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Abstract
We consider a matching problem in a bipartite graph G = (A ∪ B, E) where vertices in A rank their
neighbors in a strict order of preference while vertices in B are allowed to have weak rankings, i.e.,
ties are allowed in their preferences. Stable matchings always exist in G and are easy to find, however
popular matchings need not exist and it is NP-complete to decide if one exists. This motivates the
“approximately popular” matching problem.

A well-known measure of approximate popularity is low unpopularity factor. We show that when
each tie in G has length at most k, there always exists a stable matching whose unpopularity factor
is at most k. Our proof is algorithmic and we compute such a stable matching in polynomial time.
Our result can be considered to be a generalization of Gärdenfors’ result (1975) which showed that
when rankings are strict, every stable matching is popular.

There are several applications where the size of the matching is its most important attribute.
What one seeks here is a maximum matching M such that there is no maximum matching more
popular than M . When rankings are weak, it is NP-hard to decide if G admits such a matching.
When ties are one-sided and of length at most k, we show a polynomial time algorithm to find a
maximum matching whose unpopularity factor within the set of maximum matchings is at most 2k.
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1 Introduction

Our input is a bipartite graph G = (A ∪ B, E) where vertices in A are called agents and
those in B are called jobs. Every vertex ranks its neighbors in an order of preference – while
every agent ranks its neighbors in a strict order of preference, jobs have weak rankings, i.e.,
ties are allowed in their preferences. The above model is well-studied and such a model is
seen when matching applicants to jobs or students to projects, e.g., the Scottish Foundation
Allocation Scheme (SFAS) [21].

So in our model, every agent has a strict ordering of jobs that she finds interesting,
however every job need not come up with a total order on all interested agents – here agents
get grouped together in terms of their suitability to do this job, thus equally competent
agents are tied together at the same rank. Our goal is to find an optimal matching in G.
The classical notion of optimality is stability.

A matching M is stable if there is no edge that blocks M ; an edge (a, b) is said to block
M if both a and b prefer each other to their respective assignments1 in M . The Gale-Shapley
algorithm [10] (where ties are broken arbitrarily) finds a stable matching in G in linear time.

1 Note that being left unmatched is the least preferred option for any vertex.
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22:2 Stable Matchings with One-Sided Ties and Approximate Popularity

Popularity. Another natural notion of optimality is popularity. Given any pair of matchings
M and N , we say a vertex v prefers M to N if v prefers its assignment in M to its assignment
in N . Let ϕ(M, N) be the number of vertices that prefer M to N and similarly, let ϕ(N, M)
be the number of vertices that prefer N to M . Matching N is more popular than matching M

if ϕ(N, M) > ϕ(M, N).

▶ Definition 1. A matching M is popular if there is no matching more popular than M , i.e.,
ϕ(M, N) ≥ ϕ(N, M) for all matchings N .

Both stability and popularity are very desirable properties for a matching in G. While
stability captures the important property that there is no pair (a, b) where both a and b are
better-off by deviating from their respective assignments and pairing up with each other,
popularity lays emphasis on aggregate or majority. So popularity ensures that a majority
vote cannot force a migration to another matching.

When preferences are strict, stability is a stronger property and every stable matching is
popular2 [11]. So popular matchings always exist in G and the Gale-Shapley algorithm finds
one. This is our ideal situation as we have a matching that is stable and hence, popular.

However when ties are allowed in preferences, the situation is no longer ideal – stability
does not imply popularity. Even worse, popular matchings need not exist and it is NP-hard
to decide if one exists [3]. Moreover, this hardness holds even in the setting of one-sided
ties and every tie has length at most three [6]. Thus the popular matching problem with
one-sided ties is NP-hard even under such a strict restriction on tie lengths.

Relaxing popularity. When ties are present in preferences, the lack of existence of popular
matchings (and the hardness of solving the popular matching problem) motivates relaxing
popularity to near-popularity or “low unpopularity”. A well-studied measure of unpopularity
of a matching is unpopularity factor, introduced in [22] and studied, e.g., in [2, 8, 13, 17, 24].
Given a matching M , its unpopularity factor u(M) is defined below. For any matching N ,

let λ(M, N) =


ϕ(N, M)/ϕ(M, N) if ϕ(M, N) > 0;

1 if ϕ(M, N) = ϕ(N, M) = 0;
∞ otherwise.

Define u(M) = maxN λ(M, N). Thus in an election involving M and any matching N ,
the number of vertices that prefer N is at most u(M) times the number that prefer M .

A matching M is popular if and only if u(M) = 1. A matching M with a low value of
u(M) is considered to be near-popular. Such a matching may lose elections but there are
no heavy losses. Do near-popular matchings always exist in G? Consider an instance Kn,n

where every agent has the same preference order b1 ≻ b2 ≻ · · · ≻ bn (here b1, . . . , bn are the
n jobs) while every job bi has a tie of length n, i.e., it is indifferent between any two agents.
It is easy to check that any matching in this instance has unpopularity factor at least n − 1.
Thus there is no near-popular matching here.

However jobs in this instance have ties of length n in their preferences. Suppose no tie is
very long, say every tie has length at most k (for some appropriate k). Such a restriction is
quite natural in real-world applications; in fact, in many instances, we would have k = O(1).
Do near-popular matchings always exist then? Furthermore, are there such stable matchings?

2 In an election between a stable matching S and any matching M , if vertex v prefers M to S then M(v)
has to prefer S to M , otherwise (v, M(v)) blocks S, which is forbidden. Hence ϕ(M, S) ≤ ϕ(S, M).
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When preferences involve ties (even for one-sided ties of length two), a stable matching
may have an unbounded unpopularity factor. Consider the following instance where A =
{a1, . . . , an}, B = {b1, . . . , bn}, and the preferences of vertices are as follows:

a1 : b1 ≻ bn ai : bi−1 ≻ bi for 2 ≤ i ≤ n

bn : a1 ∼ an bi : ai ∼ ai+1 for 1 ≤ i ≤ n − 1.

So a1’s top choice is b1 and second choice is bn and for i ≥ 2, ai’s top choice is bi−1 and
second choice is bi. Every bi ∈ B has exactly two neighbors and it is indifferent between them.
The matching M = {(ai, bi) : 1 ≤ i ≤ n} is stable. Let N = {(a1, bn)} ∪n

i=2 {(ai, bi−1)}.
Observe that ϕ(N, M) = n − 1 and ϕ(M, N) = 1, so u(M) ≥ n − 1. It is easy to check that
N is a popular matching and it is also stable.

Is there always a matching (even better, a stable matching) with low unpopularity factor
in an instance with one-sided ties of bounded length? We show the following result here.

▶ Theorem 2. Let G = (A ∪ B, E) be an instance with one-sided ties of length at most k.
There is always a stable matching M in G such that u(M) ≤ k. Furthermore, M can be
computed in O(k2 · mn) time, where |A| = n and |E| = m.

Observe that our earlier example of the instance Kn,n (where each job has a tie of length n

in its preference list) shows that Theorem 2 is almost tight. Recall that every matching
in this instance Kn,n has unpopularity factor at least n − 1. Thus when jobs have ties of
length k, there are instances where every matching has unpopularity factor at least k − 1.
Interestingly, we are able to show that any such instance always admits a stable matching
with unpopularity factor at most k.

The above result generalizes the result of Gärdenfors [11] that a popular matching always
exists in a bipartite graph G when rankings are strict (so k = 1 here). Indeed, when rankings
are strict, every stable matching is popular. When ties are one-sided and each tie has length
at most k, though every stable matching need not have a bounded unpopularity factor,
our algorithm shows that there is always at least one stable matching M with u(M) ≤ k.
For small values of k, the near-popularity of M can be justified as follows: in any election
involving M , if the votes in favor of M are scaled by a factor of k and we sum up these
weighted votes then M never loses any election.

Maximum matchings and near-popularity. There are several applications, e.g., matching
medical students to residencies [4] or allocation problems in humanitarian organizations [25,
26], where the size of the matching is more important than stability or popularity. What one
seeks here is a best maximum matching. Let us define a “best maximum matching” as one
that does not lose to another maximum matching. When rankings are strict, it is known
that such a maximum matching always exists and there is an O(mn) time algorithm to find
one such matching [17], where |A| = n and |E| = m.

When vertices on one side are allowed to have weak rankings, it is NP-hard to decide
if such a matching exists [6]. The hardness proof in [6] showed that it is NP-hard to find
a popular matching when vertices of B are allowed to have weak rankings. It is easy to
check that the same proof also shows it is NP-hard to find in such an instance a maximum
matching that does not lose to any maximum matching. We show the following result here.

▶ Theorem 3. Let G = (A ∪ B, E) be an instance with one-sided ties of length at most k.
There always exists a maximum matching M in G such that ϕ(N, M) ≤ 2k · ϕ(M, N) for any
maximum matching N ; furthermore, M can be computed in O(k2 · mn2) time.

FSTTCS 2022
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Thus we can find in polynomial time a maximum matching whose unpopularity factor
within the set of maximum matchings is at most 2k.

1.1 Background and related results

In the setting of strict preferences or strict rankings, popularity is a well-studied relaxation
of stability – see [5] for a survey. In the setting of ties in preferences, as mentioned earlier,
stability does not imply popularity; moreover, it is NP-hard to decide if a popular matching
exists [3, 6], thus it is NP-hard to find a least unpopularity factor matching. Another
problem that is easy for strict preferences but NP-hard for ties (even for one-sided ties) is
the maximum stable matching problem which asks for a stable matching of largest size. This
problem is very well-studied and several approximation algorithms in the setting of one-sided
ties are known [1, 14, 15, 16, 18, 19].

Near-popularity. To the best of our knowledge, no positive results on near-popular matchings
in the setting of one-sided ties are currently known. Unpopularity factor u(·) is a well-studied
measure of unpopularity of a matching. A size-unpopularity factor trade-off in an instance
G = (A ∪ B, E) with strict rankings is known: for any integer k ≥ 2, there exists a matching
Mk such that u(Mk) ≤ k − 1 and |Mk| ≥ k

k+1 · |M∗|, where M∗ is a maximum matching,
and such a matching Mk can be efficiently computed [17]. As shown in [17], this trade-off
leads to the result that there always exists a maximum matching that is popular within the
set of maximum matchings and it can be efficiently computed. In contrast to this, finding
a maximum matching with the minimum number of blocking edges is NP-hard and this is
NP-hard to approximate within n1−ε, for any ε > 0 [4].

Matchings with low unpopularity factor in dynamic matching markets were studied in [2].
In the setting of bipartite graphs with strict rankings, when there are edge costs, it is NP-hard
to find a min-cost popular matching [9]. Polynomial-time algorithms were given in [8] to find
a quasi-popular matching M , i.e., u(M) ≤ 2, whose cost is at most that of a min-cost popular
matching. Popular matchings have also been studied in non-bipartite graphs with strict
rankings. Popular matchings need not exist in such an instance G and it is NP-complete
to decide if there exists one [9, 12]. It was shown in [13] that G always admits a matching
with unpopularity factor O(log n) and there are non-bipartite instances with strict rankings
where every matching has unpopularity factor Ω(log n).

1.2 Our techniques

Our algorithm, roughly speaking, constructs a subgraph G′ of G and returns a maximum
matching in G′. The construction of G′ is via a subroutine called Propose(·), where the
argument is an agent a left unmatched in at least one maximum matching in the current G′.
Such a vertex a is called even (formally defined in Section 2). Similar to the Gale-Shapley
algorithm, in the subroutine Propose(a), the agent a proposes to its neighbors in G one-by-one
in decreasing order of preference.

Any vertex in B always prefers proposals from better-ranked neighbors to worse-ranked
neighbors. Recall that ties are allowed in the preferences of vertices in B. So how does a
job b choose between proposals of two neighbors a and a′ that are tied in its ranking? The
following simple rule will be key to bounding the unpopularity factor of our matching:

Among neighbors tied in its ranking, b prefers proposals from neighbors that place b high
in their preference order of neighbors in G′.
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To answer our above question on a versus a′ when they are tied in b’s ranking, if a

(resp., a′) regards b as its i-th-ranked (resp., j-th ranked) neighbor in G′, then b prefers a’s
proposal if i < j, it prefers a′’s proposal if j < i, else (so i = j) the proposals are tied.

While a ∈ A is even in G′ and its degree is less than k, it is allowed to propose in
Propose(a) to its neighbors in G. When no vertex in A is even in G′, we compute a maximum
matching M in the final subgraph G′ and show that M is a stable matching in G with
u(M) ≤ k. This algorithm and its analysis are given in Section 3.

In order to find a desired maximum matching (as given in Theorem 3), we run the above
algorithm from Section 3 in a new graph H. The graph H is a multigraph where every
edge in G is replicated n times. The construction of H is inspired by the popular maximum
matching algorithm from [17] where every a ∈ A gets n chances to propose to its neighbors.
Bounding the unpopularity factor of the matching computed by this algorithm within the
set of maximum matchings is trickier than the analysis given in Section 3. This algorithm
and its analysis are given in Section 4.

2 Preliminaries

Our algorithm will use the classical Dulmage-Mendelsohn decomposition [7]. Let G =
(A ∪ B, E) be a bipartite graph and let M be a matching in G. An alternating path with
respect to M is a path whose alternate edges are in M . We have A ∪ B = EM ∪ OM ∪ UM ,
where a vertex v is in EM (resp., OM ) if there is an even (resp., odd) length alternating path
with respect to M from a vertex left unmatched in M to v and a vertex v is in UM if there
is no alternating path from an unmatched vertex to v.

The sets EM , OM , and UM will be called the sets of even, odd, and unreachable vertices,
respectively, with respect to M . The following theorem is well-known [20, 23].

▶ Theorem 4. The sets EM , OM , and UM are pairwise disjoint if and only if M is a
maximum matching in G. Any maximum matching in G partitions the vertex set into the
same sets of even, odd, and unreachable vertices. Furthermore,
1. There is no edge between the sets EM and EM ∪ UM , i.e., all the neighbors of vertices in

EM are in OM .
2. For any maximum matching N , we have N ⊆ (OM × EM ) ∪ (UM × UM ). Also |N | =

|OM | + |UM |/2, hence all vertices in OM ∪ UM are matched in N .

3 Our algorithm for a near-popular matching

We present an iterative algorithm to compute a desired stable matching in an instance
G = (A ∪ B, E) with one-sided ties, where each tie has length at most k. A relevant graph
for us is G0 = (A ∪ B0, E0) where B0 = B ∪ {d(a) : a ∈ A}, i.e., for each a ∈ A, we add a
corresponding dummy vertex d(a) called a’s last resort job, and E0 = E ∪ {(a, d(a)) : a ∈ A}.
So d(a) has only a as its neighbor and d(a) will be the worst ranked neighbor of a.

Algorithm 1 is the overall algorithm. This algorithm constructs a subgraph G′ of G0.
The while-loop here calls the subroutine Propose until no agent is even (see Section 2) in
the current G′. Recall that vertices in A or agents have strict rankings. In our algorithm,
any agent a such that – (i) a is even in the current G′ and (ii) a’s degree is less than k in
the current G′ – will be allowed to propose, i.e., a will be allowed to add some edges to the
current G′ in the subroutine Propose(a).

We will show in Lemma 6 that if the set of even agents in G′ is non-empty then there
has to be an even agent with degree less than k in G′. Such an agent a will propose in the
subroutine Propose(a). When no agent is even in the subgraph G′, the construction of G′ is
complete. Any maximum matching in the final G′ will be returned by Algorithm 1.

FSTTCS 2022
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Algorithm 1 Finding a stable matching M with u(M) ≤ k in G = (A ∪ B, E).

1: Initialize G0 = (A ∪ B0, E0) and G′ = (A ∪ B0, ∅).
2: while there exists an even agent in G′ do
3: Let a be any even agent in G′ such that degG′(a) < k.
4: Call Propose(a).
5: Return a maximum matching M in G′.

In the subroutine Propose(a) (see Algorithm 2), a proposes to its neighbors in G0 one-
by-one in decreasing order of preference. Each time the subroutine Propose(a) is called, all
the proposals of a made in previous invocations of Propose(a) are forgotten (see line 1 of
Algorithm 2) and a proposes afresh starting from its most favorite neighbor in G0.

Algorithm 2 The subroutine Propose(a).

1: Delete from G′ all edges incident to a. ▷ (so all the previous proposals of a are forgotten)
2: Set i = 1.
3: repeat
4: Let b = a’s most favorite neighbor in G0 that a has not (freshly) proposed to.
5: Set rankG′(a, b) = i.
6: Delete from G0 and G′ all edges between b and b’s neighbors ranked worse than a.

▷ (so b will keep in G′ only the best proposals that it receives in the entire algorithm)
7: if b is isolated in G′ then
8: Add the edge (a, b) to G′.
9: else ▷ (a is tied with b’s neighbors in G′)

10: Let a′ be any neighbor of b in G′.
11: if i < rankG′(a′, b) then ▷ (so rankG′(a, b) < rankG′(a′, b))
12: Delete all edges incident to b in G′.
13: Add the edge (a, b) to G′.
14: if i = rankG′(a′, b) then ▷ (so rankG′(a, b) = rankG′(a′, b))
15: Add the edge (a, b) to G′ and set i = i + 1.
16: until i = k + 1 or a is no longer even in G′.

When b ∈ B receives a proposal from a in Propose(a), the edge (a, b) will get added to
the graph G′ if one of the following two conditions is satisfied:
1. b prefers a to its current neighbors in G′ – then (a, b) is unconditionally added to G′.
2. a is tied with b’s neighbors in G′ and a certain value called rankG′(a, b) is good enough.

When a proposes to b, rankG′(a, b) will be b’s rank among a’s neighbors in the current
G′. Let rankG′(a, b) = i. Suppose a and a′ are tied in b’s ranking, where a′ is a neighbor of
b in G′. When a proposes to b, i.e., when we consider the edge (a, b) in Propose(a):

if i < rankG′(a′, b) then b deletes all edges incident to it in G′ and the edge (a, b) is added
to G′ (see line 13).
if i = rankG′(a′, b) then b retains all its current edges in G′ and the edge (a, b) is also
added to G′ (see line 15). When a proposes to its next most favorite neighbor (say, b′)
in G0, it will be the case that rankG′(a, b′) = i + 1.
if i > rankG′(a′, b) then the edge (a, b) is not added to G′. When a proposes to its next
most favorite neighbor (say, b′) in G0, it will be the case that rankG′(a, b′) = i.
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Thus among the best proposals (wrt b’s ranking) that b receives in the entire algorithm,
b keeps edges in G′ to only those neighbors a such that rankG′(a, b) is the minimum. In
Propose(a) when the edge (a, b) gets added to G′ in line 8 or line 13, a will be the only
neighbor of b in G′. This makes a unreachable3 in G′ – so a is no longer even in G′ and this
will be the last iteration of the repeat-loop in this invocation of Propose(a).

If a is even in G′, then there is one more iteration if i ≤ k. Observe that i is increased
when degG′(a) gets increased in line 15. Thus we will always ensure that degG′(a) ≤ k. Let
us recall the other useful invariant that is maintained in our algorithm:

all neighbors of a job b in G′ are tied in b’s ranking.

▶ Remark 5. After the edge (a, b) is added to G′, the graph G′ may change in later invocations
of Propose(·). But rankG′(a, b) remains the same till the next invocation of Propose(a).

▶ Lemma 6. Let X be the set of even agents in G′. If X ≠ ∅ then there exists a ∈ X such
that degG′(a) < k.

Proof. Suppose not, i.e., suppose every a ∈ X satisfies degG′(a) = k (since degG′(a) ≤ k).
Hence there are k · |X| edges incident to the set X in G′. Our invariant is that all neighbors
in G′ of a job b are tied in b’s ranking. Since each tie has length at most k, it means that for
any job b, degG′(b) ≤ k. Hence the set of neighbors of X in G′ has size at least (k · |X|)/k,
i.e., |NbrG′(X)| ≥ |X|, where NbrG′(X) is the set of neighbors of X in G′.

However it follows from the definition of “even agents” that |X| > |NbrG′(X)|. This is
because every vertex in NbrG′(X) is odd (see Theorem 4) and so for every v ∈ NbrG′(X),
there is a corresponding M∗(v) ∈ X, where M∗ is any maximum matching in G′. There is
also at least one vertex in X that is unmatched in M∗. Thus we get a contradiction that
|NbrG′(X)| ≥ |X| > |NbrG′(X)|. So there has to exist a ∈ X with degG′(a) < k. ◀

3.1 Correctness of our algorithm
Let M be the matching returned by Algorithm 1. Delete from M all edges incident to dummy
jobs, so M ⊆ E. Let us first show that M is a stable matching in G, i.e., no edge blocks M .

▶ Lemma 7. The matching M is stable in G.

Proof. The termination condition of Algorithm 1 is that no agent is even in G′. Hence the
original matching M (before deleting edges incident to dummy jobs) is A-perfect, i.e., it
matches all agents. So there is no (a, b) ∈ E such that b prefers a to its assignment in M

and a is unmatched in M , however a never got to propose to b because degG′(a) = k. Recall
that agents add edges to G′ in decreasing order of preference.

If (a, b) is in G′ and a new edge (a, b′) gets added to G′ in the subroutine Propose(a), then
a prefers b to b′. Since a is even prior to adding the edge (a, b′), it is easy to see that after
adding the edge (a, b′) to G′, the agent a is either even or unreachable in G′ (see footnote 3).
Hence after the addition of (a, b′), the job b is odd/unreachable in G′ (by Theorem 4).

Furthermore, the rank of b’s neighborhood in G′ never worsens as the algorithm progresses
(this is justified below). Thus in M , which is a maximum matching in G′, the job b is matched
(by Theorem 4); moreover, it is matched to an agent at least as good as a.

We will next show that if an edge (a, b) gets deleted from G′ then immediately after this
deletion, b will be odd/unreachable in G′ and b’s neighbors in G′ are ranked at least as good
as a. There are three cases for the deletion of an edge (a, b) from G′ in our algorithm.

3 Prior to adding the new edge, a was even in G′. So all neighbors of a in the current G′ will always be
matched in any maximum matching, thus a has no even neighbor and hence a is not odd.

FSTTCS 2022



22:8 Stable Matchings with One-Sided Ties and Approximate Popularity

Case 1. Suppose the edge (a, b) got deleted in line 1 in Algorithm 2. Then a, which is
an even vertex in G′, is going to make the next round of proposals. Just prior to the
deletion of (a, b), the vertex b was odd in G′ (since b has a neighbor a that is even). After
the deletion of the edge (a, b), the vertex b either remains odd or it becomes unreachable.
Also, by our invariant, all of b’s neighbors in G′ at this point are agents who are tied with
a in b’s preference list.
Case 2. Suppose the edge (a, b) got deleted in line 6 in Algorithm 2. This is because b

received a proposal from an agent a′ that b prefers to a. In this case, a′ will be b’s current
(and only) neighbor in G′. This makes b (and a′) unreachable.
Case 3. Suppose the edge (a, b) got deleted in line 12 in Algorithm 2. Just before the
deletion of this edge, a was b’s neighbor in G′ and all of b’s neighbors in G′ were tied
with a in b’s preference list and have the same rankG′ -value as rankG′(a, b). As soon as b

receives a proposal (say, from a′) of the same rank as a and a better rankG′-value than
rankG′(a, b), b deletes edges to all its current neighbors and introduces the edge (a′, b)
in G′. So a′ will be the only neighbor of b and this makes b (and a′) unreachable in G′.

So for any (a, b) ∈ E, if a prefers b to its assignment in M then b likes its partner in M

at least as much as a; hence (a, b) does not block M . Thus M is a stable matching in G. ◀

Bounding the unpopularity factor of M . For any pair of adjacent vertices v and w in G,
let us define the function votev(w, M) as follows:

votev(w, M) =


+1 if v prefers w to its assignment in M ;
−1 if v prefers its assignment in M to w;

0 otherwise.

Thus votev(w, M) is v’s vote for w versus its assignment in M and this value is 0 if v is
indifferent between w and M(v).

Edge labels. Let us label each edge (a, b) of E \ M by (votea(b, M), voteb(a, M)). Note
that an edge labeled (+1, +1) blocks M . We showed in Lemma 7 that no edge blocks M . So
every edge in E \ M gets a label in {(+1, −1), (−1, +1), (−1, −1), (±1, 0)}. We would like to
show that not too many edges are labeled (+1, 0).

Let ρ = ⟨. . . , e1, f1, e2, f2, . . . , ek, fk, . . .⟩ be any alternating path/cycle with respect to M ,
where each ei = (ai, bi) is in M . We will show an upper bound on the longest contiguous
stretch of edges in ρ \ M = ⟨. . . , f1, f2, . . . , fk, . . .⟩ that can be labeled (+1, 0).

▶ Lemma 8. If all of f1, f2, . . . , fk−1 are labeled (+1, 0) then fk cannot be labeled (+1, 0).

Proof. Suppose all of f1, f2, . . . , fk−1 are labeled (+1, 0). Since f1 = (a1, b2) is labeled
(+1, 0), b2 is indifferent between a1 and its partner a2 in M while a1 prefers b2 to its partner
b1 in M (let b1 = d(a1) if a1 is unmatched in M).

If the edge (a1, b2) is present in G′ then rankG′(a1, b2) < rankG′(a1, b1) because a1 prefers
b2 to b1. Suppose the edge (a1, b2) is not present in G′. Let rankG′(a1, b2) be the rankG′-
value with which a1 proposed to b2 in the very last invocation of Propose(a1). We claim
rankG′(a2, b2) < rankG′(a1, b2). This is because the edge (a1, b2) is missing in G′ and the
edge (a2, b2) is present in G′ though b2 is indifferent between a1 and a2. Thus in both cases,
we can draw the conclusion that rankG′(a2, b2) < rankG′(a1, b1):

in the former case, it is rankG′(a2, b2) = rankG′(a1, b2) < rankG′(a1, b1);
in the latter case, it is rankG′(a2, b2) < rankG′(a1, b2) ≤ rankG′(a1, b1).
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Consider any such 3-edge sequence ⟨ei, fi, ei+1⟩ = bi − ai − bi+1 − ai+1 in ρ (see Fig. 1)
where 1 ≤ i ≤ k − 1. Since fi = (ai, bi+1) is labeled (+1, 0), the same argument as the one
above for b1 − a1 − b2 − a2 shows that rankG′(ai+1, bi+1) < rankG′(ai, bi). Thus we have the
following chain of strict inequalities: rankG′(ak, bk) < · · · < rankG′(a1, b1).

0

+1

ai+1 bi+1

ai bi

Figure 1 The dashed edge (ai, bi+1) is labeled (+1, 0) and rankG′ (ai+1, bi+1) < rankG′ (ai, bi).

We have rankG′(a1, b1) ≤ k since rankG′(a1, b1) ≤ degG′(a1) ≤ k. So the chain of strict
inequalities rankG′(ak, bk) < · · · < rankG′(a1, b1) implies that rankG′(ak, bk) ≤ 1. Hence
rankG′(ak, bk) = 1, i.e., bk is ak’s most favorite neighbor in the graph G′.

We need to show that the edge fk = (ak, bk+1) is not labeled (+1, 0). If ak prefers bk to
bk+1 then fk is labeled (−1, ∗) and we are done. The non-trivial case is when ak prefers bk+1
to bk. The following claim is proved below.

▷ Claim 9. If ak prefers bk+1 to bk then bk+1 is matched in M to an agent better than ak.

So if ak prefers bk+1 to bk then votebk+1(ak, M) = −1 (by Claim 9). Hence fk = (ak, bk+1)
is labeled (+1, −1). Thus the edge fk is never labeled (+1, 0). ◀

Proof. (of Claim 9) The agent ak prefers bk+1 to bk. Suppose the edge (ak, bk+1) is present in
G0. Then before proposing to bk with rankG′(ak, bk) = 1, the agent ak would have proposed
to bk+1 with rankG′(ak, bk+1) = 1. Since (ak, bk+1) is present in G0, note that ak is as good
as bk+1’s neighbors in G′ (wrt bk+1’s ranking). Moreover, bk+1 would never have rejected ak’s
proposal due to poor rankG′-value as the edge (ak, bk+1) has the best possible rankG′-value
of 1. Thus if (ak, bk+1) is in G0 then the edge (ak, bk+1) has to be in G′ and so rankG′(ak, bk)
would be at least 2 since ak prefers bk+1 to bk. However rankG′(ak, bk) = 1.

So the edge (ak, bk+1) is not present in G0. This means that bk+1 received one or more
proposals from neighbors that it prefers to ak. Hence bk+1 is matched in M to a neighbor
that it prefers to ak. ◁

▶ Remark 10. If ρ is an alternating cycle with respect to M then the proof of Lemma 8
shows that all the edges in ρ \ M cannot be labeled (+1, 0).

▶ Lemma 11. The unpopularity factor of M is at most k.

Proof. Let N be any matching in G. Consider M ⊕ N which is a set of alternating paths
and alternating cycles. Let p be any alternating path in M ⊕ N . Suppose p has even length,
so p = ⟨e1, f1, . . . , et, ft⟩ where for each i ∈ [t], the edge ei = (ai, bi) ∈ M and the edge
fi = (ai, bi+1) ∈ N . We have p\M = p∩N = ⟨f1, . . . , ft⟩. Since bt+1, i.e., the “job endpoint”
of the last edge ft in p = ⟨e1, f1, . . . , et, ft⟩, prefers to be matched rather than be unmatched
(observe that M leaves bt+1 unmatched) and because no edge is labeled (+1, +1), the edge
ft has to be labeled (−1, +1).

Suppose p has odd length, so p = ⟨e1, f1, . . . , et⟩. The final vertex of p (an endpoint of et)
is an agent at matched in M but not in N , so at prefers M to N . The edge ft−1 = (at−1, bt)
could be labeled (+1, 0), however since at prefers M to N , the votes for N from the three
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vertices at−1, bt, at are +1, 0, and −1, respectively. Hence this case is equivalent to the case
where p has even length, i.e., the final vertex of p is in B and the last edge is labeled (−1, +1).
Thus in the rest of the proof, we assume without loss of generality that p has even length.

Let us extract disjoint maximal contiguous segments s1, . . . , sr from p ∩ N = ⟨f1, . . . , ft⟩
such that for each i, every edge in si = ⟨fi1 , fi2 . . .⟩ is labeled (+1, 0) and every edge in p ∩ N

that is labeled (+1, 0) belongs to one of s1, . . . , sr. We know from Lemma 8 that |si| ≤ k − 1
for all i ∈ [r]. The maximality of each of the segments s1, . . . , sr along with our observation
above that ft is labeled (−1, +1) implies the following:

for each i ∈ [r], the edge (call it fi′) in p ∩ N = ⟨f1, . . . , ft⟩ that immediately follows the
last edge in si has at least one “−1” in its label.

For each i ∈ [r], let us map all the edges in si to this edge fi′ .
For every alternating path (similarly, alternating cycle) ρ in M ⊕ N , as done above for

the alternating path p, let us perform an analogous operation of extracting such maximal
contiguous segments of (+1, 0)-labeled edges from ρ ∩ N and mapping all the edges in each
such segment to the edge in ρ ∩ N that immediately follows this segment – this is an edge
with a “−1” in its label. So every edge labeled (+1, 0) in N gets mapped to an edge in N

that has at least one −1 in its label. Moreover, at most k − 1 edges are mapped to any edge.
Our goal is to bound ϕ(N, M) = the number of vertices that prefer N to M . Every vertex

that prefers N to M contributes +1 to the edge of N incident to it. We know from Lemma 7
that no edge is labeled (+1, +1). Thus ϕ(N, M) = the number of edges in N \ M labeled by
one of (+1, 0), (+1, −1), (−1, +1). We have shown that the number of edges labeled (+1, 0) is
at most (k − 1) · (the number of edges labeled by one of (+1, −1), (−1, +1), (−1, 0), (−1, −1)).
Moreover, the edge labels (+1, −1) and (−1, +1) have both “+1” and “−1” in them.

Hence we can conclude the following inequality on the labels of edges in N \ M : (the
total number of +1’s in these labels) ≤ k ·(the total number of −1’s in these labels). Since
ϕ(N, M) is the total number of +1’s in the labels of edges in N \ M and ϕ(M, N) is at least
the total number of −1’s in these edge labels, we have ϕ(N, M) ≤ k · ϕ(M, N). Since this
holds for any matching N , we have u(M) ≤ k. ◀

3.2 Running time of our algorithm
We now bound the total number of times the subroutine Propose gets called in Algorithm 1.
Let a ∈ A. After any invocation of Propose(a), either degG′(a) = k or a is unreachable in G′.
Let deg(a) be a’s degree in G.

▷ Claim 12. The total number of invocations of the subroutine Propose(a) where degG′(a) = k

at the end of this invocation is at most k · deg(a).

Proof. Suppose degG′(a) = k at the end of an invocation of Propose(a). For Propose(a) to be
called again, degG′(a) should be less than k. So between these two invocations of Propose(a),
some edge (a, b) must have been deleted from G′. An edge e = (a, b), once deleted from G′

because b does not regard rankG′(e) good enough, can get re-introduced in G′ in line 13 or
line 15 in a later invocation of Propose(a). However it has to be the case that the edge e

now has a smaller value of rankG′(e). Thus in the earlier invocation of Propose(a), the pair
(e, rankG′(e)) with the older value of rankG′(e) occurred in G′ for the last time.

So let us charge the pair (e, rankG′(e)) for the invocation of Propose(a) where (e, rankG′(e))
occurs for the last time. Because a has at most k neighbors in G′, we have rankG′(e) ∈ [k]
for any edge e in G′. Thus there are at most k · deg(a) pairs (e′, rankG′(e′)) where e′ is any
edge incident to a. Hence the total number of invocations of Propose(a) where degG′(a) = k

at the end of this invocation is at most k · deg(a). ◁
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▷ Claim 13. The total number of invocations of the subroutine Propose(a) where a is
unreachable in G′ at the end of this invocation is at most k · deg(a).

Proof. Suppose the vertex a is unreachable in G′ at the end of an invocation of Propose(a).
Let (a, b) be the last edge incident to a that got added to G′ in this invocation of Propose(a).
Observe that prior to adding the edge (a, b) to G′, the vertex a is even in G′. So it is this
edge (a, b) that made a unreachable in G′. We claim that the edge (a, b) is:
1. either a new edge that has been added to G′ for the very first time4

2. or it is an old edge but with a smaller rankG′ -value than the previous time it was added.

We argue that either (1) or (2) stated above must have occurred because none of the
old edges incident to a along with their previous rankG′ -values was good enough for a to be
unreachable in G′. This is because for the subroutine Propose(a) to get invoked, the agent
a has to be even in G′. Thus none of the old edges incident to a along with their previous
rankG′ -values was able to ensure a’s unreachability in G′. So if at the end of this invocation
of Propose(a), a is unreachable in G′, then either an old edge with a new rankG′-value or a
new edge must have been introduced in G′ in this invocation of Propose(a).

So for every invocation of Propose(a) where a is unreachable in G′ at the end of this
invocation, there is a pair (e, rankG′(e)), where e is incident to a, that occurs in G′ for the
first time. We know that the number of pairs (e, rankG′(e)) is at most k · deg(a). Thus
the number of invocations of Propose(a) where a is unreachable in G′ at the end of this
invocation is at most k · deg(a). Hence the claim follows. ◁

Since at the end of an invocation of Propose(a), either degG′(a) = k or a is unreachable
in G′, it follows that the total number of times Propose(a) gets called is O(k · deg(a)). Thus
added up over all a in A, the total number of times the subroutine Propose gets called in
Algorithm 1 is O(

∑
a∈A k · deg(a)) = O(k · m).

Running time of the subroutine Propose. As done in the implementation of the Gale-
Shapley algorithm, the step where a job b deletes edges to worse-ranked neighbors in G0 is
implemented in a delayed manner. That is, before an agent a proposes to any neighbor b, it
first checks if the edge (a, b) is actually present in G0. This can be easily implemented such
that the total time taken in Algorithm 1 by all the steps to delete edges from G0 is O(m).

Regarding the other steps in the subroutine Propose, we will always maintain a maximum
matching M in the current G′. We will mark vertices as even/odd/unreachable – given a
maximum matching in G′, this takes time linear in the size of G′. The number of edges in
G′ is at most k · |A| = k · n since every a ∈ A has degree at most k in G′.

For the subroutine Propose(a) to be invoked, the agent a has to be even in G′. Hence
there is an alternating path ρ between a and some agent left unmatched in M . We will
update M to M ⊕ ρ so that a is unmatched in the resulting M . Recall that the first step of
the subroutine Propose(a) deletes all edges incident to a in G′; subsequently, a proposes to
its neighbors in G0 one-by-one and adds some edges to G′.

Adding an edge between a and a neighbor that is odd/unreachable in G′ maintains the
property that M is a maximum matching in G′. In order to get a larger matching in G′, we
need to add an edge between a and a neighbor b that is even in G′. The only way b can be

4 Note that once the edge (a, d(a)) gets added to G′, a remains unreachable in G′ henceforth – so if a is
even in G′ then there is always at least one edge incident to a in G0 that is not in G′.
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even in G′ is for b to be isolated just before the addition of the edge (a, b) to G′.5 So either
b never received any proposal till now in Algorithm 1 or b may have had neighbors in G′,
however upon receiving a’s proposal in Propose(a), the vertex b had to delete all its incident
edges in G′ and then the edge (a, b) got added to G′.

Since b was isolated just before adding (a, b), adding this edge makes a unreachable in G′

(see footnote 3) and the subroutine Propose(a) ends. We will update M : the edge (a, b) is
added to M and if b was matched earlier, then this old edge (which is no longer in G′) is
deleted from M . Thus we maintain a maximum matching M in G′.

At the end of the subroutine Propose, we will search for an agent that is even in G′

and with degree less than k. If such an agent is found, then the while-loop of Algorithm 1
continues; else Algorithm 1 terminates. Searching for such an agent takes time linear in the
size of G′. Thus the running time of any invocation of Propose is O(k · n). Since there are
O(k · m) invocations of Propose, Lemma 14 follows.

▶ Lemma 14. The running time of Algorithm 1 is O(k2 · mn).

Theorem 2 stated in Section 1 follows from Lemma 11 and Lemma 14.

4 Maximum matchings and approximate popularity

Our goal in this section is to find a maximum matching M in G = (A ∪ B, E) such that
ϕ(N, M) ≤ 2k · ϕ(M, N) for any maximum matching N in G. Recall that G is a bipartite
graph with one-sided ties of length at most k.

We will construct a new graph H = (A ∪ B, E∗) where every edge in G is replicated n

times, recall |A| = n. Thus E∗ = ∪e∈E{e1, . . . , en}, i.e., for every e ∈ E, there are n copies
e1, . . . , en in E∗. So H is a multigraph. Due to the presence of parallel edges in H, every
vertex v in H has preferences over its incident edges (rather than its neighbors).

Let the preference order of a vertex v over its incident edges in G be e ⪰ e′ ⪰ e′′ ⪰ · · · .
In the graph H, the edges e1, . . . , en (i.e., n copies of e) along with e′

1, . . . , e′
n (i.e., n copies

of e′) and e′′
1 , . . . , e′′

n (i.e., n copies of e′′) and so on are incident to v.

If v ∈ A then the preference order of v over its incident edges in H is as given below
(recall that vertices in A have strict rankings in G):

e1 ≻ e′
1 ≻ e′′

1 ≻ · · ·︸ ︷︷ ︸
subscript 1 edges

≻ e2 ≻ e′
2 ≻ e′′

2 ≻ · · ·︸ ︷︷ ︸
subscript 2 edges

≻ · · · ≻ en ≻ e′
n ≻ e′′

n ≻ · · ·︸ ︷︷ ︸
subscript n edges

.

Vertices of A have strict rankings in H as well. For i < j, where i, j ∈ [n], v ∈ A prefers
any subscript i edge incident to it to any subscript j edge incident to it. For any i,
within the set of subscript i edges, v’s preference order among ei, e′

i, e′′
i , . . . is as per v’s

preference order over its incident edges e, e′, e′′, . . . in G.
If v ∈ B then the preference order of v over its incident edges in H is as given below:

en ⪰ e′
n ⪰ e′′

n ⪰ · · ·︸ ︷︷ ︸
subscript n edges

≻ en−1 ⪰ e′
n−1 ⪰ e′′

n−1 ⪰ · · ·︸ ︷︷ ︸
subscript n − 1 edges

≻ · · · ≻ e1 ⪰ e′
1 ⪰ e′′

1 ⪰ · · ·︸ ︷︷ ︸
subscript 1 edges

.

Thus for i < j, where i, j ∈ [n], v ∈ B prefers any subscript j edge incident to it to any
subscript i edge incident to it. For any i, within the set of subscript i edges, v’s preference
order over ei, e′

i, e′′
i , . . . is as per v’s original preference order. So if v is indifferent between

e and e′ in G then v is indifferent between ei and e′
i for every i ∈ [n].

5 For an unisolated b to be even in G′, its neighbors have to be odd and no agent is ever odd in G′. Recall
that as soon as the agent a becomes unreachable in Propose(a), the subroutine Propose(a) ends.
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Thus in the graph H, while vertices in B prefer higher subscript edges, vertices in A prefer
lower subscript edges. Analogous to Section 3, we have the graph H0 where H0 = (A∪B0, E∗

0 ),
B0 = B ∪ {d(a) : a ∈ A}, and E∗

0 = E∗ ∪ {(a, d(a)) : a ∈ A}. For any a ∈ A, the edge
(a, d(a)) is the worst ranked edge incident to a in H0.

The algorithm. Let us call Algorithm 1 in the graph H to construct the subgraph H ′ of
H0. As before, in the subroutine Propose, any job b, upon receiving a proposal along an edge
(say, ei) deletes from H0 all the edges that b ranks worse than ei. In particular, all edges e′

j

incident to b where j < i get deleted from H0.
Algorithm 1 returns a maximum matching M∗ in H ′. Let M be the corresponding

matching in G, i.e., M is essentially the same as M∗, however edges incident to dummy jobs
are pruned from M∗ and the subscripts of edges in M∗ are ignored in M .

The number of edges in H is m · n and every tie in H is also a tie in G, so it has length
at most k. Hence the running time of Algorithm 1 in H is O(k2 · (mn)n) = O(k2 · mn2).
Lemma 15 and Lemma 16 prove the correctness of our algorithm. Thus Theorem 3 stated in
Section 1 follows.

▶ Lemma 15. M is a maximum matching in G.

Proof. We will show there is no augmenting path with respect to M in G. Let a0 ∈ A be
a vertex left unmatched in M . Then in the graph H ′, the edge (a0, d(a0)) is in M∗. Since
(a0, d(a0)) is the worst ranked edge incident to a0, this means that for every edge ei, in
particular, for every subscript n edge en incident to a0, either a0 proposed along this edge
en to the other endpoint (call it b1) or b1 had already deleted en from H0 since it received
a proposal along an edge better than en. Note that any edge better than en has to be a
subscript n edge. The fact that a0 added the edge (a0, d(a0)) to the subgraph H ′ implies
that a0 was even in H ′ before adding (a0, d(a0)). So at the end, every neighbor of a0 is
odd/unreachable in H ′. Hence any neighbor b1 of a0 has to be matched along a subscript n

edge in M∗.
Suppose (a1, b1) ∈ M . By the argument in the above paragraph, we know that it is the

subscript n copy of this edge (a1, b1) that is present in M∗. Recall that any agent proposes
or adds edges to H ′ in decreasing order of preference and every agent prefers lower subscript
edges to higher subscript edges. So a1 must have proposed along every subscript (n − 1)
edge incident to it that was not yet deleted from H0. Furthermore, any neighbor b2 of a1
that deleted the subscript (n − 1) copy of the edge (a1, b2) from H0 has to be matched along
a subscript ≥ (n − 1) edge in M∗. Thus any neighbor of a1 has to be matched along a
subscript ≥ (n − 1) edge in M∗.

Continuing this argument, any augmenting path ρ wrt M that starts with a0 looks as
follows (the minimum possible subscripts of these edges in M∗ are written below them):

a0 − b1 − a1︸ ︷︷ ︸
subscript n

− b2 − a2︸ ︷︷ ︸
sub. n − 1

− b3 − a3︸ ︷︷ ︸
sub. n − 2

− · · · bi − ai︸ ︷︷ ︸
sub. n − i + 1

− · · · − bn − an︸ ︷︷ ︸
subscript 1

− b.

Finally, the path ρ has to reach a job b that never received a proposal in H ′, in other
words, b is isolated in H ′. So every neighbor (say, a′) of b has to be matched along a
subscript 1 edge since a′ never proposed along the subscript 1 edge e′

1 where e′ = (a′, b).
In our augmenting path ρ, any agent matched along a subscript 1 edge has to be labeled
at where t ≥ n. This means ρ includes at least n + 1 agents a0, a1, . . . , an. However this is
impossible as |A| = n. Thus there is no augmenting path with respect to M . Equivalently,
M is a maximum matching in G. ◀
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▶ Lemma 16. For any maximum matching N in G, ϕ(N, M) ≤ 2k · ϕ(M, N).

Before we prove Lemma 16, let us recall the following preliminaries from [17]. Let us
partition A = A1 ∪ · · · ∪ An and B = B1 ∪ · · · ∪ Bn as follows:

For every subscript i edge ei = (a, b) in M∗, add a to Ai and b to Bi.
Add the vertices in A that are unmatched in M to An.
Add the vertices in B that are unmatched in M to B1.

It follows from the definition of the sets Ai, Bi that M ⊆ ∪n
i=1(Ai × Bi). It will be useful

to visualize these subscripts as levels. So A = A1 ∪ · · · ∪ An is a partition of A into n levels
where vertices in Ai are at level i and similarly, B = B1 ∪ · · · ∪ Bn is a partition of B into
n levels where vertices in Bi are at level i. Edges in Ai × Bj where i < j are said to move
upwards and edges in Ai × Bj where i > j are said to move downwards. Claim 17 (from [17])
shows there is no steep downwards edge.

▷ Claim 17. There is no edge between Ai and Bj where i ≥ j + 2.

Proof. Let a ∈ Ai. We need to show a has no neighbor in Bj where j ≤ i − 2. This argument
was seen in the proof of Lemma 15. Let us consider two cases.
1. a is matched in M : Since a ∈ Ai, a proposed along all the subscript i − 1 edges incident

to it in H0 (that were not yet deleted) but these proposals were rejected by its neighbors.
Since vertices in B prefer higher subscript edges to lower subscript edges, this means that
all neighbors of a are matched along ≥ i − 1 subscript edges. Thus a has no neighbor in
Bj where j ≤ i − 2.

2. a is not matched in M : Here a ∈ An and as argued in the proof of Lemma 15, (a, d(a)) is
in M∗ and all neighbors of a are in Bn. So a has no neighbor in Bj where j ≤ n − 1. ◁

As done in Section 3, let us label edges in E \ M by (votea(b, M), voteb(a, M)). Claim 18
stated below tells us that no downwards edge can have “+1” in its label.

▷ Claim 18. For 2 ≤ j ≤ n, any edge in Aj × Bj−1 is labeled either (−1, −1) or (−1, 0).

Proof. Let e = (a, b) ∈ Aj × Bj−1. We need to show that e is labeled either (−1, −1) or
(−1, 0). The job b is matched in M∗ along a subscript (j − 1) edge e′

j−1. Recall that any job
prefers higher subscript edges to lower subscript edges, so if a had proposed to b along ej

then b would have accepted the proposal. Thus we can conclude that a is matched along an
edge e′′

j that it prefers to ej , i.e., a prefers its partner in M to b. Thus votea(b, M) = −1.
Since agents prefer lower subscript edges to higher subscript edges, a proposed along ej−1

before proposing along the edge e′′
j . Since b did not accept the proposal along ej−1, we can

conclude that b does not prefer ej−1 to the edge e′
j−1 along which it is matched in M∗. Thus

voteb(a, M) ∈ {0, −1}. ◁

▷ Claim 19. Let e ∈ (Aj × Bj) \ M where j ∈ [n]. Then e cannot be labeled (+1, +1).

The proof of Claim 19 is the same as the proof of Lemma 7. Note that Claims 17-19
imply that any edge labeled (+1, +1) has to be an upwards edge.

Proof. (of Lemma 16) Let ρ = ⟨. . . , e1, f1, e2, f2, . . . , ⟩ be any alternating path/cycle with
respect to M where the e-edges are in M . We will not be able to claim as done in Lemma 8
that the longest contiguous stretch of edges ⟨f1, f2, . . .⟩ labeled (+1, 0) in ρ \ M is at most
k − 1. Now ρ \ M can admit longer contiguous stretches of positively labeled edges, i.e., those
labeled (+1, 0) or (+1, +1), by using upwards edges, i.e., edges in ∪i<j(Ai ×Bj), interspersed
with edges in ∪i(Ai × Bi).
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Let ρ \ {upwards/downwards edges} = ρ1 ∪ · · · ∪ ρt. For any i ∈ [t], ρi consists of edges
in Aj × Bj for some j ∈ [n]. Let ρi \ M = ⟨. . . , fi1 , fi2 , . . . , fik−1 , fik

, . . .⟩. We have the
following claim whose proof is the same as the proof of Lemma 8.

▷ Claim 20. If all of fi1 , fi2 , . . . , fik−1 are labeled (+1, 0) then fik
cannot be labeled (+1, 0).

Recall that we need to compare M only against maximum matchings. Let ρ be any
relevant alternating path/cycle ρ wrt M , i.e., ρ occurs in M ⊕ N where N is a maximum
matching. There are two cases here.

(1) ρ is an alternating cycle. The crucial observation is that the number of downwards
edges in ρ is at least the number of upwards edges in ρ. This is because ρ is a cycle and
there are no steep downwards edges (by Claim 17).

Recall that ρ \ {upwards/downwards edges} = ρ1 ∪ · · · ∪ ρt. Each of the edges in ρi \ M

is in Aj × Bj for some j ∈ [n]. We know from Claim 19 that no edge in ρi \ M is labeled
(+1, +1). Furthermore, there can be at most k − 1 contiguous stretch of edges labeled (+1, 0)
in ρi \ M (by Claim 20).

For any maximal contiguous segment of edges labeled (+1, 0) in ρi \M = ⟨. . . , fi1 , fi2 , . . .⟩,
except possibly for the last such segment (call it ℓi), the maximality of each segment implies
that the edge that immediately follows this segment in ρi \ M has at least one “−1” in its
label. Analogous to Lemma 11, this “−1” will pay for the +1’s in this segment.

For the last segment ℓi in ρi \ M , we have to find a “−1” to pay for the +1’s in this
segment. Note that there might be no edge in ρi \ M that follows the last segment ℓi. This is
because the edge in ρ \ M that immediately follows ℓi moves to another level – so it is either
a downwards edge or an upwards edge. Any downwards edge is labeled (−1, 0) or (−1, −1)
(by Claim 18) while an upwards edge might be labeled (+1, +1). Thus a downwards edge is
a good edge with at least one “−1” in its label while an upwards edge is possibly a bad edge
with up to two +1’s in its label. Summarizing,

we have to pay for the +1’s in the labels of upwards edges and
we have to pay for the last-segments ℓ1, . . . , ℓt in ρ1, . . . , ρt, respectively.

We have t last-segments and some s ≤ t upwards edges. Our goal is to show that there
are enough downwards edges in ρ so that 2k times their number is an upper bound on the
total number of +1’s in the upwards edges and in the last-segments.

Consider the following list: ℓ1, f ′
1, ℓ2, f ′

2, . . . , ℓt, f ′
t , where ℓ1, . . . , ℓt are all the last-segments

and for i ∈ [t], f ′
i is the upwards/downwards edge in ρ \ M that immediately follows ρi \ M .

Each edge in ℓi is labeled (+1, 0) while the edge f ′
i (if it is an upwards edge) could be labeled

(+1, +1).
Let F = {f ′

1, . . . , f ′
t} and let X ⊆ F be the set of downwards edges and let Y ⊆ F be the

set of upwards edges. We know that the number of downwards edges is at least the number
of upwards edges, i.e., |X| ≥ |Y | = s and |X| + |Y | = t. So t − s ≥ s, i.e., s ≤ t/2. For
convenience, let us assume that X = {f ′

1, . . . , f ′
t−s} and Y = {f ′

t−s+1, . . . , f ′
t}.

Our charging mechanism is as follows:
For each 1 ≤ i ≤ t − s, the “−1” in edge f ′

i will pay for all the +1’s in the segment ℓi.
For each 1 ≤ i ≤ s, the “−1” in f ′

i will also pay for all the +1’s in the segment ℓt−s+i

and moreover, for the +1’s in the edge f ′
t−s+i.

Since there are at most (k − 1) +1’s in any ℓj and at most two +1’s in any upwards edge, it
follows that the total number of +1’s that any “−1” pays for is at most 2(k − 1) + 2 = 2k.
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(2) ρ is an even length alternating path. So ρ has one endpoint that is unmatched in M .
There are two subcases here based on whether the unmatched endpoint is in A or in B.

Suppose the unmatched endpoint of ρ is in A. Recall that any vertex a ∈ A that is
unmatched in M is in the set An. Since ρ has even length, the final vertex in ρ is a
matched agent a′ ∈ Ai for some i ≤ n. Because there are no steep downwards edges, the
number of downwards edges in ρ is at least the number of upwards edges.
Thus the following crucial property – the number of downwards edges in ρ is at least the
number of upwards edges – used in case (1) holds in this subcase as well. Now the rest of
the argument that the total number of +1’s in ρ is at most 2k · (the number of −1’s in ρ)
is the same as given in case (1).
Suppose the unmatched endpoint of ρ is in B. Recall that any vertex b ∈ B that is
unmatched in M is in the set B1. Observe that any neighbor a of an unmatched b ∈ B

is in A1. This is because a never proposed along the subscript 1 edge corresponding to
(a, b) and this means that a is matched along a subscript 1 edge.
The other endpoint of ρ is a vertex b′ ∈ B that is matched in M . Thus the final vertex b′

is in Bi for some i ≥ 1 and its partner in M (call it a′) is in Ai. Hence the alternating
path ρ traverses from a′ ∈ Ai where i ≥ 1 to a ∈ A1. Since there are no steep downwards
edges, the crucial property that the number of downwards edges in ρ is at least the
number of upwards edges holds here as well. The rest of the argument that the total
number of +1’s in ρ is at most 2k · (the number of −1’s in ρ) is the same as in case (1).

For any maximum matching N , the symmetric difference M ⊕ N is a collection of
alternating cycles and alternating paths of even length. For any such alternating path or
alternating cycle ρ, we know that (the number of +1’s in ρ) ≤ 2k · (the number of −1’s in ρ).
Equivalently, ϕ(M ⊕ ρ, M) ≤ 2k · ϕ(M, M ⊕ ρ). Hence ϕ(N, M) ≤ 2k · ϕ(M, N). ◀

5 Conclusions and open problems

We showed that any bipartite graph G = (A ∪ B, E) where vertices in A have strict rankings
over their neighbors and vertices in B have weak rankings with ties of length at most k

admits a stable matching M with unpopularity factor at most k. So no matching N can win
more than k/(k + 1)-fraction of votes in a head-to-head election against M , where vertices
are voters. We showed a polynomial time algorithm to find such a matching M . It is easy to
show instances with one-sided ties of length at most k where every matching has unpopularity
factor at least k − 1. Thus our bound on unpopularity factor is almost tight.

An open problem is to extend the results shown here to two-sided ties of bounded length,
i.e., given an instance G = (A ∪ B, E) where all vertices are allowed to have weak rankings
with ties of length at most k, is there always a matching in G with unpopularity factor at
most k? Furthermore, is there always such a stable matching? Is it easy to find one?
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