
Geometry Meets Vectors: Approximation
Algorithms for Multidimensional Packing
Arindam Khan #

Department of Computer Science and Automation,
Indian Institute of Science, Bengaluru, India

Eklavya Sharma #

Department of Industrial & Enterprise Systems Engineering,
University of Illinois at Urbana-Champaign, IL, USA

K. V. N. Sreenivas #

Department of Computer Science and Automation,
Indian Institute of Science, Bengaluru, India

Abstract
We study the generalized multidimensional bin packing problem (GVBP) that generalizes both
geometric packing and vector packing. Here, we are given n rectangular items where the ith item
has width w(i), height h(i), and d nonnegative weights v1(i), v2(i), . . . , vd(i). Our goal is to get an
axis-parallel non-overlapping packing of the items into square bins so that for all j ∈ [d], the sum
of the jth weight of items in each bin is at most 1. This is a natural problem arising in logistics,
resource allocation, and scheduling. Despite being well-studied in practice, approximation algorithms
for this problem have rarely been explored.

We first obtain two simple algorithms for GVBP having asymptotic approximation ratios 6(d + 1)
and 3(1 + ln(d + 1) + ε). We then extend the Round-and-Approx (R&A) framework [3, 6] to
wider classes of algorithms, and show how it can be adapted to GVBP. Using more sophisticated
techniques, we obtain better approximation algorithms for GVBP, and we get further improvement
by combining them with the R&A framework. This gives us an asymptotic approximation ratio of
2(1 + ln((d + 4)/2)) + ε for GVBP, which improves to 2.919 + ε for the special case of d = 1. We
obtain further improvement when the items are allowed to be rotated. We also present algorithms
for a generalization of GVBP where the items are high dimensional cuboids.

2012 ACM Subject Classification Theory of computation → Packing and covering problems

Keywords and phrases Bin packing, rectangle packing, multidimensional packing, approximation
algorithms

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2022.23

Related Version arXiv Version: https://arxiv.org/abs/2106.13951

Funding Arindam Khan: Research partly supported by Pratiksha Trust Young Investigator Award,
Google India Research Award, and Google ExploreCS Award.

Acknowledgements We thank Nikhil Bansal, Thomas Rothvoss, and anonymous reviewers for their
helpful comments.

1 Introduction

Bin packing and knapsack problems are classical NP-hard optimization problems. Two
classical generalizations of these problems: geometric packing and vector packing have been
well-studied from the 1980s [14, 17]. Geometric packing considers the packing of rectangular
items, whereas, in vector packing items are multidimensional vectors. However, often in
practice, we encounter a mixture of geometric and vector constraints. Consider the following
airlines cargo problem [42]: We have boxes to load in an airline cargo container. In addition
to the geometric constraint that all the boxes must fit within the container, we also have a
constraint that the total weight of the loaded boxes is within a specified capacity. Thus, in
this problem, three dimensions are geometric and the weight is a vector constraint.

© Arindam Khan, Eklavya Sharma, and K. V. N. Sreenivas;
licensed under Creative Commons License CC-BY 4.0

42nd IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science
(FSTTCS 2022).
Editors: Anuj Dawar and Venkatesan Guruswami; Article No. 23; pp. 23:1–23:22

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:arindamkhan@iisc.ac.in
https://orcid.org/0000-0001-7505-1687
mailto:eklavya2@illinois.edu
https://orcid.org/0000-0003-1147-1476
mailto:venkatanaga@iisc.ac.in
https://doi.org/10.4230/LIPIcs.FSTTCS.2022.23
https://arxiv.org/abs/2106.13951
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

23:2 Algorithms for Multidimensional Packing

Weight has been an important constraint to consider for packing in logistics and supply
chain management, e.g., cranes and other equipment can be damaged by the bins being too
heavy [1]. When different cargoes are packed into a fleet of aircraft for transport, one needs
the individual cargoes to be not too heavy to ensure stability and less fuel consumption
[2]. Similar problems find applications in vehicle routing with loading constraints [8]. Many
practical heuristics [48, 50] have been proposed for such problems. Many companies (such as
Driw, Boxify, Freightcom) and practical packages [53] have considered the problem. Often,
we also want to limit other attributes, like the amount of magnetism, radioactivity, or toxicity.
Each such property can be considered an additional vector dimension.

Such multidimensional packing problems also get attention due to their connections with
fair resource allocation [43]. In recent years, a considerable amount of research has focused
on group fairness [31, 51] such that the algorithms are not biased towards (or against) some
groups or categories. One such notion of fairness is restricted dominance [7], which upper
bounds the number (or size) of items from a category. These different categories can be
considered as dimensions. E.g., in a container packing problem for flood relief, one needs to
ensure that the money spent on a container is fairly distributed among different types of
items (such as medicine, food, garments). Hence, for each category, there is an upper bound
on the value that can go into a container.

Formally, we are given n items I := {1, 2, . . . , n} that are (dg, dv)-dimensional, i.e., item
i is a dg-dimensional cuboid of lengths ℓ1(i), ℓ2(i), . . . , ℓdg

(i) and has dv non-negative weights
v1(i), v2(i), . . . , vdv (i). A (dg, dv)-dimensional bin is a dg-dimensional cuboid of length 1 in
each geometric dimension and weight capacity 1 in each of the dv vector dimensions. A
feasible packing of items into a bin is a packing where items are packed parallel to the axes
without overlapping, and for all j ∈ [dv], the sum of the jth vector dimension of the items in
the bin is at most 1 (see Definition 14 in Appendix A for a more formal definition of (dg,
dv) packing). In the (dg, dv) bin packing problem (BP), we have to feasibly pack all items
into the minimum number of bins. In the (dg, dv) knapsack problem (KS), each item i also
has an associated nonnegative profit p(i), and we have to feasibly pack a maximum-profit
subset of the items into a single bin (also called “knapsack”). (dg, dv) packing problems
generalize both dg-dimensional geometric packing (when dv = 0) and dv-dimensional vector
packing (when dg = 0). Already for vector bin packing, if dv is part of the input, there is
an approximation hardness of d1−ε

v , unless NP=ZPP [5]. Thus, throughout the paper we
assume both dg and dv to be constants.

1.1 Our Results
We study the first approximation algorithms for general (dg, dv) BP, with a focus on dg = 2.
We give two simple algorithms for (2, d) BP, called simplePack and betterSimplePack,
having asymptotic approximation ratios (AARs) of 6(d + 1) and 3(1 + ln(d + 1)) + ε,
respectively, for any ε > 0. Getting an AAR better than O(log d) for d-D VBP is NP-
hard [46], so betterSimplePack’s AAR as a function of d is tight up to a constant factor.
For d = 1, betterSimplePack’s AAR improves to ≈ 4.216 + ε.

Next, we modify the Round-and-Approx (R&A) framework [6] so that it works for (dg, dv)
BP. We combine R&A with the simplePack algorithm to get an AAR of 2(1+ln(3(d+1)))+ε

for (2, d) BP. This improves upon the AAR of betterSimplePack for d ≥ 3.
In Section 5, we obtain a more sophisticated algorithm for (2, d) BP, called cbPack, that

fits into the R&A framework and has an even better AAR. Table 1 lists the AARs of all our
algorithms for (2, d).

A. Khan, E. Sharma, and K. V. N. Sreenivas 23:3

Table 1 Asymptotic approximation ratios of our algorithms for (2, d) BP.

Algorithm AAR for (2, d) BP AAR for (2, 1) BP

simplePack 6(d + 1) 12

betterSimplePack 3(1 + ln(d + 1)) + ε 3(1 + ln(3
2)) + ε ≈ 4.216 + ε

simplePack with R&A 2(1 + ln(3(d + 1))) + ε 2(1 + ln 6) + ε ≈ 5.5835 + ε

cbPack with R&A (without rotation) 2(1 + ln(d+4
2)) + ε 2(1 + ln(19

12)) + ε ≈ 2.919 + ε

cbPack with R&A (with rotation) 2(1 + ln(d+3
2)) + ε 2(1 + ln(3

2)) + ε ≈ 2.811 + ε

We also show how to extend simplePack and betterSimplePack to (dg, dv) BP to obtain
AARs 2b(dv + 1) and b(1 + ln(dv + 1) + ε), respectively, where b := 9 when dg = 3, and
b := 4dg + 2dg when dg > 3. We also give a similar algorithm for (dg, dv) KS, having an
approximation ratio b(1 + ε).

1.2 Related Work
The bin packing problem (BP) has been the cornerstone of approximation algorithms [29].
The standard performance measure for BP algorithms is the asymptotic approximation ratio
(AAR). An asymptotic polynomial time approximation scheme (APTAS) for BP was given
by Fernandez de la Vega and Lueker [17], using linear grouping. Note that 1-D BP can be
considered as (1, 0) BP as well as (0, 1) BP. The present best approximation algorithm for
1-D BP returns a packing in at most opt +O(log opt) bins, where opt is the optimal number
of bins [25]. Knapsack problem (KS) is one of Karp’s 21 NP-complete problems. Lawler gave
an FPTAS [40] for KS. For surveys on BP and KS, see [13, 33].

In [17], a (d + ε)-asymptotic approximation algorithm was given for the d-dimensional
vector bin packing (d-D VBP). Chekuri and Khanna gave a ln d+O(1) approximation for d-D
VBP [11]. The study of 2-D geometric bin packing (2-D GBP) was initiated by [14]. Caprara
gave a T d−1

∞ -asymptotic approximation Harmonic-Decreasing-Height (HDH) algorithm for
d-D GBP [9], where T∞ ≈ 1.6901. This is still the best known approximation for d-D GBP
for d ≥ 3. Both 2-D GBP and 2-D VBP do not admit an APTAS [4, 52, 45]. For large d,
getting better than O(log d) asymptotic approximation for d-D VBP is NP-hard [46].

Bansal, Caprara, and Sviridenko [3] introduced the Round-and-Approx (R&A) framework
to obtain improved approximations for both 2-D GBP and d-D VBP. The R&A framework
is a two stage process. First, a (possibly exponential-sized) set covering LP relaxation
(called configuration LP) is solved approximately. Then, a randomized rounding procedure is
applied for a few steps to pack a subset of items, after which only a “small” fraction of items
(called the residual instance) remain unpacked. In the second step, the residual instance is
packed using a subset-oblivious algorithm. Intuitively, given a random subset S of I where
each element occurs with probability about 1/k, a ρ-approximate subset-oblivious algorithm
produces a packing of S in approximately ρ opt(I)/k bins. In the R&A framework, one can
obtain a (1+ln ρ)-approximation algorithm using a ρ-approximate subset oblivious algorithm.
Two algorithms, 1-D BP APTAS [17] and HDH [9] were shown to be subset-oblivious based
on various properties of dual-weighting functions. This led to an AAR of (1 + ln(1.69)) and
(1 + ln d) for 2-D GBP and d-D VBP, respectively. However, it was cumbersome to extend
subset-obliviousness to wider classes of algorithms.

Bansal and Khan [6] later extended the R&A framework for 2-D GBP to rounding-based
algorithms, where the large dimensions are rounded up to O(1) values and the packing of
items is container-based, i.e., each bin contains a constant number of rectangular regions

FSTTCS 2022

23:4 Algorithms for Multidimensional Packing

called containers and items are packed into containers. For 2-D GBP, they used an algorithm
with an AAR of 1.5 [27, 44] to obtain the present best AAR of (1 + ln 1.5) ≈ 1.405. For d-D
VBP, Bansal et al. [5] used the R&A framework combined with a multi-objective budgeted
matching problem, to obtain the present best AAR of (0.81 + od(1) + ln d).

Multidimensional knapsack is also well-studied. For d-D vector knapsack (d-D VKS),
Frieze and Clarke gave a PTAS [18]. For 2-D geometric knapsack (GKS), Jansen and
Zhang [28] gave a (2 + ε)-approximation algorithm, while the present best approximation
ratio is 17

9 + ε [20]. It is not even known whether 2-D GKS is APX-hard or not. There are
many other related important geometric packing problems, such as strip packing [21, 19]
and maximum independent set of rectangles [36, 22, 23]. For surveys on multidimensional
packing, see [12, 35].

1.3 Technical Contribution
One of our main contributions is the enhancement of R&A framework [6] to wider applications.

First, R&A framework now also works with (dg, dv)-dimensional items, unifying the
approach for geometric and vector packing. To use R&A, we need to solve the configuration
LP of the corresponding bin packing problem. All previous applications (d-D VBP and 2-D
GBP) of R&A solved the configuration LP within (1+ε) factor using a (1+O(ε))-approximate
solution to (a variant of) KS. Due to the unavailability of a PTAS for (a variant of) (2, d) KS,
we had to use a different linear programming algorithm [47] that uses an η-approximation
algorithm for KS to (1 + ε)η-approximately solve the configuration LP of the corresponding
BP problem, for any constants 1 < η, 0 < ε < 1.

Second, we introduce more freedom in choosing the packing structure. Unlike the R&A
framework in [6] that worked only for container-based packing, we allow either relaxing
the packing structure to non-container-based (like in simplePack) or imposing packing
constraints in addition to being container-based (like in cbPack). This generalization can
help in obtaining improved algorithms for other problems related to bin packing.

Finally, we allow rounding items in ways other than rounding up, if we can find a suitable
way of unrounding a packing of rounded items. In cbPack, we round down the width and
height of some items to 0, and in simplePack, we round each (2, d)-dimensional item i to
an item of width 1, height x and each vector dimension x, where x is a value depending on
the original dimensions of i. As shown in [35], if the large coordinates of items are rounded
up to O(1) types, we cannot get an AAR better than d and 4/3 for d-D VBP and 2-D GBP,
respectively. However, as we now allow rounding down, the R&A framework may now work
with algorithms having better AARs.

We also fix a minor error in the R&A framework of [35]. See Appendix C.1 for details.
In [3], it was mentioned: “One obstacle against the use of R&A for other problems is

the difficulty in deriving subset-oblivious algorithms (or proving that existing algorithms are
subset oblivious).” We expect that our progress will help in understanding the power of R&A
to extend it to other set-cover type problems, e.g. round-SAP [32] and round-UFP [16, 32].

Our another major contribution is handling of the (2, d) BP problem. This problem
presents additional challenges over pure geometric BP, and our algorithm cbPack demonstrates
how to circumvent them. For example, in geometric packing, items of low total area can
be packed into a small number of bins using the NFDH algorithm [14]. This need not be
true when items have weights, since the geometric dimensions can be small but the vector
dimensions may be large. To handle this, we divide the items into different classes based on
density (i.e., weight/area). We use the facts that items of low density and low total area can
be packed into a small number of bins, and items of high density that fit into a bin have low

A. Khan, E. Sharma, and K. V. N. Sreenivas 23:5

total area. Also, in geometric packing, we can sometimes move items with similar geometric
dimensions across different bins (like in linear grouping [17, 44]). Vector dimensions again
create problems here. To handle this, we only move items of similar geometric dimensions and
density. This leads to a more structured packing and we show how to find such a near-optimal
structured packing efficiently. Due to space limitations, we defer the description and analysis
of cbPack to Section 5 and the full version’s Appendix F [38].

2 Preliminaries and Notation

Let I be the set of all valid inputs to a minimization problem P. For any input I ∈ I, let
opt(I) be the cost of the optimal solution and |A(I)| be the cost of algorithm A’s output on
I. Define the approximation ratio ρA and the asymptotic approximation ratio (AAR) ρ∞

A as
ρA := supI∈I {|A(I)|/opt(I)}, and ρ∞

A := lim supz→∞ supI∈I

{
|A(I)|/opt(I)

∣∣∣ opt(I) = z
}

,
respectively. Intuitively, AAR is A’s performance for inputs with large opt.

Let [n] := {1, 2, . . . , n}. Let poly(n) be the set of polynomial and sub-polynomial functions
of n. Define vmax, vol, and span as follows: vmax(i) := maxdv

j=1 vj(i), vol(i) :=
∏dg

j=1 ℓj(i),
span(i) := max(vol(i), vmax(i)). span(i) is, intuitively, the measure of largeness of item
i ∈ [n]. For convenience, let v0(i) := vol(i). Assume w.l.o.g. that vol(i) = 0 implies
(∀j ∈ [dg], ℓj(i) = 0). For a set I of items, given a function f : I 7→ R, for S ⊆ I, define
f(S) :=

∑
i∈S f(i). This means, e.g., vol(S) :=

∑
i∈S vol(i). For any bin packing algorithm

A, let A(I) be the resulting bin packing of items I, and let |A(I)| be the number of bins in
A(I). Define opt(I) as the minimum number of bins needed to pack I. The following lemma
relates span with opt.

▶ Lemma 1. For (dg, dv) items I, ⌈span(I)⌉ ≤ (dv + 1) opt(I).

Proof. Let m = opt(I). In an optimal packing, let Jj be the items in the jth bin. Then

⌈span(I)⌉ =
⌈

m∑
k=1

∑
i∈Jk

dvmax
j=0

vj(i)
⌉

≤

⌈
m∑

k=1

dv∑
j=0

vj(Jk)
⌉

≤ (dv + 1)m. ◀

For dg = 2, let w(i) := ℓ1(i), h(i) := ℓ2(i) be the width and height of item i, respectively.
The area of item i is a(i) := w(i)h(i) = vol(i). The items in (2, 0) BP are called “rectangles”.

2.1 Configuration LP

For a (dg, dv) bin packing instance I containing n items, a configuration of I is a packing of
a subset of items of I into a bin. Let C be the set of all configurations of I. The configuration
matrix of I is a matrix A ∈ {0, 1}n×|C| where A[i, C] is 1 if configuration C contains item i

and 0 otherwise. To solve the bin packing problem, it is sufficient to decide the number of
bins of each configuration. This gives us the following linear programming relaxation, called
a configuration LP:

min
x∈R|C|

∑
C∈C

xC where Ax ≥ 1 and x ≥ 0.

Even though |C| can be exponential in n, any feasible solution x to the configuration LP may
have a polynomial-sized representation if the size of support(x) is polynomially bounded
in n.

FSTTCS 2022

23:6 Algorithms for Multidimensional Packing

3 Simple Algorithms

In this section, we look at simple algorithms for (2, d) BP. They are based on the following
simple corollary of Steinberg’s algorithm [49].

▶ Lemma 2 (Section 3 in [28]). Let I be a set of rectangles where a(I) ≤ 1. Then I can be
packed into 3 bins in O(n log2 n/ log log n) time.

Let I be a (2, d) BP instance. Let Î := {span(i) : i ∈ I}, i.e., Î is a 1-D BP instance. The
algorithm simplePack(I) first runs the Next-Fit algorithm [30] on Î. Let [Ĵ1, Ĵ2, . . . , Ĵm] be
the resulting bin packing of Î into m bins. For each Ĵj ⊆ Î, let Jj be the corresponding items
from I. Then ∀k ∈ [dv], vk(Jj) ≤ 1 and vol(Jj) ≤ 1. simplePack then uses the algorithm of
Lemma 2 to pack each Jj into at most 3 bins, giving a packing of I into at most 3m bins.
By the property of Next-Fit [30], we get that m ≤ ⌈2 size(Î)⌉ = ⌈2 span(I)⌉. By Lemma 1,
we get 3 ⌈2 span(I)⌉ ≤ 6(d + 1) opt(I). This gives us the following theorem.

▶ Theorem 3. For (2, d) BP, simplePack uses at most 3 ⌈2 span(I)⌉ bins, so it is a
6(d + 1)-approximation algorithm. It runs in O(nd + n log2 n/ log log n) time.

The algorithm betterSimplePack first computes Ĩ, which is a (d + 1)-D VBP instance
obtained by replacing the geometric dimensions of each item i ∈ I by a single vector dimension
a(i). It computes a bin packing of Ĩ using any algorithm A. It then uses the algorithm of
Lemma 2 to pack I into at most 3|A(Ĩ)| bins.

Note that opt(Ĩ) ≤ opt(I). If A has AAR α, then |A(Ĩ)| ≤ α opt(Ĩ) + O(1). Therefore,
betterSimplePack has AAR 3α. The (d + 1)-D VBP algorithm by [3] (parametrized
by a constant ε > 0) gives α = 1 + ln(d + 1) + ε and the algorithm by [5] gives α =
1.5 + ln((d + 2)/2) + ε (improves to α = 1 + ln(1.5) + ε for d = 1).

Similarly, we can get a 3(1 + ε)-approximation algorithm for (2, d) KS (see Appendix D
of the full version [38]).

Although simplePack’s AAR is worse than betterSimplePack, simplePack’s output
is upper-bounded in terms of span, which is a useful property. Hence, we will use it as a
subroutine in other algorithms (like cbPack).

The algorithms for (2, d) packing can be extended to (dg, dv) packing. We just need
an algorithm for the following problem: given a set J of dg-dimensional cuboids where
vol(J) ≤ 1, pack J into a small number of bins. We used Lemma 2 when dg = 2. When
dg = 3, we can use the algorithm of Diedrich et al. (Section 2 of [15]) to pack J into at
most 9 bins. For dg > 3, we can pack J into at most 4dg + 2dg bins using a variant of the
HDH4 algorithm [10] (see Appendix C of the full version [38]). Hence, simplePack will use
b ⌈2 span(I)⌉ bins, where b := 3 when dg = 2, b := 9 when dg = 3, and b := 4dg + 2dg when
dg > 3. Therefore, simplePack is 2b(dv + 1)-approximate. Similarly, betterSimplePack has
AAR b(1 + ln(dv + 1) + ε), and we can get a b(1 + ε)-approximation algorithm for (dg, dv)
KS.

4 Round-and-Approx Framework

We enhance the R&A framework as a general outline for designing approximation algorithms
for bin packing and its variants. We denote the algorithm for the R&A framework as
rnaPack(I, β, ε), which takes as input a set I of (dg, dv)-dimensional items and parameters
β ≥ 1 and ε ∈ (0, 1). The steps of the algorithm are as follows. (See Algorithm 1 in
Appendix C for a more formal description).

A. Khan, E. Sharma, and K. V. N. Sreenivas 23:7

1. Solve the Configuration LP of I: Let x̂ be a µ-asymptotic-approximate solution to
the configuration LP. Note that each index of x̂ corresponds to a configuration. In all
previous applications of R&A, µ = 1 + ε, but in our work, µ can be a large constant.

2. Randomized rounding of configuration LP: For T := ⌈(ln β)∥x̂∥1⌉ steps do the
following: select a configuration C with probability x̂C/∥x̂∥1. Pack T bins according
to each of these selected T configurations. Let S be the remaining items which are not
packed, called the residual instance.

3. Rounding of items: We define a subroutine round that takes items I and parameter
ε as input1. It discards a set D ⊆ I of items such that span(D) ≤ ε span(I) and then
modifies each item in I − D to get a set Ĩ of items. We say that the output of round(I, ε)
is (Ĩ , D), where items in Ĩ are called rounded items. Intuitively, after rounding, the items
in Ĩ are of O(1) types, which makes packing easier. Also, since span(D) is small, D ∩ S

can be packed into a small number of bins using simplePack.
We impose some restrictions on round, which we denote as conditions C1 and C2, which
we describe in Section 4.2. Previous versions of R&A only allowed modifications where
items’ dimensions were rounded up. We don’t have this restriction; we also allow rounding
down some dimensions. We also allow round to output a poly(n)-sized list of guesses for
(Ĩ , D).

4. Pack rounded items: Let S̃ be the rounded items corresponding to S \ D. Pack S̃ into
bins using any bin packing algorithm that satisfies “condition C3”, which we describe in
Section 4.3. Let us name this algorithm complexPack.

5. Unrounding: Given a bin packing of S̃, let unround be a subroutine that computes
a bin packing of S \ D. unround is trivial in previous versions of R&A, because they
only increase dimensions of items during rounding. In our applications, we may round
down items, so unround can be non-trivial. unround can be any algorithm that satisfies
“condition C4”, which we describe in Section 4.3.

We can think of the R&A framework as a meta-algorithm, i.e., we give it the algorithms
round, complexPack and unround as inputs and it outputs the algorithm rnaPack. The
R&A framework requires that round, complexPack and unround satisfy four conditions
C1, C2, C3, C4, which we describe in Sections 4.2 and 4.3. Prospective users of the R&A
framework need to design these three subroutines and prove that they satisfy these four
conditions.

Intuitively, rnaPack first packs some items into T bins by randomized rounding of x̂.
We can prove that Pr(i ∈ S) ≤ 1/β (using standard techniques from randomized rounding,
see Lemma 16 in Appendix C), so S contains a small fraction of the items in I. We will
then try to prove that if the rest of the algorithm (round + complexPack + unround) packs
I into m bins, then it will pack S into roughly m/β bins. This notion was referred to in [3]
as subset-obliviousness. We will use subset-obliviousness to bound the AAR of rnaPack.
Section 4.5 shows how to break simplePack into round, complexPack, and unround and use
it with R&A.

1 The input to round is I instead of S because S is random and we want to round items deterministically,
i.e., the rounding of each item i ∈ S should not depend on which other items from I lie in S. In fact,
this is where the old R&A framework [35] introduced an error. See Appendix C.1 for details.

FSTTCS 2022

23:8 Algorithms for Multidimensional Packing

4.1 Fractional Structured Packing
Let (Ĩ , D) be an output of round(I) and let X̃ be an arbitrary subset of Ĩ. Our analysis of
rnaPack is based around a concept called fractional structured packing of X̃. Note that the
notion of fractional structured packing only appears in the analysis of rnaPack. It is not
needed to describe any algorithm.

First, we discuss the notion of structured packing. Several types of packings are used in
bin packing algorithms, such as container-based [27], shelf-based [14, 10], guillotine-based [24],
corridor-based [20], N -box & V-box based [26], etc. A type of packing is called a structured
packing if it satisfies downward closure, i.e., a structured packing remains structured even
after removing some items from the packed bins. For example, Jansen and Prädel [27] showed
that given any packing of a 2-D GBP instance into m bins, we can slice some of the items and
repack them into (1.5 + ε)m + O(1) bins such that the resulting packing is container-based.
Container-based roughly means that in each bin, items are packed into rectangular regions
called containers, and containers’ heights and widths belong to a fixed set of O(1) values.
Hence, container-based is an example of a structured packing as a container-based packing
remains container-based even after removing some items from the packed bins. Also note
that the set of all possible packings is trivially a structured packing. Our R&A framework
gives algorithm designers the freedom to use or define structured packing in any way they
want, as long as they satisfy downward closure. Typically, the choice of the definition
of structured packing will depend on the ease of proving Conditions C2 and C3 for that
definition. This helped us go beyond Bansal and Khan’s R&A framework [6], which only
considered container-based packings.

Intuitively, a fractional structured packing is one where we slice each item of X̃ into
pieces and then find a structured packing of the pieces. Let fsopt(X̃) be the number of bins
in the optimal fractional structured packing of X̃. To analyze the AAR of rnaPack, we will
bound complexPack(S) in terms of fsopt(S̃), and then bound fsopt(S̃) in terms of opt(I).

To define fractional structured packing, we first define what it means to slice an item.
From a geometric perspective, slicing an item perpendicular to the kth dimension means
cutting the item into 2 parts using a hyperplane perpendicular to the kth axis. The vector
dimensions get split proportionately across the slices. E.g., for dg = 2, if k = 1 for item i,
then we slice i using a vertical cut, and if k = 2, we slice i using a horizontal cut.

▶ Definition 4 (Slicing an item). Let i be a (dg, dv)-dimensional item. Slicing i perpendicular
to geometric dimension k with proportionality α (where 0 < α < 1) is the operation of replacing
i by two items i1 and i2 such that: (i) ∀j ̸= k, ℓj(i) = ℓj(i1) = ℓj(i2), (ii) ℓk(i1) = αℓk(i)
and ℓk(i2) = (1 − α)ℓk(i), (iii) ∀j ∈ [dv], vj(i1) = αvj(i) and vj(i2) = (1 − α)vj(i).

▶ Definition 5 (Fractional packing). Let Ĩ be (dg, dv)-dimensional items, where for each
item i ∈ Ĩ, we are given a set X(i) of axes perpendicular to which we can repeatedly slice i

(X(i) can be empty, which would mean that the item cannot be sliced). If we slice items as
per their given axes and then pack the slices into bins, then the resulting packing is called a
fractional bin packing. (See Figure 1 for an example.)

4.2 Properties of round

▶ Definition 6. The density vector of a (dg, dv) item i is the vector
vspan := [v0(i)/span(i), v1(i)/span(i), . . . , vdv (i)/span(i)]. Recall that v0(i) := vol(i).

The subroutine round(I) returns a set of pairs of the form (Ĩ , D). Condition C1 is
defined as the following constraints over each pair (Ĩ , D):

A. Khan, E. Sharma, and K. V. N. Sreenivas 23:9

0.4 0.5

0.4

0.4

0.4

1 + 0.4

✂

0.5 0.5

Figure 1 Example of a fractional packing of two items into a bin.

C1.1. Small discard: D ⊆ I and span(D) ≤ ε span(I).
C1.2. Bijection from I − D to Ĩ: Each item in Ĩ is obtained by modifying an item in
I − D. Let π be the corresponding bijection from I − D to Ĩ.
C1.3. Homogeneity properties: round partitions items in Ĩ into a constant number of
classes: K̃1, K̃2, . . . , K̃q. These classes should satisfy the following properties, which we
call homogeneity properties:

All items in a class have the same density vector.
For each class K̃j , we decide the set X of axes perpendicular to which we can slice
items in K̃j . If items in a class K̃j are not allowed to be sliced perpendicular to
dimension k, then all items in that class have the same length along dimension k. (For
example, if dg = 2 and only vertical cuts are forbidden, then all items have the same
width. However, they can have different heights.)

C1.4. Bounded expansion: Let C be any configuration of I and K̃ be any one of the
constant number of classes of Ĩ. Let C̃ := {π(i) : i ∈ C − D}. Then we need to prove
that span(K̃ ∩ C̃) ≤ cmax for some constant cmax.

Intuitively, the homogeneity properties allow us to replace (a slice of) an item in a
fractional packing by slices of other items of the same class. Thus, while trying to get a
fractional packing, we can focus on the item classes, which are constant in number, instead
of focusing on the n items. Intuitively, bounded expansion (C1.4) ensures that we do not
round up items too much.

Condition C2 (also called structural theorem): For some constant ρ > 0 and for some
(Ĩ , D) ∈ round(I), fsopt(Ĩ) ≤ ρ opt(I) + O(1).

Intuitively, the structural theorem says that allowing slicing as per round and imposing a
structure on the packing does not increase the minimum number of bins by too much. We
will see that rnaPack’s AAR increases with ρ, so we want ρ to be small.

4.3 complexPack and unround

Condition C3: For some constant α > 0 and for any (Ĩ , D) ∈ round(I) and any X̃ ⊆ Ĩ,
complexPack(X̃) packs X̃ into at most α fsopt(X̃) + O(1) bins.
Condition C4: For some constant γ > 0, if complexPack(S̃) outputs a packing of S̃

into m bins, then unround converts that to a packing of S − D into γm + O(1) bins.

Intuitively, Condition C3 says that we can find a packing of the rounded items that is
close to the optimal fractional structured packing. Condition C4 says that unrounding does
not increase the number of bins by too much. We will see that rnaPack’s AAR increases
with α and γ, so we want α and γ to be small. If round only increases the dimensions of
items, then unrounding is trivial and γ = 1.

FSTTCS 2022

23:10 Algorithms for Multidimensional Packing

4.4 AAR of R&A
Recall that simplePack is a 2b(dv+1)-approximation algorithm for (dg, dv) BP (see Section 3).
Our key ingredient in the analysis of R&A is the following lemma. We give a very brief
outline of the proof here and defer the full proof to Appendix C.

▶ Lemma 7. Let S̃ be as computed by rnaPack(I, β, ε). Then with high probability, we get
fsopt(S̃) ≤ fsopt(Ĩ)/β + 2bµε opt(I) + O(1/ε2).

Proof sketch. Our proof of Lemma 7 is inspired by the analysis in [35]. We prove it by
analyzing the fractional structured configuration LP of Ĩ.

▶ Definition 8. Let (Ĩ , D) ∈ round(I). Suppose round partitioned Ĩ into classes K̃1, . . . K̃q.
Let Cf be the set of all structured configurations of items in Ĩ that allow items to be sliced
as per round. For any S̃ ⊆ Ĩ, the fractional structured configuration LP of S̃, denoted as
fsLP(S̃), is

min
x∈R

|Cf |
≥0

∑
C∈Cf

xC where
∑

C∈Cf

span(C ∩ K̃j)xC ≥ span(S̃ ∩ K̃j) ∀j ∈ [q]

The integer version of this program is called fsIP(S̃). The optimal objective values of fsLP(S̃)
and fsIP(S̃) are denoted as fsLP∗(S̃) and fsIP∗(S̃), respectively.

Intuitively, fsIP is the same as the structured fractional bin packing problem because of
the downward closure property and homogeneity, so fsIP∗(S̃) ≈ fsopt(S̃) (see Lemma 17 in
Appendix C for the proof). By homogeneity (C1.3), the number of constraints in this LP
is a constant q. So, by Rank Lemma2, we can show that | fsopt(S̃) − fsLP∗(S̃)| ∈ O(1) (see
Lemma 18 in Appendix C for the proof). Now to prove Lemma 7, roughly, we need to show
that fsLP∗(S̃) ⪅ fsLP∗(Ĩ)/β.

The RHS in the jth constraint of fsLP(S̃) is a random variable span(S̃ ∩ K̃j). The RHS
in the jth constraint of fsLP(Ĩ) is span(K̃j). Now using properties of randomized rounding,
one can show ∀i ∈ I, Pr(i ∈ S) ≤ 1/β. (see Lemma 16 in Appendix C for the proof). Using
this, we obtain E(span(S̃ ∩ K̃j)) ≤ span(K̃j)/β. In fact, we can harness the randomness of
S̃, the bounded expansion property (C1.4), and McDiarmid’s inequality [41] to show that
span(S̃ ∩ K̃j) ⪅ span(K̃j)/β. Therefore, if x∗ is an optimal solution to fsLP(Ĩ), then x∗/β

is roughly a solution to fsLP(S̃), which implies fsLP∗(S̃) ⪅ fsLP∗(Ĩ)/β (see Lemma 21 in
Appendix C for details). ◀

▶ Theorem 9. With high probability, the number of bins used by rnaPack(I, β, ε) is at most
((ln β)µ + (γαρ)/β + 2b(dv + 1 + γαµ)ε) opt(I) + O(1/ε2).

Proof sketch. (See Appendix C for full proof)
We use at most T ≤ (ln β)µ opt(I) + O(1) bins to pack I − S.
We use at most b ⌈2 span(D)⌉ ≤ 2b(dv +1)ε opt(I)+b bins to pack S∩D using simplePack.
S − D occupies at most γα fsopt(S̃) + O(1) ≤ γα (ρ/β + 2bµε) opt(I) + O(1/ε2) bins by
Lemma 7 and Conditions C2, C3, and C4. ◀

Thus, the AAR of rnaPack(I) is roughly µ ln β+γαρ/β. This is minimized for β = γαρ/µ

and the minimum value is µ (1 + ln (αγρ/µ)). As we require β ≥ 1, we get this AAR only
when γαρ ≥ µ. If µ ≥ γαρ, the optimal β is 1 and the AAR is roughly γαρ.

2 Rank Lemma: the number of non-zero variables in an extreme point of the set {x : Ax ≥ b, x ≥ 0} is at
most rank(A). See Lemma 2.1.4 in [39].

A. Khan, E. Sharma, and K. V. N. Sreenivas 23:11

4.5 Example: simplePack

We will show how to use simplePack with the R&A framework. Recall that simplePack
is a 2b(dv + 1)-approximation algorithm for (dg, dv) BP (see Section 3). Using the R&A
framework on simplePack will improve its AAR from 2b(dv +1) to b(1+ln(2(dv +1)))+O(ε).
To do this, we need to show how to implement round, complexPack, and unround.

1. solveConfigLP(I): Using the (dg, dv) KS algorithm of Section 3 and the LP algorithm
of [47], we get a b(1 + ε)-approximate solution to configLP(I). Therefore, µ = b(1 + ε).

2. round(I): returns just one pair: (Ĩ , {}), where Ĩ := {π(i) : i ∈ I} and π(i) is an
item having height (i.e., dth

g geometric dimension) equal to span(i), all other geometric
dimensions equal to 1, and all vector dimensions equal to span(i). There is just one class
in Ĩ, and we allow all items to be sliced perpendicular to the height, so the homogeneity
properties are satisfied. Also, cmax = dv + 1 by Lemma 1 (since for any configuration C,
we have span(π(C)) = span(C) ≤ (dv + 1) opt(C) = dv + 1).

3. Structural theorem: We take structured packing to be the set of all possible packings.
We can treat Ĩ as the 1-D instance {span(i) : i ∈ I}, so fsopt(Ĩ) = ⌈span(I)⌉ ≤
(dv + 1) opt(I), where the inequality follows from Lemma 1. So, ρ = dv + 1.

4. complexPack(S̃): We can treat S̃ as the 1-D instance {span(i) : i ∈ S} and pack it using
Next-Fit [30]. Hence, | complexPack(S̃)| ≤ ⌈2 span(S)⌉ ≤ 2 ⌈span(S)⌉ = 2 fsopt(S̃). So,
α = 2.

5. unround(J̃): We are given a packing J̃ of items S̃. For each bin in J̃ , we can pack the
corresponding unrounded items into b bins. Therefore, γ = b.

Hence, we get an AAR of µ(1 + ln(γαρ/µ)) + O(ε) ≈ b(1 + ln(2(dv + 1))) + O(ε).
For dg = 2, we can slightly improve the AAR by using the (2+ε)-approximation algorithm

of [37] for (2, dv) KS. This gives us an AAR of 2(1 + ln(3(dv + 1))) + O(ε). This is better
than the AAR of betterSimplePack for dv ≥ 3.

The above example is presented only to illustrate an easy use of the R&A framework.
It doesn’t exploit the full power of the R&A framework. The algorithm cbPack, which we
describe in Section 5, uses more sophisticated subroutines round, complexPack and unround,
and uses a more intricate definition of fractional structured packing to get an even better
AAR of 2(1 + ln(d+4

2)) + ε (improves to 2(1 + ln(19/12)) + ε ≈ 2.919 + ε for d = 1).

5 Improved Approximation Algorithms

In this section, we give an overview of the cbPack algorithm for (2, d) BP, which is inspired
from the 1.5 asymptotic approximation algorithm for 2-D GBP [44]. cbPack is based on the
following two-step procedure, as is common in many packing algorithms.

In the first step (structural step, Appendices F.1–F.5 and F.7 in [38]), we show the
existence of a good structured solution. Formally, we show that if items I can be packed into
m bins, then we can round I to get a new instance Ĩ such that fsopt(Ĩ) ≤ ρm + O(1) for
some constant ρ, where fsopt(Ĩ) is the number of bins in the optimal structured fractional
packing of I. Roughly, the notion of structured packing that we use here, which we call
compartmental packing, imposes the following additional constraints over the container-based
packing of [44]: (i) An item i is called dense iff vmax(i)/a(i) is above a certain threshold. If
a bin contains dense items, then we reserve a sufficiently-large rectangular region exclusively
for them. (ii) For a constant ε, for every j ∈ [d], the sum of vj of items in each bin is at
most 1 − ε. The proof of our structural result differs significantly from that of [44] because
the presence of vector dimensions inhibit a straightforward application of their techniques.

FSTTCS 2022

23:12 Algorithms for Multidimensional Packing

In the second step (algorithmic step), we show how to find a near-optimal structured
solution. cbPack first rounds I to Ĩ and then uses brute-force and LP to pack the items
into containers, similar to [44] or [34]. Then we convert that packing to a non-fractional
packing of I with only a tiny increase in the number of bins (see Appendix F.8 of [38] for
the algorithmic step).

Then we show that cbPack fits into the R&A framework (i.e., components from cbPack
can be used as round, complexPack and unround) and gives an AAR of roughly 2(1+ln(ρ/2)).
To (approximately) solve the configuration LP, we use the LP algorithm from [47] and the
(2 + ε)-approximation algorithm for (2, d) KS from [37] (see Appendix F.9 of [38] for the
details of fitting cbPack into the R&A framework).

5.1 Overview of Structural Result
We now give a brief overview of some key ideas used in our structural result. Due to space
limitations, the details of the structural result and the algorithm can be found in Appendix F
of [38]. Like [44], we start with a packing of input I into m bins, and transform it into a
structured fractional packing of Ĩ into ρm + O(1) bins. To do this, just like many other
papers on packing, we first classify the items into different classes based on their geometric
and vector dimensions, and densities as follows. First, we identify two constants (which
depend on ε) ε1, ε2 ∈ (0, 1) such that ε1 > ε2 and the set of medium items defined as

Imed :=

i ∈ I : w(i) ∈ (ε2, ε1] ∨ h(i) ∈ (ε2, ε1] ∨

 d∨
j=1

vj(i) ∈ (ε2, ε1]


has a very small span, i.e., span(Imed) ≤ ε span(I). Hence, we can treat the items in Imed
separately as they can be packed in a very small number of bins. Also, ε1, ε2 satisfy that
ε2 ≤ ε2

1ε/2. Informally, ε2 is very small when compared to ε1. Hence, every item in I\Imed
has the property that both width and height are big (> ε1) or both width and height are
small (≤ ε2) or it is skewed. Based on ε1, ε2, we classify every item i ∈ I\Imed as follows.
First, we classify by geometric dimensions as follows.

Big item: w(i) > ε1 and h(i) > ε1.
Wide item: w(i) > ε1 and h(i) ≤ ε2.
Tall item: w(i) ≤ ε2 and h(i) > ε1.
Small item: w(i) ≤ ε2 and h(i) ≤ ε2.

Then, we perform another classification depending on vector dimensions.

▶ Definition 10 (Dense items). Item i is dense iff either a(i) = 0 or vmax(i)/a(i) > 1/ε2
1.

▶ Definition 11 (Heavy and light items). A dense item i is said to be heavy in vector
dimension j iff vj(i) ≥ ε1. Otherwise i is said to be light in dimension j. If i is heavy in
some dimension, then i is said to be heavy, otherwise i is light.

More formal details of this classification are provided in Appendix F.1 of [38].
Then, the structural result is obtained in three steps:

(i) In the first step, we round up one geometric dimension of each item and pack the items
into roughly ρm + O(1) bins. We call these bins quarter-structured (see Appendices F.2
and F.3 of [38]).

(ii) In the second step, we round the remaining dimensions of items and partition them
into classes such that they satisfy the homogeneity properties (see Section 4.2). We
allow slicing and repack the items into almost the same number of bins. We call the
resulting bin packing semi-structured (see Appendices F.4 and F.5 of [38]).

A. Khan, E. Sharma, and K. V. N. Sreenivas 23:13

(iii) In the third and final step, we transform the packing into a compartmental packing (see
Appendices F.6 and F.7 of [38]). Compartmental packings have nice properties which
help us find them efficiently. Roughly, a compartmental packing is a semi-structured
packing that is also container-based. This step is very similar to [44].

In steps (i), (ii) and (iii), [44] uses the Next-Fit-Decreasing-Height (NFDH) algorithm [14]
to pack items of O(εm) area into O(εm) bins. This does not work when vector dimensions are
present as an item of low area can have large weights. In step (ii), [44] uses linear grouping,
i.e., each item is moved in place of a geometrically larger item so that it can be rounded
up. Vector dimensions make such cross-bin movement difficult, since that can violate bins’
weight capacities. [44] uses cross-bin movement in step (i) too.

We first observe that most difficulties associated with vector dimensions disappear if
items’ density is upper-bounded by a constant. Density of item i is defined as vmax(i)/a(i).
Specifically, if items of bounded density (we call them non-dense items) have small area,
then simplePack can pack them into a small number of bins. Linear grouping can also be
made to work for such items with some more effort. Hence, we segregate items as dense
and non-dense. We reserve a thin rectangular region in bins for dense items, and the rest is
reserved for non-dense items.

Furthermore, dense items in a bin must have low total area, due to their high density.
If we reserve enough space for them in the bin, we can always pack them in their reserved
region using NFDH (see Lemma 15 in Appendix B). Such a guarantee means that we can
essentially ignore their geometric dimensions and simply treat them as vectors.

In step (ii), we want to round up vector dimensions with only a marginal increase in
the number of bins. To do this, we require each quarter-structured bin to be ε-slacked.
ε-slackness roughly means that for a set J of items in a bin, ∀j ∈ [d], vj(J) ≤ 1 − ε (see
Appendix F.3 of [38] for a formal description). ε-slackness also helps us use existing algorithms
for resource-augmented vector bin packing as subroutines. Also, during the rounding step,
we round down the weight of some dense items, and ε-slackness allows us to unround with
no increase in the number of bins.

The observations above guide our definition of quarter-structured. Roughly, a packing is
quarter-structured if items having large width have their width and x-coordinate rounded to
a multiple of ε2

1/4 and each bin is ε-slacked. We reserve a thin rectangular region of width
ε1/2 for packing dense items (only if the bin contains dense items).

In step (i), [44] uses a standard cutting-strip argument: They create a strip of width ε1
next to an edge of the bin (see Figure 2). Items completely inside the strip (called dark
items), have small area and are packed separately using NFDH. Items intersecting the strip’s
boundary (called shaded items) are removed. This creates an empty space of width ε1 in
the bin. Using this empty space, items outside the strip (called dotted items) can then have
their width and x-coordinate rounded to a multiple of ε2

1/2. Their key idea is how to pair up
most bins so that shaded items from two bins can be rounded and packed together into a
new bin. This is roughly why they get an AAR of 1.5 + ε.

We use the cutting-strip argument too, but with some differences. We cannot freely mix
shaded items from different bins if they have large weight, and we cannot simply pack dark
items into a small number of bins. We also need bins to be slacked. So, we get a larger AAR
of d + 4 + ε. For d = 1, however, we allow mixing items using more sophisticated techniques,
which improves the AAR to 19/6 + ε. Also, we round dotted items to a multiple of ε2

1/4
instead of ε2

1/2, which leaves an empty strip of width ε1/2 in the bin even after rounding,
and we reserve this space for dense items. This gives us a quarter-structured packing.

FSTTCS 2022

23:14 Algorithms for Multidimensional Packing

ε

Figure 2 Example of classifying items as dark, shaded and dotted based on an ε-strip.

Based on the broad ideas above, we make more changes to the quarter-structured packing
to get a compartmental packing. Finally, in the algorithmic step, we use a combination of
brute-force and LP to pack items into compartments and efficiently find a good compartmental
packing. An overview is given in the section below.

5.2 Overview of the Algorithmic Step
Note that in any bin, the number of big items and heavy items can be at most a constant in
number. The nice structure obtained in the structural step has the property that in each
bin there are constant number of compartments in which all the light items (which are not
big) are packed. With these arguments, in any bin of this nice structure, the number of big
items, heavy items, and compartments is constant in number. Moreover, the sizes of the
compartments also belong to a polynomial sized set. There are other things to be considered
(e.g., the slack type of the bin), but one of the main implications of the structural result is
that the number of possible configurations of each bin is at most a constant. Also, note that
the number of bins itself is bounded by the number of items n. Thus, in polynomial time (by
brute force), we can guess the number of bins in the nice structure, and the configuration of
each bin (for full details, see Appendix F.8.1 of [38]).

Once the configurations have been guessed, we are left with the task of packing the wide,
tall, small, and light items in the compartments. First, as an intermediate step, we obtain a
fractional packing of these items into the compartments by solving a linear program (if the
linear program is infeasible, we realize that our guess of the bin configurations is incorrect).
See Appendix F.8.2 of [38] for the details of the linear program. The main purpose of solving
the linear program (if it turns out to be feasible) is to further divide compartments into
what are called containers (see Appendix F.8.3 of [38]). Finally, the wide, tall, small, and
light items are non-fractionally packed into the containers greedily. There can be some items
which can’t be packed by our greedy strategy, but we can prove that their span is so small
that we can pack them using very few extra bins. See Appendices F.8.5, F.8.6, and F.8.6 of
[38] for the details of packing the wide, tall, small, and light items.

In Theorem 66 of Appendix F.8.7 of [38], we compute the approximation factor of this
algorithm:

▶ Theorem 12. For general d, when rotations are forbidden, the above algorithm packs the
input set I into at most

(1 + 23ε)(d + 4) opt(I) + Oε(1)

number of bins. Here Oε(1) hides a constant that depends on ε.

In the special case of d = 1, we obtain a better approximation ratio.

A. Khan, E. Sharma, and K. V. N. Sreenivas 23:15

▶ Theorem 13. If d = 1 and rotations are forbidden, we can pack the input set I into at
most

(1 + 23ε)
(

3 + 1
6 + ε

1 − ε

)
opt(I) + Oε(1)

number of bins. Here Oε(1) hides a constant that depends on ε.

Using similar techniques, we can design an algorithm for the case with rotations too.
Using the Round&Approx framework on top of this algorithm, and scaling ε appropriately,
we get the following approximation ratios.

For general d, with no rotations, we get an approximation ratio of 2
(
1 + ln

(
d+4

2
))

+ ε.
When d = 1 and rotations are forbidden, we get an approximation ratio of ≈ 2.919 + ε.
For general d, with rotations allowed, we get an approximation ratio of 2

(
1 + ln

(
d+3

2
))

+ε.
When d = 1 and rotations are allowed, we get an approximation ratio of ≈ 2.811 + ε.

References
1 M. T. Alonso, R. Alvarez-Valdes, Manuel Iori, F. Parreño, and J. M. Tamarit. Mathematical

models for multicontainer loading problems. Omega, 66:106–117, 2017. doi:10.1016/j.omega.
2016.02.002.

2 Samir V. Amiouny, John J. Bartholdi III, John H. Vande Vate, and Jixian Zhang. Balanced
loading. Operations Research, 40(2):238–246, 1992. doi:10.1287/opre.40.2.238.

3 Nikhil Bansal, Alberto Caprara, and Maxim Sviridenko. A new approximation method for
set covering problems, with applications to multidimensional bin packing. SIAM Journal on
Computing, 39(4):1256–1278, 2009. doi:10.1137/080736831.

4 Nikhil Bansal, Jose R. Correa, Claire Kenyon, and Maxim Sviridenko. Bin packing in multiple
dimensions: inapproximability results and approximation schemes. Mathematics of Operations
Research, 31:31–49, 2006. doi:10.1287/moor.1050.0168.

5 Nikhil Bansal, Marek Eliáš, and Arindam Khan. Improved approximation for vector bin
packing. In ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 1561–1579. SIAM,
2016. doi:10.1137/1.9781611974331.ch106.

6 Nikhil Bansal and Arindam Khan. Improved approximation algorithm for two-dimensional
bin packing. In SODA, pages 13–25, 2014. doi:10.1137/1.9781611973402.2.

7 Suman Kalyan Bera, Deeparnab Chakrabarty, Nicolas Flores, and Maryam Negahbani. Fair
algorithms for clustering. In Conference on Neural Information Processing Systems (NeurIPS),
pages 4955–4966, 2019.

8 Andreas Bortfeldt and Gerhard Wäscher. Constraints in container loading–a state-of-the-art
review. European Journal of Operational Research, 229(1):1–20, 2013. doi:10.1016/j.ejor.
2012.12.006.

9 Alberto Caprara. Packing 2-dimensional bins in harmony. In FOCS, pages 490–499, 2002.
doi:10.1109/SFCS.2002.1181973.

10 Alberto Caprara. Packing d-dimensional bins in d stages. Mathematics of Operations Research,
33:203–215, 2008. doi:10.1287/moor.1070.0289.

11 Chandra Chekuri and Sanjeev Khanna. On multidimensional packing problems. SIAM journal
on computing, 33(4):837–851, 2004. doi:10.1137/S0097539799356265.

12 Henrik I. Christensen, Arindam Khan, Sebastian Pokutta, and Prasad Tetali. Approximation
and online algorithms for multidimensional bin packing: A survey. Computer Science Review,
24:63–79, 2017. doi:10.1016/j.cosrev.2016.12.001.

13 Edward G. Coffman, János Csirik, Gábor Galambos, Silvano Martello, and Daniele Vigo. Bin
packing approximation algorithms: Survey and classification. In Handbook of combinatorial
optimization, pages 455–531. Springer New York, 2013. doi:10.1007/978-1-4419-7997-1_35.

14 Edward G. Coffman, Michael R. Garey, David S. Johnson, and Robert E. Tarjan. Performance
bounds for level-oriented two-dimensional packing algorithms. SIAM Journal on Computing,
9:808–826, 1980. doi:10.1137/0209062.

FSTTCS 2022

https://doi.org/10.1016/j.omega.2016.02.002
https://doi.org/10.1016/j.omega.2016.02.002
https://doi.org/10.1287/opre.40.2.238
https://doi.org/10.1137/080736831
https://doi.org/10.1287/moor.1050.0168
https://doi.org/10.1137/1.9781611974331.ch106
https://doi.org/10.1137/1.9781611973402.2
https://doi.org/10.1016/j.ejor.2012.12.006
https://doi.org/10.1016/j.ejor.2012.12.006
https://doi.org/10.1109/SFCS.2002.1181973
https://doi.org/10.1287/moor.1070.0289
https://doi.org/10.1137/S0097539799356265
https://doi.org/10.1016/j.cosrev.2016.12.001
https://doi.org/10.1007/978-1-4419-7997-1_35
https://doi.org/10.1137/0209062

23:16 Algorithms for Multidimensional Packing

15 Florian Diedrich, Rolf Harren, Klaus Jansen, Ralf Thöle, and Henning Thomas. Approximation
algorithms for 3D orthogonal knapsack. Journal of Computer Science and Technology, 23(5):749,
2008. doi:10.1007/s11390-008-9170-7.

16 Khaled M. Elbassioni, Naveen Garg, Divya Gupta, Amit Kumar, Vishal Narula, and Arindam
Pal. Approximation algorithms for the unsplittable flow problem on paths and trees. In
FSTTCS, volume 18 of Leibniz International Proceedings in Informatics (LIPIcs), pages
267–275, 2012. doi:10.4230/LIPIcs.FSTTCS.2012.267.

17 Wenceslas Fernandez de la Vega and George S. Lueker. Bin packing can be solved within 1 + ε

in linear time. Combinatorica, 1:349–355, 1981. doi:10.1007/BF02579456.
18 A. M. Frieze and M. R. B. Clarke. Approximation algorithms for the m-dimensional 0-1

knapsack problem: worst-case and probabilistic analyses. EJOR, 15:100–109, 1984.
19 Waldo Gálvez, Fabrizio Grandoni, Afrouz Jabal Ameli, Klaus Jansen, Arindam Khan,

and Malin Rau. A tight (3/2+ε) approximation for skewed strip packing. In
Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques
(APPROX/RANDOM 2020). Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 2020. doi:
10.4230/LIPIcs.APPROX/RANDOM.2020.44.

20 Waldo Gálvez, Fabrizio Grandoni, Sandy Heydrich, Salvatore Ingala, Arindam Khan, and
Andreas Wiese. Approximating geometric knapsack via L-packings. In 2017 IEEE 58th
Annual Symposium on Foundations of Computer Science (FOCS), pages 260–271. IEEE,
2017. Full version available at http://www.dii.uchile.cl/~awiese/2DK_full_version.pdf.
doi:10.1109/FOCS.2017.32.

21 Waldo Gálvez, Fabrizio Grandoni, Salvatore Ingala, and Arindam Khan. Improved pseudo-
polynomial-time approximation for strip packing. In FSTTCS, pages 9:1–9:14, 2016. doi:
10.4230/LIPIcs.FSTTCS.2016.9.

22 Waldo Gálvez, Arindam Khan, Mathieu Mari, Tobias Mömke, Madhusudhan Reddy Pittu,
and Andreas Wiese. A 3-approximation algorithm for maximum independent set of rectangles.
In ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 894–905. SIAM, 2022.
doi:10.1137/1.9781611977073.38.

23 Waldo Gálvez, Arindam Khan, Mathieu Mari, Tobias Mömke, Madhusudhan Reddy, and
Andreas Wiese. A (2+ε)-approximation algorithm for maximum independent set of rectangles,
2021. arXiv:2106.00623.

24 Paul C Gilmore and Ralph E Gomory. Multistage cutting stock problems of two and more
dimensions. Operations research, 13(1):94–120, 1965. doi:10.1287/opre.13.1.94.

25 Rebecca Hoberg and Thomas Rothvoss. A logarithmic additive integrality gap for bin packing.
In SODA, pages 2616–2625, 2017. doi:10.1137/1.9781611974782.172.

26 Klaus Jansen, Arindam Khan, Marvin Lira, and K. V. N. Sreenivas. A PTAS for packing
hypercubes into a knapsack. In 49th International Colloquium on Automata, Languages, and
Programming, ICALP, volume 229 of LIPIcs, pages 78:1–78:20, 2022.

27 Klaus Jansen and Lars Prädel. New approximability results for two-dimensional bin packing.
Algorithmica, 74(1):208–269, 2016. doi:10.1007/s00453-014-9943-z.

28 Klaus Jansen and Guochuan Zhang. On rectangle packing: maximizing benefits. In SODA,
pages 204–213, 2004.

29 D. S. Johnson. Approximation algorithms for combinatorial problems. In STOC, pages 38–49,
1973.

30 David S Johnson. Near-Optimal Bin Packing Algorithms. PhD thesis, Massachusetts Institute
of Technology, USA, 1973.

31 Matthew Joseph, Michael J. Kearns, Jamie H. Morgenstern, and Aaron Roth. Fairness in
learning: Classic and contextual bandits. In NeurIPS, pages 325–333, 2016.

32 Debajyoti Kar, Arindam Khan, and Andreas Wiese. Approximation algorithms for round-ufp
and round-sap, 2022. doi:10.48550/ARXIV.2202.03492.

33 Hans Kellerer, Ulrich Pferschy, and David Pisinger. Knapsack problems. Springer, 2004.

https://doi.org/10.1007/s11390-008-9170-7
https://doi.org/10.4230/LIPIcs.FSTTCS.2012.267
https://doi.org/10.1007/BF02579456
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2020.44
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2020.44
http://www.dii.uchile.cl/~awiese/2DK_full_version.pdf
https://doi.org/10.1109/FOCS.2017.32
https://doi.org/10.4230/LIPIcs.FSTTCS.2016.9
https://doi.org/10.4230/LIPIcs.FSTTCS.2016.9
https://doi.org/10.1137/1.9781611977073.38
http://arxiv.org/abs/2106.00623
https://doi.org/10.1287/opre.13.1.94
https://doi.org/10.1137/1.9781611974782.172
https://doi.org/10.1007/s00453-014-9943-z
https://doi.org/10.48550/ARXIV.2202.03492

A. Khan, E. Sharma, and K. V. N. Sreenivas 23:17

34 Claire Kenyon and Eric Rémila. Approximate strip packing. In 37th Annual Symposium on
Foundations of Computer Science, FOCS ’96, Burlington, Vermont, USA, 14-16 October,
1996, pages 31–36, 1996. doi:10.1109/SFCS.1996.548461.

35 Arindam Khan. Approximation algorithms for multidimensional bin packing. PhD thesis,
Georgia Institute of Technology, Atlanta, GA, USA, 2016.

36 Arindam Khan and Madhusudhan Reddy Pittu. On guillotine separability of squares and
rectangles. In Approximation, Randomization, and Combinatorial Optimization. Algorithms
and Techniques (APPROX/RANDOM 2020). Schloss Dagstuhl-Leibniz-Zentrum für Informatik,
2020. doi:10.4230/LIPIcs.APPROX/RANDOM.2020.47.

37 Arindam Khan, Eklavya Sharma, and K. V. N. Sreenivas. Approximation algorithms for
generalized multidimensional knapsack, 2021. arXiv:2102.05854.

38 Arindam Khan, Eklavya Sharma, and K. V. N. Sreenvas. Geometry meets vectors:
Approximation algorithms for multidimensional packing, 2021. arXiv:2106.13951v1.

39 Lap Chi Lau, Ramamoorthi Ravi, and Mohit Singh. Iterative methods in combinatorial
optimization, volume 46. Cambridge University Press, 2011.

40 Eugene L Lawler. Fast approximation algorithms for knapsack problems. Mathematics of
Operations Research, 4(4):339–356, 1979. doi:10.1287/moor.4.4.339.

41 Colin McDiarmid. On the method of bounded differences. Surveys in combinatorics, 141(1):148–
188, 1989.

42 Célia Paquay, Michael Schyns, and Sabine Limbourg. A mixed integer programming
formulation for the three-dimensional bin packing problem deriving from an air cargo
application. International Transactions in Operational Research, 23(1-2):187–213, 2016.
doi:10.1111/itor.12111.

43 Deval Patel, Arindam Khan, and Anand Louis. Group fairness for knapsack problems. In
International Conference on Autonomous Agents and MultiAgent Systems (AAMAS), pages
1001–1009, 2021.

44 Lars Dennis Prädel. Approximation Algorithms for Geometric Packing Problems. PhD thesis,
Kiel University, 2012. URL: https://macau.uni-kiel.de/servlets/MCRFileNodeServlet/
dissertation_derivate_00004634/dissertation-praedel.pdf?AC=N.

45 Arka Ray. There is no APTAS for 2-dimensional vector bin packing: Revisited, 2021.
arXiv:2104.13362.

46 Sai Sandeep. Almost optimal inapproximability of multidimensional packing problems. In
Symposium on Foundations of Computer Science (FOCS), pages 245–256, 2022. doi:10.1109/
FOCS52979.2021.00033.

47 Eklavya Sharma. An approximation algorithm for covering linear programs and its application
to bin-packing, 2020. arXiv:2011.11268.

48 Knut Olav Brathaug Sørset. A heuristic approach to the three-dimensional bin packing
problem with weight constraints. Master’s thesis, Høgskolen i Molde-Vitenskapelig høgskole i
logistikk, 2019.

49 A. Steinberg. A strip-packing algorithm with absolute performance bound 2. SIAM Journal
on Computing, 26(2):401–409, 1997. doi:10.1137/S0097539793255801.

50 Gregory S. Taylor, Yupo Chan, and Ghulam Rasool. A three-dimensional bin-packing model:
exact multicriteria solution and computational complexity. Annals of Operations Research,
251(1-2):397–427, 2017. doi:10.1007/s10479-015-2048-5.

51 Alan Tsang, Bryan Wilder, Eric Rice, Milind Tambe, and Yair Zick. Group-fairness in influence
maximization. In IJCAI, pages 5997–6005, 2019.

52 Gerhard J. Woeginger. There is no asymptotic PTAS for two-dimensional vector packing. Inf.
Process. Lett., 64(6):293–297, 1997. doi:10.1016/S0020-0190(97)00179-8.

53 Guang Yang. gbp: a bin packing problem solver, 2017. R package version 0.1.0.4. URL:
https://CRAN.R-project.org/package=gbp.

FSTTCS 2022

https://doi.org/10.1109/SFCS.1996.548461
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2020.47
http://arxiv.org/abs/2102.05854
http://arxiv.org/abs/2106.13951v1
https://doi.org/10.1287/moor.4.4.339
https://doi.org/10.1111/itor.12111
https://macau.uni-kiel.de/servlets/MCRFileNodeServlet/dissertation_derivate_00004634/dissertation-praedel.pdf?AC=N
https://macau.uni-kiel.de/servlets/MCRFileNodeServlet/dissertation_derivate_00004634/dissertation-praedel.pdf?AC=N
http://arxiv.org/abs/2104.13362
https://doi.org/10.1109/FOCS52979.2021.00033
https://doi.org/10.1109/FOCS52979.2021.00033
http://arxiv.org/abs/2011.11268
https://doi.org/10.1137/S0097539793255801
https://doi.org/10.1007/s10479-015-2048-5
https://doi.org/10.1016/S0020-0190(97)00179-8
https://CRAN.R-project.org/package=gbp

23:18 Algorithms for Multidimensional Packing

A Formal Definition of (dg, dv) Packing

▶ Definition 14. A valid packing of (dg, dv)-dimensional items into a (dg, dv)-dimensional
bin is an arrangement of the items in the bin such that all of the following hold:
1. All items are packed in an axis parallel manner, i.e., each item has its faces parallel to

the faces of the bin. Formally, to pack item i into a bin, we need to decide its position
(x1(i), x2(i), . . . , xdg (i)) in the bin, and the item will be packed in the cuboidal region∏dg

j=1[xj(i), xj(i) + ℓj(i)].
2. The items are non-overlapping, i.e., the interiors of any two items do not intersect.

Formally, for any two items i1 and i2 in the same bin, the sets
∏dg

j=1(xj(i1), xj(i1)+ℓj(i1))
and

∏dg

j=1(xj(i2), xj(i2) + ℓj(i2)) do not intersect.
3. All items are packed completely inside the bin, i.e., for each item i and each j ∈ [dg],

xj(i) ≥ 0 and xj(i) + ℓj(i) ≤ 1.
4. In each bin, the total weight in each of the dv dimensions is at most one, i.e., for each

set S of items in a bin and each j ∈ [dv], we have
∑

i∈S vj(i) ≤ 1.

B Next-Fit Decreasing Height (NFDH)

▶ Lemma 15 (NFDH for strip packing [14]). A set I of rectangles can be packed into a strip of
height at most 2a(I) + maxi∈I h(i) using the Next-Fit Decreasing Height (NFDH) algorithm.

C Details of the R&A Framework

Algorithm 1 rnaPack(I, β, ε): Computes a bin packing of (dg, dv) items I, and β ≥ 1.

1: x̂ = solveConfigLP(I)
2: repeat T := ⌈(ln β)∥x̂∥1⌉ times
3: Select a configuration C with probability x̂C/∥x̂∥1.
4: Pack a bin according to C.
5: end repeat
6: Let S be the unpacked items from I. // S is called the set of residual items.
7: Initialize Jbest to null.
8: for (Ĩ , D) ∈ round(I) do // round(I) outputs a set of pairs.
9: JD = simplePack(S ∩ D)

10: Let π be a bijection from I − D to Ĩ. Let S̃ := {π(i) : i ∈ S − D}.
11: J̃ = complexPack(S̃)
12: J = unround(J̃)
13: if Jbest is null or |JD ∪ J | < |Jbest| then
14: Jbest = JD ∪ J

15: end if
16: end for
17: Pack S according to Jbest.

▶ Lemma 16. ∀i ∈ I, Pr(i ∈ S) ≤ exp
(

− T

∥x̂∥1

)
≤ 1

β .

A. Khan, E. Sharma, and K. V. N. Sreenivas 23:19

Proof. Let C1, C2, . . . , CT be the configurations chosen during randomized rounding (line 3
in Algorithm 1). Let Ci be the configurations that contain the element i.

Pr(i ∈ S) = Pr
(

T∧
t=1

(Ct ̸∈ Ci)
)

=
T∏

t=1
Pr(Ct ̸∈ Ci) (all Ct are independent)

=
T∏

t=1

(
1 −

∑
C∈Ci

Pr(Ct = C)
)

=
(

1 −
∑

C∈Ci

x̂C

∥x̂∥1

)T

≤
(

1 − 1
∥x̂∥1

)T

(constraint in configuration LP for item i)

≤ exp
(

− T

∥x̂1∥

)
≤ 1

β
◀

▶ Lemma 17. fsopt(S̃) ≤ fsIP∗(S̃) ≤ fsopt(S̃) + q.

Proof. Due to the downward closure property, changing inequality constraints to equality
constraints doesn’t affect the optimum values of the above LP and IP. Therefore, fsIP(S̃) is
equivalent to the fractional structured bin packing problem.

The above definition of fsLP(Ĩ) is problematic: the number of variables may be infinite if
some classes allow slicing. We circumvent this problem by discretizing the configurations:
Let δ be the smallest dimension of any item, i.e. δ := min

(
mindg

j=1 ℓj(i), mindv
j=1 vj(i)

)
.

In any optimal integral solution to fsLP(Ĩ) that uses m bins, we can slice out some items
from each class in each bin so that the span of each class in each bin is a multiple of δdg /n.
In each class, the total size of sliced out items across all bins is at most δdg . Therefore, for
each class, slices of that class can fit into a single item of that class. If each such single item
is packed in a separate bin, the total number of bins used is at most m + q.

Therefore, we only need to consider configurations where either the span of each class
is a multiple of δdg /n or there is a single item in the configuration. This gives us a finite
number of configurations and completes the proof. ◀

▶ Lemma 18. fsLP∗(S̃) ≤ fsIP∗(S̃) ≤ fsLP∗(S̃) + q.

Proof. By Rank Lemma (Lemma 2.1.4 in [39]), the number of positive-valued variables in
an extreme-point solution to a linear program is at most the number of constraints (other
than the variable non-negativity constraints).

Thus, an optimal extreme-point solution to fsLP(S̃) has at most q positive-valued variables.
Rounding up those variables to the nearest integer will give us an integral solution and
increase the objective value by at most q. Hence, fsIP∗(S̃) ≤ fsLP∗(S̃) + q. ◀

Let configLP(I) denote the configuration LP of items I and let configLP∗(I) denote the
optimal objective value of configLP(I). Recall that simplePack is a 2b(dv +1)-approximation
algorithm for (dg, dv) BP (see Section 3), where b := 3 when dg = 2, b := 9 when dg = 3,
b := 4dg + 2dg when dg > 3, and b := 1 when dg = 1.

▶ Lemma 19. For a set I of (dg, dv)-dimensional items, configLP∗(I) ∈ Θ(span(I)) + O(1).

Proof. Let A be the configuration matrix of I. Let x∗ be the optimal solution to configLP(I).
In configLP(I), the constraint for item i gives us

∑
C∈C A[i, C]x∗

C ≥ 1. Multiplying each
constraint by span(i) and adding these constraints together, we get

FSTTCS 2022

23:20 Algorithms for Multidimensional Packing

span(I) ≤
∑
C∈C

∑
i∈I

span(i)A[i, C]x∗
C =

∑
C∈C

span(C)x∗
C

≤ (dv + 1)
∑
C∈C

x∗
C = (dv + 1) configLP∗(I).

Therefore, configLP∗(I) ≥ span(I)/(dv + 1). We also have

configLP∗(I) ≤ opt(I) ≤ | simplePack(I)| ≤ 2b span(I) + b.

Therefore, configLP∗(I) ∈ Θ(span(I)) + O(1). ◀

▶ Lemma 20 (Independent Bounded Difference Inequality [41]). Let X := [X1, X2, . . . , Xn] be
random variables with Xj ∈ Aj . Let ϕ :

∏n
i=1 Aj 7→ R be a function such that |ϕ(x) − ϕ(y)| ≤

cj whenever vectors x and y differ only in the jth coordinate. Then for any t ≥ 0,

Pr[ϕ(X) − E(ϕ(X)) ≥ t] ≤ exp
(

− 2t2∑n
j=1 c2

j

)
.

▶ Lemma 21. Let S̃ be as computed by rnaPack(I, β, ε). Let ε ∈ (0, 1) be a constant. When
span(I) is large compared to 1/ε2, we get that with high probability

fsLP∗(S̃) ≤ fsLP∗(Ĩ)
β

+ 2bµε opt(I) + O(1).

Proof. Let y ∈ CT be the configurations chosen during randomized rounding (on line 3 in
rnaPack). When viewed as a vector of length T , all coordinates of y are independent. Define
uncovered(y) := I −

⋃T
t=1 yt. Let S be the unpacked items from I (see line 6 in rnaPack).

Then S = uncovered(y).
Let K̃1, . . . , K̃q be the classes of Ĩ. Let π be the bijection from I − D to Ĩ. For a set

X ⊆ I, let Ĩ[X] := {π(i) : i ∈ X − D}. For j ∈ [q], define ϕj ∈ CT 7→ R≥0 as

ϕj(y) := span
(

K̃j ∩ Ĩ[uncovered(y)]
)

.

For any X ⊆ I, define gj(X) := span(K̃j ∩ Ĩ[X]). Then ϕj(y) = gj(uncovered(y)) and gj is
a non-negative additive function.

Let y(1), y(2) ∈ CT such that y(1) and y(2) differ only in coordinate t. Let C1 := y
(1)
t ,

C2 := y
(2)
t , S1 := uncovered(y(1)), S2 := uncovered(y(2)), and R :=

⋃
t′ ̸=t y

(1)
t′ =

⋃
t′ ̸=t y

(2)
t′ .

Then I − S1 = R ∪ C1 and I − S2 = R ∪ C2. So, S1 − S2 = (C2 − C1) − R ⊆ C2 and
S2 − S1 = (C1 − C2) − R ⊆ C1. Hence,∣∣∣ϕj(y(1)) − ϕj(y(2))

∣∣∣ = |gj(S1) − gj(S2)| = |gj(S1 − S2) − gj(S2 − S1)| (additivity of gj)

≤ max(gj(S1 − S2), gj(S2 − S1)) ≤ max(gj(C2), gj(C1))

≤ max
C∈C

span(K̃j ∩ Ĩ[C]) ≤ cmax. (by bounded expansion (C1.4))

By Lemma 16, Pr(i ∈ S) ≤ 1/β. By linearity of E and additivity of gj , we get

E(ϕj(y)) = E(gj(S)) =
∑
i∈Ĩ

gj({i}) Pr(i ∈ S) ≤
∑
i∈Ĩ

gj({i})(1/β) = gj(Ĩ)
β

= span(K̃j)
β

.

A. Khan, E. Sharma, and K. V. N. Sreenivas 23:21

∀j ∈ [q], define Qj as the smallest prefix of S̃ ∩ K̃j such that either Qj = S̃ ∩ K̃j or
span(Qj) ≥ ε ∥x̂∥1 /q. Define Q :=

⋃q
j=1 Qj . Hence, span(Q) ≤ ε ∥x̂∥1+q ≤ εµ opt(I)+O(1).

fsLP∗(S̃) ≤ fsLP∗(S̃ − Q) + fsLP∗(Q)

≤ fsLP∗(S̃ − Q) + b(2 span(Q) + 1) (by Section 3)

≤ fsLP∗(S̃ − Q) + 2bµε opt(I) + O(1).

Now we will try to prove that with high probability, fsLP∗(S̃ − Q) ≤ fsLP∗(Ĩ)/β.
If Qj = S̃ ∩ K̃j , then span(K̃j ∩ (S̃ − Q)) = 0. Otherwise,

Pr
[

span(K̃j ∩ (S̃ − Q)) ≥ span(K̃j)
β

]
= Pr

[
span(K̃j ∩ S̃) − span(K̃j)

β
≥ span(Qj)

]

≤ Pr
[
ϕj(y) − E(ϕj(y)) ≥ ε

q
∥x̂∥1

]
≤ exp

(
− 2

Tc2
max

(
ε

q
∥x̂∥1

)2
)

(Lemma 20)

≤ exp
(

− 2ε2

ln(β)c2
maxq2 ∥x̂∥1

)
.

Therefore, by union bound, we get

Pr

 q∨
j=1

(
span(K̃j ∩ (S̃ − Q)) ≥ span(K̃j)

β

) ≤ q exp
(

− 2ε2

ln(β)c2
maxq2 ∥x̂∥1

)
.

Since configLP∗(I) ≤ ∥x̂∥1 ≤ µ configLP∗(I) + O(1), and configLP∗(I) ∈ Θ(span(I)) + O(1)
(by Lemma 19), we get ∥x̂∥1 ∈ Θ(span(I)) + O(1). When span(I) is very large compared to
1/ε2, we get that with high probability, ∀j ∈ [q],

span(K̃j ∩ (S̃ − Q)) ≤ span(K̃j)
β

.

Let x∗ be the optimal solution to fsLP(Ĩ). Then with high probability, x∗/β is a feasible
solution to fsLP(S̃ − Q). Therefore,

fsLP∗(S̃) ≤ fsLP∗(S̃ − Q) + 2bµε opt(I) + O(1) ≤ fsLP∗(Ĩ)/β + 2bµε opt(I) + O(1). ◀

▶ Lemma 7. Let S̃ be as computed by rnaPack(I, β, ε). Then with high probability, we get
fsopt(S̃) ≤ fsopt(Ĩ)/β + 2bµε opt(I) + O(1/ε2).

Proof. When span(I) is very large compared to 1/ε2, we get

fsopt(S̃) ≤ fsIP∗(S̃) + O(1) (by Lemma 17)

≤ fsLP∗(S̃) + O(1) (by Lemma 18)

≤ fsLP∗(Ĩ)/β + 2bµε opt(I) + O(1) (by Lemma 21)

≤ fsopt(Ĩ)/β + 2bµε opt(I) + O(1). (by Lemma 17)

Otherwise, if span(I) ∈ O(1/ε2), we get

fsopt(S̃) ≤ ρ opt(I) + O(1) (by structural theorem)
≤ ρ| simplePack(I)| + O(1)
≤ Θ(span(I)) + O(1) ≤ O(1/ε2). (by Section 3)

◀

FSTTCS 2022

23:22 Algorithms for Multidimensional Packing

▶ Theorem 9. With high probability, the number of bins used by rnaPack(I, β, ε) is at most
((ln β)µ + (γαρ)/β + 2b(dv + 1 + γαµ)ε) opt(I) + O(1/ε2).

Proof. Let JLP be the set of bins packed in the randomized rounding of configuration LP
step (see line 4 in Algorithm 1 in Appendix C), JD be the set of bins used to pack the
discarded items D ∩ S, J be the set of bins used to pack the rest of the items S \ D, and J̃

be the set of bins used by complexPack to pack items in S̃.
Then |JLP| ≤ T = ⌈(ln β)∥x̂∥1⌉ ≤ (ln β)µ opt(I) + O(1).
Now, we have |JD| ≤ b ⌈2 span(D)⌉ ≤ 2bε span(I) + b ≤ 2b(dv + 1)ε opt(I) + b. The first

inequality follows from the property of simplePack, the second follows from C1.1 (Small
Discard) and the last follows from Lemma 1. Finally,

|J | ≤ γ|J̃ | + O(1) (property of unround (C4))

≤ γα fsopt(S̃) + O(1) (property of complexPack (C3))

≤ γα
(

fsopt(Ĩ)/β + 2bµε opt(I)
)

+ O(1/ε2) (by Lemma 7)

≤ γα (ρ/β + 2bµε) opt(I) + O(1/ε2)

Here, the last inequality follows from the structural theorem (C2), which says that ∃(Ĩ , D) ∈
round(I) such that fsopt(Ĩ) ≤ ρ opt(I) + O(1). Hence, the total number of bins is at most

|JLP| + |JD| + |J | ≤
(

(ln β)µ + γαρ

β
+ 2b(dv + 1 + γαµ)ε

)
opt(I) + O(1/ε2). ◀

C.1 Error in Previous R&A Framework
Here we describe a minor error in the R&A framework of [35], and how it can be fixed.

We define (Ĩ , D) as an output of round(I) and for the residual instance S, we define S̃ as
the corresponding rounded items of S − D. Our proof of Lemma 7 relies on the fact that
for any subset of rounded items, the span reduces by a factor of at least β if we restrict our
attention to the residual instance. Formally, this means that for any X̃ ⊆ Ĩ, we have

E(span(X̃ ∩ S̃)) =
∑
i∈X̃

span(i) Pr(i ∈ S̃) ≤ span(X̃)/β.

The equality follows from linearity of expectation and the fact that span(i) is deterministic,
i.e., it doesn’t depend on the randomness used in the randomized rounding of the configuration
LP. This is because round is not given any information about what S is. The inequality
follows from Lemma 16, which says that Pr(i ∈ S) ≤ 1/β.

The R&A framework of [35] used similar techniques in their analysis. In their algorithm,
however, they round items differently. Specifically, they define a subroutine round and define
Ĩ := round(I) and S̃ := round(S). They, too, claim that for any subset of rounded items,
the span reduces by a factor of at least β if we restrict our attention to the residual instance.
While their claim is correct for input-agnostic rounding (where items are rounded up to
some constant size collection values chosen independent of the problem instance), the claim
is incorrect for input-sensitive rounding (where the values are chosen based on the specific
problem instance). So the claim is incorrect if round is not deterministic, as then an item
can be rounded differently depending on different residual instances.

In fact, they use their R&A framework with the algorithm of Jansen and Prädel [27],
which uses linear grouping (along with some other techniques) for rounding. Linear grouping
rounds items in an input-sensitive way, i.e., the rounding of each item depends on the sizes
of items in S which is a random subset.

	1 Introduction
	1.1 Our Results
	1.2 Related Work
	1.3 Technical Contribution

	2 Preliminaries and Notation
	2.1 Configuration LP

	3 Simple Algorithms
	4 Round-and-Approx Framework
	4.1 Fractional Structured Packing
	4.2 Properties of round
	4.3 complexPack and unround
	4.4 AAR of R&A
	4.5 Example: simplePack

	5 Improved Approximation Algorithms
	5.1 Overview of Structural Result
	5.2 Overview of the Algorithmic Step

	A Formal Definition of (d_g, d_v) Packing
	B Next-Fit Decreasing Height (NFDH)
	C Details of the R&A Framework
	C.1 Error in Previous R&A Framework

