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Abstract
Submodular functions are fundamental to combinatorial optimization. Many interesting problems can
be formulated as special cases of problems involving submodular functions. In this work, we consider
the problem of approximating symmetric submodular functions everywhere using hypergraph cut
functions. Devanur, Dughmi, Schwartz, Sharma, and Singh [5] showed that symmetric submodular
functions over n-element ground sets cannot be approximated within (n/8)-factor using a graph cut
function and raised the question of approximating them using hypergraph cut functions. Our main
result is that there exist symmetric submodular functions over n-element ground sets that cannot
be approximated within a o(n1/3/ log2 n)-factor using a hypergraph cut function. On the positive
side, we show that symmetrized concave linear functions and symmetrized rank functions of uniform
matroids and partition matroids can be constant-approximated using hypergraph cut functions.
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1 Introduction

A set function f : 2V → R≥0 defined over a ground set V is submodular if f(A) + f(B) ≥
f(A ∩ B) + f(A ∪ B) for all subsets A, B ⊆ V and is symmetric if f(A) = f(V − A) for
all subsets A ⊆ V . Submodular functions have the diminishing marginal returns property
which arise frequently in economic and game theoretic contexts. Well-known examples of
submodular functions include matroid rank functions and graph/hypergraph cut functions.
Owing to these connections, submodular functions play a fundamental role in combinatorial
optimization.

Throughout this work, we will be interested in non-negative set functions f : 2V → R≥0
with f(∅) = 0. We use n to denote the size of the ground set V . For a parameter α ≥ 1, a
set function g : 2V → R≥0 is said to α-approximate a set function f : 2V → R≥0 if

g(A) ≤ f(A) ≤ αg(A) ∀ A ⊆ V.

Given the prevalence of submodular functions in combinatorial optimization, a natural
question that has been studied is whether an arbitrary submodular set function can be
well-approximated by a concisely representable function. We distinguish between structural

© Calvin Beideman, Karthekeyan Chandrasekaran, Chandra Chekuri, and Chao Xu;
licensed under Creative Commons License CC-BY 4.0

42nd IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science
(FSTTCS 2022).
Editors: Anuj Dawar and Venkatesan Guruswami; Article No. 6; pp. 6:1–6:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:calvinb2@illinois.edu
http://www.calvinbeideman.com
mailto:karthe@illinois.edu
http://karthik.ise.illinois.edu/
mailto:chekuri@illinois.edu
https://chekuri.cs.illinois.edu/
mailto:cxu@uestc.edu.cn
https://chaoxuprime.com/
https://doi.org/10.4230/LIPIcs.FSTTCS.2022.6
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


6:2 Approx Representation of Sym Submodular Functions

and algorithmic variants of this question: the structural question asks whether submodular
functions can be well-approximated via concisely representable functions while the algorithmic
question asks whether such a concise representation can be constructed using polynomial
number of function evaluation queries (note that the algorithmic question is concerned with
the number of function evaluation queries as opposed to run-time). Concise representations
with small-approximation factor are useful in learning, testing, streaming, and sketching
algorithms. Consequently, concise representations with small-approximation factor for
submodular functions (and their generalizations and subfamilies of submodular functions)
have been studied from all these perspectives with most results focusing on monotone
submodular functions [8, 2, 12, 1, 5, 11, 6, 3].

In this work, we focus on approximating symmetric submodular functions. Balcan, Harvey,
and Iwata [2] showed that for every symmetric submodular function f : 2V → R≥0, there
exists a function g : 2V → R≥0 defined by g(S) :=

√
χ(S)T Mχ(S), where χ(S) ∈ {0, 1}V is

the indicator vector of S ⊆ V and M is a symmetric positive definite matrix such that g√
n-approximates f . We note that such a function g has a concise representation – namely, the

matrix M . Is it possible to improve on the approximation factor for symmetric submodular
functions using other concisely representable functions?

The concisely representable family of functions that we study in this work is the family
of hypergraph cut functions. A hypergraph H = (V, E) consists of a vertex set V and
hyperedges E where each hyperedge e ∈ E is a subset of vertices. If every hyperedge has size
2, then the hypergraph is simply a graph. For a subset A of vertices, we use δ(A) to denote
the set of hyperedges e such that e has non-empty intersection with both A and V \ A. The
cut function d : 2V → R+ of a hypergraph H = (V, E) with hyperedge weights w : E → R+
is given by

d(A) :=
∑

e∈E: e∈δ(A)

we ∀ A ⊆ V.

A function g : 2V → R+ is a hypergraph cut function if there exists a weighted hypergraph
with vertex set V whose cut function is g. We will say that a function f : 2V → R+ is
α-hypergraph-approximable (α-graph approximable) if there exists a hypergraph (graph) cut
function g such that g α-approximates f . We note that although a hypergraph could have
exponential number of hyperedges, every n-vertex hypergraph admits a (1 + ϵ)-approximate
cut-sparsifier with O(n log n

ϵ2 ) hyperedges (see Theorem 6 for a formal definition of cut-
sparsifier), and hence, hypergraph cut functions have a concise representation (with a
constant loss in approximation factor).

The structural approximation question of whether every symmetric submodular function
is constant-hypergraph-approximable was raised by Devanur, Dughmi, Shwartz, Sharma, and
Singh [5]. They showed that every symmetric submodular function on a ground set of size n

is O(n)-graph-approximable and that this factor is tight for graph-approximability: in fact,
the cut function of the n-vertex hypergraph containing a single hyperedge that contains all
vertices cannot be (n/4 − ϵ)-approximated by a graph cut function for all constant ϵ > 0.
This example naturally raises the following intriguing conjecture:

▶ Conjecture 1. Every symmetric submodular function is constant-hypergraph-approximable.

The conjecture is further fueled by the fact that there are no natural examples of symmetric
submodular functions besides hypergraph cut functions (although arbitrary submodular
functions can be symmetrized while preserving submodularity).
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We emphasize that the algorithmic variant of Conjecture 1 is false. In particular, there
does not exist an algorithm that makes a polynomial number of function evaluation queries to
a symmetric submodular function f and constructs a hypergraph cut function g such that g

O(
√

n/ ln n)-approximates f . We outline a proof of this observation now. Suppose that there
exists an algorithm that uses polynomial number of function evaluation queries to a given
symmetric submodular function f to construct a weighted hypergraph whose cut function
α-approximates f ; then we can obtain an α-approximation to the symmetric submodular
sparsest cut problem by constructing such a hypergraph and solving the sparsest cut on
that hypergraph exactly (using exponential run-time). However, Svitkina and Fleischer [12]
have shown that the best possible approximation for the symmetric submodular sparsest
cut problem using polynomial number of function evaluation queries is Ω(

√
n/ ln n) (even if

exponential run-time is allowed). Hence, the algorithmic version of hypergraph-aproximability
has a strong lower bound of Ω(

√
n/ ln n). This leaves the structural question open while

perhaps, hinting that it may also have a strong lower bound.

1.1 Our Results
The symmetrization of a set function f : 2V → R is the function fsym : 2V → R obtained as

fsym(A) := f(A) + f(V \ A) − f(V ) − f(∅).

We note that if f : 2V → R is submodular, then its symmetrization fsym : 2V → R is
symmetric submodular. A matroid rank function is a non-negative integer valued submodular
set function r : 2V → Z satisfying r(A) ≤ r(A ∪ {e}) ≤ r(A) + 1 for every subset A ⊆ V and
element e ∈ V . As a step towards understanding Conjecture 1, we observe that it suffices to
focus on symmetrized matroid rank functions (see Section 1.3 for a proof).

▶ Proposition 2. If the symmetrization of every matroid rank function is α-hypergraph-
approximable, then every rational-valued symmetric submodular function is α-hypergraph-
approximable.

Next, we refute Conjecture 1 by showing the following result.

▶ Theorem 3. For every sufficiently large positive integer n, there exists a matroid rank
function r : 2[n] → Z≥0 such that rsym is not α-hypergraph-approximable for

α = o

(
n

1
3

log2 n

)
.

Our proof of Theorem 3 is an existential argument and it does not construct an explicit
matroid rank function that achieves the lower bound.

Next, we prove positive approximation results for certain subfamilies of symmetric
submodular functions. The subfamilies that we consider are inspired by Proposition 2 and
by previous work on approximating symmetric submodular functions and matroid rank
functions.

We call a set function f : 2V → R≥0 as a concave linear function if there exist weights w :
V → R≥0 and an increasing concave function h : R≥0 → R≥0 such that f(S) = h(

∑
v∈S wv)

for every S ⊆ V . We note that concave linear functions are submodular. Goemans, Harvey,
Iwata, and Mirrokni [8] showed that every matroid rank function over a n-element ground
set can be

√
n-approximated by the square-root of a linear function, i.e., by a concave

linear function. Balcan, Harvey and Iwata [2] showed that every symmetric submodular

FSTTCS 2022



6:4 Approx Representation of Sym Submodular Functions

function f : 2V → R≥0 is
√

n-approximated by a function g : 2V → R≥0 of the form
g(S) :=

√
χ(S)T Mχ(S) for all S ⊆ V , where χ(S) ∈ {0, 1}V is the indicator vector of S and

M is a symmetric positive definite matrix. In particular, if M is a diagonal matrix, then the
function g is the square root of a linear function, i.e., a concave linear function. Given the
significant role of concave linear functions, we consider the hypergraph-approximability of
such functions.

▶ Theorem 4. Symmetrized concave linear functions are 128-hypergraph-approximable.

As a special case of Theorem 4, we obtain that the symmetrized rank function of uniform
matroids is constant-hypergraph-approximable. Thus, symmetrized rank functions of uniform
matroids act as a starting point for identifying subfamilies of symmetrized matroid rank
functions that are constant-hypergraph-approximable. We consider a generalization of the
uniform matroid, namely the partition matroid and show that it is also constant-hypergraph-
approximable. We refer the reader to Section 1.2 for formal definitions of uniform and
partition matroids.

▶ Theorem 5. Symmetrized rank functions of uniform matroids and partition matroids are
64-hypergraph-approximable.

Theorem 5 gives a concrete class of functions for which there is a large gap between the
approximation capabilities of graph cut functions and hypergraph cut functions. Consider
the uniform matroid where the independent sets are those of size at most 1. The symmetrized
rank function of this matroid is the same as the cut function of a hypergraph with a single
hyperedge spanning all vertices. As mentioned above, this function cannot be (n/4 − ϵ)-
approximated by a graph cut function for all constant ϵ > 0 [5]. Thus, symmetrized rank
functions of uniform and partition matroids cannot be better than n/4 approximated by
graph cut functions, but can be constant factor approximated by hypergraph cut functions.

While our lower bound result in Theorem 3 rules out α-hypergraph-approximability for
symmetric submodular functions for α = o(n1/3/ log2 n), our positive results suggest broad
families of symmetric submodular functions which are constant-hypergraph-approximable.
It would be interesting to characterize the family of symmetric submodular functions that
are constant-hypergraph-approximable. We also do not know if our lower bound result in
Theorem 3 is tight. We only know that every symmetric submodular function is (n − 1)-
graph-approximable. It would be interesting to show that every symmetric submodular
function is Õ(n1/3)-hypergraph-approximable – we believe that Proposition 2 and Theorem 4
should help towards achieving this approximation factor.

1.2 Preliminaries
A set function f : 2V → R≥0 is submodular if f(A) + f(B) ≥ f(A ∩ B) + f(A ∪ B) for all
subsets A, B ⊆ V , symmetric if f(A) = f(V − A) for all subsets A ⊆ V , and monotone if
f(B) ≥ f(A) for all subsets A ⊆ B ⊆ V .

A matroid M = (V, I) is specified by a ground set V and a collection I ⊆ 2V , known as
independent sets, satisfying the three independent set axioms: (1) ∅ ∈ I, (2) if B ∈ I, then
A ∈ I for every A ⊆ B, and (3) if A, B ∈ I with |B| > |A|, then there exists an element
v ∈ B \ A such that A ∪ {v} ∈ I. The rank function r : 2V → Z≥0 of a matroid M = (V, I)
is defined as

r(A) := max{|S| : S ⊆ A, S ∈ I} ∀ A ⊆ V.

The definition of matroid rank functions that we presented in Section 1.1 is equivalent to this
definition [10]. It is well-known that the rank function of a matroid is monotone submodular.
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We consider two matroids over the ground set V . A uniform matroid is a matroid in
which the independent sets are exactly the sets containing at most k elements of the ground
set V , for some fixed integer k – we call it as the uniform matroid over ground set V with
budget k. Partition matroids generalize uniform matroids: the independent sets of the
partition matroid associated with a partition P1, . . . , Pt of the ground set V with budgets
b1, . . . , bt ∈ Z≥0 are those subsets A ⊆ V for which |A ∩ Pi| ≤ bi for every i ∈ [t].

The proof of our lower bound will use the following theorem showing the existence of
cut-sparsifiers.

▶ Theorem 6 ([4]). For every positive constant ϵ and for every weighted n-vertex hypergraph
H, there exists another weighted hypergraph H ′ (called a cut-sparsifier) on the same vertex
set with Õ(n/ϵ2) hyperedges such that the cut function of H ′ (1 + ϵ)-approximates the cut
function of H.

1.3 Proof of Proposition 2
In this section, we prove Proposition 2. We need the notion of contraction of set functions and
hypergraphs. For a set function f : 2V → R≥0 and a subset A, the function g : 2V −A+a → R≥0
obtained by contracting f with respect to A is defined as

g(S) :=
{

f(S) if a ̸∈ S,

f(S − a + A) if a ∈ S.

If f : 2V → R≥0 is a symmetric submodular function and A ⊆ V , then the function obtained
by contracting f with respect to A is also symmetric submodular. Let H = (V, E) be
a hypergraph with hyperedge weights w : E → R≥0 and A ⊆ V . Then, the hypergraph
obtained by contracting H with respect to A is defined as H ′ = (V − A + a, E′) where a is a
new vertex not present in V and

E′ := {e − A + a : e ∈ E, e ∩ A ̸= ∅} ∪ {e : e ∈ E, e ∩ A = ∅}.

We note that E′ could have self-loops and that there is a surjection ϕ : E → E′ mapping each
hyperedge to the hyperedge it is contracted into (which could be the same as the original
hyperedge). We use this surjection to define the weight w′ : E′ → R≥0 of hyperedges in E′ as
w′(e′) =

∑
e∈E : ϕ(e)=e′ w(e). We note that if f is the cut function of a weighted hypergraph

H = (V, E) with hyperedge weights w : E → R≥0 and A ⊆ V , then the contraction of f with
respect to A corresponds to the cut function of the weighted hypergraph (H ′, w′) obtained
by contracting H with respect to A. This leads to the following observation:

▶ Observation 7. The contraction of a α-hypergraph-approximable function f : 2V → R≥0
with respect to a subset A ⊆ V is also α-hypergraph-approximable.

▶ Proposition 2. If the symmetrization of every matroid rank function is α-hypergraph-
approximable, then every rational-valued symmetric submodular function is α-hypergraph-
approximable.

Proof. It suffices to consider integer-valued symmetric submodular functions (multiply all
function values by the product of the denominators of their rational expressions). Hence, we
will focus on approximating integer-valued symmetric submodular functions.

Let f : 2V → Z≥0 be an integer-valued symmetric submodular function. It is known that
there exists a vector w ∈ RV such that the function g : 2V → R≥0 defined by

g(S) := f(S) +
∑
u∈S

wu ∀ S ⊆ V

FSTTCS 2022



6:6 Approx Representation of Sym Submodular Functions

is integer-valued, monotone, and submodular [7, Section 3.3] (e.g., for our purposes, we
can simply choose wu := max{f(S) : S ⊆ V } for every u ∈ V ). Since f(V ) = 0, we
have that g(V ) =

∑
u∈V wu. Consequently, (1/2)gsym(S) = (1/2)(g(S) + g(V − S) −

g(V )) = (1/2)(f(S) + f(V − S)) = f(S) for every S ⊆ V since f is symmetric. Thus,
f(S) = (1/2)gsym(S) for every S ⊆ V .

Next, consider the integer-valued monotone submodular function g : 2V → Z≥0 obtained
as above. Helgason [9] showed that there exists a matroid on a ground set U with rank
function r : 2U → Z≥0 and a partition (Uv : v ∈ V ) of U such that g(S) = r(∪v∈SUv) for
every S ⊆ V . Equivalently, the function g is obtained from the rank function r by repeatedly
contracting with respect to Uv for each v ∈ V (the order of processing v ∈ V is irrelevant).
Moreover, f(S) = (1/2)gsym(S) = (1/2)rsym(∪v∈SUv) for every S ⊆ V . Hence, the function
f is half times the contraction of a symmetrized matroid rank function. Thus, if every
symmetrized matroid rank function is α-hypergraph-approximable, then by Observation 7,
the function f is also α-hypergraph-approximable. ◀

2 Lower Bound

In this section, we prove Theorem 3. In our first lemma, we show that it suffices to consider
only hypergraphs with Õ(n) hyperedges if we are willing to tolerate a constant loss in the
approximation factor.

▶ Lemma 8 (Few hyperedges suffice). Let f : 2[n] → R≥0 be a symmetric submodular function
and β ≥ 1 be a positive real number. Suppose that there exists a weighted hypergraph H

whose cut function β-approximates f . Then, there exists a weighted hypergraph H ′ with Õ(n)
hyperedges whose cut function 2β-approximates f .

Proof. Applying Theorem 6 to H with ϵ = 1 gives us that there exists a weighted hypergraph
H ′ with Õ(n) hyperedges whose cut function 2-approximates the cut function of H. Since the
cut function of H β-approximates f , this means that the cut function of H ′ 2β-approximates f .

◀

Next we show that it suffices to restrict our attention to hypergraphs with rational
hyperedge weights while again losing only a constant in the approximation factor (since we
will be considering only hypergraphs with O(n) hyperedges).

▶ Lemma 9 (Bounded rational weights suffice). Let r : 2V → R+ be a matroid rank function
on ground set V = [n]. Suppose that there exists a hypergraph H = (V, E) with hyperedge
weights w : E → R+ with |E| = Õ(n) whose cut function d : 2[n] → R≥0 β-approximates rsym
for some β = o(n). Then, there exist hyperedge weights w′ : E → Q+ which assign to each
hyperedge of H a positive rational weight p/q where p, q ≤ n3 such that d′ 2β-approximates
rsym, where d′ : 2[n] → R≥0 is the cut function induced by the weight function w′.

Proof. Since r is the rank function of a matroid on ground set V = [n], we have that
r(S) ≤ n for all S ⊆ [n], and therefore rsym(S) ≤ n for all S ⊆ [n]. Consequently, if w(e) > n

for some e ∈ E then we have d(S) > n ≥ rsym(S) for some S ⊆ [n], a contradiction. Thus,
we conclude that w(e) ≤ n for every e ∈ E.

We define the new weight function w′ : E → R≥0 by

w′(e) := ⌊n2w(e)⌋
n2 ∀ e ∈ E.
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For every e ∈ E, the weight w′(e) is a rational number p/q with q = n2 and p ≤ n2w(e) ≤ n3.
Next, we show that the cut function d′ : 2[n] → R≥0 induced by this weight function w′

satisfies the required bounds for every subset S ⊆ [n].
For every e ∈ E, we have that w′(e) ≤ w(e). Thus, for every S ⊆ [n], we have that

d′(S) ≤ d(S) ≤ rsym(S). Moreover, for every e ∈ E, we have that w′(e) ≥ w(e) − 1/n2.
Therefore, for every S ⊆ [n], we have that

d′(S) ≥ d(S) − |E|/n2. (1)

Let S ⊆ [n]. If rsym(S) = 0, then d′(S) ≤ d(S) = 0, and so rsym(S) ≤ 2βd′(S). Suppose
rsym(S) > 0. Since rsym(S) is an integer, this means that rsym(S) ≥ 1, and therefore
1/β ≤ rsym(S)/β ≤ d(S). Since |E| = Õ(n), we have that |E|/n2 = Õ( 1

n ), and since
β = o(n), we conclude that |E|/n2 < 1/2β ≤ d(S)/2. Hence, Inequality (1) gives us that
d′(S) ≥ d(S)/2, and therefore, rsym(S) ≤ βd(S) ≤ 2βd′(S). ◀

We will show the existence of our desired matroid rank function using the following
theorem of Balcan and Harvey [3].

▶ Theorem 10 ([3]). For every positive integer n and k ≥ 8 with k = 2o(n1/3), there exists a
family of sets A ⊆ 2[n] and a family of matroids M = {MB : B ⊆ A} on the ground set [n]
with the following properties:
1. |A| = k and |A| = ⌊n1/3⌋ for every A ∈ A.
2. For every B ⊆ A and every A ∈ A, we have

rankMB (A) =
{

8⌊log k⌋ (if A ∈ B)
|A| = ⌊n1/3⌋ (if A ∈ A \ B)

.

3. For every A1, A2 ∈ A with A1 ̸= A2, we have |A1 ∩ A2| ≤ 4 log k.
4. For every B ⊊ A, we have rankMB ([n]) = ⌊n1/3⌋.

We note that the version of the theorem given in [3] does not include the third and fourth
properties. However, the proof for the variant of Theorem 10 with the first two properties
given in [3] shows that the third and fourth properties also hold. We are now ready to prove
Theorem 3. The following is a restatement of Theorem 3.

▶ Theorem 11. For every sufficiently large positive integer n, there exists a symmetrized
matroid rank function rsym : 2[n] → Z≥0 on ground set [n] such that rsym is not α-hypergraph-
approximable for α = o(n1/3/ log2 n).

Proof. For simplicity, we will assume that n = 8x for some positive integer x, so that log n

and n1/3 are both integers. If the theorem holds for n of this form, it holds for all sufficiently
large n, since for any 8x ≤ n < 8x+1 we can extend a matroid M on ground set [8x] to a
matroid M ′ on ground set [n] which has the same independent sets.

For k = nlog n, let A be a collection of subsets of [n] and M = {MB : B ⊆ A} be the
family of matroids on ground set [n] with the properties guaranteed by Theorem 10. We note
that |M| = 2nlog n . For each B ⊆ A, let rB

sym be the symmetrized rank function of MB and let
F := {rB

sym : MB ∈ M} be the family of symmetrized rank functions of matroids in the family
M. We note that F is a family of 2nlog n symmetrized matroid rank functions over the ground
set [n]. We will prove that there exists rB

sym ∈ F which is not α-hypergraph-approximable.
Suppose for contradiction that for every function rB

sym ∈ F there exists a hypergraph HB
such that the cut function dB of HB satisfies dB(S) ≤ rB

sym(S) ≤ α(n)dB(S) for all S ⊆ [n].

FSTTCS 2022



6:8 Approx Representation of Sym Submodular Functions

Let rB
sym ∈ F . By Lemma 8, there exists a weighted hypergraph H ′

B with Õ(n) hyperedges
such that its cut function d′ : 2[n] → R≥0 satisfies

d′(S) ≤ rB
sym(S) ≤ 2αd′(S) ∀ S ⊆ [n].

Applying Lemma 9 to the rank function rankB : 2[n] → Z≥0 of the matroid MB and the
hypergraph H ′

B gives a hypergraph H ′′
B with Õ(n) hyperedges all of whose weights are rational

values p/q with p, q ≤ n3 such that the cut function d′′ : 2[n] → R≥0 of H ′′
B satisfies

d′′(S) ≤ rB
sym(S) ≤ 4αd′′(S) ∀ S ⊆ [n].

Let H be the family of weighted hypergraphs {H ′′
B : rB

sym ∈ F}.
We now count the number of weighted hypergraphs in H. Each hypergraph in H has Õ(n)

hyperedges with each hyperedge having rational weight p/q where p, q ≤ n3. The number of
potential hyperedges in a n-vertex hypergraph is 2n − 1, so for every m ∈ Z+ the number
of simple n-vertex hypergraphs with m hyperedges is

(2n−1
m

)
= O(2nm). Consequently, the

number of possible simple hypergraphs with Õ(n) hyperedges is 2Õ(n2). The number of
positive rational numbers p/q with p, q ∈ [n3] is at most n6, so the number of ways to
assign a weight of this kind to each hyperedge of a hypergraph with Õ(n) hyperedges is
nÕ(n). Therefore the number of hypergraphs with Õ(n) hyperedges each of which has a
positive rational weight p/q where p, q ∈ [n3] is 2Õ(n2)nÕ(n) = 2Õ(n2) = 2o(nlog n). Hence,
|H| = 2o(nlog n).

Let F ′ := {rB
sym ∈ F : |B| ≤ |A| − 2}. Since |F| = 2nlog n and |A| = nlog n, we have that

|F ′| = Ω(2nlog n). Since |F ′| = Ω(2nlog n) while |H| = 2o(nlog n), there must exist two distinct
functions rB1

sym, rB2
sym ∈ F ′ such that there is a single weighted hypergraph H ∈ H whose cut

function d : 2[n] → R≥0 satisfies

d(S) ≤ rB1
sym(S) ≤ 8αd(S) ∀ S ⊆ [n] and (2)

d(S) ≤ rB2
sym(S) ≤ 8αd(S) ∀ S ⊆ [n]. (3)

Since B1 ̸= B2, at least one of B1 \ B2 and B2 \ B1 must be non-empty. We assume
without loss of generality that B1 \ B2 ̸= ∅. Let S ∈ B1 \ B2. By Theorem 10, we have
that rankMB1

(S) = 8 log2 n and rankMB2
(S) = n1/3. Since rB1

sym, rB2
sym ∈ F ′, we have that

|B1|, |B2| ≤ |A| − 2, and thus |B1 ∪ {S}|, |B2 ∪ {S}| ≤ |A| − 1. Therefore A \ (B1 ∪ {S}), A \
(B2 ∪ {S}) ̸= ∅, so there exist sets T1 ∈ A \ (B1 ∪ {S}), T2 ∈ A \ (B2 ∪ {S}). By Theorem 10,
we have that rankMB1

(T1), rankMB2
(T2) = n1/3 and |S ∩ T1|, |S ∩ T2| ≤ 4 log2 n. Therefore,

rankMB1
(T1\S), rankMB2

(T2\S) ≥ n1/3−4 log2 n, and so rankMB1
([n]\S), rankMB2

([n]\S) ≥
n1/3 − 4 log2 n. Furthermore, since T1, T2 ⊆ [n] we have that rankMB1

([n]), rankMB2
([n]) ≥

n1/3, and so by Theorem 10, we have rankMB1
([n]), rankMB2

([n]) = n1/3. Thus, we have that

rB1
sym(S) = rankMB1

(S) + rankMB1
([n] \ S) − rankMB1

([n])

≤ 8 log2 n + n1/3 − n1/3 = 8 log2 n and
rB2

sym(S) = rankMB2
(S) + rankMB2

([n] \ S) − rankMB2
([n])

≥ n1/3 + (n1/3 − 4 log2 n) − n1/3 = n1/3 − 4 log2 n.

Therefore, by inequalities (2) and (3), we have that d(S) ≤ rB1
sym(S) ≤ 8 log2 n, and 8αd(S) ≥

rB2
sym(S) ≥ n1/3 − 4 log2 n. Hence, α = Ω(n1/3/ log2 n). This contradicts the assumption that

α = o(n1/3/ log2 n). ◀
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3 Upper Bounds

In this section, we show that certain subfamilies of symmetric submodular functions are
constant-hypergraph-approximable. In particular, we show how to approximate concave
linear functions and symmetrized rank functions of uniform and partition matroids using
hypergraph cut functions.

3.1 Concave Functions
In this section, we prove Theorem 4. We recall that a set function f : 2V → R≥0 is a concave
linear function if there exist weights w : V → R≥0 and an increasing concave function
h : R≥0 → R≥0 such that f(S) = h(

∑
v∈S wv). If all weights are one , then fsym is symmetric

submodular and moreover, the precise value of f(S) depends only on the size |S| and does not
depend on the precise identify of the elements in S, so we call such functions f as anonymized
concave linear functions. In Section 3.1.1, we consider the special case of anonymized
concave linear functions and show that these are constant-hypergraph-approximable. We
extend these ideas in Section 3.1.2 to show that symmetrized concave linear functions are
constant-hypergraph-approximable.

3.1.1 Anonymized Concave Linear Functions
The following lemma is useful for proving the main theorem of this section. Its proof is given
in the appendix.

▶ Lemma 12. For every integer n ≥ 2, r ∈ {2, . . . , n}, and X ⊆ [n] with 1 ≤ |X| ≤ n
2 , the

set of hyperedges δ(X) that cross X in a complete r-uniform n-vertex hypergraph has the
following size bound:

1
4 min

{
|X|r

n
, 1
}

≤ |δ(X)|(
n
r

) ≤ 4 min
{

|X|r
n

, 1
}

.

The following is the main theorem of this section.

▶ Theorem 13. Let n be a positive real number and h : R≥0 → R≥0 be a function such that h

is concave on [0, n] and h(x) = h(n−x) for every x ∈ [0, n]. Then, the symmetric submodular
function f : 2V → R≥0 over the ground set V = [n] defined by f(S) := h(|S|) ∀ S ⊆ V is
64-hypergraph-approximable.

Proof. To simplify our notation, we define ax := h(x) − h(x − 1) for x ∈ {1, . . . , ⌈n/2⌉}. A
hypergraph is uniform if all its hyperedges have the same size and a complete t-uniform
hypergraph consists of all hyperedges of size t. We define H as the union of ⌈n/2⌉ different
hypergraphs, G0, . . . , G⌈n/2⌉, each of which is a uniform hypergraph over the vertex set V

and each of whose hyperedges are weighted uniformly. Formally, H is the union of:
1. A complete ⌈ n

x ⌉-uniform hypergraph Gx, with a total weight of (ax − ax+1)(x/8) equally
distributed among its hyperedges for each x ∈ {1, . . . , ⌈n/2⌉ − 1}, i.e., w(e) = (ax −
ax+1)(x/8)/

(
n

⌈ n
x ⌉
)

for every hyperedge e ∈ E(Gx) (we note that ax − ax+1 ≥ 0 since h is
concave).

2. A complete 2-uniform hypergraph G⌈n/2⌉, with a total weight of a⌈n/2⌉(n/32) equally
distributed among its hyperedges.

3. A hypergraph G0 consisting of a single n-vertex hyperedge of weight h(0)/64.
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6:10 Approx Representation of Sym Submodular Functions

Let d be the cut function of the hypergraph H we have just defined. In order to show
that d 64-approximates f , we will consider an arbitrary subset C of size k and bound its
cut value in H. Since we know that d and f are both symmetric, we assume without loss of
generality that 1 ≤ k ≤ n/2.

We now compute the weight of hyperedges crossing C in H. We recall that |C| = k ≤ n/2.
We begin with the easy cases. δ(C) will certainly cut the single hyperedge of G0 for a weight
of exactly h(0)/64. The hyperedges in G⌈n/2⌉ have rank 2. Therefore, by Lemma 12, the
number of hyperedges crossing C in G⌈n/2⌉ is at least a k

2n fraction and at most a 8k
n fraction

of the hyperedges in G⌈n/2⌉, for a total weight between a⌈n/2⌉k/64 and a⌈n/2⌉k/4.
Next, we compute the weight of hyperedges crossing C in G1, . . . , Gk. Let us consider Gx

for a fixed x ∈ {1, . . . , k}. Let r := ⌈ n
x ⌉. We have that r ≥ n

x ≥ n
k , so kr

n ≥ 1. Therefore, by
Lemma 12, the number of hyperedges crossing C in Gx is at least a quarter of the hyperedges
of Gx. We also know that even if all hyperedges in Gx cross C, the weight of those hyperedges
is only (ax − ax+1)(x/8). Therefore, the weight of hyperedges crossing C in Gx is between
(ax − ax+1)(x/32) and (ax − ax+1)(x/8).

Next, we compute the weight of hyperedges crossing C in Gk+1, . . . , G⌈n/2⌉−1. Let us
consider Gx for a fixed x ∈ {k + 1, . . . , ⌈ n

2 ⌉ − 1}. Let r := ⌈ n
x ⌉. Then, 2 ≤ r ≤ 2n

x < 2n
k .

Therefore, kr
n ≤ 2, and hence,

k

2x
≤ kr

2n
≤ min

(
kr

n
, 1
)

≤ kr

n
≤ 2k

x
.

From these inequalities and Lemma 12, we conclude that the number of hyperedges crossing
C in Gx is at least a k

8x fraction and at most a 8k
x fraction of hyperedges of Gx. Therefore, the

weight of hyperedges crossing C in Gx is at least (ax − ax+1)k/64 and at most (ax − ax+1)k.
Therefore, if d(C) is the weight of hyperedges crossing C in H, then

1
64

h(0) + a⌈n/2⌉k +
k∑

x=1
(ax − ax+1)x +

⌈n/2⌉−1∑
x=k+1

(ax − ax+1)k

 (4)

≤ 1
64

h(0) + a⌈n/2⌉k +
k∑

x=1
2(ax − ax+1)x +

⌈n/2⌉−1∑
x=k+1

(ax − ax+1)k

 (5)

≤ d(C) (6)

≤ h(0)
64 + a⌈n/2⌉

k

4 +
k∑

x=1
(ax − ax+1)x

8 +
⌈n/2⌉−1∑
x=k+1

(ax − ax+1)k (7)

≤ h(0) + a⌈n/2⌉k +
k∑

x=1
(ax − ax+1)x +

⌈n/2⌉−1∑
x=k+1

(ax − ax+1)k. (8)

Here, expression (8) is 64 times expression (4), so our proof is complete if we can show that
expression (8) evaluates to h(k) (recall that h(k) = f(C). The next claim completes the
proof by showing this. ◀

▷ Claim 14. For every k ∈ {0, 1, 2, . . . , ⌈n/2⌉}, we have that

h(k) = h(0) + a⌈n/2⌉k +
k∑

x=1
(ax − ax+1)x +

⌈n/2⌉−1∑
x=k+1

(ax − ax+1)k
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Proof. To show this, we simplify the two summations appearing on the RHS. The second
summation telescopes to yield (ak+1 − a⌈n/2⌉)k. To simplify the first summation, we note
that

∑j
x=1(ax − ax+1)x =

∑j
x=1(2h(x) − h(x + 1) − h(x − 1))x. For every x from 1 to j − 1,

h(x) is added 2x times and subtracted 2x times in this summation, so it does not contribute
at all. Therefore, we conclude that

∑j
x=1(ax − ax+1)x = (j + 1)h(x) − jh(x + 1) − h(0).

Using the simplifications we have derived for each of the summations on the RHS, we
find that the RHS is

h(0) + a⌈n/2⌉k + ((k + 1)h(k) − kh(k + 1) − h(0)) + (ak+1 − a⌈n/2⌉)k
= kak+1 + (k + 1)h(k) − kh(k + 1)
= k(h(k + 1) − h(k)) + (k + 1)h(k) − kh(k + 1)
= h(k). ◁

3.1.2 Symmetrized Concave Linear Functions
In this section, we prove Theorem 4 – i.e., symmetrized concave linear functions are constant-
hypergraph-approximable. Our approach is to first construct a hypergraph on a much larger
vertex set than the ground set V , using the result of Theorem 13, and then contract subsets
of the vertices of this hypergraph to obtain a hypergraph on the vertex set V with the desired
property.

▶ Theorem 15. Let V be a ground set, w : V → R+, and h : R≥0 → R≥0 be an increasing
concave function. Then, the symmetric submodular function f : 2V → R+ defined by

f(S) := h

(∑
v∈S

w(v)
)

+ h

 ∑
v∈V \S

w(v)

− h

(∑
v∈V

w(v)
)

− h(0) ∀ S ⊆ V

is 128-hypergraph-approximable.

Proof. Let n := |V |. For ease of notation, we will use w(S) :=
∑

v∈S w(v) for all S ⊆ V . Let
g : R≥0 → R≥0 be defined by g(x) := h(x)+h(w(V )−x)−h(w(V ))−h(0) for all x ≥ 0. Then
f(S) = g(w(S)). Since h is concave, and h(w(V ) − x) is h(x) reflected over a vertical line at
x = w(V )/2, the function h(w(V ) − x) is also concave. We also note that −h(w(V )) − h(0)
is a constant, and constant functions are concave. Therefore, g is a sum of concave functions,
and hence, g is concave as well. Since g is concave, it is also continuous. Therefore, for
every x ∈ R+ such that g(x) ̸= 0, there exists a positive real number εx such that for
every real number y with x − εx < y < x + εx, we have g(x)/

√
2 ≤ g(y) ≤

√
2g(x). Let

εmin = min{εw(S) : ∅ ≠ S ⊂ V }. Let q := ⌈2nw(V )/εmin⌉. We note that w(V )/q ≤ εw(S)/2n

for every S ⊂ V .

▷ Claim 16. There exist positive integers pv for each v ∈ V such that:
1. For every v ∈ V , we have that w(v) − εmin

n < pvw(V )
q < w(v) + εmin

n .
2.
∑

v∈V pv = q.

Proof. By our choice of q, for every v ∈ V , we have that w(v) − w(V )/q > w(v) − εmin

n .
Therefore, for each v ∈ V we can choose a positive integer pv such that w(v) − εmin

n <

pvw(V )/q ≤ w(v), and thus we can choose a collection of integers pv which satisfies the first
condition of the claim as well as

∑
v∈V pv ≤ q.
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Consider a collection of positive integers pv for each v ∈ V which maximizes
∑

v∈V pv

subject to satisfying the first condition of the claim and the inequality
∑

v∈V pv ≤ q. Suppose
for contradiction that these integers do not satisfy the second condition of the claim. Then,∑

v∈V pv < q, so
∑

v∈V pvw(V )/q < w(V ), so there must exist some u ∈ V for which
puw(V )/q < w(u). By our choice of q, we have that

(pu + 1)w(V )
q

= puw(V )
q

+ w(V )
q

< w(u) + w(V )
q

≤ w(u) + εmin

2n
< w(u) + εmin

n
.

Thus, we can increase pu by 1 while still satisfying the first condition of the claim. Also, since∑
v∈V pv < q, we have that 1 +

∑
v∈V pv ≤ q, so we can increase pu by 1 while maintaining

that the sum of all the integers pv is at most q. This contradicts our assumption that the
integers pv maximized

∑
v∈V pv subject to satisfying the first constraint of the claim and the

inequality
∑

v∈V pv ≤ q. Thus, a collection of positive integers satisfying the conditions of
the claim exists. ◁

Choose a positive integer pv for each v ∈ V such that the chosen integers satisfy the
conditions of Claim 16. For each v ∈ V , we create a set Uv containing pv new vertices,
and we define U :=

⋃
v∈V

Uv. We note that |U | =
∑

v∈V pv = q. We define functions

h1 : R≥0 → R≥0, f1 : [0, q] → R+, and f2 : [0, q] → R+ by h1(x) = h(xw(V )/q), f1(x) =
h1(x) + h1(q − x) − h1(q) − h1(0), and f2(x) = f1(x)/

√
2. We note that h1 is concave since

it is a rescaling of h by a constant factor, and h1(q − x) is concave, since it is h1 reflected
over the vertical line at x = q/2. Thus, f1 is the sum of concave functions, and hence, f1 is
concave. Finally, f2 is a constant multiple of a concave function, so f2 is concave as well.
Furthermore, by definition, f2(q −x) = f2(x). Applying Theorem 13 to q and f2, we conclude
that there exists a hypergraph H ′ with vertex set U whose cut function d′ satisfies

d′(S) ≤ f1(|S|)/
√

2 ≤ 64d′(S) ∀ S ⊆ U,

Let H be the hypergraph obtained from H ′ by contracting each set Uv of vertices into
a vertex v ∈ V . Let d be the cut function of H. To complete the proof, we will show that
d(S) ≤ f(S) ≤ 128d(S) for every S ⊆ V . We first consider the special cases of S = ∅ and
S = V . For both these cases, we have that f(S) = 0 = d(S) by definition. Next, let us
consider an arbitrary non-empty set S ⊂ V . Let US :=

⋃
v∈S

Uv be the corresponding set of

vertices in H ′. We note that by construction of H, we have that d(S) = d′(US). Therefore,

d(S) ≤ f1(|US |)/
√

2 ≤ 64d(S). (9)

We note that

|US | =
∑
v∈S

|Uv| =
∑
v∈S

pv.

Therefore, by definition,

f1 (|US |) = f1

(∑
v∈S

pv

)

= h1

(∑
v∈S

pv

)
+ h1

(
q −

∑
v∈S

pv

)
− h1(q) − h1(0)
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= h

(∑
v∈S

pvw(V )
q

)
+ h

(
w(V ) −

∑
v∈S

pvw(V )
q

)
− h(w(V )) − h(0)

= g

(∑
v∈S

pvw(V )
q

)
.

For each v ∈ S, we have that w(v) − εmin/n < pvw(V )/q < w(v) + εmin/n. We also have
that |S| ≤ n . Therefore,

w(S) − εw(S) ≤ w(S) − εmin

≤ w(S) − |S|εmin

n

<
∑
v∈S

pvw(V )
q

< w(S) + |S|εmin

n

≤ w(S) + εmin

≤ w(S) + εw(S).

So by definition of εw(S), we have that

f(S)√
2

= g(w(S))√
2

≤ g

(∑
v∈S

pvw(V )
q

)
≤

√
2g(w(S)) =

√
2f(S).

Thus f(S)/
√

2 ≤ f1(|US |) ≤
√

2f(S), and so by inequality (9) we have that

d(S) ≤ f1(|US |)/
√

2 ≤ f(S) ≤
√

2f1(|US |) ≤ 128d(S). ◀

3.2 Symmetrized Matroid Rank Functions
In this section, we prove Theorem 5 which states that symmetrized rank function of uniform
and partition matroids are constant-hypergraph-approximable (see Section 1.2 for definitions
of uniform and partition matroids). We begin with uniform matroids.

▶ Lemma 17. The symmetrized rank function of a uniform matroid is 64-hypergraph-
approximable.

Proof. Let r : 2V → R≥0 be the rank function of the uniform matroid on ground set V

with budget k and rsym : 2V → R≥0 be the symmetrized rank function. We note that
r(S) = min{|S|, k} for every S ⊆ V . If k > |V |, then rsym(S) = 0 for every S ⊆ V and
hence, rsym is 1-hypergraph-approximable using the empty hypergraph. So, we may assume
that k ≤ |V |. Then, for every S ⊆ V , we have that

rsym(S) = r(S) + r(V \ S) − r(V )
= min{|S|, k} + min{|V \ S|, k} − min{|V |, k}
= min{|S|, |V \ S|, k, |V | − k}.

Let n := |V | and consider the function h : R≥0 → R≥0 defined by

h(x) = min{x, n − x, k, n − k}.

Then, h is concave on [0, n] and h(x) = h(n − x) for every x ∈ [0, n] and rsym(S) =
h(|S|) for every S ⊆ V . Therefore, by Theorem 13, we have that rsym is 64-hypergraph-
approximable. ◀
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Next, we show that symmetrized rank functions of partition matroids are constant-
hypergraph-approximable.

▶ Theorem 18. The symmetrized rank function of a partition matroid is 64-hypergraph-
approximable.

Proof. Let M = (V, I) be a partition matroid on ground set V with rank function r :
2V → Z≥0 that is associated with the partition V1, . . . , Vt of the ground set V and budgets
b1, . . . , bt ∈ Z≥0. For i ∈ [t], we define a function fi : 2Vi → Z≥0 by fi(S) := ri(S) + ri(Vi \
S)− ri(Vi) where ri is the rank function of the uniform matroid on ground set Vi with budget
bi. Then, the symmetrized rank function of the partition matroid M can be written as
rsym(S) =

∑t
i=1 fi(S ∩ Vi). Moreover, each fi is the symmetrized rank function of a uniform

matroid. By Lemma 17, for each i ∈ [t], there exists a weighted hypergraph Gi with cut
function di such that

di(S) ≤ fi(S) ≤ 64di(S) ∀ S ⊆ Pi.

Let G be the hypergraph on V formed by taking the union of the hypergraphs Gi for each
i ∈ [t]. Since the vertex sets of the hypergraphs Gi are pairwise disjoint, the cut function
d : 2V → R≥0 of G satisfies d(S) =

∑t
i=1 di(S ∩Vi), and therefore G is a weighted hypergraph

which fulfills the requirements of the theorem. ◀

4 Conclusion

In this work, we investigated the approximability of symmetric submodular functions using
hypergraph cut functions. We proved that it suffices to understand the approximability of
symmetrized matroid rank functions. On the upper bound side, we showed that symmetrized
concave linear functions and symmetrized rank functions of uniform and partition matroids
are constant-approximable using hypergraph cut functions. Our upper bounds for uniform
and partition matroids raise the question of whether symmetrized rank functions of constant-
depth laminar matroids are constant-approximable using hypergraph cut functions. On
the lower bound side, we showed that there exist symmetrized matroid rank functions on
n-element ground sets that cannot be o(n1/3/ log2 n)-approximated using hypergraph cut
functions, thus ruling out constant-approximability of symmetric submodular functions using
hypergraph cut functions. Our results raise the natural open question of whether every
symmetric submodular function on n-element ground set is O(

√
n)-hypergraph approximable.

Our strong lower bound also raises the question of whether we could trade off
approximability against the number of vertices in the hypergraph. In particular, for every
symmetric submodular function f : 2V → R+ defined over a n-element ground set V , does
there exist a hypergraph over a vertex set V ′ ⊇ V with cut function d : 2V ′ → R≥0 such that
d(A) ≤ f(A) ≤ αd(A) for every A ⊆ V , where α = O(1) and |V ′| = O(2n)?
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A Proof of Lemma 12

We first show a few combinatorial inequalities that will be useful for our proof.

▷ Claim 19. For every integer n ≥ 2, k ∈ {1, . . . , n
2 }, and r ∈ {2, . . . , n − k}, we have that

1.
(

1 − r
n−k

)k

≤ (n−k
r )

(n
r) ≤

(
1 − r

n

)k
.

2.
(

1 − k
n−r

)r

≤ (n−k
r )

(n
r)

Proof.
1. We note that(

n−k
r

)(
n
r

) = (n − k)!/(r!(n − k − r!))
n!/(r!(n − r)!)

= (n − k)!
n! · (n − r)!

(n − k − r)!

=
k−1∏
i=0

n − r − i

n − i
.

We get the upper bound on
(

n−k
r

)
/
(

n
r

)
by upper bounding every element of this product

with n−r
n , and the lower bound by lower bounding every term of the product with n−k−r

n−k .
2. We note that(

n−k
r

)(
n
r

) = (n − k)!/(r!(n − k − r!))
n!/(r!(n − r)!)

= (n − k)!
(n − k − r)! · (n − r)!

n!

=
r−1∏
i=0

n − k − i

n − i
.

We obtain the lower bound by lower bounding every term of the product with n−k−r
n−r . ◁
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▷ Claim 20. For every integer n ≥ 2, k ∈ {1, . . . , n
2 }, and r ∈ {2, . . . , n}, we have that(

k
r

)(
n
r

) ≤
(

k

n

)r

.

Proof. If k < r, the bound trivially holds, because
(

k
r

)
= 0. Otherwise, we have(

k
r

)(
n
r

) = k!/(r!(k − r)!)
n!/(r!(n − r)!)

= k!
(k − r)! · (n − r)!

n!

=
r−1∏
i=0

k − i

n − i
.

Upper bounding every term in the product with k
n gives the desired bound. ◁

We now restate and prove Lemma 12.

▶ Lemma 12. For every integer n ≥ 2, r ∈ {2, . . . , n}, and X ⊆ [n] with 1 ≤ |X| ≤ n
2 , the

set of hyperedges δ(X) that cross X in a complete r-uniform n-vertex hypergraph has the
following size bound:

1
4 min

{
|X|r

n
, 1
}

≤ |δ(X)|(
n
r

) ≤ 4 min
{

|X|r
n

, 1
}

.

Proof. Let k := |X|. We note that the hyperedges which cross X are exactly those which
are neither fully contained in X, nor fully contained in V \ X. Thus, the number of rank r

hyperedges in δ(X) is exactly
(

n
r

)
−
(

n−k
r

)
−
(

k
r

)
.

Suppose r > n − k. Then, since k ≤ n/2, we have that r > k as well, so |δ(X)| =(
n
r

)
−
(

n−k
r

)
−
(

k
r

)
=
(

n
r

)
, and so we have |δ(X)|

(n
r) = 1. Thus, we immediately have that

1
4 min

{
|X|r

n , 1
}

≤ |δ(X)|
(n

r) . Furthermore, we have that kr > k(n − k) = kn − k2, so kr
n >

kn−k2

n = k − k2

n ≥ k − k
2 = k

2 , so we have that |δ(X)|
(n

r) ≤ 4 min
{

|X|r
n , 1

}
. Henceforth we

assume r ≤ n − k.
We case on the value of k.

Case 1: k ≥ n/r. Then min
{

|X|r
n , 1

}
= 1. Since |δ(X)|

(n
r) is the fraction of the hyperedges

which are in δ(X), it is trivially upper bounded by 1, and thus by 4 min
{

kr
n , 1

}
. Therefore,

it remains to show the lower bound. We have that
|δ(X)|(

n
r

) =
(

n
r

)
−
(

n−k
r

)
−
(

k
r

)(
n
r

)
≥ 1 −

(
1 − r

n

)k

−
(

k

n

)r

≥ 1 − e−kr/n −
(

k

n

)r

≥ 1 − 1
e

− 1
4

≥ 1
4

= 0.25 min
{

kr

n
, 1
}

.
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Here the second line follows from the upper bound in the first conclusion of Claim 19
and the upper bound in Claim 20, and the fourth follows from our assumptions that
n/r ≤ k ≤ n/2 and r ≥ 2.
Case 2: k < n/r. Then min

{
|X|r

n , 1
}

= kr
n . Once again, we need to show a lower bound

and an upper bound. We begin with the lower bound:

|δ(X)|(
n
r

) =
(

n
r

)
−
(

n−k
r

)
−
(

k
r

)(
n
r

)
≥ 1 −

(
1 − r

n

)k

−
(

k

n

)r

≥ 1 − e−kr/n −
(

k

n

)r

≥ 1 −
(

1 − kr

2n

)
−
(

k

n

)r

= kr

2n
−
(

k

n

)r

≥ kr

2n
−
(

kr

2n

)2

= kr

2n

(
1 − kr

2n

)
≥ kr

4n
.

Here the second line follows from the upper bound in the first conclusion of Claim 19
and the upper bound in Claim 20, the fourth from the Taylor expansion of ex, the sixth
from the fact that r ≥ 2, and the last line from the assumption that k < n/r.
Now we show the upper bound. Since the total number of hyperedges in the graph
is
(

n
r

)
, we have that |δ(X)| ≤

(
n
r

)
. Hence, |δ(X)|/

(
n
r

)
≤ 1. It remains to show that

|δ(X)|/
(

n
r

)
≤ 4|X|r/n = 4rk/n. We consider 3 subcases based on the values of r and k:

Subcase 1: r ≥ n/4. Since r ≥ n/4 and |X| ≥ 1, we have that |X|r
n ≥ 1

4 . Therefore

|δ(X)|(
n
r

) ≤ 1 ≤ 4 |X|r
n

Subcase 2: r < n/4 and k < r. In this case, we have that
(

k
r

)
= 0. Therefore,

|δ(X)|(
n
r

) =
(

n
r

)
−
(

n−k
r

)
−
(

k
r

)(
n
r

)
=
(

n
r

)
−
(

n−k
r

)(
n
r

)
= 1 −

(
n−k

r

)(
n
r

)
≤ 1 −

(
1 − r

n − k

)k

≤ 1 − e−2rk/(n−k)

≤ 1 −
(

1 − 2rk

n − k

)
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= 2rk

n − k

≤ 4rk

n
.

The fourth line follows from the lower bound in the first conclusion of Claim 19. The
fifth line follows from observing that 0 < k/(n − r) ≤ 2/3 (since k ≤ n/2 and r ≤ n/4)
and ln(1 − x) ≥ −2x for every x ∈ (0, 2/3]. The sixth line follows from the Taylor
expansion of ex, and the last line follows from the fact that k ≤ n/2.
Subcase 3: r < n/4 and k ≥ r. In this case we have that

|δ(X)|(
n
r

) =
(

n
r

)
−
(

n−k
r

)
−
(

k
r

)(
n
r

)
≤
(

n
r

)
−
(

n−k
r

)(
n
r

)
= 1 −

(
n−k

r

)(
n
r

)
≤ 1 −

(
1 − k

n − r

)r

≤ 1 − e−2rk/(n−r)

≤ 1 −
(

1 − 2rk

n − r

)
= 2rk

n − r

≤ 2rk

3n/4

≤ 4rk

n
.

The fourth line follows from the lower bound in the second conclusion of Claim 19.
The fifth line follows from observing that 0 < k/(n − r) ≤ 2/3 (since k ≤ n/2 and
r ≤ n/4) and ln(1 − x) ≥ −2x for every x ∈ (0, 2/3]. The sixth line follows from the
Taylor expansion of ex. The second to last line follows from the fact that r < n/4. ◀
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