PACE Solver Description: DAGer — Cutting out
Cycles with MaxSAT"*

Rafael Kiesel & &
TU Wien, Austria

André Schidler g a&
TU Wien, Austria

—— Abstract

We describe the solver DAGER for the Directed Feedback Vertex Set (DFVS) problem, as it was
submitted to the exact track of the 2022 PACE Challenge. Our approach first applies a wide range of

preprocessing techniques involving both well-known data reductions for DFVS as well as non-trivial
adaptations from the vertex cover problem. For the actual solving, we found that using a MaxSAT
solver with incremental constraints achieves a good performance.

2012 ACM Subject Classification Theory of computation — Parameterized complexity and exact
algorithms

Keywords and phrases Directed Feeback Vertex Set, Data Reductions, Incremental MaxSAT
Digital Object Identifier 10.4230/LIPIcs.IPEC.2022.32
Related Version Preprint of Full Version: https://arxiv.org/abs/2211.06109

Supplementary Material Software (Source Code): https://github.com/ASchidler/dfvs
Software (Source Code): https://doi.org/10.5281/zenodo.6627405

Funding This work has been supported by the FWF W1255(-N23).
André Schidler: The author has been supported by the FWF (P32441) and the WWTF (ICT19-065).

1 Introduction

This paper describes the solver DAGER', which we submitted to the exact track of the 2022
PACE Challenge [9]. This year the challenge was to solve the Directed Feedback Vertex
Set (DFVS) problem. Informally, the DFVS problem is, given a directed graph G = (V, A)
to find a minimum cardinality subset D C V such that every directed cycle of G uses at
least one vertex from D. The problem is one Karp’s original 21 NP-complete problems [6]
and has a wide range of applications such as for argumentation frameworks [4, 3], deadlock
detection, program verification and VLSI chip design [10]. Tt is known that the problem is
fixed-parameter tractable [2] in the size of the DFVS.

The runtime of these parameterized algorithms quickly increases with increasing size
of the DFVS, making alternative approaches necessary for solving instances with a large
DFVS, like many of the instances in these year’s PACE Challenge. We use an alternative
approach to developing a dedicated DFVS algorithm: we express the problem in terms of
constraints and use a constraint solver for computing the DFVS. Our implementation uses a
propositional satisfiability (SAT) solver as a constraint solver. Unfortunately, the size of a
direct encoding in propositional logic is, depending on the encoding, cubic or exponential
in the size of the input graph, and therefore prohibitively large. We therefore use a lazy

* This is a brief description of one of the highest ranked solvers of PACE Challenge 2022. It has been
made public for the benefit of the community and was selected based on the ranking. PACE encourages
publication of work building on the ideas presented in this description in peer-reviewed venues.

L Available at https://github.com/ASchidler/dfvs and https://doi.org/10.5281/zenodo . 6627405

© Rafael Kiesel and André Schidler;

37 licensed under Creative Commons License CC-BY 4.0
17th International Symposium on Parameterized and Exact Computation (IPEC 2022).
Editors: Holger Dell and Jesper Nederlof; Article No. 32; pp. 32:1-32:4

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

mailto:rafael.kiesel@tuwien.ac.at
https://raki123.github.io
https://orcid.org/0000-0002-8866-3452
mailto:andre.schidler@tuwien.ac.at
https://informatics.tuwien.ac.at/people/andre-schidler
https://orcid.org/0000-0001-6790-7158
https://doi.org/10.4230/LIPIcs.IPEC.2022.32
https://arxiv.org/abs/2211.06109
https://github.com/ASchidler/dfvs
https://doi.org/10.5281/zenodo.6627405
https://github.com/ASchidler/dfvs
https://doi.org/10.5281/zenodo.6627405
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

32:2

PACE Solver Description: DAGer — Cutting out Cycles with MaxSAT

approach: we use an adapted SAT solver that creates the necessary constraints when they
are violated, keeping the total number of constraints low enough for most of the instances
in the public instance set. We thereby exploit the following observation by [1] in a similar
context. Namely, while there may be exponentially many cycles in a directed graph, in order
to prove that we need at least k vertices to cover every cycle, we may need far fewer.

Data reductions are another crucial component of DAGER, as they transform the given
graph into a smaller one that is easier to solve. Notably, apart from the well-known standard
data reductions for DFVS of [7] and [8], we also managed to non-trivially generalize many
data reductions for the Vertex Cover (VC) problem to DFVS.

2 Preliminaries

We denote an undirected graph as H = (V, E) with vertices V and edges E, and a directed
graph, or digraph, by G = (V, A) with arcs A. Further, we denote an undirected edge between
vertices u and v as {u,v} and the arc, or directed edge, from u to v as (u,v).

We can now introduce the central problem addressed in this paper.

» Definition 1 (Cycle, DFVS). Given a digraph G = (V, A) a path is a list of vertices

V1,..., Uy Such that for i = 1,...,n — 1 there exists an arc (v;,v;41) € A. A cycle is a
path vy, ...,v, such that v1 = v,. Furthermore, a cycle is uncovered, if there is no cycle
Vi, .., vh, such that {vl|i=1,...,m} C{v;|i=1,...,n}. A Directed Feedback Vertex

Set (DFVS) of G is a set D CV of minimum cardinality such that every cycle of G contains
at least one vertex in D.

We use the notation C(G) to refer to the set of all uncovered cycles in G. Since any self-loop
(u,u) can be easily preprocessed, by adding u to the DFVS and removing u from the digraph,
we will henceforth assume that the input digraph is self-loop-free.

We can represent the problem of finding a DFVS in terms of another problem.

» Definition 2 (Hitting Set). Given a set V called the universe and a set C = {C1,...,Cp}
with C; CV for 1 < i < n, the minimum hitting set problem asks for a set D C V of
minimum cardinality such that DN C; # 0 for all1 <i < n.

Given a digraph G, a hitting set for V and C(G) is also a DFVS for G. In the special
case where each uncovered cycle has length 2, we can also express DFVS as follows:

» Definition 3 (Vertex Cover). Let H = (V, E) be an undirected graph. A minimum vertex
cover is a set of vertices D C V', such that D is of minimum cardinality and for each edge
{u,v} € E either u € D orv € D.

3 Algorithm

Our solver DAGER works via reduction of the DFVS problem to the hitting set problem.
Given the set of cycles C(G), we can easily express that each cycle needs to be hit by the
DFVS in propositional logic. This propositional encoding has one variable per vertex and
the corresponding vertex is in the DFVS if and only if the variable is true. We represent each
cycle as a disjunction, as at least one vertex per cycle must be in the DFVS, and connect
all cycles by a conjunction. We ensure the minimality of the DFVS by using a MaxSAT
solver: besides satisfying the clauses representing the cycles, the MaxSAT solver maximizes
the number of satisfied soft clauses. We add for each variable the negation as a soft clause,
causing the MaxSAT solver to minimize the number of variables set to true.

R. Kiesel and A. Schidler

As the graph might have too many cycles to efficiently enumerate them all, we proceed in
a lazy fashion: while computing a hitting set for a subset of the cycles we dynamically check
for additional cycles that do not intersect the hitting set. More precisely, DAGER works as
follows:
1. Preprocess the graph (See Section 3.1)
Identify a set C'(G) C C(G) of uncovered short cycles, we use a maximum length of 8.
If C'(G) = C(G), perform additional preprocessing not performed in Step 1 (Section 3.1).
Find a minimum hitting set D for C’(G) using a modified MaxSAT solver (See Section 3.2).
If an additional cycle is found while solving, add it.

LAl

We will briefly discuss our preprocessing and our changes to the MaxSAT solver.

3.1 Preprocessing

From classic DFVS preprocessing we used the data reductions INDICLIQUE, OUTD-
ICLIQUE, DICLIQUE-2 and DICLIQUE-3 from [7], as well as the data reductions PIE and
DOME from [8]. Apart from that, we adapted preprocessing techniques from the vertex
cover setting to the DFVS problem. Here, we used the data reductions 1,2,3,4,5,6 and
7.2 from [11], as well as data reductions 8 and 10.1 from [5]. Their soundness for DFVS
is based of the following observation: Given a directed graph G that only has uncovered
cycles of length 2, i.e., each cycle has the form w,v,u and let G’ = (V,E’) such that
E’ = {(u,v)| there is a cycle u,v,u in G}. A minimum vertex cover for G’ is a minimum
DFVS for G.

Clearly, in the above case we can apply all vertex cover data reductions on the undirected
graph. Furthermore, if we know all uncovered cycles, we can apply vertex cover preprocessing
locally, whenever all vertices involved in the reduction only take part in uncovered cycles of
length 2. This case constitutes Step 3. of the algorithm, we described above.

However, it is not always the case that we know all cycles. Therefore, we integrated
all the aforementioned vertex cover preprocessing techniques also into the preprocessing in
Step 1. It follows from the above reasoning that if all vertices involved in a reduction only
have bidirectional edges, then we can apply it. There are additional cases in which we can
additionally apply vertex cover preprocessing, however, a detailed analysis of these cases
requires a lot of technical details and is therefore left out due to space reasons. The underlying
intuition is simple though. We can apply a VC reduction if (1) it would be applicable, in the
undirected graph that has an edge {u, v} whenever u and v are bidirectionally connected in the
original graph and (2) the application of the reduction does not lead to new subset-minimal
cycles.

3.2 MaxSAT and Cycle Check

The SAT solver used inside the MaxSAT? solver tries to find satisfying assignment (equivalent

to a DFVS) by repeating the following steps, until all variable values have been set:

1. Decide on a variable and value, i.e., decide to add a vertex to the DFVS or leave it in the
graph.

2. Propagate values that are implied by the decision, e.g., if all but one vertices in a cycle
have been left in the graph, add the remaining vertex to the DFVS.

3. Check if any clause cannot be satisfied, i.e., a cycle where all vertices are left in the graph.

4. If yes, learn a clause to avoid making the same decisions and undo the corresponding
decisions.

2 We use the solver EvalMazSAT https://github.com/FlorentAvellaneda/EvalMaxSAT

32:3

IPEC 2022

https://github.com/FlorentAvellaneda/EvalMaxSAT

32:4

PACE Solver Description: DAGer — Cutting out Cycles with MaxSAT

We extended the conflict check in Step 3: whenever the SAT solver decides to leave a vertex
in the graph, we check if there is a cycle. If there is a cycle, we add the cycle to our encoding
and notify the solver of the conflict. This way we do not have to find all the cycles initially
and we only add those cycles that are required for finding a DFVS.

—— References

1

10

11

Ali Baharev, Hermann Schichl, Arnold Neumaier, and Tobias Achterberg. An exact method
for the minimum feedback arc set problem. Journal of Ezperimental Algorithmics (JEA),
26:1-28, 2021.

Jianer Chen, Yang Liu, Songjian Lu, Barry O’Sullivan, and Igor Razgon. A fixed-parameter
algorithm for the directed feedback vertex set problem. In Cynthia Dwork, editor, Proceedings
of the 40th Annual ACM Symposium on Theory of Computing, Victoria, British Columbia,
Canada, May 17-20, 2008, pages 177-186. ACM, 2008.

Wolfgang Dvorak, Markus Hecher, Matthias Konig, André Schidler, Stefan Szeider, and Stefan
Woltran. Tractable abstract argumentation via backdoor-treewidth. In AAAT 2022, 2022.
Wolfgang Dvorak, Sebastian Ordyniak, and Stefan Szeider. Augmenting tractable fragments
of abstract argumentation. Artif. Intell., 186:157-173, 2012. doi:10.1016/j.artint.2012.
03.002.

Michael R. Fellows, Lars Jaffke, Aliz Izabella Kirdly, Frances A. Rosamond, and Mathias
Weller. What is known about vertex cover kernelization? In Hans-Joachim Bdéckenhauer,
Dennis Komm, and Walter Unger, editors, Adventures Between Lower Bounds and Higher
Altitudes - Essays Dedicated to Juraj Hromkovic on the Occasion of His 60th Birthday,
volume 11011 of Lecture Notes in Computer Science, pages 330-356. Springer, 2018. doi:
10.1007/978-3-319-98355-4_19.

Richard M. Karp. Reducibility among combinatorial problems. In Raymond E. Miller and
James W. Thatcher, editors, Proceedings of a Symposium on the Complezity of Computer
Computations, held March 20-22, 1972, at the IBM Thomas J. Watson Research Center,
Yorktown Heights, New York, USA, The IBM Research Symposia Series, pages 85-103. Plenum
Press, New York, 1972. doi:10.1007/978-1-4684-2001-2_9.

Mile Lemaic. Markov-chain-based heuristics for the feedback vertex set problem for digraphs.
PhD thesis, Universitit zu Koln, 2008.

Hen-Ming Lin and Jing-Yang Jou. On computing the minimum feedback vertex set of a
directed graph by contraction operations. IEEE TCAD, 19(3):295-307, 2000.

Christian Schulz, Ernestine GroSimann, Tobias Heuer, and Darren Strash. Pace 2022. URL:
https://pacechallenge.org/2022/.

Abraham Silberschatz, Greg Gagne, and Peter B Galvin. Operating System Concepts. JW
Wiley, 2018.

Ulrike Stege and Michael Ralph Fellows. An improved fixed parameter tractable algorithm for
vertex cover. Technical report/Departement Informatik, ETH Zirich, 318, 1999.

https://doi.org/10.1016/j.artint.2012.03.002
https://doi.org/10.1016/j.artint.2012.03.002
https://doi.org/10.1007/978-3-319-98355-4_19
https://doi.org/10.1007/978-3-319-98355-4_19
https://doi.org/10.1007/978-1-4684-2001-2_9
https://pacechallenge.org/2022/

	1 Introduction
	2 Preliminaries
	3 Algorithm
	3.1 Preprocessing
	3.2 MaxSAT and Cycle Check

