
Complexity of Fault Tolerant Query Complexity
Ramita Maharjan !

University of Memphis, TN, USA

Thomas Watson !

University of Memphis, TN, USA

Abstract
In the model of fault tolerant decision trees introduced by Kenyon and Yao, there is a known upper
bound E on the total number of queries that may be faulty (i.e., get the wrong bit). We consider
this computational problem: Given as input the truth table of a function f : {0, 1}n → {0, 1} and a
value of E, find the minimum possible height (worst-case number of queries) of any decision tree
that computes f while tolerating up to E many faults. We design an algorithm for this problem
that runs in time Õ

((
n+E

E

)
· (2E + 3)n

)
, which is polynomial in the size of the truth table when E

is a constant. This generalizes a standard algorithm for the non-fault tolerant setting.

2012 ACM Subject Classification Theory of computation → Design and analysis of algorithms

Keywords and phrases Fault, Tolerant, Query, Complexity

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2022.26

Funding This work was supported by NSF grant CCF-1657377.

1 Introduction

In practice, the fields of program synthesis (for software) and logic synthesis (for hardware) are
about automating the design of computational processes: Given an input-output specification,
generate an efficient implementation that meets the specification.

Complexity theory’s version of synthesis is known as “meta-complexity” or “complexity
of complexity”: Given the truth table of a boolean function f , compute f ’s complexity – the
cost of an optimal algorithm for f in some model of computation. Upper and lower bounds
are known on the complexity of computing the complexity of a function (given its truth table)
for various models, including circuits [16, 3, 4, 2, 15, 13], formulas [6, 5, 13, 14], branching
programs [10, 6, 19], communication protocols [18, 15, 12], and decision trees [11, 1, 19].

We focus on decision trees. A decision tree computes a function f : {0, 1}n → {0, 1} by
adaptively querying (reading) individual bits of the input. A decision tree’s height (cost)
is the maximum over all inputs of the number of queries made on that input. The query
complexity of f is the minimum height of any decision tree computing f . A standard
algorithm due to [11, 1] inputs f ’s truth table and outputs f ’s query complexity in time
Õ(3n), where Õ hides a poly(n) factor. In terms of the input size N = 2n, this is polynomial
time Õ(N log2(3)). A simple extension of the algorithm outputs an optimal decision tree,
not just its height. There is also a considerable amount of literature on properly learning
decision trees given access to input-output pairs of f (e.g., see the recent papers [8, 7] and
the references within). The “given a truth table” problem corresponds to the extreme case
where all input-output pairs of f are available.

We consider fault tolerant decision trees, in which a query to an input bit may or may not
get the bit’s actual value. This is motivated by scenarios where the input bits are the results
of unreliable computations. Several models of this type have been introduced [17, 9, 20, 21].
We focus on the original model from [17], in which a decision tree is only required to output
the correct bit when the total number of faults, over all queries to all variables, is at most
some parameter E. Letting Õ hide a poly(n, E) factor, we prove:

© Ramita Maharjan and Thomas Watson;
licensed under Creative Commons License CC-BY 4.0

42nd IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science
(FSTTCS 2022).
Editors: Anuj Dawar and Venkatesan Guruswami; Article No. 26; pp. 26:1–26:11

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:rmhrjan1@memphis.edu
mailto:Thomas.Watson@memphis.edu
https://doi.org/10.4230/LIPIcs.FSTTCS.2022.26
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

26:2 Complexity of Fault Tolerant Query Complexity

▶ Theorem 1. Given as input the truth table of a function f : {0, 1}n → {0, 1} and an integer
E ≥ 0, the E-fault tolerant query complexity of f can be computed in time Õ

((
n+E

E

)
·(2E+3)n

)
.

When E is a constant, this running time is Õ
(
N log2(2E+3)), which is polynomial in the

size N = 2n of f ’s truth table.
Our algorithm generalizes the algorithm from [11, 1] for the non-fault tolerant setting.

The analysis of our algorithm is much more involved, largely because our set of dynamic
programming subproblems has a complicated combinatorial structure. It is not straightfor-
ward to characterize or count the subproblems. This stems from the fact that – unlike in the
non-fault tolerant setting – we cannot treat the input variables as independent of each other.

2 Decision trees

A decision tree on boolean variables x1, x2, . . . , xn is a full binary tree where each internal
node is labeled with a variable index i ∈ [n] = {1, 2, . . . , n} and each leaf is labeled with
an output bit. On an input x ∈ {0, 1}n, a decision tree follows a root-to-leaf path: Upon
reaching an internal node labeled i, the decision tree queries xi and goes to the left child
if xi = 0 or to the right child if xi = 1. The output is the label of the leaf reached. A
decision tree computes f : {0, 1}n → {0, 1} iff it outputs f(x) for every input x. A decision
tree’s height is the number of edges on a longest root-to-leaf path, i.e., the maximum over all
x ∈ {0, 1}n of the number of queries made on input x. The (deterministic) query complexity
of f , denoted D(f), is the minimum height of any decision tree that computes f . We have
D(f) ≤ n for all f : {0, 1}n → {0, 1} since a decision tree can make n queries to determine
the entire input x and then output f(x). There is no reason for a decision tree computing f

to query the same variable more than once along a root-to-leaf path.
In the fault tolerant setting, a query to xi may get either xi’s actual value or the opposite

bit – a fault or mistake. We allow a decision tree to query the same variable more than once
along a root-to-leaf path, in which case some queries may get the actual value while others
are faults. We consider the model introduced by [17] where E ≥ 0 is a specified upper bound
on the total number of faults over all variables (not per variable). A decision tree computes
f : {0, 1}n → {0, 1} while tolerating E faults iff it outputs f(x) for every input x and every
choice of at most E queries to be faults. More formally, for a node v, input x, and variable
index i, define faults(v, x, i) as the number of nodes along the root-to-v path – excluding v

itself – that are labeled i but the path goes to the wrong child, i.e., left child but xi = 1, or
right child but xi = 0. Define faults(v, x) =

∑n
i=1 faults(v, x, i). A decision tree is E-fault

tolerant for f iff for every input x and every leaf v with faults(v, x) ≤ E, the label of v is
f(x). In other words, if we define consistentE(v) = {x : faults(v, x) ≤ E} then for every leaf
v, f(x) must be the same for all x ∈ consistentE(v). The E-fault tolerant query complexity
of f , denoted DE(f), is the minimum height of any E-fault tolerant decision tree for f . We
have D(f) = D0(f) ≤ D1(f) ≤ D2(f) ≤ · · · . The following lemma does not seem to appear
in the literature.

▶ Lemma 2. DE(f) ≤ D(f) · (E + 1) + E for all f and E.

Proof. Let T be a decision tree of height D(f) computing f . We design T ′, which is an
E-fault tolerant decision tree of height at most D(f) · (E + 1) + E for f . The idea is that on
any input, T ′ tracks T ’s root-to-leaf path but for each variable T queries along the way, T ′

queries the variable repeatedly until ascertaining its actual value:
Suppose (for convenience) T first queries x1. We have T ′ query x1 until some bit has
appeared E + 1 times. This bit is x1’s actual value since otherwise x1 would have E + 1
faults. Let e1 be the number of faults on x1. The number of queries to x1 is E + 1 + e1.

R. Maharjan and T. Watson 26:3

Suppose (for convenience) T next queries x2. We have T ′ query x2 until some bit has
appeared E + 1 − e1 times. This bit is x2’s actual value since otherwise x1, x2 would
have E + 1 faults. Let e2 be the number of faults on x2. The number of queries to x2 is
E + 1− e1 + e2.

...
Suppose (for convenience) T queries xi in the ith step. We have T ′ query xi until some
bit has appeared E + 1− e1 − e2 − · · · − ei−1 times. This bit is xi’s actual value since
otherwise x1, . . . , xi would have E + 1 faults. Let ei be the number of faults on xi. The
number of queries to xi is E + 1− e1 − e2 − · · · − ei−1 + ei.

...
Upon reaching a leaf of T , we have T ′ output the same bit. If at most E faults occur, then
T ′ finds the leaf T would reach. Since T computes f , T ′ is E-fault tolerant for f . If T makes
q queries on input x, then T ′ makes at most∑q

i=1
(
E + 1− (

∑i−1
j=1 ej) + ei

)
= q · (E + 1)−

∑q
i=1(q − 1− i) · ei

≤ q · (E + 1) + eq

≤ D(f) · (E + 1) + E

queries on input x, regardless of when the faults occur. ◀

Lemma 2 is tight for the And function on n bits:

▶ Observation 3. DE(Andn) = n · (E + 1) + E for all n and E.

Proof. An adversary can respond 1 to all queries, until some variable xi has been queried E

times and each other variable has been queried at least E + 1 times, and then the adversary
can start responding 0 to subsequent queries to xi (and keep responding 1 to queries to
other variables). After at most n · (E + 1) + E − 1 queries, the current node v would have
faults(v, y) ≤ E where y is the all 1s input (so Andn(y) = 1) and faults(v, z) ≤ E where z

is all 1s except zi = 0 (so Andn(z) = 0), where i is the index of a variable that has been
queried as 1 at most E times and as 0 at most E times. Thus v cannot be a leaf since
y, z ∈ consistentE(v) but f(y) ̸= f(z). That is, an E-fault tolerant decision tree for Andn

must make at least n · (E + 1) + E queries in the worst case, otherwise it may output the
wrong bit for either y or z. ◀

Lemma 2 is not tight for all functions: Let Tribesn be the function that interprets x as a√
n×
√

n array of bits and Tribesn(x) = 1 iff there exists an all-1 row in x. Then D(Tribesn) =
n but [17] proved that DE(Tribesn) = O(n+

√
n·E). More generally, [17] proved that DE(f) =

O(n + C(f) · E) for all f and E, where C(f) = max(CNF width of f , DNF width of f) is
the certificate complexity of f .

3 Patterns and redundant queries

A pattern is a tuple p = (p1, p2, . . . , pn) =
(
(p1,0, p1,1), (p2,0, p2,1), . . . , (pn,0, pn,1)

)
where for

all i ∈ [n] and b ∈ {0, 1}, pi,b is a nonnegative integer representing the number of queries to
variable xi that got value b. Each node v in a decision tree has an associated pattern pv that
records the results of the queries along the root-to-v path but does not indicate the order
of those queries. If v is the root, then pv =

(
(0, 0), (0, 0), . . . , (0, 0)

)
since no queries have

happened.

FSTTCS 2022

26:4 Complexity of Fault Tolerant Query Complexity

For a non-fault tolerant decision tree, in which no variable is ever re-queried, a pattern is
traditionally viewed as a restriction r ∈ {0, 1, ∗}n where ri = 0 means xi = 0 was queried,
and ri = 1 means xi = 1 was queried, and ri = ∗ means xi remains unqueried. Compared to
our more general notion of patterns, ri = 0 corresponds to pi = (1, 0), and ri = 1 corresponds
to pi = (0, 1), and ri = ∗ corresponds to pi = (0, 0).

The combinatorial structure is more subtle for fault tolerant decision trees. For example,
suppose n = 2, E = 1, the current pattern is

(
(1, 0), (0, 1)

)
, and we query x1. If the query

gets x1 = 0, then the pattern becomes
(
(2, 0), (0, 1)

)
and we know x1 is actually 0 (otherwise

x1 would have two faults) but we do not know x2’s actual value. If the query gets x1 = 1,
then the pattern becomes

(
(1, 1), (0, 1)

)
and we know x2 is actually 1 (otherwise x1, x2 would

each have one fault) but we do not know x1’s actual value. The point is that querying a
variable might reveal more information about other variables.

For a pattern p, we define faults(p, x, i) = pi,xi
and faults(p, x) =

∑n
i=1 faults(p, x, i)

and consistentE(p) = {x : faults(p, x) ≤ E}. Thus for any node v in a decision tree, we
have faults(v, x, i) = faults(pv, x, i) and faults(v, x) = faults(pv, x) and consistentE(v) =
consistentE(pv).

For a pattern p, querying xi would be redundant (with respect to E) iff all x ∈
consistentE(p) have the same value of xi. An internal node v in a decision tree is re-
dundant (with respect to E) iff xi is a redundant query given pv, where i is the label of v. A
decision tree with no redundant nodes is sensible (with respect to E).

▶ Lemma 4. For every f and E, there exists a minimum-height E-fault tolerant decision
tree for f that is sensible.

Proof. Consider any minimum-height E-fault tolerant decision tree for f . We claim that if
v is a redundant node labeled i, and b is the common value of xi for x ∈ consistentE(pv),
then the decision tree will still be E-fault tolerant for f after we replace v with v’s child
corresponding to query xi = b and discard the other child’s subtree. Repeating this process
to eliminate all redundant nodes yields a sensible decision tree that is no taller than the
original.

To prove the claim, consider any leaf u in v’s b-subtree in the original decision tree, and let
w be the modified decision tree’s leaf corresponding to u. We show that consistentE(pw) =
consistentE(pu), which implies that the modified decision tree is still E-fault tolerant
for f since f(x) is the same for all x ∈ consistentE(pw). Trivially, consistentE(pw) ⊇
consistentE(pu) since pw is the same as pu except pw

i,b = pu
i,b − 1 and so faults(pw, x) ≤

faults(pu, x) for all x. To see that consistentE(pw) ⊆ consistentE(pu), first note that
pw

j,c ≥ pv
j,c for all (j, c) ∈ [n]×{0, 1}, because pw

i,b = pu
i,b−1 ≥ pv

i,b and pw
j,c = pu

j,c ≥ pv
j,c for all

(j, c) ̸= (i, b). Thus consistentE(pw) ⊆ consistentE(pv), so xi = b for all x ∈ consistentE(pw).
This implies that faults(pu, x) = faults(pw, x) ≤ E for all x ∈ consistentE(pw). ◀

▶ Lemma 5. xi is a redundant query given pattern p iff maxb(pi,b) +
∑

j ̸=i minb(pj,b) > E.

Proof. ⇐: Assume maxb(pi,b) +
∑

j ̸=i minb(pj,b) > E. For all x ∈ consistentE(p), we must
have xi = arg maxb(pi,b) since otherwise faults(p, x, i) = maxb(pi,b) and faults(p, x, j) ≥
minb(pj,b) for all j ≠ i and thus faults(p, x) ≥ maxb(pi,b) +

∑
j ̸=i minb(pj,b) > E, which

would mean x ̸∈ consistentE(p).

⇒: Assume maxb(pi,b) +
∑

j ̸=i minb(pj,b) ≤ E. Define y, z ∈ {0, 1}n as follows: yi = 0
and zi = 1 and yj = zj = arg maxb(pj,b) for all j ̸= i. Then faults(p, y, i), faults(p, z, i) ≤
maxb(pi,b) and faults(p, y, j) = faults(p, z, j) = minb(pj,b) for all j ̸= i, and thus faults(p, y),
faults(p, z) ≤ maxb(pi,b) +

∑
j ̸=i minb(pj,b) ≤ E, which means y, z ∈ consistentE(p). Thus

xi is not a redundant query given p. ◀

R. Maharjan and T. Watson 26:5

For a pattern p, i ∈ [n], and b ∈ {0, 1}, define the pattern pi,b to be the same as p except
pi,b

i,b = pi,b + 1. If an internal node v has pattern p and label i, then v’s children have patterns
pi,0 and pi,1.

▶ Observation 6. For all p and i, consistentE(p) = consistentE(pi,0) ∪ consistentE(pi,1).

Proof. ⊇: For all b ∈ {0, 1}, if x ∈ consistentE(pi,b) then faults(p, x) ≤ faults(pi,b, x) ≤ E

and so x ∈ consistentE(p).

⊆: If x ∈ consistentE(p) then faults(pi,xi , x) = faults(p, x) ≤ E and so x ∈ consistentE(pi,xi).
◀

By the way, consistentE(pi,0) and consistentE(pi,1) might not be disjoint.

4 Valid patterns

A pattern p is valid (with respect to E) iff p = pv for some node v in some sensible decision
tree. A centerpiece of the analysis of our algorithm is a characterization of valid patterns.
To state this, we define:

block(p, d) = {i ∈ [n] : |pi,0 − pi,1| = d} for each integer d ≥ 0.
min-faults(p, D) =

∑
d≥D

∑
i∈block(p,d) minb(pi,b) for each integer D ≥ 0.

min-faults(p) = min-faults(p, 0) =
∑n

i=1 minb(pi,b).

▶ Lemma 7. p is valid iff min-faults(p) ≤ E and min-faults(p, D) ≤ E − D + 1 for each
D ≥ 2 such that block(p, D) ̸= ∅.

Proof. We define some notation with respect to p: For each variable xi, define bi =
arg maxb(pi,b) (breaking the tie arbitrarily if pi,0 = pi,1) and di = |pi,0 − pi,1| = pi,bi

− pi,bi
,

so i ∈ block(p, di).

⇐: Assume min-faults(p) ≤ E and min-faults(p, D) ≤ E − D + 1 for each D ≥ 2 such
that block(p, D) ̸= ∅. The latter actually holds for D ≥ 1, not just for D ≥ 2, because
min-faults(p) ≤ E implies that min-faults(p, 1) ≤ min-faults(p) ≤ E = E − 1 + 1.

To show that p is valid, we exhibit a sensible decision tree consisting of a root-to-v path
where pv = p and all nodes hanging off of this path are leaves (whose outputs are irrelevant).
For each variable xi in decreasing order of di (breaking ties arbitrarily), the path has pi,bi

many xi = bi queries followed by pi,bi many xi = bi queries. By definition, this path ends at
a node v with pv = p.

We argue that no internal node is redundant. Consider an internal node u labeled i. First
suppose di = 0. Then maxb(pu

i,b) ≤ minb(pi,b) and minb(pu
j,b) ≤ minb(pj,b) for each j ̸= i.

Thus

maxb(pu
i,b) +

∑
j ̸=i minb(pu

j,b) ≤
∑n

j=1 minb(pj,b)

= min-faults(p)
≤ E

so u is not redundant, by Lemma 5. Now suppose di ≥ 1. Then block(p, di) ̸= ∅ since
i ∈ block(p, di), so min-faults(p, di) ≤ E − di + 1 by assumption. We have maxb(pu

i,b) ≤
maxb(pi,b)− 1 = minb(pi,b) + di− 1 because di ≥ 1 and the last xi = bi query happens either
at u or farther down the path (since the xi = bi queries happen after the xi = bi queries). We
have minb(pu

j,b) ≤ minb(pj,b) for each j ̸= i, and minb(pu
j,b) = 0 if dj < di because variables

are queried in decreasing order of dj . Thus

FSTTCS 2022

26:6 Complexity of Fault Tolerant Query Complexity

maxb(pu
i,b) +

∑
j ̸=i minb(pu

j,b) ≤ di − 1 +
∑

d≥di

∑
j∈block(p,d) minb(pj,b)

= di − 1 + min-faults(p, di)
≤ E

so u is not redundant, by Lemma 5.

⇒: Assume p is valid, and let v be a node with pv = p in some sensible decision tree.
To see that min-faults(p) ≤ E, consider v’s parent u. (Or if v is the root, then this

holds trivially.) We have minb(pi,b) ≤ maxb(pu
i,b) where i is the label of u, and minb(pj,b) =

minb(pu
j,b) for each j ̸= i. Thus

min-faults(p) =
∑n

j=1 minb(pj,b)

≤ maxb(pu
i,b) +

∑
j ̸=i minb(pu

j,b)

≤ E

by Lemma 5, since u is not redundant.
To see that min-faults(p, D) ≤ E − D + 1 for each D ≥ 2 such that block(p, D) ̸= ∅,

consider the lowest node u on the root-to-v path (excluding v itself) such that u’s label
i satisfies di ≥ D. Such u exists since D ≥ 1 and block(p, D) ̸= ∅. Let w be u’s child
on the root-to-v path (possibly w = v). Since u is the lowest such node, for each j

with dj ≥ D we have pw
j,b = pj,b for both b and thus minb(pw

j,b) = minb(pj,b). We have
minb(pw

i,b) = maxb(pw
i,b)− di ≤ maxb(pu

i,b)− di + 1 and minb(pw
j,b) = minb(pu

j,b) for each j ̸= i.
Thus

min-faults(p, D) =
∑

d≥D

∑
j∈block(p,d) minb(pj,b)

=
∑

d≥D

∑
j∈block(p,d) minb(pw

j,b)

≤
∑n

j=1 minb(pw
j,b)

≤ maxb(pu
i,b)− di + 1 +

∑
j ̸=i minb(pu

j,b)

≤ E − di + 1
≤ E −D + 1

by Lemma 5, since u is not redundant. ◀

▶ Corollary 8. If p is valid then consistentE(p) ̸= ∅.

Proof. x ∈ consistentE(p) where each xi = arg maxb(pi,b) since faults(p, x) =
min-faults(p) ≤ E. ◀

▶ Lemma 9. There are at most
(

n+E
E

)
· (2E + 3)n valid patterns.

Proof. Choosing pi,0 and pi,1 is equivalent to choosing minb(pi,b) and pi,0− pi,1 (no absolute
value).

For valid p, there are
(

n+E
E

)
possibilities for

(
minb(p1,b), . . . , minb(pn,b)

)
since

min-faults(p) ≤ E by Lemma 7.
For valid p, we have block(p, D) = ∅ for all D ≥ E + 2 since otherwise we would have

the contradiction 0 ≤ min-faults(p, D) ≤ E − D + 1 < 0 by Lemma 7. (Intuitively, a
sensible decision tree would never re-query xi after maxb(pi,b) = E + 1 since that would

R. Maharjan and T. Watson 26:7

be redundant by Lemma 5.) Thus for each i, there are 2E + 3 possibilities for pi,0 − pi,1,
namely E + 1, E, . . . , 0, . . . ,−E,−E − 1. Hence there are (2E + 3)n possibilities for

(
p1,0 −

p1,1, . . . , pn,0 − pn,1
)
.

There are at most
(

n+E
E

)
· (2E + 3)n ways to form a valid p by choosing

(
minb(p1,b), . . . ,

minb(pn,b)
)

and
(
p1,0 − p1,1, . . . , pn,0 − pn,1

)
. ◀

As a sanity check, when E = 0, Lemma 7 implies that p is valid iff min-faults(p) = 0
and block(p, D) = ∅ for all D ≥ 2, which happens iff pi ∈ {(1, 0), (0, 1), (0, 0)} for each i.
There are 3n such patterns (corresponding to the restrictions in {0, 1, ∗}n), which agrees
with Lemma 9 when E = 0.

Lemma 9 generally overcounts the number of valid patterns because it ignores the
constraints for D ∈ {2, . . . , E + 1} in Lemma 7. The “minimum” and “difference” tuples are
not independent. But Lemma 9 does not overcount by a lot: There are

(
n+E

E

)
valid patterns

with pi,0 − pi,1 = 0 for all i, and there are (2E + 3)n valid patterns with minb(pi,b) = 0 for
all i. Thus there are at least

max
((

n+E
E

)
, (2E + 3)n

)
≥

√(
n+E

E

)
· (2E + 3)n

valid patterns, so Lemma 9 is at least quadratically tight.
When E is a constant, the number of valid patterns is Θ

((
n+E

E

)
· (2E + 3)n

)
= Θ

(
nE ·

(2E + 3)n
)
. This is because each of the

(
n+E

E

)
possibilities for

(
minb(p1,b), . . . , minb(pn,b)

)
has 0s in at least n−E coordinates and thus gives rise to at least (2E +3)n−E = Ω((2E +3)n)
valid patterns with the nonzero values of pi,0 − pi,1 distributed only among the coordinates i

with minb(pi,b) = 0.
We can say something a little stronger than the previous paragraph. Suppose 1 ≤ E ≤

n. There are
(

n
E

)
possibilities of

(
minb(p1,b), . . . , minb(pn,b)

)
where minb(pi,b) = 1 for E

coordinates i and minb(pi,b) = 0 for n − E coordinates i. For each of those possibilities:
There are (2E + 3)n−E possibilities for the tuple of pi,0−pi,1 for all i with minb(pi,b) = 0. By
Stirling’s formula (where e is the base of the natural log) there are E! ≥ (E/e)E permutations
of [E], which we view as possibilities for the tuple of |pi,0 − pi,1| for all i with minb(pi,b) = 1.
There are 2E possibilities for the tuple of sign(pi,0 − pi,1) for all i with minb(pi,b) = 1. In
total, we just described at least(

n
E

)
· (2E + 3)n−E · (E/e)E · 2E (†)

patterns p that are each valid, since min-faults(p) = E, and min-faults(p, D) = E −D + 1
for each 2 ≤ D ≤ E, and block(p, D) = ∅ for each D > E. Let us compare this to the upper
bound of Lemma 9. Assuming 1 ≤ E ≤ n/2, we have(

n+E
E

)
/
(

n
E

)
= (n + E) · (n + E − 1) · · · (n + 1)

n · (n− 1) · · · (n− E + 1)
=

(
1 + E/n

)
·
(
1 + E/(n− 1)

)
· · ·

(
1 + E/(n− E + 1)

)
≤ 2E

and
(2E + 3)n

(2E + 3)n−E · (E/e)E · 2E
=

((2E + 3) · e
2E

)E

=
(
(1 + 3/(2E)) · e

)E ≤ 7E .

So, the upper bound
(

n+E
E

)
· (2E + 3)n, divided by the lower bound (†), is at most 14E .

Thus when E = O(log n), Lemma 9 only overcounts the number of valid patterns by a fairly
insignificant poly(n) factor. Computational experiments suggest that Lemma 9 is fairly tight
for all E, but it remains open to prove this.

FSTTCS 2022

26:8 Complexity of Fault Tolerant Query Complexity

5 The algorithm: Proof of Theorem 1

We design a dynamic programming algorithm for the following computational problem: Given
as input the truth table of a function f : {0, 1}n → {0, 1} and an integer E ≥ 0, output
DE(f).

For each valid pattern p, we have a subproblem whose solution is a pair (h, ℓ) where h is
the minimum height of any sensible decision tree that is E-fault tolerant for f assuming the
root is defined to have pattern p, and ℓ is the root’s label in one such decision tree. If h = 0
then the root is a leaf that outputs ℓ ∈ {0, 1}. If h > 0 then the root is an internal node
that queries xℓ where ℓ ∈ [n]. We store the solution (h, ℓ) to subproblem p in a dictionary
data structure opt where p is the key and (h, ℓ) is the value. We use memoized recursion,
rather than traditional dynamic programming, because enumerating the valid patterns is not
straightforward.

Figure 1 shows the algorithm. If p is valid then solve(p) returns the solution (h, ℓ), after
computing it and storing it in opt[p] if it was not already there. We assume f , n, E, and opt
are globally accessible in calls to the solve subroutine. The loop iterates through variables
that are not redundant queries given p, by Lemma 5. By induction, we may assume solve(pi,0)
and solve(pi,1) return correct solutions, since pi,0 and pi,1 are valid if xi is not a redundant
query given p.

Base cases are when the optimal height is 0, i.e., the root should be a leaf because f(x)
is the same for all x ∈ consistentE(p). One way to detect this would be to loop through all
x ∈ {0, 1}n, compute faults(p, x), and compare f(x) for all x with faults(p, x) ≤ E, but that
would incur Õ(2n) time overhead. Our algorithm detects base cases more efficiently. There
are two kinds of base cases:
|consistentE(p)| = 1: By definition, every xi is a redundant query given p, so we still
have h = ∞ after the loop. Thus solve(p) correctly computes the solution as (0, f(x))
where x is the unique element of consistentE(p). (There is no tie for arg maxb(pi,b), since
min-faults(p) ≤ E and min-faults(p) + |pi,0 − pi,1| > E implies pi,0 ̸= pi,1.)
|consistentE(p)| > 1 but f(x) is the same for all x ∈ consistentE(p): By definition, at
least one xi is not a redundant query given p. When the loop reaches the first such
index i, we have h = ∞ and h0 = h1 = 0 and ℓ0 = ℓ1 since f(x) is the same for all
x ∈ consistentE(pi,0) ∪ consistentE(pi,1) by Observation 6 (⊇). Thus solve(p) breaks out
of the loop and correctly computes the solution as (0, ℓ0) (skipping over “if h =∞” after
the loop since h = 0 now).

Non-base cases are when the optimal height is positive, i.e., the root should be an internal
node because f(x) is not the same for all x ∈ consistentE(p). Since we only consider sensible
decision trees, the loop just tries every possible non-redundant query xi the root could make,
computes the height 1+max(h0, h1) of an optimal decision tree having i as the root label, lets
h be the minimum of these heights, and lets ℓ be the index of the variable that achieves the
minimum.1 The condition “if h =∞ and h0 = h1 = 0 and ℓ0 = ℓ1” is false since otherwise
f(x) would be the same for all x ∈ consistentE(pi,0) ∪ consistentE(pi,1) and so p would be a
base case by Observation 6 (⊆). Also, “if h =∞” is false after the loop since at least one xi

is non-redundant given p, and h becomes finite during such an iteration. Thus for a non-base
case, (h, ℓ) is correct at the end of solve(p).

1 If we wanted to minimize the number of leaves rather than the height, we could just change 1+max(h0, h1)
to h0 + h1 and let h = 1 for base cases.

R. Maharjan and T. Watson 26:9

complexity(f, E):
initialize empty dictionary opt
(h, ℓ)← solve

((
(0, 0), . . . , (0, 0)

))
return h

solve(p):
if opt contains key p: return opt[p]
h←∞
for i ∈ [n]:

if min-faults(p) + |pi,0 − pi,1| ≤ E:
(h0, ℓ0)← solve(pi,0)
(h1, ℓ1)← solve(pi,1)
if h =∞ and h0 = h1 = 0 and ℓ0 = ℓ1:

(h, ℓ)← (0, ℓ0) and break out of loop
if h > 1 + max(h0, h1): (h, ℓ)←

(
1 + max(h0, h1), i

)
if h =∞: (h, ℓ)← (0, f(x)) where xi = arg maxb(pi,b) for each i ∈ [n]
opt[p]← (h, ℓ)
return (h, ℓ)

Figure 1 Algorithm to compute DE(f).

Finally, complexity(f, E) returns the minimum height of any sensible E-fault tolerant
decision tree for f , which equals DE(f) by Lemma 4.

Now we analyze the running time. A call to solve(p) is fresh iff opt does not yet contain
the key p. We charge the cost of a nonfresh call to the parent call. There are at most(

n+E
E

)
· (2E + 3)n fresh calls by Lemma 9, and each fresh call takes time poly(n, E) = Õ(1)

(excluding any fresh recursive calls it makes), assuming the dictionary is implemented with a
self-balancing search tree. Thus the running time of complexity(f, E) is Õ

((
n+E

E

)
· (2E +3)n

)
.

After running solve
((

(0, 0), . . . , (0, 0)
))

, we can construct a minimum-height sensible
E-fault tolerant decision tree for f by straightforwardly retracing the optimal choices for
the relevant subproblems (Figure 2). In the non-fault tolerant setting (E = 0), constructing
the decision tree is faster than solving all the subproblems: Õ(2n) compared to Õ(3n). In
contrast, in the fault tolerant setting, constructing the decision tree can be much slower than
solving all the subproblems – potentially as slow as Õ(2n·(E+1)+E) by Lemma 2 – since a
fault tolerant decision tree can be a sprawling behemoth with many duplicated subtrees.

Another minor extension handles partial functions f : {0, 1}n → {0, 1, ?} where f(x) = ?
means that f(x) is undefined and we do not care what a decision tree outputs on input x. A
decision tree is E-fault tolerant for a partial function f iff for every leaf v, its label equals f(x)
for all x ∈ consistentE(v) such that f(x) ̸= ?. To compute DE(f) for a partial function f ,
we can modify solve(p) so that opt[p] = (0, ?) means that f(x) = ? for all x ∈ consistentE(p),
and opt[p] = (0, ℓ) for ℓ ∈ {0, 1} means that there exists an x ∈ consistentE(p) such that
f(x) ̸= ? and that f(x) = ℓ for all such x. If h = ∞ and h0 = h1 = 0 then: If ℓ0 = ℓ1 or
ℓ1 = ?, we assign (h, ℓ)← (0, ℓ0). Else if ℓ0 = ?, we assign (h, ℓ)← (0, ℓ1). Else we do not
assign (h, ℓ) and do not break out of the loop here.

FSTTCS 2022

26:10 Complexity of Fault Tolerant Query Complexity

construct-tree(p):
(h, ℓ)← opt[p]
create a node v labeled ℓ

if h > 0:
v’s left child ← construct-tree(pℓ,0)
v’s right child ← construct-tree(pℓ,1)

return v

Figure 2 Constructing an optimal decision tree.

6 Future directions

It is open to prove asymptotically tight bounds on the number of valid patterns for all n

and E.
When E is super-constant, our algorithm’s running time is super-polynomial in the input

size. Can we prove a complexity lower bound on the problem for large E? Even in the
non-fault tolerant setting, can fine-grained complexity techniques show that the Õ(N log2(3))
running time is optimal under standard assumptions?

It remains open to study the complexity of computing fault tolerant randomized query
complexity. The algorithm from [1] for computing non-fault tolerant randomized query
complexity does not seem to generalize to the fault tolerant setting.

It is also open to study the analogous question for other models of fault tolerant decision
trees, such as those introduced in [9]. To the best of our knowledge, “complexity of complexity”
has not been studied for models of fault tolerant circuits, formulas, branching programs, or
communication protocols.

References

1 Scott Aaronson. Algorithms for boolean function query properties. SIAM Journal on Com-
puting, 32(5):1140–1157, 2003. doi:10.1137/S0097539700379644.

2 Eric Allender. The new complexity landscape around circuit minimization. In Proceedings of
the 14th Conference on Language and Automata Theory and Applications (LATA), pages 3–16.
Springer, 2020. doi:10.1007/978-3-030-40608-0_1.

3 Eric Allender and Bireswar Das. Zero knowledge and circuit minimization. Information and
Computation, 256:2–8, 2017. doi:10.1016/j.ic.2017.04.004.

4 Eric Allender, Joshua Grochow, Dieter van Melkebeek, Cristopher Moore, and Andrew Morgan.
Minimum circuit size, graph isomorphism, and related problems. SIAM Journal on Computing,
47(4):1339–1372, 2018. doi:10.1137/17M1157970.

5 Eric Allender, Lisa Hellerstein, Paul McCabe, Toniann Pitassi, and Michael Saks. Minimizing
DNF formulas and AC0

d circuits given a truth table. In Proceedings of the 21st Conference on
Computational Complexity (CCC), pages 237–251. IEEE, 2006. doi:10.1109/CCC.2006.27.

6 Eric Allender, Michal Koucký, Detlef Ronneburger, and Sambuddha Roy. Derandomization
and distinguishing complexity. In Proceedings of the 18th Conference on Computational
Complexity (CCC), pages 209–220. IEEE, 2003. doi:10.1109/CCC.2003.1214421.

7 Guy Blanc, Jane Lange, Mingda Qiao, and Li-Yang Tan. Properly learning decision trees in
almost polynomial time. In Proceedings of the 62nd Symposium on Foundations of Computer
Science (FOCS), pages 920–929. IEEE, 2021. doi:10.1109/FOCS52979.2021.00093.

https://doi.org/10.1137/S0097539700379644
https://doi.org/10.1007/978-3-030-40608-0_1
https://doi.org/10.1016/j.ic.2017.04.004
https://doi.org/10.1137/17M1157970
https://doi.org/10.1109/CCC.2006.27
https://doi.org/10.1109/CCC.2003.1214421
https://doi.org/10.1109/FOCS52979.2021.00093

R. Maharjan and T. Watson 26:11

8 Nader Bshouty and Catherine Haddad-Zaknoon. Adaptive exact learning of decision trees
from membership queries. In Proceedings of the 30th International Conference on Algorithmic
Learning Theory (ALT), pages 207–234. PMLR, 2019.

9 Uriel Feige, Prabhakar Raghavan, David Peleg, and Eli Upfal. Computing with noisy informa-
tion. SIAM Journal on Computing, 23(5):1001–1018, 1994. doi:10.1137/S0097539791195877.

10 Steven Friedman and Kenneth Supowit. Finding the optimal variable ordering for binary
decision diagrams. IEEE Transactions on Computers, 39(5):710–713, 1990. doi:10.1109/12.
53586.

11 David Guijarro, Víctor Lavín, and Vijay Raghavan. Exact learning when irrelevant variables
abound. Information Processing Letters, 70(5):233–239, 1999. doi:10.1016/S0020-0190(99)
00063-0.

12 Shuichi Hirahara, Rahul Ilango, and Bruno Loff. Hardness of constant-round communication
complexity. In Proceedings of the 36th Computational Complexity Conference (CCC), pages
31:1–31:30. Schloss Dagstuhl, 2021. doi:10.4230/LIPIcs.CCC.2021.31.

13 Rahul Ilango. Constant depth formula and partial function versions of MCSP are hard.
In Proceedings of the 61st Symposium on Foundations of Computer Science (FOCS), pages
424–433. IEEE, 2020. doi:10.1109/FOCS46700.2020.00047.

14 Rahul Ilango. The minimum formula size problem is (ETH) hard. In Proceedings of the
62nd Symposium on Foundations of Computer Science (FOCS), pages 427–432. IEEE, 2021.
doi:10.1109/FOCS52979.2021.00050.

15 Rahul Ilango, Bruno Loff, and Igor Carboni Oliveira. NP-hardness of circuit minimization
for multi-output functions. In Proceedings of the 35th Computational Complexity Conference
(CCC), pages 22:1–22:36. Schloss Dagstuhl, 2020. doi:10.4230/LIPIcs.CCC.2020.22.

16 Valentine Kabanets and Jin-Yi Cai. Circuit minimization problem. In Proceedings of the
32nd Symposium on Theory of Computing (STOC), pages 73–79, 2000. doi:10.1145/335305.
335314.

17 Claire Kenyon and Andrew Yao. On evaluating boolean functions with unreliable tests.
International Journal of Foundations of Computer Science, 1(1):1–10, 1990. doi:10.1142/
S0129054190000023.

18 Eyal Kushilevitz and Enav Weinreb. On the complexity of communication complexity. In
Proceedings of the 41st Symposium on Theory of Computing (STOC), pages 465–474. ACM,
2009. doi:10.1145/1536414.1536479.

19 Netanel Raviv. Truth table minimization of computational models. Technical report, arXiv,
2013. arXiv:1306.3766.

20 Rüdiger Reischuk and Bernd Schmeltz. Reliable computation with noisy circuits and decision
trees – A general n log n lower bound. In Proceedings of the 32nd Symposium on Foundations
of Computer Science (FOCS), pages 602–611. IEEE, 1991. doi:10.1109/SFCS.1991.185425.

21 Mario Szegedy and Xiaomin Chen. Computing boolean functions from multiple faulty copies
of input bits. Theoretical Computer Science, 321(1):149–170, 2004. doi:10.1016/j.tcs.2003.
07.001.

FSTTCS 2022

https://doi.org/10.1137/S0097539791195877
https://doi.org/10.1109/12.53586
https://doi.org/10.1109/12.53586
https://doi.org/10.1016/S0020-0190(99)00063-0
https://doi.org/10.1016/S0020-0190(99)00063-0
https://doi.org/10.4230/LIPIcs.CCC.2021.31
https://doi.org/10.1109/FOCS46700.2020.00047
https://doi.org/10.1109/FOCS52979.2021.00050
https://doi.org/10.4230/LIPIcs.CCC.2020.22
https://doi.org/10.1145/335305.335314
https://doi.org/10.1145/335305.335314
https://doi.org/10.1142/S0129054190000023
https://doi.org/10.1142/S0129054190000023
https://doi.org/10.1145/1536414.1536479
http://arxiv.org/abs/1306.3766
https://doi.org/10.1109/SFCS.1991.185425
https://doi.org/10.1016/j.tcs.2003.07.001
https://doi.org/10.1016/j.tcs.2003.07.001

	1 Introduction
	2 Decision trees
	3 Patterns and redundant queries
	4 Valid patterns
	5 The algorithm: Proof of Theorem 1
	6 Future directions

