(v) in H; which is reachable via connection arcs (with infinite weight) from all the tree
nodes that are contained in the model of v. This node 7(v) is further connected via a sink
arc (of weight one) to top,,(v) which ensures that if we want to cut a tree arc, we also
have to cut all the sink arcs associated to vertices containing the corresponding edge in their
model. The index i is then used to specify which root-to-leaf path of T is uncut: if i = 0
then every such path is cut, otherwise the (7;,)-path is uncut. To encode the rest of the
solution, we associate with each tree arc (3, d) a weight wt;((3,d)) corresponding to the size
of a minimum P g-multiway-cut in G)g.

We proceed with the formal construction of H;. The vertex set of H; is V(H;) =
V(T)w {s} & {T'} where T' = {y(v) | v € V(G) \ P}, that is, ' contains a node of every
non-terminal vertex in G. For every z € I, we denote by v~!(z) the corresponding vertex in
V(G)\ P. The arc set of H; is partitioned into four sets:

the set E of tree arcs containing all the edges of T oriented towards the root f,

the set El .o = {(s,top (D)) | p € P;} of source arcs,

the set Eeonn = {(a,7(v)) | 7(v) € T, v € M(v) NV (T)} of conmection arcs and

the set Esine = {(7(v), top(v)) | v € V(G)\ P} of sink arcs.
Furthermore, if P, # (), then we let Eriern C E= be the set of tree arcs (8,0) € E= such that
the edge (34 is contained in the model of the root terminal; otherwise, we let Erterm = (). The
weight function wt; : E(H;) = NU {oo} is defined as follows. For every j € [q], let p; be the
path in T from 7n; to ¥ and let p_; be the corresponding directed path in H; (that is, /7; is the

path in H; from 7; to ¥ consisting only of tree arcs). Then for every arc e of H;,

Ale] ifi=0and e € Ex\ Ertern
le] ifi#0,ec€ E= and e does not belong to the path o
lf e e Esink

=

wt;(e) = .
oo  otherwise.

Note, in particular, that every arc in Eypern (if any) has infinite weight. Similarly, if ¢ # 0,
then every arc of the path p; has infinite weight. This completes the construction of the
instance (H;,s,t = ¥,wt;) (see Figure 3). It is easy to see that such an instance can be
constructed in O(n?)-time.

Now let Xj be an (s,7)-cut in Hy such that wto(Xo) is minimum; and if P, = 0, then for
every i € [g], further let X; be an (s,¥)-cut in H; such that wt;(X;) is minimum. For each
i € [g], let us denote by cost; = A[n; parenty, (7;)] and let costo = 0. Then we set

Alaparent, (a)] = {|XO| it 7&_@

min;eo,q1{|Xi| + cost;} otherwise
In the following, for convenience, we let I = [0,¢] if P, = (), and I = {0} otherwise. We
prove in Appendix B that the entry Ala parent, («)] is updated correctly. To this end, we
show that G|r, has a Pjr, -multiway-cut of size at most k if and only if there exists i € I
such that H; has an (s,)-cut of weight at most k — cost; w.r.t. wt;.
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e D3
m 2 73 s

) of G (b) The instance (H2,s,T,wt2) (thick arcs have
infinite weight).

(a) The tree representation (T’MIV(CE)

where V(@) = {p1,p2,p3,u,v,w} and P, = 0.

Figure 3 An illustration of the construction of the (s,¢)-CUT instances.

From the correctness (cf. Lemmas 18 and 21) we conclude that A[a parenty, («)] indeed
stores the size of a minimum Pz, -multiway-cut in G|z, . Since the construction of each
H; takes polynomial-time, an (s,t)-cut in H; can be computed in polynomial time (see,
for instance, [22]) and the number of H;s is at most n, it takes plynomial-time to update
Alaparent, («)]. Finally, since the number of edges of 7" is linear in n, the overall running
time is polynomial in n, which proves Theorem 3. We remark that a more careful analysis of
the running time of the algorithm leads to an upper bound of O(n?).

6 Conclusion

In this article, we presented improved and new results regarding domination and cut problems
on chordal graphs with bounded leafage. We presented an FPT algorithm running in time
20 . nOM for the DOMINATING SET problem on chordal graphs. Regarding cut problems,
we proved that MULTICUT WITH UNDELETABLE TERMINALS on chordal graphs is W[1]-hard
when parameterized by the leafage. We also presented a polynomial-time algorithm for
MuLTIWAY CUT WITH UNDELETABLE TERMINALS on chordal graphs. We find it surprising
that the complexity of this problem was not known before.

In the case of chordal graphs, we believe the leafage to be a more natural parameter than
other popular parameters such as vertex cover, feedback vertex set or treewidth. It would be
interesting to examine the structural parameterized complexity of problems such as LONGEST
CycCLE, LONGEST PATH, COMPONENT ORDER CONNECTIVITY, s-CLUB CONTRACTION,
INDEPENDENT SET RECONFIGURATION, BANDWIDTH, or CLUSTER VERTEX DELETION.
These problems are known to be NP-complete on split graphs and admit polynomial-time
algorithms on interval graphs. Hence it is plausible that they admit an FPT or XP algorithm
on chordal graphs parameterized by the leafage. We believe it is a representative list, though
not exhaustive, of problems that exhibit this behavior. In fact, it would be fascinating to find
a natural problem that does not exhibit this behavior, i.e., a problem that is NP-complete
on interval graphs but admits a polynomial-time algorithm on split graphs.
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A  Proof of Lemma 7: Constructing Rest-Red-Blue-DomSet Instances

Let G be a chordal graph and let (T, M) be a tree representation of G. We define the
following functions.
Let fr(G) denote the number of branching nodes v € V(T) such that there exist both a
red vertex and a blue vertex whose models contain ~.
Let f.(G) denote the number of pairs of consecutive branching nodes «, 8 in T (that is,
no node on the unique path in 7' from « to 8 is a branching node) such that there is red
vertex whose model contains both « and f.
Similarly, let f,(G) denote the number of pairs of consecutive branching nodes «, § in T'
such that there is blue vertex whose model contains both o and S.
We further define u(G) := 1£(G) + 2 - (fr(G) + fr(G) + fo(G)). Note that, by definition,
w(G) > 1£(G). We design a polynomial-time branching algorithm whose measure p decreases
in each branch. We first show that if u(G) = 1£(G) then (G, (R, B), k) is in fact an instance
of REST-RED-BLUE-DOMSET and then show how the branching algorithm proceeds.
Assume therefore that u(G) = 1£(G). Then fr(G) = f-(G) = f(G) = 0 by definition.
However, when f7(G) = 0, then, by definition, for every branching node v € V(T), all the
vertices containing 7 in their model are either red or blue; and when f,.(G) = f,(G) =0
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then, considering the fact that every model is a subtree in T, for every vertex in G, its model
contains at most one branching node in T'. Therefore if u(G) = 1£(G), then (G, (R, B), k) is
also an instance of REST-RED-BLUE-DOMSET.

Now assume that u(G) > 1£(G). Then fr(G) + f-(G) + fo(G) > 0. We consider the
following three exhaustive cases.

Case-l. fr(G) > 0. Let v be a branching node in T such that there is both a red-vertex
and a blue-vertex whose models contain . Suppose that Z is a YES-instance of RED-BLUE-
DOMSET and let D be a solution. Consider first the case where D includes a red vertex
whose model contains . In this case, we return the instance Z; = (G4, (R1, B1), k) which is
obtained as follows.

Initialize V(G1) = V(G), R = R, B; = B.

Let T; be the tree obtained from 7" by adding a node ¢ and making it adjacent to « only.

Note that V(T3) \ {0} C V(7).

For every red vertex v € V(G7) such that v € M(v), add ¢ to its model, i.e., M;(v) =

M(v) U{d}.

For every blue vertex v € V(G7) such that v € M(v), delete v from V(Gy).

Add a new blue vertex x to V(G;) and to By with My (z) = {d}.

For every (red or blue) vertex v € V(G) such that v ¢ M(v), define M (vy) = M(v).
It is easy to verify that (77, M) is a tree representation of G and that T; has exactly one
more leaf than T, i.e., 1£(G1) < 1£(G) + 1. However, since we have deleted all the blue
vertices whose models contained v, f7(G1) = fr(G) — 1. As the other parts of the measure
do not change, u(G1) < u(G).

In the second case where no vertex in D contains « in its model, we return the instance
7y = (Ga2,(Ra, B), k) where Ga, Ry are obtained from G, R, respectively, by deleting red
vertices whose model contains . It is easy to verify that u(G2) < u(G).

If 7 is a YEs-instance, then at least one of 77 or Zy is a YES-instance as these two
branches are exhaustive. If 7; is a YES-instance, then any optimum solution must include a
red y-vertex because of the newly added vertex z. As Ry C R, if 7 is a YEs-instance, then
T is a YEs-instance. Hence, this branching step is correct.

Case-ll. fr(G) =0 and f-(G) > 0. Let a, 8 be two consecutive branching nodes in T’
such that there is a red vertex whose model contains both « and 3. Suppose that 7 is a
YEs-instance of RED-BLUE-DOMSET and let D be a solution. Consider the case where
D includes a red vertex whose model contains both o and . In this case, we return the
instance 7, = (G1, (R1, B1), k) which is obtained as follows.

Initialize V(G1) = Ry = By = 0.

Let T3 be the tree obtained from 7" by contracting the unique path P,g from « to 8 in T’

and let vo3 be the node resulting from this contraction. Add a node § to 77 and make it

adjacent to vy, only. Note that V(T1) \ {vas,0} C V(T).

For every red vertex v € V(G) such that M(v) NV (P,3) # 0, add a red vertex v; to

V(G1) (and to Rq) with My(v1) = (M(v) \ V(Pag)) U {7as, 0}-

Add a new blue vertex x to V(G1) with My (z) = {d}.

For every (red or blue) vertex v € V(G) such that M(v) N V(P,s) = 0, add v; to Gy

(and to, respectively, either Ry or By) with My (v1) = M(v).
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Note that for every blue vertex v € V(G) such that M(G) NV (P,s) # 0, there is no
corresponding blue vertex in Gp. It is easy to verify that (77, M) is a tree representation of
G1 and that T; has one more leaf than T' which implies 1£(G7) < 1£(G) + 1. Since we have
contracted the path P,g to obtain the node v,3, fr(G1) < f(G). As the other parts of the
measure do not change, u(G1) < u(G).

In the second case where no vertex in D contains both v and 8 in its model, we return an
instance Zy = (Ga, (R2, B), k) where G5, R are obtained from G, R, respectively, by deleting
red vertices whose model contains both o and 3. It is easy to verify that p(G2) < u(G). We
argue as in the previous case for the correctness of this branching steps.

Case-lll.  fp(G) =0 and f,(G) > 0. Let «, B be two consecutive branching nodes in T such
that there is a blue vertex whose model contains both o and 8. Note that since f7(G) =0,

for every red vertex v € V(G) such that M(v)NV (Pyg) # 0, in fact M(v) C V(Pag) \ {«, 8}

Suppose that Z is a YES-instance of RED-BLUE-DOMSET and let D be a solution. Consider
first the case where D includes a red vertex whose model is in V(P,3) \ {c, 8}. In this case,
we return the instance Z; = (G1, (R, By), k) where G, By are obtained from G and B as
follows.

Delete all the blue vertices whose model contains both « and /3.

Add a blue vertex x to V(G1) (and to By) with M(z) = V(Pag) \ {e, 8}

It is easy to verify that (T, M) is a tree representation of G and f,(G1) < fp(G). As the
other parts of the measure do not change, 1(G1) < u(G).

In the second case where there is no vertex in D whose model is in V/(Pap) \ {a, 8}, we
consider the following two subcases. If there is a blue vertex v such that M(v) C V(Pap),
then we return a trivial No-instance. Otherwise, we return the instance Zo = (Ga, (R2, B2), k)
which is constructed as follows.

Initialize V(G2) = Ry = By = 0.

Let T5 be the tree obtained from 1" by contracting the path P, from o to f in T" and
let 43 be the node resulting from this contraction. Note that V(T3) \ {vas} C V(T).

For every (red or blue) vertex v € G such that M(v) NV (Pap) = 0, add a vertex vy to
G2 (and to, respectively, either Ry or Bs) with Ma(vg) = M(v).

For every blue vertex v € V(G) such that M(v) NV (Pag) # 0, add a blue vertex vy to

V(Gg) (and to BQ) with MQ('UQ) = (M(Ug) \ V(Pag)) U {’}/a@}.
Note that for any red vertex v € V(G) such that M(v) C V(Pag) \ {a, 8}, there is no
corresponding red vertex in Gs. It is easy to verify that (T, Ms) is a tree representation of
G4. Furthermore, the number of leaves of Ty is the same as T and f,(G2) < f3(G). As the
other parts in the measure do not change, u(Ga) < u(G).

The correctness of this branching step follows from the same arguments as in the previous
cases and the fact that in the second case, since there is no red vertex whose model intersects
V(Pap), it is safe to contract that path.

Finishing the Proof. The correctness of the overall algorithm follows from the correctness
of branching steps in the above three cases. To bound its running time and the number
of instances it outputs, note that fr(G) + f-(G) + f»(G) < 3 -1£f(G) as these functions
either count the number of branching nodes or the unique paths containing exactly two
(consecutive) branching nodes. <
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B Correctness of the Algorithm for Multiway-Cut

» Lemma 18. For any i € I, if H; has an (s,7)-cut Y such that wt;(Y) < k — cost;, then
G\r, has a Pir, -multiway-cut of size at most k.

Proof. Assume that there exists ¢ € I such that H; has an (s,f)-cut ¥ where wt;(Y) <
k — cost;. For every j € [q] \ {i}, let A; be the set of tree arcs on the path p; belonging to
Y (recall that p_; is the path in H; from 7; to ¥ consisting only of tree arcs). Note that since
Y is an (s,¥)-cut, A; # 0 for every j € [q] \ {i}.

>> Claim 19. For every terminal j € [g] \ {¢}, there exists an arc (z,y) € A; such that for
every z € NI-;,: (z) \ (N, (z) U{y}), the sink arc with tail z belongs to Y.

Proof. Suppose for a contradiction that this does not hold for some index j € [q] \ {7}, that is,
for every arc (z,y) € Aj;, there exists z € NR (z)\ (N, () U{y}) such that the sink arc with
tail z does not belong to Y. Let (z1,y1),- .., (Za,Ya) be the arcs of A; ordered according to
their order of appearance when traversing the path p_]> We show that, in this case, there is a
path from s to ¥ in H — Y. For every b € [a], denote by Z;, C NR (zp) \ (Ng, (zp) U{yp}) the
set of vertices z such that the sink arc with tail z does not belong to Y. Let by, ..., b, € [a]
be the longest sequence defined as follows:

by € [a] is the largest index such that Z; N Zp, # 0 and

for every [ > 1, b; € [a] is the largest index such that Zy,_,4+1 N Zp, # 0.
For every [ € [w], consider a vertex z,, € Zj, and let hy, € N, (z,) be the head of the sink
arc with tail z5,. Then for every I € [w — 1], hy, lies on the path /T;[ybl,xblﬂ]: indeed, since
zb, & Zp,+1 by the choice of by, either zp, ¢ Ngi (Tp,+1) or 2p, € Nl_z (xp,+1) N Ny (2p,41); but
2y, € NR (wp,) \ Ny, (zp,) by construction, and so, hp, necessarily lies on 02 Yoy > Ty 1)-

Now observe that, by maximality of the sequence, b,, = a: indeed, if b,, < a then the
sequence could be extended as Zp,, 11 # () by assumption. Since 2, ¢ Ny (2s,,), this implies,

in particular, that hy,, lies on the path p;[yp, ,F]. It follows that

w

— — — — .
s0;5 1> 1)26, 95 [Py s oy +1) 205 - - - 20, [Py s To 1) 204 - P by s Ty 4120, LRo, - Tl
is a path from s to ¥ in H — Y, a contradiction which proves our claim. <

For every j € [g] \ {i}, let e; = (z;,y;) € A, be the arc closest to ¥ such that for every
z € NI'; (z;) \ (N, (7;) U{y;}), the sink arc with tail z belongs to Y (note that we may
have e; = e;s for two distinct j, ;" € [g] \ {i}). Denote by E ={e; | j € [¢] \ {i}} U {e*}
where e* = (1;, parent(1;)). For every e = (z,y) € E, let P, C P, be the set of terminals in
P; which are also terminals in the instance restricted to T},. Note that {P, | e € E\ {e*}}
is a partition of ]51 indeed, by construction, every p € 151 belongs to at least one such set
and if there exist e, e’ € E \ {e*} such that P, N P, # 0, then for any j € [¢] \ {i} such that
p; € P.N P, e e € Aj; in particular, both e and €’ lie on the path p_;, a contradiction to
the choice of the arc in A;.

Now for every e = (x,y) € E, let S, be a minimum P,p, -multiway-cut in G|7, and denote
by N. = N}; () \ (Ng, (z) U{y}). We define

S=85-U |J Su{y'(z)]zeN}

ecE\{e*}

> Claim 20. S is a Py -multiway-cut in G g, .
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Proof. Since for every e = (z,y) € E, S, is a P, -multiway-cut in G|r,, it is in fact enough
to show that for every e,e’ € E, p € P. and p' € P.,, there is no path from p to p’ in
G, — S.

Consider therefore j, j' € [q]\ {7} such that p; € P, and Dy € P, for two distinct e, ¢’ € E.
Since, as shown above, {ﬁf | f € E\ {e*}} is a partition of P;, pjr ¢ P. and p; ¢ P.; in
particular, ¢’ does not lie on the path p_; and e does not lie on the path p_J? . It follows that
any path in G|, from p; to p; contains at least one vertex x whose model contains the edge
corresponding to e; but then, y(z) € N, and so, € S by construction. Thus, there is no
path from p; to p; in G|, — S. <

Finally, note that, by construction,

S| =151+ Y. 1Sl+| U ') zeN}
ecE\{e*} ecE\{e*}
=S|+ Y wtie) + > wti((2,topy (Y71(2))))
CEE\{C*} ZeUeeE\{e*} N

< cost; +wt; (V) <k
which concludes the proof. <

» Lemma 21. If G|1,, has a P -multiway-cut X of size at most k, then there exists i € I
such that H; has an (s,7)-cut Y where wt;(Y) < k — cost,;.

Proof. Recall that for every j € [q], p; is the unique (n;,t)-path in T. To prove the lemma,
we first show the following.

> Claim 22. If there exists i € [q] such that G|r, has a P, -multiway-cut X of size at most
k where

(1) X does not destroy any edge of p; and

(2) for every j € [g] \ {i}, X destroys an edge of p;,

then H; has an (s,¥)-cut Y such that wt;(Y) < k — cost;.

Proof. Assume that such an index i € [g] exists and let X be a P, -multiway-cut X of size
at most k satisfying item (1) and (2). Note that since X does not destroy any edge of p;,
15r = () for, otherwise, p; and the root terminal would be in the same connected component of
G|r, — X thereby contradicting the fact that X is a Py, -multiway-cut. For every j € [¢]\ {i},
let e; € E(T) be the closest edge to n; on p; such that ver(e;) C X (note that the edges
€1,...,eq are not necessarily pairwise distinct). Denote by E = {e; | j € [¢] \ {¢}}. We
construct an (s,¥)-cut Y in H; as follows: Y contains the tree arcs of H; corresponding to
the edges in E and for each v € X such that M(v) contains at least one edge of E (that

is, v € ver(e) for some edge e € E), we include in Y the sink arc (y(v), top,(v)) of E(H;).

Let us show that Y is indeed an (s, ¥)-cut in H;.

For every j € [q] \ {i}, let VI C V(T) (Vi c V/(T), respectively) be the set of nodes of
the subpath of p; from 7; to the tail of e; (the head of e; to ¥, respectively). We contend
that for every j € [¢] \ {i}, there is no (Vj7 V_i)-path in H; — Y. Note that if true, this would
prove that Y is indeed an (s, )-cut in H;. For the sake of contradiction, suppose that, for
some j € [g]\ {i}, there is a path L in H; —Y from a vertex 2 € V7 to a vertex y € V_{. Since
the tree arc in H; corresponding e; belongs to Y, there must exist a vertex z € V(L) such
that Ny (2) N VI NV(L) # 0 and Nﬁl(z) N V_ﬁ NV (L) # (; in particular, the sink arc e with
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tail z must belong to L. By construction of H;, it must then be that M(y~!(z)) contains
the edge e;, that is, y~!(z) € ver(e;); but then, y7!(2) € X and so, e € Y by construction,
a contradiction which proves our claim.

Let us finally show that wt;(Y) < k — cost;. To this end, for every e € F, let X, C X be
the restriction of X to T}, where t. is the endpoint of e the furthest from ¥ (note that for any
two distinct e, ¢’ € E, X, N X = (). Then, for every e € E, X, is a Py, -multiway-cut in
G\r,, and so, wt;(e) < [X.|. Similarly, the restriction X; of X to T, is a Py, -multiway-cut
in G|, and so, |X;| > cost; (note that, by construction, X; N X, = @ for every e € F).
Letting X’ = U, ver(e), it then follows from the definition of Y that

wti (V) = X' 4+ ) wti(e) < [X'|+ ) [Xe| < |X| - |X;| < k — cost;
eckE ecl

as X' N X; =0 and for every e € £, X' N X, = 0. <
Using similar arguments, we can also prove the following.

> Claim 23. If Gz, has a Py, -multiway-cut X of size at most k such that for every i € [g],
X destroys an edge of p;, then Hy has an (s,F)-cut Y such that wt;(Y) < k.

To conclude the proof of Lemma 21, let us show that for any P 7 -multiway-cut S in
G|r,, S destroys an edge of every root-to-leaf path of ZN“, except for at most one when }3, = 0.
Note that if the claim is true, the lemma would then follow from Claims 22 and 23.

Let S be a Py, -multiway-cut in G|, . Observe first that if P, # () then for every i € [q], S
must destroy an edge of p; for, otherwise, p; and the root terminal are in the same connected
component of G|, — S, thereby contradicting the fact that S is a Pz, -multiway-cut. Assume
therefore that P, = §) and suppose, for the sake of contradiction, that there exist two distinct
indices 4,5 € [g] such that S destroys no edge of p; and no edge of p;. Then for every
edge e of p; U pj, ver(e) \ S # 0: for each such edge e, let ae € ver(e) \ S. It is now
not difficult to see that there is a path in G|, — S from p; to p; using only vertices from
{ae | e is an edge of p; U p;}, a contradiction to the fact that S be a Py, -multiway-cut in
G\Ta- |
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