
Complexity of Spatial Games
Krishnendu Chatterjee
Institute of Science and Technology Austria, Klosterneuburg, Austria

Rasmus Ibsen-Jensen
University of Liverpool, UK

Ismaël Jecker
University of Warsaw, Poland

Jakub Svoboda
Institute of Science and Technology Austria, Klosterneuburg, Austria

Abstract
Spatial games form a widely-studied class of games from biology and physics modeling the evolution
of social behavior. Formally, such a game is defined by a square (d by d) payoff matrix M and an
undirected graph G. Each vertex of G represents an individual, that initially follows some strategy
i ∈ {1, 2, . . . , d}. In each round of the game, every individual plays the matrix game with each of
its neighbors: An individual following strategy i meeting a neighbor following strategy j receives a
payoff equal to the entry (i, j) of M . Then, each individual updates its strategy to its neighbors’
strategy with the highest sum of payoffs, and the next round starts. The basic computational
problems consist of reachability between configurations and the average frequency of a strategy.
For general spatial games and graphs, these problems are in PSPACE. In this paper, we examine
restricted setting: the game is a prisoner’s dilemma; and G is a subgraph of grid. We prove that
basic computational problems for spatial games with prisoner’s dilemma on a subgraph of a grid are
PSPACE-hard.

2012 ACM Subject Classification Theory of computation

Keywords and phrases spatial games, computational complexity, prisoner’s dilemma, dynamical
systems

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2022.11

Funding Krishnendu Chatterjee: The research was partially supported by the ERC CoG 863818
(ForM-SMArt).
Ismaël Jecker : The research was partially supported by the ERC grant 950398 (INFSYS).
Jakub Svoboda: The research was partially supported by the ERC CoG 863818 (ForM-SMArt).

1 Introduction

Spatial evolutionary games is a classic and well-studied model of evolutionary dynamics
on graphs, which has been studied across fields, e.g., biology [9, 8], physics [10, 14], and
computer science [3, 2].

While computer science studies games with few players and a large number of actions,
evolutionary game theory studies games with few actions and strategies but with many
players (see the survey [17]). Specifically, each spatial evolutionary game consists of a square,
skew-symmetric, bimatrix game (i.e. the outcome in entry (i, j) for player 1 is the same as
the outcome for player 2 in (j, i) for all i, j) and a finite graph. The game is played over a
number of rounds. Each node of the graph corresponds to a player. Each node/player is
associated with a current row and corresponding column. In each round, each player plays
the matrix game against each of their neighbors, by playing their row against their neighbor’s
column (because of the skew-symmetry, who plays rows and who plays columns does not
matter) and gets a payoff assigned, which is the sum of outcomes of the games they played

© Krishnendu Chatterjee, Rasmus Ibsen-Jensen, Ismaël Jecker, and Jakub Svoboda;
licensed under Creative Commons License CC-BY 4.0

42nd IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science
(FSTTCS 2022).
Editors: Anuj Dawar and Venkatesan Guruswami; Article No. 11; pp. 11:1–11:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://doi.org/10.4230/LIPIcs.FSTTCS.2022.11
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


11:2 Complexity of Spatial Games

in that round. Each player then switches to the row played by their neighbor that had the
highest payoff (or keeps their strategy). Since this is a deterministic dynamic, whenever we
reach a round such that there is a previous round in which each player had the same row as
now, the game “loops”. All spatial evolutionary games will therefore loop after at most dn

rounds when the bi-matrix is d by d and there are n nodes.

Most studied setup: Grids and prisoner’s dilemma. The standard study of spatial evol-
utionary games focuses on small (2 by 2 or 3 by 3) bi-matrices and on grids. A good
understanding of the dynamics is known for a number of such setups (including all 2 by 2
bi-matrices on 2-dimensional grids). Grids are typically chosen since in biology they naturally
model how cells interact with nearby cells. In particular, the focus has been on prisoner’s
dilemma (PD) matrices: A prisoner’s dilemma bi-matrix is a 2 by 2 bi-matrix in which the
two rows are called cooperation and defection, such that it is an advantage to defect if the
other player cooperates, but it is better for both players if they both cooperate as compared to
the mutual defection. We study these games to better understand why cooperation develops
as we see in humans and many animal species. Indeed, this was the focus of the original
paper [8] and later works extended this basic model in myriad ways:
1. What happens if you add in mobile agents [19, 5]?
2. What about age[11, 21]?
3. What if nodes/players do not have the same objectives [18, 13]?
4. What if there were different timescales [14, 22]?
See also the survey [12]. A common generalization considers more general graph types. We
mention a few examples of the papers pursuing this direction:
1. Kabir et al. showed how increasing the network reciprocity changes the likelihood of

cooperation in PD [6].
2. Hassell et al. considered how multiple different species on models with islands influence

the outcome [4].
3. Santos and Pacheco showed how scale-free networks (when generated following specific

paradigms) promote cooperation [15].
4. Yamauchi et al. showed how, if both the neighbors and strategies can change over time,

cooperation can evolve [16].
5. Ohtsuki et al. gave a simple heuristic for when cooperation can evolve on a variety of

different networks, including social networks [9].

Computational problems. The works mentioned previously usually examine how coopera-
tion spreads when the process is applied many times. The question they are trying to decide
is: Given a starting position, what is the average number of cooperators in the long run?

Open questions. The general spatial games problem is in PSPACE. This is because a
configuration consists of a strategy for every vertex, which can be stored in polynomial space,
and the update of the configuration according to the rules can also be achieved in PSPACE.
The most well-studied problem for spatial games is the prisoner’s dilemma, which has only
two strategies, namely, cooperation and defection. Moreover, such games have been studied
for special classes of graphs. The main open question is whether efficient algorithms can be
obtained for prisoner’s dilemma on graphs like grids.



K. Chatterjee, R. Ibsen-Jensen, I. Jecker, and J. Svoboda 11:3

Our results. In this paper, we consider spatial evolutionary games with a prisoner’s dilemma
matrix on subsets1 of 2-dimensional grids. The subset models the situation when locations of
e.g. cells or connections between them have been destroyed or are otherwise inaccessible.

Our main result is that for subgraphs of a two-dimensional grid and prisoners dilemma
the reachability and average cooperation problems are PSPACE-hard. Additionally, we show
that induced subgraphs can loop in loops of exponential length. Subsets of grids are simpler
than scale-free or evolving networks, so our hardness result holds for more general graphs.

2 Model and definitions

Graphs and grids. A graph G = (V, E) consists of a set of vertices V and a set of undirected
edges E. Every vertex is occupied by one individual. Edges determine pairs of individuals
that interact. Two-dimensional grids are specific graphs where each vertex is assigned a
unique pair of integers (i, j), and has (at most) 8 neighbors: vertices whose pairs differ by at
most 1 in both coordinates. In our construction, we use graphs derived from grids: Given a
grid (V, E), a induced subgraph of (V, E) is a graph (V ′, (V ′ × V ′) ∩ E) with V ′ ⊆ V . An
subgraph of (V, E) is a graph (V ′, E′) with V ′ ⊆ V and E′ ⊆ (V ′ × V ′) ∩ E.

Games and individuals. An individual occupying a vertex has one of two types: cooperator
if it plays C or defector if it plays D. In the figures, we use black for cooperators and white
for defectors. We call configuration of a graph an assignment of each vertex to a strategy
(cooperator or defector).

From all matrix games, we focus on prisoner’s dilemma. The game is denoted by a matrix

C D
C 1 0
D b 0

where b > 1. It means that C gets 1 for interacting with C, D gets b for interacting with C,
and everyone gets 0 for interacting with D. We denote this game M b.

Steps and updates. The evolution is simulated in rounds. In one round, every individual
interacts with all neighbors and collects the total payoff. Then every individual compares
the received payoff with the payoffs of neighbors. The individual keeps the strategy if it is
the highest or changes the strategy to the strategy of a neighbor with the highest payoff (in
a tie, defection is preferred).

We denote the proccess starting from position S on graph G with a game matrix M b as
S(G, M b, S).

Complexity problems. We consider two complexity problems.
Reach : Given starting configuration, does the process reach a given configuration?
Avg : For a given starting configuration, what is the average number of cooperators

(black vertices) in all succeeding configurations?
Note that for one configuration, there is only one possible succeeding configuration. This

restricts the configuration graph. That means eventually the configuration graph creates a
loop (as was noted before [20]).

1 Either subgraphs or induced subgraphs

FSTTCS 2022



11:4 Complexity of Spatial Games

Figure 1 All configurations of the gadget c3

initiated by the top left configuration. These
configurations (in rows) show period 6.

Figure 2 Extension of the gadget ck by two
cells. We extend the gadget to the lower right,
the gadget itself can be as long as needed con-
nected to the upper left which increases period
by 2.

Ranges of b. There is a reasonable range for b in M b. If b < 1, then the game is not a
prisoner’s dilemma. If b is larger than the maximal degree in a graph, the dynamic is trivial,
a defector cannot become a cooperator. For our constructions in this paper, we suppose that
b ∈ ( 3

2 , 2). In Appendix A, we show ideas explaining how our construction can be adapted to
other values of b.

3 Exponential cycle

In this section, we show that even on an induced subgraph of a square grid, we observe a
complex behavior. Namely, there exists a graph and a configuration that returns back to the
starting configuration only after an exponential number of steps, we use (̃Ω) and (̃O) which
hide logarithmic factors.

▶ Theorem 1. For b ∈ ( 3
2 , 2), there exists a graph G, induced subgraph of a square grid, with

n vertices and a starting configuration S, such that it takes 2Ω̃(
√

n) steps until S(G, M b, S)
reaches S again.

Proof. We describe a family of gadgets and starting configurations with different periods,
where period is the number of steps the gadget needs to return to the starting position again.
Then we combine some of them to create a graph with a period equal to the lowest common
multiple of the periods of its components.

For k ≥ 3, we construct inductively ck, a gadget that is an induced subgraph of a square
grid with size 9 + 2k and period 2k. The gadget c3 in its starting configuration is depicted
on Figure 1. By rearranging and adding two squares, we create the gadget ck+1 from ck, as
depicted on Figure 2.

For every integer g > 1, let us now define Gg as the disjoint union of the gadgets cp2 ,
cp3 , . . . , cpg

where pi is the i-th prime number. By the Chinese remainder theorem, the
number of steps needed so that all gadgets are in the same state is the smallest common
multiple of their periods, which is the product of the first g primes. We know that this
number is Θ(eg log g) from [7] and the Prime Number Theorem. Moreover, the number of
squares (vertices) of Gg linear in the sum of the first g primes which is Õ(g2).

Therefore, by using a induced subgraph of the square grid of size n ∈ N, we can create a
union of gadgets that has a period of size 2Ω̃(

√
n). ◀



K. Chatterjee, R. Ibsen-Jensen, I. Jecker, and J. Svoboda 11:5

0 0 0

0

0 0 0

0

0 0 0

0

0 0

2b

b b

1 23

2

0 0 0

0

0 0 0

0

0 0 0

0

0 0

2b

b

b

1

2

3

2

Figure 3 Sending signal through the wire with explicit payoffs with cooperators denoted by gray.
Thicker vertices are input vertices.

b 0b

0

0

0

0 0 0

0

0 0 0

0

0

2b

b b

1 23

2

2 b2

b

0

0

0 0 0

0

0 0 0

0

0

0

2b

b

b

1

2

3

2

1 23

2

0

0

0 0 0

0

0 0 0

0

0

0 2b

2b

1 23

2

Figure 4 Splitting the signal in two. Blue boxes denote a deleted edge with cooperators denoted
in black. Thicker vertices are input vertices.

4 Construction of a Turing machine

We show that both Reach and Avg are P-SPACE hard. For a polynomially bounded Turing
machine and its input, we create a graph of a polynomial-size that is a subgraph of the
square grid and an initial configuration of cooperators and defectors such that the process
reaches a predefined configuration if and only if the Turing machine accepts the given input.

Since both problems, Reach and Avg , can be easily solved in P-SPACE by a simulation,
that means these problems are P-SPACE complete.

▶ Theorem 2. For b ∈ ( 3
2 , 2) holds:

For any Turing machine T polynomially bounded by n and its input, there exists a subgraph
of a square grid G with poly(n) vertices, a starting configuration S, and a target configuration
Q, such that S(G, M b, S) reaches Q if and only if T accepts the given input.

Moreover, for any Turing machine T and its input I, there exists a subgraph of an infinite
square grid G, a starting configuration S with poly(|I|) cooperators, and a target configuration
Q, such that S(G, M b, S) reaches Q if and only if T accepts the given input.

We construct G as a white (defector) graph with a few black (cooperator) vertices that
carry signals and store data to simulate the behavior of T . On our figures, we use white
for defectors, black for cooperators, gray for deleted vertices, and blue for deleted edges: To
visualize deleted edges, we subdivide each square denoting some vertex v into 9 parts. The
middle square corresponds to v itself, and the other squares denote the neighbors in relative
position to v (upper-left, upper-middle, . . . ). To represent that an edge between two vertices
v and w is deleted, we color in blue the subsquare corresponding to w in v’s square and the
subsquare corresponding to v in w’s square.

First, we describe wires and basic logic gates. With that, we use a construction described
in [1]. We use Lemma 7 and 9 from the paper, but explain technicalities emerging from more
restrictive construction (the graph is a subgraph of a square grid). Both lemmas use simple
gadgets to create functions and then a whole Turing machine.

FSTTCS 2022



11:6 Complexity of Spatial Games

Figure 5 NOT gate: the upper signal is
negated, the lower signal is a clock signal.

Figure 6 AND gate: both signals are essential
to tunnel through. There are two deleted edges
denoted by blue boxes.

4.1 Basic gadgets
We describe the computational gadgets used in our construction. Every gadget g has one or
two inputs (I1, I2) and one or two outputs (O1, O2). We imagine the inputs being on the
left and bottom and the outputs on the right and top. Every gadget fits into a constantly
sized rectangle of the grid.

If at time t at least one input of g is true (input vertices are cooperators and other vertices
are defectors), then at time t + tg it outputs true or false based on a function g computes.

One input (or output) consists of two connected vertices. We say that the input is true if
both vertices are cooperators at time t and t + 1, and in the first step, they can convert all
neighbors to cooperators. The previous gadget (connected by its output to the given input)
is responsible for turning the input vertices back to defectors at time t + 2.

Here, some of the gadgets need to cross signals, we describe how to do it later:
Wire: it transmits a signal (See Figure 3). The wire has one input, one output, and if I1 is

true at time t, then O1 is true at time t + 2.
Splitter: it splits one signal in two (See Figure 4). The splitter has one input and two

outputs. If I1 is true at time T , then O1 and O2 are true at time t + 4. An interesting
property of the splitter is that it does not matter if the signal arrives from I1 or O1. From
the graph perspective, these two are symmetric.

NOT gate: it computes the logical negation, but necessitates a clock signal (See Figure 5).
The NOT gate has two inputs and one output. Input I2 is a clock input: if I1 and I2 are
true at time t, then O1 is false at time t + 8, if only I2 is true at time t, then O1 is true
at time t + 8. Note that the NOT gate actually computes the function ¬I1ANDI2, also
the gates I1 and O1 are interchangeable.

AND gate: it computes the logical conjunction (See Figure 6). The AND gate has two
inputs and one output. If both I1 and I2 are true at time t, then O1 is true at time t + 8.
Otherwise, O1 is false.

XOR gate: it computes logical exclusive disjunction. We can create it from other gadgets,
but it makes our construction easier.
We compute XOR using connection of splitter and NOT gates (see Figure 7). It has two
inputs I1 and I2 and one output O1. First every input is split to get I1,1, I1,2, I2,1 and
I2,2, then I1,1 is sent to I1 of NOT gate and I2,1 is sent to O1 of a splitter S. We already
know that if only one signal equals true, then S splits the signal. If both are positive,
signals annihilate each other. So O2 of S has value I1XORI2. The only problem is when



K. Chatterjee, R. Ibsen-Jensen, I. Jecker, and J. Svoboda 11:7

I1

I2

SP

SP

NOT

NOT

SP O1

I1,1

I2,1

I1,2

I2,2

Figure 7 XOR gate: Combination of previous
gates. Signals I1,2 and I2,2 are delayed such that
they arrive at the NOT gate when signal I1,1 or
I2,1 from the central splitter would.

AND

XORI1

I2 O1

SP

Figure 8 Storage unit.

I1 is true, and I2 is not (or symmetric). Then the signal travels back from the splitter
through wire I2,1, then we use the NOT gate with clock signal I2,1 and signal I1,2 that
stops it.

OR gate: it computes logical disjunction. It has two inputs I1 and I2, and the output O1
satisfies the function (I1ANDI2)XOR(I1XORI2), it consists of gadgets described above.
Note that we don’t need the NOT gate directly, so clock signal is not necessary for that
gadget.

Another gadget that the construction needs is a storage unit. It has an inner state
S ∈ {0, 1}, two inputs and one output, see Figure 8. The storage unit consists of a big cyclic
wire where a signal loops if the stored value S is 1. If a signal is sent via I1, then the storage
unit changes state: S′ = ¬S, this is ensured by a XOR gate. On the cycle, there is a splitter
that splits the signal towards an AND gate. If a signal is sent via I2, S does not change, but
the signal reaches AND and is sent to O2 if and only if S = 1. The storage unit requires
synchronicity, the signal from the input has to reach the splitter or XOR at the right time.
But this is not hard to ensure by longer wires.

4.2 Connecting the graph
To make the graph a subgraph of a square grid, we need to prove two things: we can cross
two signals, and we can ensure that the signals meet at the right place, at the right time.

Crossing. We use the structure described in Figure 13. Crossing accepts only one signal at
a time and supposes that no other signal arrives for 10 steps afterward. Crossing ensures that
in a square subset of a grid, the signal can travel only from upper left to lower right corner
and from lower left to upper right without spreading or dying out. If a signal arrives, it is
spreading to the other input and all the outputs, but the wires close to the active input get
stopped, so only the wire that is not adjacent to the input wire continues to carry the signal.

Making the construction on square grid. On the Figure 9, we see that a signal starting
at position (0, 0) going to position (x, y) can take between max(x, y) and 1

8 · xy steps. The
signal also does not leave the rectangle dentoted by points (0, 0) and (x, y).

Every gadget that was described above can be padded by wires of different densities such
that the gadget fits into a rectangle with predetermined width and height. Moreover, all
inputs are in the same position (relative to the rectangle) and the time of evaluation is the
same for all (constant).

FSTTCS 2022



11:8 Complexity of Spatial Games

Figure 9 Two wires of different lengths connecting two points.

Then everything in the following construction can be viewed as placing a column of tiles
(gadgets) one after another, where columns are connected by short wires.

4.3 Function construction
Here we construct a function using previously described gadgets. We bound the number of
vertices and steps needed for the construction and the function evaluation.

We imagine a function as signals going from left to right. The input and output signals
have constant horizontal distance.

▶ Definition 3. We say that a function f : {0, 1}k → {0, 1}l is computed by a graph G

(subgraph of a grid) in time g and space h if G has h vertices, k inputs I1, I2,. . . , Ik and l

outputs O1, O2, . . . , Ol spatially arranged, and such that for all (x1, x2, . . . , xk) ∈ {0, 1}k, if
at the time t we have Ij = xj for all 1 ≤ j ≤ l (and all the other vertices are defectors), then
at the time t + g we have Oj = yj for all 1 ≤ j ≤ l, where f(x1, x2, . . . , xk) = (y1, y2, . . . , yl).

Note that all our basic gadgets have a constant size. So, when analyzing the asymptotic
space complexity, we can consider these gadgets and single vertices interchangeably.

▶ Lemma 4. Computing the function f(x1, x2, . . . , xc) = (x1, x2, . . . , xc, x1, x2, . . . , xc) takes
time O(c) and space O(c2).

Proof. We describe the gadget computing f . First, we split every signal and then cross every
copy of it with others to the right place. One signal needs to cross O(c) others, so that is the
number of steps and we have c signals going through a wire of length c, that makes O(c2)
gadgets. ◀

▶ Lemma 5. Let c ∈ N. Every function f : {0, 1}c → {0, 1} mapping to 0 every tuple whose
first component is 0 can be computed in space O(3c) and time O(c2).

Proof. We use an induction on the dimension c of the domain. If c = 1, since f satisfies
f(0) = 0 by supposition, either f is the identity, which is realised by a wire, or f is the zero
function, which is realised by simply disconnecting the input and output.

Now, suppose that c > 1, and we can realise any function f : {0, 1}c−1 → {0, 1} that
satisfies the condition. In particular, there exist two gadgets g0 and g1 computing

f0 : {0, 1}c−1 → {0, 1},

(x1, x2, . . . , xc−1) 7→ f(x1, x2, . . . , xc−1, 0),
f1 : {0, 1}c−1 → {0, 1},

(x1, x2, . . . , xc−1) 7→ f(x1, x2, . . . , xc−1, 1).



K. Chatterjee, R. Ibsen-Jensen, I. Jecker, and J. Svoboda 11:9

Having these values, the computation is straightforward as the value f(x1, x2, . . . , xc) is given
by the formula

(f0(x1, x2, . . . , xc−1) ∧ ¬xc) ∨ (f1(x1, x2, . . . , xc−1) ∧ xc).

To construct a gadget g that is a subgraph of a grid g and computes f , we proceed as follows.

Computing the function. We apply the gadget described in Lemma 4 to the input, and
we use a splitter to get one more signal x1. At this point, we have the arranged sig-
nals x1, x1, x2, x3, . . . , xc, x1, x2, x3, . . . , xc. We apply the gadgets computing f0
and f1 to get the signals f0(x1, x2, . . . , xc) and f1(x1, x2, . . . , xc), now the signals are ar-
ranged as x1, f0(x1, x2, . . . , xc−1), xc, f1(x1, x2, . . . , xc−1), xc. We cross the signals x1 and
f0(x1, x2, . . . , xc−1), and then we use x1 as clock signal towards a NOT gate with xc. By
this, we either get the signal ¬xc, or x1 is zero, then the result should be zero anyway.

Now we send f0(x1, x2, . . . , xc−1) and ¬xc towards an AND gate, similarly we send
f1(x1, x2, . . . , xc−1) and xc towards another AND gate, and finally we send both results
towards an OR gate.

Size of the gadget. Now, we show that the computation is fast and requires a reasonable
number of vertices. Let there be a recurrent formula Rs that maps any integer c to the
maximal number of gadgets needed to compute the function f . Using induction, we see that
it satisfies:

Rs(c) = O(c2) + 2Rs(c − 1) + O(1).

Therefore, R(c) ∈ O(3c). Similarly, we use recurrent formula for the time needed

Rt(c) = O(c) + Rt(c − 1) + O(1)

and the solution for this recurrence is O(c2). ◀

▶ Lemma 6. Let c, d ∈ N. Every function f : {0, 1}c → {0, 1}d mapping to (0, 0, . . . ) every
tuple whose first component is 0 can be computed in space O(d3c) and time O(c2 + c log(d)).

Proof. The idea is easy, we split the inputs d times using Lemma 4 and then we use Lemma 5
for every copy.

Multiplying the inputs needs O(d) described in Lemma 4. We can arrange them in layers
where every layer doubles the input, so the whole multiplying takes time O(log(d) · c).

Then we use d gadgets described in Lemma 5 in parallel which gives time O(c2 + c log(d))
and space O(d3c). ◀

4.4 Blob and connections
▶ Lemma 7. Let T be a Turing machine. For every input u evaluated by T using C ∈ N cells
of the tape, there exists a subgraph of a grid G on O(C) vertices and an initial configuration
c0 of G such that T stops over the input u if and only if S(G, M b, c0) for b ∈ ( 3

2 , 2) eventually
reaches a configuration without cooperators.

Proof. We suppose that the Turing machine T has a single final state, which can only be
accessed after clearing the tape. We present the construction of the graph G simulating T

through the following steps. First, we encode the states of T , the tape alphabet, and the
transition function in binary. Then, we introduce the notion of a blob, the building block of
G, and we show that blobs accurately simulate the transition function of T . Afterward, we
approximate the size of a blob, and finally, we define G as a composition of blobs.

FSTTCS 2022



11:10 Complexity of Spatial Games

Binary encoding. Let Ts ∈ N be the number of states of T , and Ta ∈ N be the size of its
tape alphabet. We pick two small integers s and n satisfying Ts ≤ 2s−1 and Ta ≤ 2n−1.
We encode the states of T as elements of {0, 1}s, and the alphabet symbols as elements of
{0, 1}n, while respecting the following three conditions: the blank symbol maps to 0n, the
final state of T maps to 0s, and all the others map to strings starting with 1. Then, for these
mappings, we modify the transition function of T to:

F : {0, 1}s × {0, 1}n → {0, 1}s × {0, 1}s × {0, 1}n.

Instead of using one bit to denote if the head is going left or right, we use 2s bits to store
the state and signify the movement: if the first s bits are zero, the head is moving right; if
the second s bits are zero, it is moving left; if the first 2s bits are zero, the computation
ended. Moreover, the last n bits of the image of F do not encode the new symbol, but the
symmetric difference between the previous and the next symbol: if the i-th bit of the tape
symbol goes from yi to zi, then F outputs di = yi ⊕ zi (XOR of these two).

Constructing blobs. We construct the graph G by simulating each cell of the tape with a
blob. Blob stores a tape symbol, and after receiving a signal corresponding to a state of T it
computes the transition function. The main components of a blob are as follows.

Memory: n storage units (m1, m2, . . . , mn) are used to keep in memory a tape symbol
a ∈ {0, 1}n of T .
Receptor: 2s inputs (I1, I2, . . . , I2s) are used to receive states q ∈ {0, 1}s of T either
from the left or from the right.
Transmitter: 2s outputs (O1, O2, . . . , O2s) are used to send states q ∈ {0, 1}s of T either
to the right or to the left.
Transition gadget: We use gadget from Lemma 6, it needs O((n + s)3n+s) space and
O((n + s)2) time.

Blobs are connected in a row to act as a tape: for every 1 ≤ i ≤ s, the output Oi of
each blob connects to the input Ii of the blob to its right, and the output Os+i of each blob
connects to the input Is+i of the blob to its left. When receiving a signal, the blob transmits
the received state and the tape symbol stored in memory to the transition gadget gF , which
computes the corresponding transition, and then apply its results. We now detail this inner
behavior. Note that when a gadget is supposed to receive simultaneously a set of signals
coming from different sources, it is always possible to add wires of adapted length to ensure
that all of them end up synchronized.

Simulating the transition function. To simulate the transition function of T , a blob acts
according to the three following steps:
1. Transmission of the state. A blob can receive a state either from the left (through inputs

I1, I2, . . . , Is) or from the right (through inputs Is+1, Is+2, . . . , I2s), but not from both
sides at the same time, since at every point in time there is at most one active state.
Therefore, if for every 1 ≤ i ≤ s we denote by xi the disjunction of the signals received
by Ii and Is+i, then the resulting tuple (x1, x2, . . . , xs) is equal to the state received as
signal (either from the left or the right), which can be fed to the gadget gF . Formally, the
blob connects, for all 1 ≤ i ≤ s, the pair Ii, Is+i to an OR gate whose output is linked to
the input Ii of gF .

2. Transmission of the tape symbol. Since the first component of any state apart from the
final state is always 1, whenever a blob receives a state, the component x1 defined in the
previous paragraph has value 1. The tape symbol (y1, y2, . . . , yn) currently stored in the



K. Chatterjee, R. Ibsen-Jensen, I. Jecker, and J. Svoboda 11:11

blob can be obtained by sending, for every 1 ≤ i ≤ n, a copy of x1 to the input I2 of
the storage unit si, causing it to broadcast its stored state yi. The tuple continues to
the gadget gF . Formally, the blob uses n splitters to transmit the result of the OR gate
between I1 and Is+1 to the input I1 of each storage unit. Then, for every 1 ≤ i ≤ n, the
output O1 of the storage unit si is connected to the input Is+i of gF .

3. Application of the transition. Upon receiving a state and a tape symbol, gF computes the
result of the transition function, yielding a tuple (r1, r2, . . . , rs+n). The blob now needs
to do two things: send a state to the successor blob and update the element of the tape.

Connecting the output Oi of gF to the output Oi of the blob for every 1 ≤ i ≤ 2s ensures
that the state is sent to the correct neighbor: the values (r1, r2, . . . , rs) are nonzero if the head
is supposed to move to the next block on the right (outputs O1, O2, . . . , Os are connected
that blob). Conversely, (rs+1, rs+2, . . . , r2s) are nonzero if the head is supposed to move to
the left, (outputs Os+1, Os+2, . . . , O2s are connected to the left blob).

Finally, connecting the output O2s+i of gF to the input I1 of si for all 1 ≤ i ≤ n ensures
that the state is correctly updated: this sends the signal di to the input I1 of the storage
unit si. Since di is the difference between the current bit and the next, the state of si will
change if it has to.

The size of blob. The size of the blob is determined by the size of the transition gadget gF :
one blob is composed of O(3n+s) vertices, and evaluating a transition requires O((n + s)2)
steps by Lemma 6. Since n and s are constants (they depend on T , and not on the input u),
the blob has constant size. Crossing wires to get them to the right place also takes space
O((n + s)2).

Constructing G. Now that we have blobs that accurately simulate the transition function of
T , constructing the graph G mimicking the behavior of T over the input u is straightforward:
we take a row of C blobs (remember that C ∈ N is the number of tape cells used by T

to process u). Since the size of a blob is constant, the size of G is polynomial in C. We
define the initial configuration of G by setting the states of the |u| blobs on the left of the
row to the letters of u, and setting the inputs I1 to Is of the leftmost blob to the signal
corresponding to the initial state of T as if it was already in the process. As explained
earlier, the blobs then evolve by following the run of T . If the Turing machine stops, then its
tape is empty, the final state is encoded by 0s, and the blank symbol is encoded by 0n. So
G reaches the configuration where all vertices are defectors. Conversely, if T runs forever
starting from the input u, there will always be some cooperators vertices in G to transmit
the signal corresponding to the state of T . ◀

Proof of Theorem 2,part 1. By Lemma 7, we can reduce any problem solvable by a polyno-
mially bounded Turing machine into Reach , asking whether we reach the configuration with
only defectors. Or into Avg , asking whether the long-run average is strictly above 0. ◀

Proof of Theorem 2,part 2. Again, by Lemma 7, we can create an infinite chain of blobs
and then we can reduce any problem solvable by any Turing machine into Reach , asking
whether we reach the configuration with only defectors, or into Avg , asking whether the
long-run average is strictly above 0. ◀

FSTTCS 2022



11:12 Complexity of Spatial Games

5 Conclusion

Our result shows that going beyond the basic grid model even slightly makes spatial games
PSPACE-hard. It ensures that there is no efficient (polynomial-time) algorithm for Reach
or Avg , even for the simplest game of prisoner’s dilemma.

We studied games with synchronous and deterministic updating. It poses a question:
does lifting any restriction permit an efficient algorithm? Moreover, we can ask whether it is
possible to construct graphs on which the game has certain properties, such as: are there
graphs where the cooperative behavior is favored?

References
1 Krishnendu Chatterjee, Rasmus Ibsen-Jensen, Ismaël Jecker, and Jakub Svoboda. Simplified

game of life: Algorithms and complexity. In Javier Esparza and Daniel Král’, editors, 45th
International Symposium on Mathematical Foundations of Computer Science, MFCS 2020,
August 24-28, 2020, Prague, Czech Republic, volume 170 of LIPIcs, pages 22:1–22:13. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2020. doi:10.4230/LIPIcs.MFCS.2020.22.

2 Xi Chen, Xiaotie Deng, and Shang-Hua Teng. Settling the complexity of computing two-player
nash equilibria. Journal of the ACM (JACM), 56(3):1–57, 2009.

3 Constantinos Daskalakis, Paul W. Goldberg, and Christos H. Papadimitriou. The complexity
of computing a nash equilibrium. SIAM Journal on Computing, 39(1):195–259, 2009.

4 Michael P. Hassell, Hugh N. Comins, and Robert M. May. Species coexistence and self-
organizing spatial dynamics. Nature, 370:290–292, 1994.

5 Dirk Helbing and Wenjian Yu. The outbreak of cooperation among success-driven individuals
under noisy conditions. Proceedings of the National Academy of Sciences, 106(10):3680–3685,
2009.

6 KM Ariful Kabir, Jun Tanimoto, and Zhen Wang. Influence of bolstering network reciprocity
in the evolutionary spatial prisoner’s dilemma game: a perspective. The European Physical
Journal B, 91(12), December 2018.

7 Sebastián M. Ruiz. 81.27 a result on prime numbers. The Mathematical Gazette, 81:269, July
1997. doi:10.2307/3619207.

8 Martin A. Nowak and Robert M. May. Evolutionary games and spatial chaos. Nature,
359(6398):826–829, October 1992. doi:10.1038/359826a0.

9 Hisashi Ohtsuki, Christoph Hauert, Erez Lieberman, and Martin A. Nowak. A simple rule for
the evolution of cooperation on graphs and social networks. Nature, 441(7092):502–505, May
2006. doi:10.1038/nature04605.

10 Hisashi Ohtsuki, Martin A. Nowak, and Jorge M. Pacheco. Breaking the symmetry between
interaction and replacement in evolutionary dynamics on graphs. Phys. Rev. Lett., 98:108106,
March 2007. doi:10.1103/PhysRevLett.98.108106.

11 Matjaž Perc and Attila Szolnoki. Social diversity and promotion of cooperation in the spatial
prisoner’s dilemma game. Phys. Rev. E, 77:011904, January 2008.

12 Matjaž Perc and Attila Szolnoki. Coevolutionary games—a mini review. Biosystems, 99(2):109–
125, 2010.

13 Matjaž Perc and Zhen Wang. Heterogeneous aspirations promote cooperation in the prisoner’s
dilemma game. PLOS ONE, 5(12):1–8, December 2010.

14 Carlos P. Roca, José A. Cuesta, and Angel Sánchez. Time scales in evolutionary dynamics.
Phys. Rev. Lett., 97:158701, October 2006.

15 Francisco C. Santos and Jorge M. Pacheco. Scale-free networks provide a unifying framework
for the emergence of cooperation. Phys. Rev. Lett., 95, August 2005.

16 Francisco C. Santos, Jorge M. Pacheco, and Tom Lenaerts. Cooperation prevails when
individuals adjust their social ties. PLOS Computational Biology, 2(10):1–8, October 2006.
doi:10.1371/journal.pcbi.0020140.

https://doi.org/10.4230/LIPIcs.MFCS.2020.22
https://doi.org/10.2307/3619207
https://doi.org/10.1038/359826a0
https://doi.org/10.1038/nature04605
https://doi.org/10.1103/PhysRevLett.98.108106
https://doi.org/10.1371/journal.pcbi.0020140


K. Chatterjee, R. Ibsen-Jensen, I. Jecker, and J. Svoboda 11:13

17 Gyorgy Szabo and Gabor Fath. Evolutionary games on graphs. Physics Reports, 446(4):97–216,
2007.

18 Attila Szolnoki and Gyorgy Szabó. Cooperation enhanced by inhomogeneous activity of
teaching for evolutionary prisoner's dilemma games. Europhysics Letters (EPL), 77(3):30004,
January 2007. doi:10.1209/0295-5075/77/30004.

19 Mendeli H. Vainstein, Ana T.C. Silva, and Jeferson J. Arenzon. Does mobility decrease
cooperation? Journal of Theoretical Biology, 244(4):722–728, 2007.

20 Virgil. Eclogue IV. Cambridge University Press, 2008.
21 Zhen Wang, Zhen Wang, Xiaodan Zhu, and Jeferson J. Arenzon. Cooperation and age structure

in spatial games. Phys. Rev. E, 85:011149, January 2012.
22 Zhi-Xi Wu, Zhihai Rong, and Petter Holme. Diversity of reproduction time scale promotes

cooperation in spatial prisoner’s dilemma games. Phys. Rev. E, 80:036106, September 2009.

A Construction for a more general b

We can make a similar construction for different b’s than those from the range ( 3
2 , 2). By

selecting different b, the construction is not a subgraph of a square grid.
We can interpret the wire from Figure 3 as a path (lower row of vertices) with auxiliary

vertices (upper row) that empower the tip of the cooperator signal and also help the first
defector behind it. For different b’s, we can add more auxiliary vertices. Details are on
Figure 10.

For setting b ∈ ( 3
2 , 2), the path and auxiliary vertices interchangeable, it’s not the case for

different bs. Our construction uses this, but only to preserve the topology properties. When
we add k auxiliary vertices, we need to ensure that kb > k − 1 and k − 1 > b. For small b,
we change the signal that it does not span two consecutive slices, but one (as on Figure 10.

..
.

..
.

..
.

..
.

..
.

kb bk − 1

1

Figure 10 Schematic wire construction for general b with the slices of size k. The numbers are
payoffs of important vertices.

B More gadgets

In this section, we provide more detailed figures for some gadgets. Moreover, you can
see videos of some gadgets in action at https://pub.ist.ac.at/~jsvoboda/research/
spatial_games/.

On Figure 11 and Figure 12 we see explicit graph shown on Figure 3 and Figure 4.

FSTTCS 2022

https://doi.org/10.1209/0295-5075/77/30004
https://pub.ist.ac.at/~jsvoboda/research/spatial_games/
https://pub.ist.ac.at/~jsvoboda/research/spatial_games/


11:14 Complexity of Spatial Games

0

0

0

0

0

0

0

0

0

0

0

0

0

0

2b b

b

3 2

1 2

0

0

0

0

0

0

0

0

0

0

0

0

0

0

2b b

b

3 2

1 2

Figure 11 Sending signal throught the wire with explicit payoffs.

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

2b b

b

b

b

3 2

1 2

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

2b b2

b2

b2

b2

3

3

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

2b

2b

b23

b23

b23

b23

Figure 12 Splitting the signal in two. Note that the splitter does not have a direction (a signal
from any input/output is split and sent by the other two inputs/outputs).

Figure 13 Crossing of two wires. Signal coming from left leaves the gadget by the right wire and
signal coming from bottom leaves the gadget by the top wire.


	1 Introduction
	2 Model and definitions
	3 Exponential cycle
	4 Construction of a Turing machine
	4.1 Basic gadgets
	4.2 Connecting the graph
	4.3 Function construction
	4.4 Blob and connections

	5 Conclusion
	A Construction for a more general b
	B More gadgets

