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Abstract
We consider two optimization problems of approximating a convex polygon, one by a largest inscribed
histogon and the other by a smallest circumscribed histogon. An axis-aligned histogon is an axis-
aligned rectilinear polygon such that every horizontal edge has an integer length. A histogon of
orientation θ is a copy of an axis-aligned histogon rotated by θ in counterclockwise direction. The
goal is to find a largest inscribed histogon and a smallest circumscribed histogon over all orientations
in [0, π). Depending on whether the horizontal width of a histogon is predetermined or not, we
consider several different versions of the problem and present exact algorithms. These optimization
problems belong to shape analysis, classification, and simplification, and they have applications in
various cost-optimization problems.
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1 Introduction

We consider two optimization problems of approximating a convex polygon, one by a largest
inscribed histogon and the other by a smallest circumscribed histogon. An axis-aligned
histogon is an axis-aligned rectilinear (possibly weakly simple) polygon such that every

© Jaehoon Chung, Sang Won Bae, Chan-Su Shin, Sang Duk Yoon, and Hee-Kap Ahn;
licensed under Creative Commons License CC-BY 4.0

42nd IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science
(FSTTCS 2022).
Editors: Anuj Dawar and Venkatesan Guruswami; Article No. 13; pp. 13:1–13:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:sk7755@postech.ac.kr
mailto:swbae@kgu.ac.kr
https://orcid.org/0000-0002-8802-4247
mailto:cssin@hufs.ac.kr
https://orcid.org/0000-0003-3073-6863
mailto:sangduk.yoon@sungshin.ac.kr
https://orcid.org/0000-0002-4664-7921
mailto:heekap@postech.ac.kr
https://orcid.org/0000-0001-7177-1679
https://doi.org/10.4230/LIPIcs.FSTTCS.2022.13
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


13:2 Inscribing or Circumscribing a Histogon to a Convex Polygon

(a) (b) (c) (d) (e)

Figure 1 (a) The largest axis-aligned inscribed unit histogon. (b) The largest inscribed unit
histogon. (c) The largest inscribed 2-histogon. (d) The largest inscribed histogon. (e) The smallest
circumscribed histogon.

horizontal edge has an integer length. We call an axis-aligned histogon of width 1 an axis-
aligned unit histogon and an axis-aligned histogon of width k an axis-aligned k-histogon. Thus,
an axis-aligned unit histogon is simply an axis-aligned rectangle of horizontal width 1, and its
height is the length of the vertical sides. An axis-aligned k-histogon for a positive integer k

can be described by k axis-aligned and interior-disjoint unit histogons. A histogon of a fixed
orientation θ ∈ [0, π) is a copy of an axis-aligned histogon rotated by θ in counterclockwise
direction.

In the inscribed histogon problem, we compute a histogon with maximum area that can
be inscribed in P . We call such a histogon a largest inscribed histogon of P . Depending on
whether the horizontal width of a histogon is predetermined (1 or a positive integer k) or
not, we consider three versions of the problem. In the circumscribed histogon problem, we
compute a histogon with minimum area that can be circumscribed to P . We call such a
histogon a smallest circumscribed histogon of P . See Figure 1 for an illustration.

The optimization problems we investigate belong to shape analysis, classification, and
simplification [2, 3]. Many optimization problems occurred in those research topics are
concerned with the largest inscribed figure and the smallest circumscribed figure of a
prescribed shape. The largest inscribed histogon problem and the smallest circumscribed
histogon problem have applications in several coverage path planning (CPP) problems [7, 11,
15, 16] such as mowing a lawn using a mower, painting a piece using a spray gun, inspecting
the surface of an object by a scanner, and milling a pocket by moving a cutter. Other
applications include several topics in calculus, including Riemann sums and optimization. For
a function graph (or a curve), the area under the graph can be approximated by a histogon:
an inscribed histogon is an under-approximation of the area and a circumscribed histogon is
an over-approximation of the area.

Related Work. There has been a lot of work in approximating shapes in past decades. The
goal is to find a polygon inscribing or circumscribing another polygon (a convex polygon or a
simple polygon) while maximizing (or minimizing) a certain measure. There are algorithms
for finding triangles with maximum area or maximum perimeter inscribed in a convex polygon
and a simple polygon [20, 24]. A convex k-gon with maximum area or maximum perimeter
inscribed in a convex n-gon can be computed in O(kn + n log n) time [1, 24]. Chang et al. [8]
gave an O(n7)-time algorithm for finding a convex polygon with maximum area and an
O(n6)-time algorithm for finding a convex polygon with maximum perimeter inscribed in a
convex n-gon. There are O(n)-time algorithms for finding triangles with minimum area or
minimum-perimeter circumscribing a convex n-gon [5, 21].

DePano et al. [14] gave algorithms for finding an equilateral triangle with maximum area
and a square with maximum area inscribed in a polygon either convex or simple. Lee et
al. [19] gave algorithms for finding maximum-area triangles with fixed interior angles inscribed
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in a polygon, either convex, simple, or even non-simple possibly with holes. Intensive research
has been done for the problems of finding rectangles with maximum area or maximum
perimeter inscribed in a convex polygon and a simple polygon [6, 10, 18]. Jin et al. [17] gave
an O(n2)-time algorithm for computing all parallelograms with maximum area in a convex
n-gon. Toussaint [23] gave an O(n)-time algorithm for finding rectangles with minimum area
or minimum perimeter circumscribing a convex n-gon. Schwarz et al. [22] gave a simple
O(n)-time algorithm for finding a parallelogram with minimum area in a convex n-gon.

Very recently, the authors [12] presented first algorithms for the axis-aligned case of our
histogon problem for a convex polygon P . These previous algorithms include: an O(log n)-
time algorithm for a largest axis-aligned inscribed unit histogon, an O(min{n, k log2 n

k })-
time algorithm for a largest axis-aligned inscribed k-histogon for a fixed k > 1, an
O(min{n, w log2 n

w })-time algorithm for a largest axis-aligned inscribed histogon, where w de-
notes the width of a largest axis-aligned histogon inscribed in P , and an O(min{n, W log n

W })-
time algorithm for a smallest axis-aligned circumscribed histogon, where W denotes the
horizontal width of P .

Our Results. For the problem of inscribing a largest unit histogon in a convex n-gon,
we present an O(n log n + U)-time algorithm using O(n) space, where U denotes the total
number of intersections between unit circles centered at vertices of P and the edges of P . In
the worst case, the quantity U can be quadratic in n, while it is near-linear in most cases.
In addition, we present another algorithm that runs in O(n log n + n/δ) time under the
assumption that there exists a unit histogon of height at least δ in P where 0 < δ < 1. This
provides a faster way once one asserts the existence of any unit histogon of positive height
contained in P , by any means such as efficient approximation algorithms. We also show that
our algorithm can determine whether there exists a unit histogon of height δ in P in the
same time bound for any input 0 < δ < 1. Based on these results, a largest inscribed unit
histogon can be computed more efficiently: in O(n log n) time if its height h is Ω(1/ log n),
or in O(n log n log log 1

h log n + n/h2) time in an output-sensitive way, otherwise.
We also present an algorithm that, given a positive integer k, finds a largest k-histogon

inscribed in P in O(kn2(log n + kT (min{k, n}))) time using O(min{k, n}n) space, where
T (m) denotes the time complexity of the optimization step for the trigonometric expression
with O(m) terms, each of quadratic form. For finding a largest histogon with no restriction
on the width inscribed in P , we present an O(Dn2(log n + T (min{D, n})))-time algorithm
using O(min{D, n}n) space, where D denotes the diameter of P . Barequet and Rogol [4]
observed that T (m) = O(m) in practice.

Finally, for finding a smallest circumscribed histogon of a convex n-gon, we present an
O(Dn(log(min{D, n}) + T (min{D, n})))-time algorithm using O(n) space.

Due to lack of space, some proofs and details are omitted. They can be found in the full
version of the paper.

2 Preliminaries

Let P be a convex polygon with n vertices, given in a list sorted in counterclockwise order
along the boundary of P . For ease of discussion, we assume that no two edges of P are
parallel to each other.

For a connected set X, we denote by ∂X the boundary of X, by int(X) the interior of X,
and by cl(X) the closure of X. For a point p ∈ R2, let x(p) and y(p) be the x-coordinate
and the y-coordinate of p, respectively. For any two points p and q in R2, we use pq to
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13:4 Inscribing or Circumscribing a Histogon to a Convex Polygon

denote the line segment connecting p and q, and by |pq| the length of pq. If both p and q lie
on ∂P , pq is called a chord of P . A chord of unit length in P is called a unit chord of P .
We use ∂P [x, y] to denote the portion of ∂P from x to y in counterclockwise order, and let
∂P (x, y] = ∂P [x, y] \ {x}, ∂P [x, y) = ∂P [x, y] \ {y}, and ∂P (x, y) = ∂P [x, y] \ {x, y}. We
use P [x, y] to denote the subpolygon of P enclosed by ∂P [x, y] and the chord xy.

A histogon of a fixed orientation θ ∈ [0, π) is a copy of an axis-aligned histogon rotated
by θ in counterclockwise direction. The width of a histogon H of orientation θ is the width
of the axis-aligned copy of H that is obtained by rotating H by θ in clockwise direction. Let
w(H) be the width of H and |H| denote the area of H.

The orientation of a line is the angle swept from the x-axis in a counterclockwise direction
to the line, and it is thus in [0, π). The orientation of a line segment is that of the line
containing it. We mean by a boundary element of P its vertex or edge. For each θ ∈ [0, π),
there are exactly two lines of orientation θ that are tangent to P . Each of these two tangent
lines intersects ∂P in a boundary element of P . We call a pair (m1, m2) of boundary elements
of P antipodal if there exists an orientation θ ∈ [0, π) of which two tangent lines intersect P

in m1 and m2. Toussaint [23] showed the following, introducing the rotating caliper.

▶ Lemma 1 (Toussaint [23]). There are O(n) antipodal pairs of a convex n-gon P , and they
can be computed in O(n) time.

Note that if (m1, m2) is an antipodal pair, then not both of m1 and m2 can be edges of P ,
since P has no two parallel edges.

3 Largest inscribed unit histogon

In this section we compute a largest inscribed unit histogon of P . Cabello et al. [6] gave an
algorithm that computes a largest inscribed rectangle in a convex polygon with n vertices
in O(n3) time. They showed that the set of parallelograms contained in a convex polygon
with n vertices can be parameterized by a convex polytope in R6 defined by 4n linear
constraints. Their algorithm triangulates the boundary of the convex polytope and finds
a largest rectangle for each simplex of the triangulation. Since the optimization problem
for a simplex has a constant size and the complexity of the convex polytope is O(n3), their
algorithm takes O(n3) time.

We can modify their algorithm so that it works for our problem. For each of O(n3)
optimization problems, we add a new non-linear constraint that a side of parallelogram has
length 1. Since the size of altered optimization problem is constant, we can find a largest
inscribed unit histogon of P in O(n3) time.

In the following, we present an algorithm for the problem that runs in O(n log n + U)
time, where U denotes the total number of intersections between unit circles centered at
vertices of P and the edges of P . Since a unit circle intersects an edge of P at most twice and
it may intersect O(n) edges of P , we have U = O(n2). Indeed, we can construct a convex
polygon such that U = Ω(n2). In practical situations, however, most unit circles centered at
vertices intersect only few edges of P , so the total number of intersections is either linear or
near-linear and our algorithm runs faster.

A largest inscribed unit histogon of P touches some boundary elements (edges and
vertices) of P . For a unit histogon H̄, we say that there is a side-contact if a side of H̄ is fully
contained in an edge of P , or a corner-contact if a corner of H̄ lies on ∂P . The contact set
of H̄ is the set of all of its corner-contacts and side-contacts. We show that the contact set
of any largest inscribed unit histogon falls into one of the following four types. See Figure 2.
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A B C D1 D2

Figure 2 Types of contact sets of for largest inscribed unit histogons of P .

▶ Lemma 2. For any largest inscribed unit histogon of P , its contact set satisfies one of the
following conditions:
A. It has a side-contact.
B. It consists of two corner-contacts at two vertices of P that are antipodal.
C. It consists of four corner-contacts.
D. It consists of three corner-contacts, one of which is associated with a vertex of P .

By Lemma 2, our algorithm finds a largest unit histogon contained in P whose contact
set falls into each of the four types.

3.1 One side-contact (type A) or two corner-contacts (type B)
Any unit histogon of type A contained in P has a side-contact with an edge of P , so a side
of such a histogon has the same orientation with an edge of P . This reduces the problem
to its fixed-orientation variant, which can be solved in O(log n) time [12]. Hence, a largest
inscribed unit histogon of type A can be found in O(n log n) time by solving O(n) instances
of the fixed-orientation problem.

For unit histogons of type B, we first specify all antipodal pairs of P by Lemma 1, and
consider each antipodal pair (v1, v2) such that both v1 and v2 are vertices of P . There are
at most two possible unit histogons H such that v1 and v2 are opposite corners of H. We
try each of these two unit histogons and test if it is contained in P . This containment test
can be done in O(log n) time [13]. Since there are O(n) antipodal pairs by Lemma 1, we can
find a largest inscribed unit histogon of type B in O(n log n) time.

▶ Lemma 3. We can compute a largest inscribed unit histogon of P that has a side-contact
(type A) or two corner-contacts (type B) in O(n log n) time.

3.2 Four corner-contacts (type C)
A unit histogon of type C has top and bottom sides lying on two parallel unit chords of P

by Lemma 2. We say two parallel unit chords of P are aligned orthogonally if their convex
hull forms a unit histogon. A largest inscribed unit histogon of type C in P has a positive
height if and only if there are the two distinct parallel unit chords of P that are aligned
orthogonally.

We find all inscribed unit histogons of type C in P and return the largest one among
them. To do this, we trace two unit chords of orientation θ in P while θ increasing from 0
to π, and find the orientations at which the two unit chords are aligned orthogonally. The
following lemma is about the existence of two distinct parallel unit chords in P .

▶ Lemma 4. The following statements are equivalent:
The length of a longest chord of orientation θ in P is larger than 1.
Either there are exactly two distinct unit chords of orientation θ, or P has an edge of
orientation θ with length larger than 1.

FSTTCS 2022
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Let O denote the set of all orientations θ ∈ [0, π) such that the longest chord of orientation
θ in P has length larger than 1, but there is no edge of P of orientation θ whose length is
larger than 1. By Lemma 4, there are exactly two distinct unit chords of orientation θ in
P if and only if θ ∈ O. Note that O is our search space for all possible unit histogons of
type C. In the following, we investigate the motion of the longest chord and unit chords of
orientation θ as θ continuously increases.

▶ Lemma 5. Both endpoints of the longest chord of orientation θ in P move monotonously
in the counterclockwise direction along ∂P as θ increases. Moreover, the pair of two boundary
elements of P on which the endpoints of the longest chord lie is antipodal.

For any orientation θ ∈ [0, π), consider the longest chord ab of orientation θ and the two
boundary elements ea, eb of P such that a ∈ ea and b ∈ eb. It is obvious that the longest chord
continuously moves as θ increases while its endpoints lie on ea and eb, respectively, unless
both ea and eb are vertices. This implies that the length of the longest chord also changes
continuously locally and thus that the set O forms several open intervals of orientations. Let
I(O) be the set of these intervals induced by O.

By Lemma 5, together with Lemma 1, there are only O(n) different pairs of such boundary
elements (ea, eb) that the endpoints of the longest chord may land on. Hence, the set I(O)
consists of O(n) open intervals. These intervals can be computed in O(n) time by processing
each antipodal pair in O(1) time after specifying them explicitly in O(n) time by Lemma 1.

▶ Lemma 6. Both endpoints of a unit chord of orientation θ move continuously along ∂P

as θ continuously increases over any interval in I(O).

We define the combinatorial structure of a unit chord to be the pair of the boundary
elements of P where its endpoints lie. The combinatorial structures of unit chords of
orientation θ may change for θ increasing in an interval of I(O). Since the endpoints of a unit
chord move continuously along ∂P by Lemma 6, such a change occurs only if an endpoint
of the unit chord meets a vertex of P . We call an orientation at which the combinatorial
structure of a unit chord changes a v-event orientation. The set of v-event orientations
partitions the intervals of I(O) into subintervals, called v-intervals. Note that, for any
v-interval I, the combinatorial structure of the unit chords of orientation θ remains the same
over all θ ∈ I. Moreover, the number of v-intervals of I(O) is bounded by O(n + U) since
each v-event corresponds to an intersection between a unit disk centered at a vertex of P

and an edge of P .
Now, we compute v-event orientations, v-intervals, and unit histogons of type C by

processing the intervals of I(O), one by one, in the increasing order of orientation as follows.
Consider an interval I = (θ0, θ1) ∈ I(O), and assume that we have processed all intervals
prior to I and are now about to process I. By definition of O, note that θ0 /∈ O. This
implies that either there is an edge e0 of P of orientation θ0 whose length is larger than 1,
or the longest chord of orientation θ0 has length at most 1. For the former case, there is
the previous interval I ′ ∈ I(O) that share the endpoint θ0 with I, and thus we have the
unit chord of orientation θ0 not lying on e0 when we process I. For the latter case, the
length of the longest chord of orientation θ0 is exactly 1 by Lemma 6. Thus, the longest
chord is the only unit chord of orientation θ0 and it can be specified when we compute I(O).
As θ increases from θ0 to θ1 over I, the endpoints of the unit chords of orientation θ move
continuously along ∂P for θ increasing in I by Lemma 6. So, we can trace the endpoints
of the unit chords of orientation θ and compute v-event orientations in I and v-intervals
induced by the orientations in order.
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(a) (b) (c) (d)

Figure 3 Two edge events and two vertex events where the feasibility of a top unit chord C (thick
segment) changes for θ increasing from θ1 in the interior of an interval of I(O). Assume θ1 = 0.
Each acute angle is marked with a circle. (a) An edge event where C becomes infeasible. (b) An
edge event where C becomes feasible. (c) A vertex event where C becomes feasible. (d) a vertex
event where C becomes infeasible.

For a v-interval I ′ determined during this tracing, we check whether there is an orientation
θ ∈ I ′ such that the two unit chords are aligned orthogonally, that is, the convex hull of the
two unit chords of orientation θ forms a unit histogon. Since the combinatorial structures of
the unit chords does not change in the v-interval, this can be done by solving an equation
defined for θ ∈ I ′ such that the equation has a solution if and only if the two unit chords are
aligned orthogonally. From the edges of P corresponding to the combinatorial structure of a
unit chord of orientation θ ∈ I, we can express the x-coordinate of an endpoint of the chord
as A sin(θ + B) + C using the law of sines, where A, B and C are constants. The equation
has O(1) solutions which can be found in O(1) time.

To sum up, we compute all v-event orientations and v-intervals in O(n + U) time. For
each of the O(n + U) v-intervals, we determine whether there is a unit histogon of type C of
an orientation in the v-interval in O(1) time. Thus, we compute all unit histogons of type C
in O(n + U) time.

▶ Lemma 7. We can compute the largest inscribed unit histogon of P that has four corner-
contacts (type C) in O(n + U) time using O(n) space.

3.3 Three corner-contacts (type D)
We denote by H̄∗ the largest inscribed unit histogon of type D in P and let θ∗ be the
orientation of its top and bottom sides. By Lemma 2, one corner of H̄∗ lies at a vertex of P

and the top or bottom side of H̄∗ are unit chords of orientation θ∗ in P .
We say a unit chord C of orientation θ ∈ O is feasible if there exists a unit histogon H̄ in

P of a positive height such that C is a top or bottom side of H̄. If C is the top side (or the
bottom side, respectively) of H̄, we call C a top (or a bottom, respectively) unit chord and
the orientation θ top feasible (or bottom feasible, respectively).

In the following, we consider the case that the top side of H̄∗ is a top feasible unit chord
and the bottom-left corner of H̄∗ lies on ∂P . The other cases in which the bottom-right
corner of H̄∗ lies on ∂P or the bottom side of H̄∗ is a bottom feasible unit chord can be
handled analogously. Our strategy is to trace the top feasible unit chord of orientation θ

while θ increases in each interval of I(O) and to find all unit histogons inscribed in P whose
top side coincides with a top unit chord.

Events and event orientations. As θ continuously increases over an interval I ∈ I(O), a
unit chord of orientation θ becomes feasible and infeasible at certain orientations in I. We
call each such orientation an f-event orientation. There are two types of f-event orientations
of a unit chord C. See Figure 3 for an illustration.

Edge event: C is orthogonal to an edge on which an endpoint of C lies.
Vertex event: An endpoint of C meets a vertex and both interior angles at the vertex of
the two subpolygons of P induced by C are acute.

FSTTCS 2022



13:8 Inscribing or Circumscribing a Histogon to a Convex Polygon

Then there is some ζ > 0 such that either C is infeasible at θ − ϵ but feasible at θ + ϵ for any
0 < ϵ ≤ ζ, or C is feasible at θ − ϵ but infeasible at θ + ϵ for any 0 < ϵ ≤ ζ.

Note that we can determine whether a unit chord is at f-event or v-event (defined in
Section 3.2) while tracing the endpoints of the unit chord. Thus, we can compute all f-event
orientations along with v-event orientations while tracing the two unit chords.

For a top feasible orientation θ, we denote by α(θ) the top unit chord of orientation θ and
let H̄(θ) be the largest unit histogon inscribed in P whose top side is α(θ). Let α1(θ) and
α2(θ) be the two endpoints of α(θ) that correspond to the top-right corner and the top-left
corner of H̄(θ), respectively.

By Lemma 6, α1(θ) and α2(θ) move continuously along ∂P as θ continuously increases
over the interval. Since P is convex, the endpoints of the two chords orthogonal to α(θ)
through α1(θ) and α2(θ) also move continuously along ∂P . Observe that H̄(θ) always has
at least one bottom corner at one endpoint of the orthogonal chords. When H̄(θ) has both
bottom corners at endpoints of the orthogonal chords, it has four corner-contacts (type C),
and H̄(θ − ε) has its bottom-left corner lying on ∂P and H̄(θ + ε) has its bottom-right corner
lying on ∂P (or in the opposite way) for sufficiently small ε.

Intervals containing no event orientations. We partition the intervals of I(O) by the
f-event orientations, v-event orientations, and the orientations where unit histogons of type C
are defined. Then we gather (partitioned) intervals I such that for any orientation θ ∈ I, θ is
a top feasible orientation and H̄(θ) has its bottom-left corner q(θ) on ∂P . The resulting set
of intervals is denoted by IL. The number of intervals in IL is O(n + U), and for an interval
I ∈ IL, the combinatorial structure of α(θ) remains the same for any orientation θ ∈ I.

Let u denote the topmost vertex of P . If there are more than one topmost vertex, let u

be the one with the largest x-coordinate. We claim that for any I ∈ IL and θ ∈ I, u, α2(θ)
and q(θ) appear in counterclockwise order along ∂P . When θ = 0, it clearly holds. Suppose
that u lies on ∂P [α2(θ), q(θ)] for some θ > 0. Since both interior angles, one at α2(θ) and
one at q(θ), in P [α2(θ), q(θ)] are smaller than π/2, the line of orientation θ passing through
u intersects ∂P (q(θ), α2(θ)) at a boundary point with y-coordinate larger than that of u, a
contradiction.

▶ Lemma 8. For any I1, I2 ∈ IL and any two orientations θ1 ∈ I1 and θ2 ∈ I2 with θ1 < θ2,
if q(θ2) ∈ ∂P (u, q(θ1)], then |H̄(θ2)| < |H̄∗|.

For any unit histogon H̄ of type D, we distinguish two further subcases: H̄ is of type
D1 if a corner incident to its top side lies on a vertex of P , or of type D2 if its bottom-left
corner lies on a vertex of P . For an illustration, see Figure 2. If H̄∗ is of type D1, θ∗ is an
endpoint of an interval of IL by definition of v-event in Section 3.2. If H̄∗ is of type D2,
q(θ∗) lies on a vertex of P . By Lemma 8, there is no θ ∈ I with I ∈ IL such that θ < θ∗ and
q(θ∗) ∈ ∂P (u, q(θ)].

Algorithm. Our algorithm processes the intervals of IL one by one in increasing order of
orientation, and computes H̄∗ as follows. It maintains a point w lying on ∂P to indicate
the portion ∂P [u, w] that has been processed so far. In the beginning, w is set to the
topmost vertex u. Let v(w) denote the counterclockwise neighbor vertex of w. The algorithm
processes an interval I ∈ IL as follows. Let θ0 and θ1 be the endpoints of I with θ0 < θ1. A
largest inscribed unit histogon of type D1 is computed in Step 1 and Step 3, and a largest
inscribed unit histogon of type D2 is computed in Step 2.
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Step 1. If θ0 is a top feasible orientation and q(θ0) ∈ ∂P [w, u), compute H̄(θ0) and update
w to q(θ0).

Step 2. Repeat the following if there is θ ∈ [θ0, θ1] such that q(θ) ∈ ∂P [v(w), u).
a. Find the smallest θ′ ∈ [θ0, θ1] such that v(w) is met by q(θ′), and compute H̄(θ′)

if such θ′ exists.
b. Update w to v(w).

Step 3. If θ1 is a top feasible orientation and q(θ1) ∈ ∂P [w, u), compute H̄(θ1) and update
w to q(θ1).

▶ Lemma 9. Our algorithm computes H̄∗ while processing the interval I of IL with θ∗ ∈ I.

Analysis. Now we analyze the running time of the algorithm. The algorithm processes
the intervals in IL in the increasing order, one by one. Recall that it computes f-event
orientations, v-event orientations, and orientations of unit histogons of type C while tracing
the unit chords of orientation θ as θ runs over each interval in I(O). They can be found in
the increasing order of orientation in O(n + U) time using O(n) space.

In Step 1, the algorithm checks whether q(θ0) ∈ ∂P [w, u) or not in O(1) time using α(θ0)
and w. If q(θ0) ∈ ∂P [w, u), it finds the edge where q(θ0) lies by checking the edges of P one
by one in counterclockwise order from the edge where w lies, and updates w to q(θ0). Thus,
Step 1 is done in time linear to the number of edges checked for updating w. Similarly, Step
3 can be done in the same time.

Now consider Step 2. The algorithm checks if there is an orientation θ ∈ [θ0, θ1] such
that q(θ) ∈ ∂P [v(w), u). This can be done in O(1) time as the combinatorial structure of
α(θ) has size O(1) for θ ∈ [θ0, θ1]. If there exists such an orientation, the algorithm finds
the smallest θ′ ∈ [θ0, θ1] such that v(w) is met by q(θ′), and updates w to v(w). This also
takes O(1) time as the corresponding combinatorial structure has size O(1). Then Step 2
can be done in time linear to the number of vertices checked for updating w. Note that w

is updated to a point in ∂P [w, u), and then the edges and vertices we check to update w

change monotonically on ∂P in counterclockwise direction. Thus, the algorithm checks the
edges and vertices of P for updating w in O(n) time plus the time linear to the number of
intervals in IL. Since there are O(n + U) intervals in IL, the algorithm finds H̄∗ in O(n + U)
time using O(n) space.

▶ Lemma 10. We can compute the largest inscribed unit histogon of P that has three
corner-contacts (type D) in O(n + U) time using O(n) space.

We have shown how to find the largest inscribed unit histogons in P for types A, B, C
and D. Taken together, we choose the largest one among them as the largest inscribed unit
histogon in P . From Lemmas 3, 7, and 10, we have the following theorem.

▶ Theorem 11. We can determine whether there is an inscribed unit histogon with positive
height in P in O(n) time. If exists, we can find a largest inscribed unit histogon in P in
O(n log n + U) time using O(n) space, where U is the number of intersections between the
unit disks centered at the vertices of P and the edges of P .

▶ Remark. One may wonder whether there are convex polygons with n vertices for which
the number of v-intervals is Ω(n2). We show how to construct such a convex polygon in
Figure 4. The polygon has roughly ⌊ n

2 ⌋ vertices that are very close to each other and roughly
⌊ n

2 ⌋ edges each of which contains a point at distance 1 from those vertices as shown in the
figure. Thus, there are Ω(n2) feasible unit chords with different combinatorial structures.
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⌊n
2 ⌋ edges ⌊n

2 ⌋ vertices

Figure 4 There can be Ω(n2) v-event orientations.

4 Improved algorithms for a largest inscribed unit histogon

In this section, we assume that there exists a unit histogon of height δ inscribed in P for
some 0 < δ < 1. Under this assumption, we show that a largest inscribed unit histogon in P

can be computed in O(n log n + n/δ) time, independent of the quantity U .
First, we show that there are O(n) f-event orientations in total while θ increases from 0

to π, and that all f-event orientations can be computed in O(n log n) time.

▶ Lemma 12. There are O(n) f-event orientations in total.

Proof. There are at most two unit chords that are orthogonal to each edge of P . Thus there
are O(n) edge events.

Now we count the number of vertex events on a vertex v. Suppose that there are three
vertex events on v, induced by unit chords C1, C2 and C3 in increasing order of orientation.
By definition, the orientations of C1, C2 and C3 are all in O. Observe that both interior
angles at v of the subpolygons of P induced by C1 are acute. The same holds for C2 and C3.

Let Pj be the subpolygon of P induced by C2 that contains Cj for j = 1, 3. Let ℓ be the
line containing the edge where the endpoint of C2, other than its endpoint lying on v, lies.
See Figure 5(a). Then ℓ does not intersect the interior of C3. Since the isosceles triangle with
two sides C2 and C3 has an acute angle at its base corners, the sum of the interior angles
at the endpoints of C2 in P1 (ϕ1 + ϕ2 in Figure 5(a)) is strictly smaller than π. Similarly
the sum of the interior angles at the endpoints of C2 in P3 is strictly smaller than π. Then
C2 is the longest chord contained in P at the orientation of C2. This contradicts that the
orientation of C2 is in O. Recall that an orientation θ is an element of O if the longest chord
of orientation θ in P has length larger than 1. Thus there are at most two vertex events on a
vertex and there are O(n) vertex events in total. ◀

We show how to find all O(n) f-events in O(n log n) time. The authors in the previous

P1 C1

C2

C3

(a)

v

ℓ

ϕ1
ϕ2

ϕ′

ϕ3

e′

e

s

s′

v

(b)

P3

1

1

u

u′

Figure 5 (a) ϕ′ < π/2 and ϕ3 < π/2 (acute). Since ℓ does not intersect the interior of C3,
ϕ′ + ϕ1 ≤ π = ϕ3 − ϕ2 + 2ϕ′. ϕ1 + ϕ2 ≤ ϕ′ + ϕ3 < π. (b) Circular arc queries for finding vertex
event orientations.



J. Chung, S. W. Bae, C.-S. Shin, S. D. Yoon, and H.-K. Ahn 13:11

paper [12] showed that two unit chords of a fixed orientation can be found in O(log n) time
by binary search using the sorted list of vertices of P . For each edge of P , we can find all
unit chords which are incident and orthogonal to the edge in O(log n) time. Thus we can
find all edge events in O(n log n) time.

There are at most two vertex events on a vertex as shown in the proof of Lemma 12.
To find them, we construct a data structure supporting circular ray shooting queries on P

such that for a directed query arc of a circle with a start point and a direction (clockwise or
counterclockwise), it finds the first intersection between the arc and ∂P . Cheng et al. [9] gave
a hierarchical decomposition of a simple polygon for circular ray shooting queries of a fixed
radius with O(n log n) construction time and O(n) space that supports O(log n) query time.
For a vertex v of P , let e and e′ be the edges incident to v such that e′ is the counterclockwise
neighbor of v. For any line tangent to P at v, let s and s′ be the points lying in the side
of the tangent line containing P such that they are at distance 1 from v and the segments
sv and s′v are orthogonal to e and e′, respectively. See Figure 5(b) for an illustration. We
perform two circular arc queries, one with the counterclockwise arc of the unit circle centered
at v from s and the other with the clockwise arc of the unit circle centered at v from s′, in
O(log n) time, and get the first intersections u and u′ of the arcs with ∂P . Then we check
whether a vertex event occurs at the orientations of two unit chords vu and vu′. Thus we
can find all vertex events in P in O(n log n) time.

Let OT be the set of all top feasible orientations, and OB be the set of all bottom feasible
orientations. Note that OT and OB induce intervals contained in O and their endpoints are
f-events by definition. Let I(OT ) and I(OB) be the set of intervals induced by OT and OB ,
respectively. By Lemma 12, there are O(n) intervals in I(OT ) and I(OB). For a top feasible
orientation θ ∈ OT , let H̄(θ) be the largest unit histogon inscribed in P with top side lying
on the top unit chord of orientation θ. Let I ∈ I(OT ) be an interval with endpoints θ0, θ1
satisfying θ0 < θ1. For any θ ∈ I, the top side α(θ) = α1(θ)α2(θ) of H̄(θ) is a unit chord,
and moves continuously as θ continuously increases in I by Lemma 6. Hence, its limits at
the endpoints θ0 and θ1 are well defined as α(θ0) and α(θ1), so we can discuss the top side
α(θ) over all θ ∈ cl(I) in the closure of each interval I ∈ I(OT ), including its endpoints.

It is possible that two consecutive intervals I, I ′ ∈ I(OT ) share an endpoint θ′, while
θ′ belongs to none of I and I ′. In this case, the limits of α(θ) at θ′ over I and I ′ may not
agree. In the following, we handle each interval of I(OT ) separately in order, so we abuse a
notation to mean α(θ′) by the limit over the interval we are currently handling. This will be
clear from context.

4.1 Orientations dominated by other orientations
Let C(θ) denote ∂P [α1(θ), α2(θ)] for an orientation θ ∈ cl(I) with I ∈ I(OT ). Since the
interior angles at the endpoints of α(θ) in P [α2(θ), α1(θ)] are at least π/2, the endpoints of
α(θ) move continuously along ∂P in counterclockwise direction as θ continuously increases
in I. This implies that C(θ) ̸⊆ C(θ′) and C(θ′) ̸⊆ C(θ) for any θ, θ′ ∈ cl(I) with θ ̸= θ′.

▶ Observation 13. For I ∈ I(OT ) and θ ̸= θ′ ∈ cl(I), we have C(θ) ̸⊆ C(θ′) and C(θ′) ̸⊆ C(θ).

▶ Lemma 14. For I, I ′ ∈ I(OT ) with I ̸= I ′, θ ∈ cl(I), and θ′ ∈ cl(I ′), it holds that
|H̄(θ)| < |θ − θ′| if C(θ) ⊆ C(θ′).

For I, I ′ ∈ I(OT ) with I ̸= I ′, θ ∈ cl(I), and θ′ ∈ cl(I ′), we say θ is δ-dominated by θ′ (or
θ′ δ-dominates θ) if C(θ) ⊆ C(θ′) and |θ − θ′| ≤ δ. By Observation 13, θ and θ′ are contained
in two distinct intervals of I(OT ) if θ δ-dominates θ′ or θ′ δ-dominates θ. If θ is δ-dominated
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by θ′, we have |H̄(θ)| < δ by Lemma 14. Observe, however, that there can be orientations
θ′′ ∈ OT with |H̄(θ′′)| < δ that are not dominated by any other orientations contained in an
interval of I(OT ). We use the following lemma to determine whether an orientation θ ∈ I is
δ-dominated by another orientation θ′ ∈ I ′ for I, I ′ ∈ I(OT ).

▶ Lemma 15. Let θ1, θ2, θ be three orientations, each contained in the closure of an interval
in I(OT ), with θ1 < θ < θ2 or θ2 < θ < θ1. Suppose that C(θ1) ̸⊆ C(θ) and C(θ) ̸⊆ C(θ1).
Then, we have C(θ) ⊆ C(θ2) if C(θ1) ⊆ C(θ2), and C(θ2) ⊆ C(θ) if C(θ2) ⊆ C(θ1).

Lemma 15 provides us a tool to infer the δ-dominance relation over orientations in each
interval of OT , namely, if θ1 is δ-dominated by θ2, then θ is also δ-dominated by θ2, and
if θ2 is δ-dominated by θ1, then θ2 is also δ-dominated by θ. We use this, together with
Observation 13 and Lemma 14, to remove as much δ-dominated orientations as possible from
each interval in I(OT ), resulting in relevant subintervals.

Removing δ-dominated orientations. Let I, I ′ ∈ I(OT ) be two distinct intervals with
cl(I) = [θ0, θ1] and cl(I ′) = [θ′

0, θ′
1] such that an orientation θ ∈ cl(I) is δ-dominated by

an orientation θ′ ∈ cl(I ′). By Lemma 15, every orientation in [θ, θ1] is δ-dominated by θ′
0

if θ < θ′, and every orientation in [θ0, θ] is δ-dominated by θ′
1 if θ > θ′. Thus, we can

determine whether an orientation is δ-dominated by another orientation using the endpoints
of intervals in I(OT ). Moreover, the set of orientations in I which are not δ-dominated by
other orientations appears as a subinterval of I unless it is empty.

In the following, we describe how to remove δ-dominated orientations from the intervals
of I(OT ). Note that this procedure does not remove all δ-dominated orientations but the
δ-dominated orientations that remain after the procedure have some property as shown in
Lemma 16. We process the intervals of I(OT ) one by one in increasing order of orientation.
In the course, we maintain a sequence L of (sub)intervals that have been processed so far
after removing the orientations δ-dominated by some other orientations in the closure of an
interval of I(OT ). Initially, L is set to an empty list.

Imagine that we have processed the first i intervals of I(OT ) and we are about to process
the (i + 1)-th interval I of I(OT ) with cl(I) = [θ0, θ1]. Let L = ⟨[θ1

0, θ1
1], [θ2

0, θ2
1], . . . , [θm

0 , θm
1 ]⟩

be the sequence of intervals that have been processed so far. If L is empty, we simply append
cl(I) into L. Otherwise, we update L by removing (sub)intervals of L or a (sub)interval of
cl(I) consisting of the orientations δ-dominated by other orientations by the following rules.
If θ0 = θm

1 , we set θm
1 to be θm

1 − ε for infinitesimally small ε > 0 temporarily whenever we
check the δ-dominance between θ0 and θm

1 .

Rule 1. If θ0 and θm
1 do not δ-dominate each other, append cl(I) = [θ0, θ1] to L.

Rule 2. If θm
1 is δ-dominated by θ0,

a. find the smallest integer 0 < j ≤ m such that θj
1 is δ-dominated by θ0,

b. find the smallest orientation r ∈ [θj
0, θj

1] such that r is δ-dominated by θ0,
c. remove [θj

0, θj
1], [θj+1

0 , θj+1
1 ], . . . , [θm

0 , θm
1 ] from L, and

d. append [θj
0, r] to L if θj

0 < r, and then append cl(I) = [θ0, θ1] to L.
Rule 3. If θ0 is δ-dominated by θm

1 ,
a. find the largest orientation r ∈ [θ0, θ1] such that r is δ-dominated by θm

1 , and
b. append [r, θ1] to L if r < θ1.

After removing δ-dominated orientations from the intervals of I(OT ) by the procedure
above, the list L consists of O(n) intervals and has the following property.

▶ Lemma 16. For any two orientations θ, θ′ contained in some intervals of L, |θ − θ′| = δ

if θ is δ-dominated by θ′.
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Analysis. We maintain the list L of intervals in increasing order of orientation. Let
I ∈ I(OT ) with cl(I) = [θ0, θ1] be the interval that we are about to process for L =
⟨[θ1

0, θ1
1], [θ2

0, θ2
1], . . . , [θm

0 , θm
1 ]⟩. The last interval [θm

0 , θm
1 ] of L can be found in O(1) time. We

can check if Rule 1 applies and append [θ0, θ1] to L in O(1) time. When Rule 2 applies, we
find all intervals [θ′

0, θ′
1] in L such that θ′

1 is δ-dominated by θ0 by checking the intervals
in L one by one in decreasing order of orientation. By Lemma 15, those intervals form a
contiguous subsequence ⟨[θj

0, θj
1], [θj+1

0 , θj+1
1 ], . . . , [θm

0 , θm
1 ]⟩ of L. We remove them from L in

time linear to the number of removed intervals. Then we find the smallest orientation r in
[θj

0, θj
1] such that r is δ-dominated by θ0. If θj

0 < r, then either it holds that |θ0 − r| = δ

or C(θ0) and C(r) share the common endpoint α1(θ0) = α1(r). In the former case, we find
r ∈ [θj

0, θj
1] such that |θ0 − r| = δ in O(1) time. In the latter case, we find α2(r) using a

circular arc query in O(log n) time with the directed arc of unit circle centered at α1(θ0),
since there is at most one orientation θ in [θj

0, θj
1] such that α1(θ) = α1(θ0). When Rule 3

applies, we find the largest orientation r ∈ [θ0, θ1] such that r is δ-dominated by θm
1 for the

last interval [θm
0 , θm

1 ] in L using a circular arc query in O(log n) time. Since there are O(n)
intervals in I(OT ), we can process them in O(n log n) time using O(n) space.

4.2 Orientations θ with |H̄(θ)| = δ.
Let I be an interval in L. Observe that the height of H̄(θ) is positive and changes continuously
as θ continuously increases in I since the endpoints of α(θ) and the two chords orthogonal
to α(θ) through α1(θ) and α2(θ) move continuously along ∂P by Lemma 6. We call each
orientation θ ∈ I such that |H̄(θ)| = δ a δ-event orientation. The set of δ-event orientations in
I partitions I into subintervals I ′ such that either |H̄(θ)| < δ for all θ ∈ int(I ′) or |H̄(θ)| > δ

for all θ ∈ int(I ′).

Finding δ-event orientations. We find all δ-event orientations contained in intervals of L

as follows. A rectangle R of an orientation θ ∈ [0, π) is a copy of an axis-aligned rectangle R̄

obtained by rotating R̄ by θ in counterclockwise direction. The width of R is the width of R̄,
and the top and bottom sides of R are the ones corresponding to the top and bottom sides
of R̄, respectively.

First, we compute two lists LT and LB of intervals in addition to L. We compute the set
Oδ

T of orientations θ such that the largest inscribed δ-width rectangle of orientation θ with
top side lying on a chord of length δ has a positive height. Then we remove orientations θ ∈ I

such that |θ − θ′| ≤ 1/δ and ∂P [γ1(θ), γ2(θ)] ⊆ ∂P [γ1(θ′), γ2(θ′)] for some other orientation
θ′ ∈ I ′ for I, I ′ ∈ I(Oδ

T ), where γ1(θ)γ2(θ) is the top chord of length δ and orientation θ in
P . This can be done by using the same procedure for computing L. Then we obtain LT

from the intervals of I(Oδ
T ). Similarly, we compute LB from the set of orientations θ such

that the largest inscribed δ-width rectangle of orientation θ with bottom side lying on a
chord of length δ has a positive height.

If |H̄(θ)| = δ and H̄(θ) has the bottom-left corner lying on ∂P for some θ ∈ OT , the
largest inscribed δ-width rectangle of orientation θ + π/2 with top side lying on a chord of
length δ has height 1, and thus θ + π/2 is contained in an interval of LT . Similarly, θ − π/2
is contained in an interval of LB if |H̄(θ)| = δ and H̄(θ) has the bottom-right corner lying
on ∂P with height δ. Therefore, to compute δ-event orientations, we process the intervals of
L, LT and LB in increasing order of orientation. For an interval I ∈ L, we can compute all
v-event orientations in I corresponding to top unit chords and the subintervals into which I

is partitioned by the v-event orientations. We can also compute the subintervals of LT and
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LB using v-event orientations corresponding to top chords of length δ. Those subintervals
are computed in increasing order of orientation and the combinatorial structure of the top
chord (of length 1 or δ) of orientations θ is invariant for any θ contained in an interval.

Whenever a subinterval I = [θ0, θ1] of L is identified by a v-event orientation, we check if
there is an orientation θ ∈ I such that |H̄(θ)| = δ. Let I ′ be the subinterval of LT containing
θ0 + π/2, among those partitioned by the v-event orientations for the top chords of length δ.
Using the combinatorial structures of the top unit chord of orientation θ ∈ I and the top
chord of length δ in I ′, we can build an equation that has a solution θ′ ∈ I if and only if
|H̄(θ′)| = δ. By solving the equation, we compute all orientations θ in I such that |H̄(θ)| = δ

and H̄(θ) has the bottom-left corner lying on ∂P . We also compute all δ-event orientations
θ in I such that H̄(θ) has the bottom-right corner lying on ∂P using I = [θ0, θ1] and the
subinterval of LB containing θ0 − π/2. Similarly, whenever a subinterval of Lπ/2 or L−π/2 is
identified by a v-event orientation, we compute all δ-event orientations in the subinterval.
After processing all subintervals of L, LT and LB , we obtain all δ-event orientations.

δ-feasible subintervals. We partition the intervals of I(OT ) into subintervals by δ-event
orientations. Then we can obtain the set of subintervals I ′ such that θ is a top feasible
orientation and |H̄(θ)| ≥ δ for all θ ∈ I ′. Similarly, we obtain the set of subintervals I ′′

from I(OB) such that θ is a bottom feasible orientation and |H̄(θ)| ≥ δ for all θ ∈ I ′′. We
apply the algorithms for computing the largest inscribed unit histogons in P of types C
(Section 3.2) and D (Section 3.3) with the subintervals of I(OT ) and I(OB) induced by
δ-event orientations, instead of the intervals of I(O).

Analysis. Consider two orientations θ1 and θ2, each contained in an interval of L, such
that both α1(θ1) of α(θ1) and α1(θ2) of α(θ2) lie on the same vertex of P . By Lemma 16,
|θ1 − θ2| ≥ δ since C(θ1) ⊆ C(θ2) or C(θ2) ⊆ C(θ1). Thus, for each vertex of P , there are
O(1/δ) orientations in the intervals of L at which the top unit chord has its endpoint at
the vertex. So there are O(n/δ) v-event orientations in the intervals of L. Similarly, we can
show that the number of v-event orientations in the intervals of LT and LB is O(δn) = O(n)
since δ < 1. Then, the total number of subintervals of L, LT and LB induced by v-event
orientations is O(n/δ). Given L, LT and LB, we can compute the subintervals in O(n/δ)
time while tracing the top chords (of length 1 or δ) in P .

Recall that the combinatorial structure of chords (of length 1 or δ) of orientations in
the interior of a subinterval remains the same. Then the equation for computing δ-event
orientations is of the form sin(θ + A) + B = δ sin(θ + C) using the law of sines, where A, B

and C are all constants. Thus, the equation can be solved in O(1) time, resulting in O(1)
solutions that correspond to δ-event orientations. Since there are O(n/δ) pairs of subintervals
of L and LT (and L and LB) which overlap each other, there are O(n/δ) δ-event orientations
in the intervals of I(OT ) and they can be computed in O(n/δ) time.

We compute L, LT and LB in O(n log n) time and the δ-event orientations in O(n/δ)
time using O(n) space. Moreover, the subintervals of I(OT ) induced by δ-event orientations
have O(n/δ) v-event orientations in total. Thus, the running time of the algorithms for
computing the largest histogon of types C and D in P decreases to O(n log n + n/δ) if we
use the subintervals of I(OT ) and I(OB) induced by δ-event orientations, instead of the
intervals of I(O).

▶ Theorem 17. Suppose there is a unit histogon of height δ inscribed in P for δ < 1. A
largest inscribed unit histogon in P can be computed in O(n log n + n/δ) time and O(n) space.
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Our algorithm works under the assumption that there exists a unit histogon contained in
P whose height is at least δ, while it can be used to test the existence for any 0 < δ < 1.
Given δ as input, if there exists such a histogon, then Theorem 17 applies and our algorithm
returns a largest inscribed unit histogon in P . Otherwise, if not, all orientations in OT and
OB are removed by the δ-dominance relation or there is no δ-event orientation. Hence, this
case can be identified when the list L is turned to be empty or when no δ-event orientation is
identified. In the former case, it is obvious that there is no unit histogon of height at least δ.
In the latter case, the height of the unit histogon H̄(θ) is either larger than δ for all θ ∈ OT

or smaller than δ for all θ ∈ OT . Thus, by picking one orientation θ from OT and computing
H̄(θ), one can check which case this is.

▶ Corollary 18. Given 0 < δ < 1, one can determine whether there exists an inscribed unit
histogon with height δ in P in O(n log n + n/δ) time using O(n) space.

Note that we can compute a largest inscribed unit histogon in O(n log n) time if its height
h is Ω(1/ log n) by setting δ = 1/ log n in Corollary 18 and Theorem 17. Otherwise, we can
get an output-sensitive algorithm for finding a largest inscribed unit histogon as follows. We
search a value h0 with 0 < h0 ≤ h for the height h of a largest inscribed unit histogon using
Corollary 18 with a sequence of δ values, δi = 2−2i for i = 0, 1, . . . , ⌈log log(1/h)⌉. Then
we apply Theorem 17 with h0. Observe that 2−2m ≤ h < 2−2m−1 for some nonnegative
integer m. Then m < log log(1/h) + 1 and 2−2m

> h2. This results in running time
O(n log n log log(1/h) + n/h2). We can even improve it by starting with the test value δj

such that δj < 1/ log n ≤ δj−1, concluding the following.

▶ Corollary 19. Let h be the height of a largest inscribed unit histogon in P . A largest
inscribed unit histogon in P can be computed in O(n log n) time if h = Ω( 1

log n ), or in
O(n log n log log 1

h log n + n
h2 ) time, otherwise.

5 Largest inscribed histogon and smallest circumscribed histogon

We also considered three optimization problems for a convex polygon P with n vertices. The
term T (m) appearing in the running times in the following denotes the time complexity of
the optimization step for the trigonometric expression with O(m) terms, each of quadratic
form. Barequet and Rogol [4] observed that T (m) = O(m) in practice.

Largest inscribed k-histogon. Given a positive integer k > 1, find a largest k-histogon
of arbitrary orientation inscribed in P . We present an algorithm for this problem that
runs in O(kn2(log n + kT (min{k, n}))) time using O(min{k, n}n) space.
Largest inscribed histogon. Find the largest histogon of arbitrary orientation inscribed
in P . We present an algorithm for this problem that runs in O(Dn2(log n+T (min{D, n})))
time using O(min{D, n}n) space, where D denotes the diameter of P .
Smallest circumscribed histogon. Find the smallest histogon of arbitrary orient-
ation circumscribed to P . We present an algorithm for this problem that runs in
O(Dn(log(min{D, n}) + T (min{D, n}))) time using O(n) space, where D denotes the
diameter of P .
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