
Degree-Restricted Strength Decompositions and
Algebraic Branching Programs
Fulvio Gesmundo !

Saarland University, Saarbrücken, Germany

Purnata Ghosal !

University of Warwick, UK

Christian Ikenmeyer !

University of Warwick, UK

Vladimir Lysikov !

QMATH, Department of Mathematical Sciences, University of Copenhagen, Denmark

Abstract
We analyze Kumar’s recent quadratic algebraic branching program size lower bound proof method
(CCC 2017) for the power sum polynomial. We present a refinement of this method that gives better
bounds in some cases.

The lower bound relies on Noether-Lefschetz type conditions on the hypersurface defined by
the homogeneous polynomial. In the explicit example that we provide, the lower bound is proved
resorting to classical intersection theory.

Furthermore, we use similar methods to improve the known lower bound methods for slice rank
of polynomials. We consider a sequence of polynomials that have been studied before by Shioda and
show that for these polynomials the improved lower bound matches the known upper bound.
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1 Introduction

Homogeneous algebraic branching programs are a fundamental machine model for the
computation of homogeneous polynomials. Their noncommutative version is completely
understood (even in terms of border complexity) since Nisan’s 1991 paper [21]; they are
the model of choice in [7] for succinct presentation of a system of homogeneous polynomial
equations; and they can be used to phrase Valiant’s famous determinant versus permanent
question [26] in a homogeneous way: Does the minimal size of the required homogeneous
algebraic branching program for the permanent polynomial grow superpolynomially? Phrasing
Valiant’s question in this way removes the “padding” problem in geometric complexity theory,
so this is a way of circumventing the GCT no-go results in [18, 8].
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Even though Valiant’s problem is the flagship problem in algebraic complexity theory, only
very weak size bounds on homogeneous algebraic branching programs are known. The best
lower bound so far was recently proved by Kumar [19] for the power sum polynomial. His proof
and recent lower bounds proofs in other algebraic computation models (Chatterjee et al. [10]
for general algebraic branching programs, and Kumar and Volk [20] for determinantal
complexity) employ decompositions of the form

F =
r∑

k=1
GkHk + R, (1)

where F is the polynomial for which the lower bound is proven, and Gk, Hk, R are polynomials
such that deg R < deg F and Gk(0) = Hk(0) = 0. Kumar’s recent (d − 1)⌈ n

2 ⌉ bound on the
size of homogeneous algebraic branching programs can be proven by considering simpler
decompositions

F =
r∑

k=1
GkHk, (2)

where F is a homogeneous polynomial and Gk, Hk are homogeneous polynomials of degree
strictly smaller than F . Decompositions of this form have been investigated in algebraic
geometry as well: for instance, in [11, 23], they were used to study rational points on certain
algebraic varieties; they appear in [9] to characterize complete intersections contained in a
given hypersurface; recently, they were used in [1] to give a proof of Stillman’s conjecture.
Following [1], we say that (2) is a strength decomposition of the polynomial F ; the minimum
r for which a strength decomposition exists is called the strength of F . In the literature, the
strength of F is also called Schmidt rank or h-invariant.

In this paper we analyze Kumar’s lower bound proof method. The proof in [19] is tailored
to the power sum polynomial, but the method is applicable to every polynomial. We present
the general version of Kumar’s technique in Section 3.1. We refine this technique introducing
the notion of k-restricted strength of a polynomial and we provide a lower bound for this
notion based on geometric properties of the hypersurface defined by the polynomial. These
properties are based on the non-existence of subvarieties of low codimension and low degree
in the associated hypersurface and can be interpreted as higher codimension versions of a
Noether-Lefschetz type condition [16].

We apply the refined method to give a lower bound on the size of a homogeneous algebraic
branching program for an explicit family of polynomials

Pn,d(x0, . . . , x2n) = xd
0 +

n∑
k=1

x2k−1xd−1
2k ;

Pn,d is a homogeneous polynomial of degree d in N = 2n + 1 variables. Kumar’s technique
directly applied to this polynomial gives a lower bound ⌈ N

4 ⌉(d − 1). For d < 2N/4 we improve
the lower bound by an additive term of approximately N/2. If the degree is exponential
in N , we get a further additive improvement of order N

2 dO(1/N), see Corollary 17(c).
In Section 3.4, we further study the notion of slice rank of homogeneous polynomials,

which is a special case of k-restricted strength when k = 1. Theorem 18 gives a method to
prove lower bounds on the slice rank. Using this result, in Theorem 20 we compute the slice
rank of polynomials

Sn,d(x0, . . . , xn+1) =
n−1∑
i=0

xix
d−1
i+1 + xnxd−1

0 + xd
n+1.
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that have been studied by Shioda [24, 25]. For n = 4 and 6 we find that the slice rank is
equal to N

2 + 1, where N = n + 2 is the number of variables. To the authors’ knowledge,
this is the first lower bound for the slice rank better than ⌈N/2⌉. This translates to a lower
bound N

2 (d − 1) + 2 on the homoneous ABP complexity. Again, this is the first lower bound
better than Kumar’s ⌈ N

2 ⌉(d − 1). We conjecture that these bounds continue to hold for Sn,d

with arbitrary even n, see Conjecture 22.

2 Preliminaries

We work over the field of complex numbers C. A homogeneous linear polynomial is called a
linear form. The ideal generated by polynomials F1, . . . , Fm is denoted by ⟨F1, . . . , Fm⟩. And
ideal is homogeneous if it admits a set of homogeneous generators. Every (homogeneous)
ideal in a polynomial ring admits a finite set of (homogeneous) generators [13, Theorem 1.2].

2.1 Projective geometry
Since we work with homogeneous polynomials, it is convenient to work in projective space
Pn, which is defined as (Cn+1 \ {0})/C×, that is, points in Pn correspond to lines through
the origin in Cn+1. Given a nonzero vector v = (v0, . . . , vn) ∈ Cn+1, write [v] = (v0 : · · · : vn)
for the corresponding point in Pn. We refer to [17] for basics of projective geometry and
we only record some basic facts. Given a homogeneous ideal I = ⟨F1, . . . , Fm⟩, write
Z(I) = Z(F1, . . . , Fm) = {[v] ∈ Pn : Fj(v) = 0 for every j}; a subset X ⊂ Pn is a variety
if X = Z(I) for some homogeneous ideal I. A variety is irreducible if it is not the proper
union of two varieties; every variety X can be written uniquely as a union of finitely many
irreducible subvarieties X =

⋃r
1 Xj ; X1, . . . , Xr are called irreducible components of X. We

refer to [17, Ch. 11 and Ch. 18] for the definitions and the basic properties of dimension
and degree of a variety X, denoted respectively dim X and deg X. The dimension of Pn is n.
The codimension of X ⊆ Pn is codim X = n − dim X; if X = ∅, codim X = n + 1. A variety
X is called hypersurface if all its irreducible components have codimension 1; in this case
X = Z(F ) is defined by a principal ideal ⟨F ⟩.

A (projective) linear subspace in Pn is a variety defined by linear forms. The codimension
of Z(L1, . . . , Lr), for some linear forms L1, . . . , Lr, equals the number of linearly independent
elements among L1, . . . , Lr; in particular codim Z(L1, . . . , Lr) ≤ r. A line is a linear subspace
of dimension 1. The line spanned by two distinct points [x], [y] ∈ Pn is the unique line
containing them. This line consists of all points of the form [αx + βy] where (α, β) ̸= (0, 0).

Let X ⊂ Pn be a variety. The projective cone over X with vertex p /∈ X is the union of
all lines connecting p with a point in X.

Given a hypersurface Z(F ) ⊆ Pn, write Sing(F ) = Z( ∂F
∂xi

: i = 0, . . . , n), which is a
subvariety of Z(F ). For example, if F = xd

0 + xd
1 + xd

2, then Sing(F ) = Z(xd−1
0 , xd−1

1 , xd−1
2 ) =

∅ ⊆ P2; if F = xd
0 + x1xd−1

2 then Sing(F ) = Z(xd−1
0 , xd−1

2 , x1xd−2
2 ) = Z(x0, x2) = {[0 : 1 :

0]} ⊆ P2. If the factorization of F into irreducible polynomials does not have repeated
factors, then Sing(F ) coincides with the singular locus of the hypersurface Z(F ), see, e.g.,
in [17, Ch. 14].

We mention the following two fundamental results in algebraic geometry.

▶ Theorem 1 (Krull height theorem for polynomial rings [2, Cor. 11.17]). Let X ⊂ Pn be a
variety, with X = Z(F1, . . . , Fc). Then all irreducible components of X have codimension at
most c.

FSTTCS 2022
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Figure 1 A homogeneous algebraic branching program of size 4, computing (x + y) · 1
2 y · (−x) +

(x + y) · x · (x − y) + y · 1
2 x · (−x) = x3 − x2y − 3

2 xy2.

▶ Theorem 2 (Bezout inequality, see [6, Thm. 8.28]). If a projective variety X ⊂ Pn is cut
out by c polynomials of degrees d1, . . . , dc, the sum of degrees of its irreducible components is
at most

∏c
i=1 di.

Further, in the proof of Lemma 16, we require some basics of intersection theory. We
introduce the required notions and references in Section 3.3.

2.2 Algebraic branching programs
The computational model of algebraic branching programs was first formally defined by
Nisan [21] in the context of noncommutative computation, but essentially the same model
was used by Valiant in his famous proof of universality of determinant [26]. The computa-
tional power of algebraic branching programs is intermediate between the one of general
arithmetic circuits and the one of arithmetic formulas. It is a convenient model for algebraic
methods, because its power can be captured by restrictions of determinants or iterated matrix
multiplication polynomials, which allows for the use of well developed tools from algebra
and algebraic geometry. In this paper we only consider homogeneous algebraic branching
programs.

▶ Definition 3. A layered directed graph is a directed graph in which the set of vertices is
partitioned into layers indexed by integers so that each edge connects vertices in consecutive
layers.

▶ Definition 4. A homogeneous algebraic branching program (ABP) in variables x1, . . . , xn

is a layered directed graph with one source and one sink, and with edges labeled by linear
forms in x1, . . . , xn. The weight of a path in an ABP is the product of labels on the edges
of the path. The polynomial computed between vertices u and v is the sum of the weights
of all paths from u to v. The polynomial computed by an ABP is the polynomial computed
between the source and the sink.

The size of an ABP is the number of its inner vertices, namely all vertices except the
source and the sink. For a homogeneous polynomial F , its homogeneous ABP complexity
Bhom(F ) is the minimal size of a homogeneous ABP computing F .

See Figure 1 for an example of an ABP.

2.3 Strength and slice rank of polynomial
▶ Definition 5. Let F be a homogeneous polynomial of degree d. A strength decomposition
of F is a decomposition of the form

F =
r∑

k=1
GkHk
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where Gk and Hk are homogeneous polynomials of degree less than d. The strength of F is

str(F ) = min{r : F has a strength decomposition with r summands}.

The following is a basic lower bound for the strength of a polynomial. It appears in the
introduction of [1] and [3, Remark 4.3]; in [19] it is mentioned with a reference to a personal
communication with Saptharishi.

▶ Proposition 6. str(F ) ≥ ⌈ 1
2 codim Sing(F )⌉.

Proof. If F =
∑r

k=1 GkHk, then ∂
∂xi

F =
∑r

k=1 Gk
∂

∂xi
Hk +

∑r
k=1 Hk

∂
∂xi

Gk. Thus all the
partial derivatives of F lie in the ideal ⟨G1, . . . , Gr, H1, . . . , Hr⟩ and therefore the zero set
Z(G1, . . . , Gr, H1, . . . , Hr) is contained in Sing(F ).

Therefore, applying Theorem 1, we deduce

codim Sing(F ) ≤ codim Z(G1, . . . , Gr, H1, . . . , Hr) ≤ 2r

and the required lower bound follows. ◀

▶ Remark 7. The bound of Proposition 6 gives essentially the only known lower bound
method for strength which can be applied to explicit polynomials. Different methods are
applied to polynomials of a specific form satisfying an unspecified genericity condition: for
instance, in [3], it is shown that a polynomial of the form F = x2

1f1 + x2
2f2 + x2

3f3 + x2
4f4 with

generic f1, . . . , f4 has strength 4; this is however achieved using indirect methods [12, 5].

▶ Definition 8. Let F be a homogeneous polynomial of degree d. A slice rank decomposition
of F is a decomposition of the form

F =
r∑

k=1
LkHk

where Lk are linear forms. The minimal number of summands in a strength decomposition
of F is called the slice rank of F and is denoted by sr(F ).

We point out that the notion of slice rank of tensors [22] is related but geometrically very
different from the slice rank of homogeneous polynomials defined above.

Clearly, slice rank decompositions are a special class of strength decompositions and thus
sr(F ) ≥ str(F ). It is known that for generic polynomials the optimal strength decomposition
is a slice rank decomposition [4]; in particular str(F ) = sr(F ) for generic F .

Slice rank decompositions of a polynomial F have a clear geometric interpretation in
terms of linear subspaces contained in the hypersurface Z(F ).

▶ Proposition 9. Let F be a homogeneous polynomial. We have sr(F ) ≤ r if and only if
Z(F ) contains a linear subspace of codimension r.

Proof. The polynomial F admits a decomposition F =
∑r

k=1 LkHk for linear forms
L1, . . . , Lk if and only if F ∈ ⟨L1, . . . , Lk⟩. The ideal ⟨L1, . . . , Lk⟩ is radical, in the sense
of [13, Sec. 1.6]. Therefore, by the classic Nullstellensatz [13, Thm. 1.6], the condition
F ∈ ⟨L1, . . . , Lk⟩ is equivalent to the condition Z(F ) ⊃ Z(L1, . . . , Lr). ◀

FSTTCS 2022
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3 Degree-restricted strength decompositions and lower bounds on
ABP size

3.1 Basic properties and connection to ABPs
In this section we introduce the degree-restricted strength decompositions and present a
streamlined proof of Kumar’s lower bound generalized to arbitrary polynomials based on
Proposition 6.

▶ Definition 10. Let F be a homogeneous polynomial of degree d. A strength decomposition
F =

∑r
k=1 GkHk is called j-restricted if deg Gk = j for all k. The j-restricted strength

strj(F ) is the minimal number of summands in a j-restricted strength decomposition of F .

The following basic properties are clear from the definition.

▶ Proposition 11. Let F be a homogeneous polynomial of degree d and let j be an integer
such that 1 ≤ j < d. The following statements hold.
(a) strj(F ) ≥ str(F );
(b) strj(F ) = strd−j(f);
(c) str1(F ) = sr(F );

▶ Theorem 12. For every homogeneous polynomial F of degree d

Bhom(F ) ≥
d−1∑
j=1

strj(F ).

Proof. Let A be a homogeneous ABP computing F with source s and sink t. Denote by
A[v, w] the polynomial computed between vertices v and w. Let Vj be the set of vertices in
the j-th layer. Since each path from the source to the sink contains exactly one vertex from
each layer, we have

F = A[s, t] =
∑
v∈Vj

A[s, v]A[v, t].

If v lies in the j-th layer then deg A[s, v] = j, because each path from s to v contains j

edges. Thus F has a j-restricted strength decomposition with |Vj | summands, showing
|Vj | ≥ strj(F ). Summing over all layers, we obtain the desired lower bound. ◀

Theorem 12 is similar to Nisan’s result for noncommutative ABPs [21, Thm. 1], but in
the noncommutative setting the analogue of strength can be easily described as the rank of
the partial derivative matrix. In the commutative setting there is no similar characterization
of strength.

From Theorem 12, Proposition 11(a) and Proposition 6, we immediately obtain the
following Bhom lower bounds technique.

▶ Corollary 13 (Kumar’s singular locus lower bounds technique). For every homogeneous
polynomial F ∈ C[x0, . . . , xn] of degree d

Bhom(F ) ≥ (d − 1)⌈ 1
2 codim Sing(F )⌉.

In particular, if Sing(F ) = ∅, then

Bhom(F ) ≥ (d − 1)⌈ n+1
2 ⌉.

The power sum F = xd
0 + · · · + xd

n of degree d in n + 1 variables satisfies Sing(F ) = ∅
and hence a direct application of Corollary 13 gives Bhom(xd

0 + · · · + xd
n) ≥ (d − 1)⌈ n+1

2 ⌉,
which recovers Kumar’s result [19].
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3.2 Lower bound on degree-restricted strength
In this section we prove a lower bound on the degree-restricted strength of polynomials. It
is based on the connection between strength decompositions and low degree subvarieties in
Z(F ), which generalizes Proposition 9. We provide an explicit sequence of polynomials for
which we obtain a lower bound that is slightly stronger than the one from Proposition 6.

▶ Theorem 14. Let F ∈ C[x0, . . . , xn]d be a homogeneous polynomial. Suppose that the zero
set Z(F ) does not contain irreducible subvarieties X with codim X ≤ c and deg X < s for
some s ≥ 2. Then

sr(F ) ≥ c + 1

and

strk(F ) ≥ min{c + 1, ⌈logk s⌉}

Proof. The statement for the slice rank follows from Proposition 9 as Z(F ) does not contain
linear subspaces, that is, irreducible subvarieties of degree 1, of codimension c.

Assume F has a k-restricted decomposition

F =
r∑

j=1
GjHj .

Consider the variety Y = Z(G1, . . . , Gr). Since F lies in the ideal ⟨G1, . . . , Gr⟩, Y is a
subvariety of Z(F ). Since Y is defined by r polynomials of degree k, by Theorem 1, the
codimension of every irreducible component of Y is at most r; moreover, by Theorem 2 the
sum of degrees of its irreducible components is at most kr, hence the same holds for each
component.

Suppose r ≤ c. Since Z(F ) does not contain subvarieties X with codim X ≤ c and
deg X < s, for each irreducible component X of Y we have kr ≥ deg X ≥ s, so r ≥ logk s.
Since r is an integer, we obtain the lower bound r ≥ ⌈logk s⌉. Hence, either r ≥ c + 1 or
r ≥ ⌈logk s⌉, and we conclude r ≥ min{c + 1, ⌈logk s⌉} as desired. ◀

▶ Remark 15. In Theorem 14 it suffices to require that Z(F ) does not contain subvarieties of
codimension exactly c and degree smaller than s. This is a consequence of Bertini’s Theorem,
see [17, Sec. 18]. Indeed, if X is an irreducible subvariety of Z(F ) with codim X < c, let
X ′ be the intersection of X with c − codim X generic hyperplanes; then codim X ′ = c and
deg X = deg X ′.

Consider the family of polynomials

Pn,d(x0, x1, . . . , x2n) = xd
0 +

n∑
k=1

x2k−1xd−1
2k

with d ≥ 3. Note that it is clear from the definition of Pn,d that strk(Pn,d) ≤ n + 1. Also
note that Sing(Pn,d) is the linear subspace given by x0 = x2 = x4 = · · · = x2n = 0. Its
codimension is n + 1, so the singular locus lower bound on Bhom(Pn,d) from Corollary 13 is

Bhom(Pn,d) ≥ (d − 1)
⌈

n+1
2

⌉
.

Corollary 17(c) below will provide an improvement of this lower bound, based on The-
orem 14. In order to apply Theorem 14, we need a lower bound on the degree of subvarieties of
Z(Pn,d) of low codimension. This is obtained resorting to an intersection theoretic argument,
which is explained in the next section.

FSTTCS 2022
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3.3 Intersection theory of Z(Pn,d)
This section requires some background in intersection theory, for which we refer to [14]
and [15]. We use some facts about Chow groups of a variety, which is one of the fundamental
objects studied in intersection theory.

Let X be a variety. Given an integer a ≥ 0, the Chow group CHa(X) is an abelian group
associated to the variety X. Every irreducible subvariety Y ⊂ X of dimension a corresponds
to an element [Y ] ∈ CHa(X) and these elements generate CHa(X). Thus, CHa(X) consists
of integer linear combinations of irreducible a-dimensional subvarieties of X modulo a certain
equivalence relation called rational equivalence, the definition of which we do not reproduce
here. The elements of CHa(X) are called algebraic cycle classes of dimension a on X.

If Y ⊂ X is a subvariety, then every subvariety Z ⊂ Y is also a subvariety of X. This
gives rise to a homomorphism ι∗ : CHa(Y ) → CHa(X) sending a cycle class of a subvariety
Z of Y to the cycle class of the same variety as a subvariety of X. This homomorphism is
called the pushforward induced by the inclusion ι : Y ↪→ X. It is a special case of the proper
pushforward [15, §1.4].

In addition, we can consider the open set U = X \ Y as a variety and its subvarieties.
The map j∗ sending a cycle class [Z] on X to a cycle class [Z ∩ U ] on U is well defined.
Again, this is a special case of a more general construction of flat pullback [15, §1.7].

Thus for Y ⊂ X we have ι∗ : CHa(Y ) → CHa(X) and j∗ : CHa(X) → CHa(X \ Y ). It is
an important fact that these homomorphisms compose to give an exact sequence

CHa(Y ) → CHa(X) → CHa(X \ Y ) → 0;

in other words, ker j∗ = im ι∗. This exact sequence is called the excision exact sequence,
see [15, Prop. 1.8].

For simple varieties the Chow groups can be constructed explicitly. For the projective
space Pn the class in CHa(Pn) of a variety is determined by its degree. More precisely, we
have CHa(Pn) ∼= Z where the isomorphism is given by the map deg : CHa(Pn) → Z sending
the class of a subvariety Z to deg Z (see [14, Thm. 2.1] or [15, Ex. 1.9.3]). A consequence
of this is that the degree is well defined for cycle classes on projective varieties. That is, if
X ⊆ Pn is a projective variety and Z is a subvariety of X, then the degree of Z can be read
from the cycle class [Z] ∈ CHa(X) by applying the pushforward ι∗ : CHa(X) → CHa(Pn).

On the other hand, for the affine space the Chow groups CHa(An) = 0 are trivial for
every a < n (see [14, Thm. 1.13] or [15, §1.9]).

Finally, we need a statement which relates the Chow groups of a projective cone X over
Y to the Chow groups of Y . Recall that X is a cone over Y (with vertex p /∈ Y ) if X is
the union of lines ⟨y, p⟩ for y ∈ Y . In this case CHa(Y ) ∼= CHa+1(X) [15, Ex. 2.6.2]. The
isomorphism is given by a map α : CHa(Y ) → CHa+1(X) which sends a cycle class of a
subvariety Z ⊂ Y to the cycle class of the cone over Z.

▶ Lemma 16. Let F ∈ C[x0, . . . , xn]d be a homogeneous polynomial of degree d ≥ 2. Set
G = F + xn+1xd−1

n+2. Suppose that the degree of every subvariety Y ⊆ Z(F ) ⊆ Pn with
dim Y = a is divisible by s. Then the degree of every subvariety Y ′ ⊆ Z(G) ⊆ Pn+2 with
dim Y ′ = a + 1 is divisible by s.

Proof. Let X = Z(G) ⊂ Pn+2 and Z = Z(F ) ⊂ Pn. Let Y ⊂ Pn+1 be the variety given by
the equation F (x0, . . . , xn) = 0 in Pn+1. It consists of all points of the form [αx + βen+1]
with F (x) = 0, so it is the projective cone over Z with the vertex [en+1].

The intersection theory statements about projective cones discussed above says that
the Chow group CHa+1(Y ) is isomorphic to the Chow group CHa(Z). The isomorphism
α : CHa(Z) → CHa+1(Y ) takes the class of a subvariety in Z to the class of the cone over
this subvariety.
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Let H be the hyperplane given by xn+2 = 0 in Pn+2. Note that X ∩ H ⊂ H is isomorphic
to Y ⊂ Pn+1, so we can identify X ∩ H with Y . Let U be the open subset X \ Y . This
subset is an affine variety in An+2 = Pn+2 \ H given by the equation F + xn+1 = 0. Thus
U ∼= graph F ∼= An+1. It follows that the Chow group CHa+1(U) is trivial.

The exactness of the excision exact sequence

CHa+1(Y ) → CHa+1(X) → CHa+1(U) → 0

implies that the inclusion pushforward ι∗ : CHa+1(Y ) → CHa+1(X) is surjective.
Both the cone map α : CHa(Z) → CHa+1(Y ) and ι∗ : CHa+1(Y ) → CHa+1(X) preserve

the degree. Composing them, we obtain a degree-preserving surjective homomorphism from
CHa(Z) to CHa+1(X). Since the degree of every dimension a subvariety of Z is divisible by
s, the same is true for cycle classes in CHa(Z) and therefore, for cycle classes in CHa+1(X),
including dimension a + 1 subvarieties of X. ◀

▶ Corollary 17. If n ≥ 1 and d ≥ 2, then
(a) sr(Pn,d) = n + 1;
(b) strk(Pn,d) ≥ min{n + 1, ⌈logk d⌉};
(c) Bhom(Pn,d) ≥ (d − 1)⌈ n+1

2 ⌉ + 2⌊ n+1
2 ⌋ for d ≤ 2 n+1

2 ;

Bhom(Pn,d) ≥ (d − 1)⌈ n+1
2 ⌉ + 2⌊ n+1

2 ⌋⌊d
1

n+1 ⌋ +
∑⌊d

2
n+1 ⌋

j=⌊d
1

n+1 ⌋+1
(⌈logj d⌉ − ⌈ n+1

2 ⌉) for all d.

Proof. The polynomial P1,d = xd
0 + x1xd−1

2 is irreducible, e.g., by the Eisenstein criterion [13,
Ex. 18.11] applied to it as an element of C[x1, x2][x0] with the prime ideal ⟨x1⟩.

It follows that Z(P1,d) is an irreducible variety of degree d in P2, so it does not contain
subvarieties of codimension 1 other than itself; in particular, every subvariety of codimension
1 has degree divisible by d. Using Lemma 16 inductively, we obtain that every subvariety X

of Z(Pn,d) with codim X = n has degree divisible by d. The lower bounds for the slice rank
and the restricted strength follow by Theorem 14.

The lower bound for the homogeneous ABP complexity follows by Proposition 11(b) and
Theorem 12. If d ≤ 2 n+1

2 , we use str1(Pn,d) = strd−1(Pn,d) = n + 1 and strj(Pn,d) ≥ ⌈ n+1
2 ⌉

from Proposition 6 for other j to get

Bhom(Pn,d) ≥
d−1∑
j=1

strj(Pn,d) ≥ 2(n + 1) + (d − 3)⌈n + 1
2 ⌉ = (d − 1)⌈n + 1

2 ⌉ + 2⌊n + 1
2 ⌋

For the second bound in (c), we separate the sum
∑d−1

j=1 strj(Pn,d) into three parts.
For j ≤ d

1
n+1 we have strj(Pn,d) = strd−j(Pn,d) ≥ n + 1, for d

1
n+1 < j ≤ d

2
n+2 we use the

lower bound strj(Pn,d) = strd−j(Pn,d) ≥ ⌈logj d⌉, and for d
2

n+2 < j < d − d
2

n+2 Proposition 6
gives strj(Pn,d) ≥ ⌈ n+1

2 ⌉. ◀

We point out that determining explicit hypersurfaces which do not contain low codimension
subvarieties of low degree is an extremely hard problem. It is related to the Noether-Lefschetz
Theorem, a classical result which, in particular, implies that if F is a general homogeneous
polynomial of degree d, then Z(F ) does not contain subvarieties X with codim X = 2 and
deg X ≤ d. A consequence of [27] is that if F is a general homogeneous polynomial of degree
d ≥ 6 in five variables, then Z(F ) ⊆ P4 does not contain subvarieties X with codim X ≤ 3
and deg(X) ≤ d. Stronger cohomological results hold for very general hypersurfaces; a series
of conjectures and open problems is proposed in [16].
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3.4 Slice rank lower bound
In this section, we give examples of polynomials for which we prove a slice rank lower bound
stronger than the one induced by the strength lower bound of Proposition 6. In one instance,
we show an improved lower bound for a polynomial with Sing(F ) = ∅.

We define the Shioda polynomials of degree d ≥ 3 in n + 2 variables:

Sn,d(x0, . . . , xn+1) =
n−1∑
i=0

xix
d−1
i+1 + xnxd−1

0 + xd
n+1.

The polynomials Sn,d were investigated by Shioda [24, 25] as explicit examples for a cohomo-
logical version of the Noether-Lefschetz Theorem in middle dimension.

For even n the decomposition

Sn,d =
n/2−1∑

k=0
x2k+1(xd−1

2k+2 + x2kxd−2
2k+1) + xn · xd−1

0 + xn+1 · xd−1
n+1 (3)

shows that sr(Sn,d) ≤ n
2 + 2. We prove matching lower bounds for n = 2 and n = 4; we

conjecture that the bound holds for all even values of n.
First consider a modified polynomial

Ŝn,d(x1, . . . , xn+1) =
n−1∑
i=1

xix
d−1
i+1 + xd

n+1,

which is obtained from Sn,d by setting x0 = 0. It is easy to verify that Sing(Ŝn,d) coincides
with the point [en−1] = (0 : · · · : 1 : 0 : 0); here we use homogeneous coordinates (x1 : · · · :
xn+1) on Pn.

If n is even, then codim Sing(Ŝn,d) = n and Proposition 6 gives a lower bound sr(Ŝn,d) ≥ n
2 .

An analog of (3) gives the upper bound n
2 + 1. We provide a matching lower bound, relying

on the following result which improves the lower bound of Proposition 6.

▶ Theorem 18. Let F ∈ C[x0, . . . , xn] be a homogeneous polynomial with codim Sing(F ) = s

even. Then sr(F ) = s
2 if and only if There is a linear space Q ⊂ Z(F ) of codimension s

2
containing one of the irreducible components of Sing(F ).

Proof. If Q ⊂ Z(F ) is a linear space with codim Q = s/2, then sr(F ) = s/2 by Proposition 9.
Conversely, suppose sr(F ) = s/2 and let F =

∑s/2
k=1 LkHk be a minimal slice rank

decomposition of F . Let Q = Z(L1, . . . , Ls/2), and let X = Z(L1, . . . , Ls/2, H1, . . . , Hs/2).
By the minimality of the decomposition, Q is a linear space of codimension s/2. Moreover,
X ⊆ Q ⊆ Z(F ).

Since X is defined by s polynomials, by Theorem 1 all irreducible components of X have
codimension at most s. As in Proposition 6, X is contained in Sing(F ). Therefore, for every
irreducible component X ′ of X, we have s = codim Sing(F ) ≤ codim X ≤ codim X ′ ≤ s.
This shows that X ′ and Sing(F ) have the same dimension, therefore X ′ is an irreducible
component of Sing(F ). Since X ′ ⊆ X ⊆ Q, we conclude. ◀

▶ Lemma 19. If d ≥ 3 and n is even, then sr(Ŝn,d) = n
2 + 1

Proof. If n is even, Proposition 6 gives the lower bound sr(Ŝn,d) ≥ n
2 . We use induction on

n to prove that sr(Ŝn,d) ̸= n
2 . If n = 0 the statement is clear.



F. Gesmundo, P. Ghosal, C. Ikenmeyer, and V. Lysikov 20:11

Suppose by contradiction sr(Ŝn,d) = n
2 . By Theorem 18 there exists a projective linear

subspace Q ⊂ Z(Ŝn,d) of dimension n
2 containing the singular point [en−1]. Let H = Z(xn−1)

and let Q′ = Q ∩ H. Since Q contains the point [en−1], which is not in H, we have
dim Q′ = n

2 − 1.
Observe that for every point (v1 : · · · : vn) ∈ Q′, we have vn = 0. To see this, fix [v] ∈ Q′

and consider the line spanned by [v] ∈ Q′ and [en−1]; this line is contained in Q, hence in
Z(Ŝn,d). In particular, for every α, β ∈ C, we have

0 = Ŝn,d(αv + βen−1) = αd(
n−3∑
k=1

vkvd−1
k+1 + vd

n+1) + αd−1βvd−1
n .

Therefore, this expression must be 0 as a polynomial in α, β and in particular vn = 0 because
vd−1

n is the coefficient of αd−1β.
This shows that the existence of a subspace Q ⊂ Z(Ŝn,d) of dimension n

2 containing [en−1]
implies the existence of a subspace Q′ ⊂ Z(Ŝn,d) ∩ Z(xn−1, xn) of dimension n

2 − 1. Note
that substituting xn−1 = xn = 0 into Ŝn,d, one obtains, up to renaming the variables, the
polynomial Ŝn−2,d. Therefore, the existence of Q′ implies sr(Ŝn−2,d) = n

2 − 1 = n−2
2 , in

contradiction with the induction hypothesis. This concludes the proof. ◀

▶ Theorem 20. If d ≥ 5, then sr(S4,d) = 4.

Proof. Let ρ : P5 → P5 be the map defined by ρ(x0 : x1 : · · · : x5) = (x4 : x0 : x1 : x2 : x3 : x5)
which cyclically permutes the first 5 coordinates of a point (x0 : x1 : · · · : x5). Note that the
hypersurface Z(S4,d) is mapped to itself by ρ.

The lower bound given by Proposition 6 is sr(S4,d) ≥ 3 and assume by contradiction that
equality holds. Then there exists a linear space Q ⊂ Z(S4,d) ⊂ P5 of codimension 3.

First, we prove a series of claims about the plane Q culminating with the claim that
Q contains one of the five points [ek] = ρk[e0], where e0 = (1, 0, . . . , 0). Then we derive a
contradiction with the lower bound for Ŝn,d.

Let A0 be the line Z(x1, x3, x4, x5) ⊆ P5 and Ak = ρkA0. In other words, A0 is the set of
points of the form (x0 : 0 : x2 : 0 : 0 : 0) and Ak is obtained by cyclically shifting the first
five coordinates.

▶ Claim 20.1. Q intersects A0 ∪ A1 ∪ A2.

Proof. Since dim Q = 2, by [17, Prop. 11.4] it intersects any codimension 2 linear subspace.
Let p = (p0 : 0 : p2 : 0 : p4 : p5) ∈ Q∩Z(x1, x3) and q = (q0 : q1 : 0 : q3 : 0 : q5) ∈ Q∩Z(x2, x4)
be two points which lie in the respective intersections.

If p = q, then p = q = [e0] ∈ A0 and the Claim is verified.
Suppose p ̸= q. The line joining p and q lies in Q and, therefore, in Z(S4,d). Let p̂, q̂ ∈ C6

be representatives of p and q respectively. We have S4,d(αp̂ + βq̂) = 0 for all values of α

and β. Expand this expression as a polynomial in α, β, and consider the coefficients of αd,
αd−2β2, αd−3β3; these must be 0, hence

p4pd−1
0 + pd

5 = 0,(
d − 1

2

)
p4pd−3

0 q2
0 +

(
d

2

)
pd−2

5 q2
5 = 0,(

d − 1
3

)
p4pd−4

0 q3
0 +

(
d

3

)
pd−3

5 q3
5 = 0.
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Rewrite these equations as

p4pd−1
0 = −pd

5,

(d − 2)p4pd−3
0 q2

0 = −dpd−2
5 q2

5 ,

(d − 3)p4pd−4
0 q3

0 = −dpd−3
5 q3

5 .

If p5 ̸= 0, then dividing the equations by p4pd−1
0 = −pd

5, we obtain

(d − 2)
(

q0

p0

)2
= d

(
q5

p5

)2

(d − 3)
(

q0

p0

)3
= d

(
q5

p5

)3

from which we have q0 = q5 = 0, which implies q ∈ A1. If, on the other hand, p5 = 0, then
either p0 = 0 and p ∈ A2, or p4 = 0 and p ∈ A0. ◁

▶ Claim 20.2. If Q ∩ A0 ̸= ∅ and Q ∩ A2 ̸= ∅, then Q contains [e0], [e2], or [e4].

Proof. Let p be a point in Q ∩ A0 and q ∈ Q ∩ A2, so p = (p0 : 0 : p2 : 0 : 0 : 0) and
q = (0 : 0 : q2 : 0 : q4 : 0). If p = q, then they are equal to [e2]. If p ̸= q, then there is a point
on the line that they span which has zero second coordinate. Let this linear combination
be r = (r0 : 0 : 0 : 0 : r4 : 0). Since r ∈ Q ⊂ Z(S4,n), we have S4,n(r) = r4rd−1

0 = 0, so r is
either [e0] or [e4]. ◁

▶ Claim 20.3. Q contains one of the five points [ek].

Proof. Let S = {k | Q ∩ ρkA0 ̸= 0}. Since ρ5 = id, we can see S as a subset of Z/5Z.
Claim 20.1 implies that S contains at least one element of {0, 1, 2}. Because of the cyclic
symmetry, an analogous statement is true for every three consecutive values in Z/5Z. Similarly,
cyclically shifted versions of Claim 20.2 imply that if S contains k and k + 2, then Q contains
one of the five basis points.

Without loss of generality, 0 ∈ S. If 2 ∈ S or 3 ∈ S, then Claim 20.2 guarantees Q

contains one of the five basis points. If both 2, 3 /∈ S, then Claim 20.1 applied to the
consecutive triples {1, 2, 3} and {2, 3, 4} implies that 1, 4 ∈ S. Since they differ by two,
Claim 20.2 applies and we conclude. ◁

By shifting Q cyclically we can assume that [e1] ∈ Q.
▶ Claim 20.4. If [e1] ∈ Q, then Q lies in the hyperplane Z(x0).

Proof. Note that if the line spanned by two points [v], [w] lies in a hypersurface Z(F ), then∑
∂F
∂xi

(v)wj = 0. Indeed, the function f(t) = F (α+tw) is identically 0 and so is its derivative
in t at t = 0. By the chain rule, we obtain the desired equality. In particular, for every two
points p, q ∈ Q, we obtain

∑ ∂S4,n

∂xi
(p)qi = 0. Fixing p = [e1], this guarantees q0 = 0 for every

q ∈ Q, showing Q ⊆ Z(x0). ◁

We deduce that Q is contained in Z(S4,n) ∩ Z(x0) = Z(S4,n, x0) = Z(Ŝ4,n, x0). Therefore
Q ⊂ Z(Ŝ4,n) when regarded as a hypersurface in Z(x0) = Pn. By Proposition 9, this implies
sr(Ŝ4,n) ≤ 2, in contradiction with Lemma 19. This contradiction completes the proof. ◀

As a corollary we obtain a lower bound for homogeneous ABP size for Shioda’s polynomials
in six variables, which improves on Kumar’s lower bound for a polynomial with the same
number of variables.
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▶ Corollary 21. Bhom(S4,d) ≥ 3(d − 1) + 2.

Proof. We have strk(S4,n) ≥ 3 from Proposition 6 and strd−1 = str1(S4,n) = sr(S4,n) = 4
from Theorem 20. Using Theorem 12 we get the required lower bound. ◀

A similar (but easier) argument can be used to prove sr(S2,d) = 3. It follows that
Bhom(S2,d) ≥ 2(d − 1) + 2. We conjecture that this can be generalized to all Shioda
polynomials.

▶ Conjecture 22. For n even we have sr(Sn,d) = n
2 + 2 and, consequently,

Bhom(Sn,d) ≥ n + 2
2 (d − 1) + 2.

4 Geometry of algebraic branching programs

We have seen that ABPs are related to degree-restricted strength decompositions, and degree-
restricted strength decompositions are closely related to subvarieties of the hypersurface
defined by the computed polynomial. One can also connect existence of ABPs to subvarieties
directly.

▶ Theorem 23. Let F be a homogeneous polynomial of degree d. F is computed by a
homogeneous ABP with wk vertices in layer k if and only if there exists a chain of ideals

I1 ⊃ I2 ⊃ · · · ⊃ Id−1 ⊃ Id = ⟨F ⟩

such that Ik is generated by wk homogeneous polynomials of degree k.

Proof. Suppose a homogeneous ABP A computes the polynomial F . Recall that we denote
the polynomial computed between vertices v and w by A[v, w]. Let s and t be the source
and the sink of A, and let Vk be the set of vertices in the k-th layer.

Define Ik to be the ideal generated by polynomials A[s, v] for all v ∈ Vk. These polynomials
are homogeneous degree k polynomials, because every path from s to v ∈ Vk has length k. If
w ∈ Vk+1, then

A[s, w] =
∑

v∈Vk

A[s, v]A[v, w], (4)

so all generators of Ik+1 lie in Ik and thus Ik ⊃ Ik+1. The last layer of A contains only the
sink, and the corresponding ideal is ⟨F ⟩.

On the other hand, given a sequence of ideals I1 ⊃ I2 ⊃ · · · ⊃ Id−1 ⊃ Id = ⟨F ⟩ such
that Ik is generated by homogeneous polynomials of degree k. Let Gk1, . . . , Gkwk

be the
generators of Ik. Since Ij ⊃ Ij+1, we have

Gk+1,j =
wk∑
i=1

GkiLkij (5)

for some linear forms Lkij . Let A be an ABP with wk vertices in layer k such that the edge
from the i-th vertex in the k-th layer to the j-th vertex in the (k + 1)-th layer is labeled by
Lkij . Then the equations (4) coincide with (5) and thus the ABP computes the generator F

of the last ideal. ◀

Geometrically, this implies that Z(F ) contains a chain of subvarieties X1 ⊂ X2 ⊂ · · · ⊂
Xd−1 ⊂ Z(F ) where each Xk is cut out by wk polynomials of degree k.
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