
Certification with an NP Oracle
Guy Blanc
Department of Computer Science, Stanford University, CA, USA

Caleb Koch
Department of Computer Science, Stanford University, CA, USA

Jane Lange
Department of Electrical Engineering and Computer Science, MIT, Cambridge, MA, USA

Carmen Strassle
Department of Computer Science, Stanford University, CA, USA

Li-Yang Tan
Department of Computer Science, Stanford University, CA, USA

Abstract
In the certification problem, the algorithm is given a function f with certificate complexity k and an
input x⋆, and the goal is to find a certificate of size ≤ poly(k) for f ’s value at x⋆. This problem
is in NPNP, and assuming P ̸= NP, is not in P. Prior works, dating back to Valiant in 1984, have
therefore sought to design efficient algorithms by imposing assumptions on f such as monotonicity.

Our first result is a BPPNP algorithm for the general problem. The key ingredient is a new notion
of the balanced influence of variables, a natural variant of influence that corrects for the bias of
the function. Balanced influences can be accurately estimated via uniform generation, and classic
BPPNP algorithms are known for the latter task.

We then consider certification with stricter instance-wise guarantees: for each x⋆, find a certificate
whose size scales with that of the smallest certificate for x⋆. In sharp contrast with our first result, we
show that this problem is NPNP-hard even to approximate. We obtain an optimal inapproximability
ratio, adding to a small handful of problems in the higher levels of the polynomial hierarchy for
which optimal inapproximability is known. Our proof involves the novel use of bit-fixing dispersers
for gap amplification.

2012 ACM Subject Classification Theory of computation → Computational complexity and cryp-
tography

Keywords and phrases Certificate complexity, Boolean functions, polynomial hierarchy, hardness of
approximation

Digital Object Identifier 10.4230/LIPIcs.ITCS.2023.18

Related Version Full Version: https://arxiv.org/abs/2211.02257

Funding Guy, Caleb, Carmen, and Li-Yang are supported by NSF awards 1942123, 2211237, and
2224246. Jane is supported by NSF Award 2006664. Caleb is also supported by an NDSEG
fellowship.

Acknowledgements We thank the ITCS reviewers for their useful comments and feedback.

1 Introduction

For a function f : {0, 1}n → {0, 1} and an input x⋆ ∈ {0, 1}, a certificate for f ’s value at x⋆

is a set S ⊆ [n] of coordinates such that:

f(x⋆) = f(y) for all y such that yS = x⋆
S .

This is a set of coordinates that fully determines f ’s value on x⋆, and coordinates outside this
set are irrelevant in the sense that changing any of them in any way cannot change f ’s value.

© Guy Blanc, Caleb Koch, Jane Lange, Carmen Strassle, and Li-Yang Tan;
licensed under Creative Commons License CC-BY 4.0

14th Innovations in Theoretical Computer Science Conference (ITCS 2023).
Editor: Yael Tauman Kalai; Article No. 18; pp. 18:1–18:22

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://doi.org/10.4230/LIPIcs.ITCS.2023.18
https://arxiv.org/abs/2211.02257
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

18:2 Certification with an NP Oracle

We write Cert(f, x⋆) to denote the size of a smallest certificate for f ’s value at x⋆, and Cert(f)
to denote maxx∈{0,1}n{Cert(f, x)}, the certificate complexity of f . Certificate complexity is
among the most basic and well-studied measures of boolean function complexity [6, 13].

With the notion of certificates in mind, an algorithmic question suggests itself: can we
design efficient algorithms for finding small certificates? This leads us to the certification
problem:

Certification Problem: Given the succinct description of a function f and an input
x⋆ ∈ {0, 1}n, find a certificate of size ≤ poly(Cert(f)) for f ’s value at x⋆.

The intractability of certification.

Valiant was the first to consider the certification problem [29]. He observed that it is likely
intractable in its full generality, since even the task of verifying the output of a certification
algorithm, i.e. checking that a purported certificate is indeed a certificate, is coNP-complete.

Furthermore, the NP-hardness of Sat easily implies the following:

▶ Fact 1. Assuming P ̸= NP, there is no efficient algorithm for the certification problem, even
if the algorithm only has to return a certificate of size Φ(Cert(f)) for any growth function
Φ : N → N. Similarly, we can rule out randomized algorithms under the assumption that
NP ̸⊆ BPP.

For completeness, we include the proofs of Valiant’s observation and Fact 1 in Section 4.

Prior certification algorithms.

In light of these intractability results, prior certification algorithms have relied on assumptions
on f . Valiant gave a simple and efficient algorithm for monotone functions, which he used as
a subroutine for PAC learning monotone DNF formulas (see also [1]). Recent works [4, 11]
give new certification algorithms for monotone functions that are furthermore highly query
efficient, with the latter paper by Gupta and Manoj achieving the optimal query complexity.
In a separate line of work, Barceló, Monet, Pérez, and Subercaseaux [2] gave an efficient
certification algorithm for halfspaces.

While the focus of these works and ours is theoretical in nature, there has also been a
recent surge of interest in certification algorithms from an applied perspective. Motivation
here comes from the growing field of explainable machine learning, where one thinks of f

as a complicated model (e.g. a neural net) and small certificates as succinct explanations
for its decisions. In this literature, certificates are more commonly referred to as “sufficient
reasons” [20] and “anchors” [17]; see [2, 5, 4] for further discussions and references regarding
this.

1.1 Our results
Departing from the theme of prior works, we consider the certification problem in its full
generality, without any assumptions on f , but allow algorithms that do not necessarily
run in polynomial time. There is a simple NPNP algorithm for general problem: first guess
a certificate for f ’s value at x⋆, and then use the NP oracle to verify that it is indeed a
certificate. Therefore, the certification problem lies within (the function version of1) NPNP,
and assuming P ̸= NP, lies outside of P. This leaves a rather wide gap between P and NPNP.

1 Throughout this paper we conflate the decision and function versions of complexity classes, except in
instances where there is a possibility of confusion.

G. Blanc, C. Koch, J. Lange, C. Strassle, and L.-Y. Tan 18:3

At first glance, one may suspect that the true complexity of the certification problem is
NPNP. Afterall, the definition of certificate complexity inherently involves two quantifiers:
there exists a set S such that f(x⋆) = f(y) for all y that agrees with x⋆ on S. Our first main
result counters this intuition with a BPPNP algorithm:

▶ Theorem 2. There is a randomized polynomial-time algorithm with NP oracle access that
takes a polynomial-size circuit representation of f : {0, 1}n → {0, 1} and a string x⋆ ∈ {0, 1}n,
and outputs w.h.p. a certificate S ⊆ [n] for f ’s value on x⋆ satisfying |S| = O(Cert(f)5).

Our algorithm does not need to be given the value of Cert(f) as an input. As an example
setting of parameters, for a function f with certificate complexity O(nε) our algorithm always
returns a certificate of size O(n5ε)≪ n. We note that the class of functions with certificate
complexity O(nε) is very expressive and includes, among other functions, all decision trees
of depth O(nε).

Our algorithm uses its NP oracle in two ways:
1. Uniform generation. Our algorithm uses as a key subroutine the ability to sample a uniform

random satisfying assignment x ∼ f−1(1) of f . Early and influential results of theoretical
computer science show that this can be done efficiently with an NP oracle [12, 3].

2. Verification. Our randomized algorithm returns a set that is a certificate for f ’s value
at x⋆ with high probability. As mentioned, the task of verifying that a set is indeed a
certificate is coNP-complete, and so we use the NP oracle for this purpose.

Regarding the BPPNP algorithms for uniform generation, while they are not efficient in
the traditional sense of worst-case complexity, there is an active line of research that seeks to
make them as practical as possible: by replacing the NP oracle with state-of-the-art SAT
solvers; optimizing the number of calls to these solvers; etc. See [30, 9] and the references
therein.

Barriers to instance-wise guarantees

In the spirit of beyond worst-case analysis, it is natural to ask if our algorithm can be
strengthened so its guarantees hold instance-wise: can it always return a certificate of size
poly(Cert(f, x⋆)) instead of poly(Cert(f))? There are two known lower bounds against such
algorithms, both in the strictest setting where the algorithm has to return a certificate of size
exactly Cert(f, x⋆). Gupta and Manoj [11] showed that any such algorithm for monotone
functions must make nΩ(Cert(f,x⋆)) many queries to f , in the setting where the algorithm
only gets black-box queries to f rather than an explicit description. Barceló, Monet, Pérez,
and Subercaseaux [2] showed that the decision version of the problem, where the goal is to
decide if Cert(f, x⋆) ≤ k for a given parameter k, is NPNP-hard.

Neither of these results rule out algorithms that return a certificate of size ≤
poly(Cert(f, x⋆)) or even O(Cert(f, x⋆)). Our second main result does so by showing that
Cert(f, x⋆) is optimally NPNP-hard to approximate:

▶ Theorem 3. The following holds for every constant ε > 0. Given a circuit representation
of f : {0, 1}n → {0, 1}, k ∈ N, and x⋆ ∈ {0, 1}n, it is NPNP-hard to distinguish between

YES: there exists a certificate of size ≤ k for f ’s value on x⋆;
NO: Every certificate for f ’s value on x⋆ has size > k · n1−ε.

There is by now a sizeable number of problems that are known to be hard for higher
levels of the polynomial hierarchy [19, 18]. However, relatively few of them are known to be
hard to approximate, and yet fewer for which optimal inapproximability ratios have been

ITCS 2023

18:4 Certification with an NP Oracle

established. The papers [24, 25, 28, 26, 23, 14] cover many of the existing results; see also the
survey [27]. Theorem 3 thus adds an additional entry into this catalogue of natural problems
known to be inapproximable for higher levels of the polynomial hierarchy.

2 Proof overviews

2.1 Overview of the proof of Theorem 2

Minimality no longer suffices

As mentioned, many prior certification algorithms have focused on the class of monotone
functions [29, 1, 4, 11]. An especially nice feature of this setting is that it suffices to find
minimal certificates: a certificate S such that no strict subset S′ ⊊ S is a certificate:

▶ Fact 4 (Minimality suffices for monotone functions). If f is monotone, for every x⋆, every
minimal certificate S for f ’s value at x⋆ has size |S| ≤ Cert(f).

This simple fact is crucially used in all prior certification algorithms for monotone
functions. While Cert(f) is a global property of f , the minimality of a specific certificate can
be recognized locally: if at any point we have a candidate certificate S such that dropping any
of its coordinates results in it no longer being a certificate, Fact 4 tells us that |S| ≤ Cert(f)
and we are done.

Unfortunately, Fact 4 is false for general functions: the size of a minimal certificate could
be exponentially larger than its certificate complexity:

▶ Fact 5 ([13, Exercise 1.7]). For each n ∈ N, there is a function f : {0, 1}n → {0, 1} and
x⋆ ∈ {0, 1}n such that x⋆ has a minimal certificate S ⊆ [n] of size |S| ≥ Ω(n) even though
Cert(f) ≤ O(log n).

The implication of Fact 5 for the certification problem is that algorithms for general
functions can get stuck at (very bad) local minima, which necessitates a more global
understanding of the structure of functions with low certificate complexity. We include the
proofs of Fact 4 and Fact 5 in Section 4.

Our algorithm and its main subroutine

We now describe our algorithm. Its main subroutine is a BPPNP algorithm for finding a
restriction to a small number of variables under which f becomes constant:

▶ Lemma 6. Given a succinct representation of f : {0, 1}n → {0, 1} and an NP oracle, there
is a randomized polynomial-time algorithm that w.h.p. finds a restriction π to O(Cert(f)4)
variables such that fπ is a constant function.

Such an algorithm can be viewed as one that finds a certificate for some input of f (any
of the inputs that are consistent with π), but not necessarily the specific input x⋆ that we
are interested in certifying. We then convert such an algorithm into an actual certification
algorithm by calling it 2 Cert(f) times, resulting in a certificate for x⋆ of size O(Cert(f)5).
This conversion algorithm is a fairly straightforward consequence of a basic property of
certificates, that every 1-certificate and every 0-certificate must share at least one variable.

G. Blanc, C. Koch, J. Lange, C. Strassle, and L.-Y. Tan 18:5

Balanced influences

To describe our algorithm for Lemma 6, we need a new notion of the balanced influence
of variables. Recall that the influence of a variable i on f is the quantity Infi(f) :=
Prx∼{0,1}n [f(x) ̸= f(x⊕i)], where x is uniform random and x⊕i denotes x with its i-th bit
flipped. It is easy to see that Infi(f) ≤ Var(f), and so the more unbalanced f is, the smaller
its influences are. Balanced influence corrects for this by measuring influence with respect to
a distribution D(f)

bal that places equal weight on f−1(1) and f−1(0):

To sample x ∼ D(f)
bal : first sample b ∼ {0, 1} uniformly and then x ∼ f−1(b) uniformly.

▶ Definition 7 (Balanced influences). The balanced influence of a variable i ∈ [n] on
f : {0, 1}n → {0, 1} is the quantity:

BalInfi(f) := Pr
x∼D(f)

bal

[f(x) ̸= f(x⊕i)].

Though simple, this variant of influence does not appear to have been explicitly considered
before. This definition syncs up nicely with the notion of uniform generation: an algorithm
for uniform generation can be used to efficiently estimate balanced influences to high accuracy.
Given the classic BPPNP algorithms for uniform generation [12, 3], we therefore get:

▶ Lemma 8. There is a randomized algorithm that, given a succinct representation of
f : {0, 1}n → {0, 1}, an NP oracle, i ∈ [n] and ε > 0, runs in poly(n, 1/ε) time and
w.h.p. outputs an estimate ηi = BalInfi(f)± ε.

We can now state our algorithm for Lemma 6. It is simple and proceeds by iteratively
and randomly restricting the variables of f with the largest balanced influence:
1. Estimate BalInfi(f) for each i ∈ [n] to within ± 1

4n and let i⋆ be the index with the
largest estimate.

2. Randomly restrict xi⋆ ← b where b ∼ {0, 1} is uniform random.
3. Recurse on fxi⋆ =b.

We prove that f becomes constant w.h.p. within O(Cert(f)5) many iterations of this
algorithm. It is crucial that we work with balanced influence here: this same algorithm
fails (i.e. it requires Ω(n) many iterations before f becomes constant) if it is instead run on
estimates of the usual notion of influence.2

2.2 Overview of the proof of Theorem 3
Monotone Minimum Weight Word and its inapproximability

We prove Theorem 3 by reducing from the Monotone Minimum Weight Word problem.
To state this problem we first define co-nondeterministic circuits:

▶ Definition 9 (Co-nondeterministic circuit). A co-nondeterministic circuit C : {0, 1}n ×
{0, 1}n → {0, 1} accepts an input x ∈ {0, 1}n iff for all y ∈ {0, 1}n C(x, y) = 1.

2 Indeed, since the usual notion of influence can be estimated to high accuracy without an NP oracle, we
have by Fact 1 that no algorithm that is based only on estimates of usual influences can succeed unless
NP ⊆ BPP.

ITCS 2023

18:6 Certification with an NP Oracle

We say that a co-nondeterministic circuit C accepts a non-empty monotone set if it
accepts at least one x, and for every x that it accepts, it also accepts every x′ such that
x′ ⪰ x. (Note that C : {0, 1}n × {0, 1}n → {0, 1} itself need not be a monotone function.)

▶ Definition 10 (Monotone Minimum Weight Word). The Monotone Minimum
Weight Word (MMWW) problem is the following: given a co-nondeterministic circuit
C : {0, 1}n × {0, 1}n → {0, 1} that accepts a non-empty monotone set and an integer k ∈ N,
does C accept an input x ∈ {0, 1}n with at most k ones?

Umans [24] showed that the MMWW problem is NPNP-hard to approximate within n
1
5−ε.

This inapproximability ratio was subsequently improved to the optimal n1−ε by Ta-Shma,
Umans, and Zuckerman [23]:

▶ Theorem 11 (Gapped-MMWW is NPNP-hard). The following holds for every constant
ε > 0. Given a co-nondeterministic circuit C : {0, 1}n × {0, 1}n → {0, 1} that accepts a
non-empty monotone set and an integer k ∈ N, it is NPNP-hard to distinguish between:

YES: C accepts an x with ≤ k ones;
NO: Every x that C accepts has > k · n1−ε ones.

First attempt at a reduction

To describe the intuition behind our reduction, we first consider what happens when we
take an instance of Gapped-MMWW, which is specified by a co-nondeterministic circuit
C : {0, 1}n × {0, 1}n → {0, 1}n and an integer k, and map it to the certification problem
with f(x, y) = C(x, y) and the input to be certified being (x⋆, y⋆) = (1n, 1n). We consider
the two possible cases:

If (C, k) is a YES instance of Gapped-MMWW, it accepts an x ∈ {0, 1}n with ≤ k ones.
Let S ⊆ [n] be the size-k set of 1-coordinates of this input x. It is straightforward to
verify that S is a certificate for f ’s value on (x⋆, y⋆), and so Cert(f, (x⋆, y⋆)) ≤ k.
If (C, k) is a NO instance of Gapped-MMWW, we would like it to be the case that
Cert(f, (x⋆, y⋆)) > k · n1−ε. Let S ⊆ [n] × [n] be a smallest certificate for f ’s value on
(x⋆, y⋆). If S only contains coordinates of x⋆, it is again straightforward to verify that C

accepts the input x ∈ {0, 1}n that is the indicator vector of S, and so |S| > k · n1−ε as
desired. However, S may contain one of more coordinates of y⋆, and in that case we do
not have a lower bound on its size.

The actual reduction

Intuitively, we would like to fix this issue by modifying C so that it becomes disproportionately
more “expensive” to include y⋆-coordinates in the certificate compared to x⋆-coordinates, in
the sense that including even a single y⋆-coordinate contributes > k · n1−ε to the size of the
certificate, compared to just one in the case of single x⋆-coordinate. We accomplish this with
this use of bit-fixing dispersers, a well-studied construct in the pseudorandomness literature.

Given an instance C : {0, 1}n × {0, 1}n → {0, 1} of Gapped-MMWW, we map it to an
instance of the certification problem where the function f : {0, 1}n × {0, 1}m → {0, 1}n is:

f(x, z) := C(x, D(z)),

and D : {0, 1}m → {0, 1}n satisfies the following properties:
1. D is explicit. There is an efficient algorithm that, given m and n, produces the circuit

description of D : {0, 1}m → {0, 1}n in poly(m, n) time. This is so that our reduction is
efficient.

G. Blanc, C. Koch, J. Lange, C. Strassle, and L.-Y. Tan 18:7

2. D retains full image under restrictions. For any set S ⊆ [m] of size ≤ k · n1−ε and
any assignment u ∈ {0, 1}|S|, the image of DS←u is all of {0, 1}n: for any y ∈ {0, 1}n

there is an z ∈ {0, 1}m−|S| such that DS←u(z) = y. This ensures that one must fix
> k · n1−ε many z-variables of f in order to fix even a single y-variable of C.

3. Small m. For the second property to hold m certainly has to be at least n. Since f is a
function over m + n variables, would like m to be as close to n as possible in order to
preserve the n1−ε ratio of Gapped-MMWW.

A simple construction of a function satisfying the first two properties is the blockwise
parity function:

BlockwisePar : ({0, 1}ℓ)n → {0, 1},

BlockwisePar(z(1), . . . , z(n))n = (⊕ℓ
j=1z

(1)
j , · · · ,⊕ℓ

j=1z
(n)
j)

where ℓ = k · n1−ε + 1. In this case m = ℓ · n = Θ(n2−ε), and so the n1−ε ratio of
Gapped-MMWW translates into a gap of n

1
2−ε for the certification problem.

Functions satisfying the first two properties are known as zero-error bit-fixing dispersers
in the pseudorandomness literature. The current best construction, due to Gabizon and
Shaltiel [10], gives m = O(n) for our setting of parameters, and so using it in place of
BlockwisePar enables us to achieve the optimal inapproximability ratio of n1−ε, thereby
yielding Theorem 3.

3 Discussion and future work

Since the certification problem is intractable unless P = NP, to further understand it we
must either rely on assumptions about f or allow algorithms that are not necessarily efficient
in the traditional sense of running in polynomial time. Complementing previous works that
take the former route, in this work we consider the latter option and study the complexity of
certification relative to an NP oracle, giving new algorithmic (BPPNP) and hardness (NPNP)
results. Our motivation is twofold. First, given how natural the problem is, we believe
that it is of independent interest to understand its inherent complexity. Second, given the
empirical success of SAT solvers and their increasing adoption in a variety of real-world
algorithmic tasks, the distinction between between problems in BPPNP (“exists an efficient
algorithm assuming all calls to the SAT solver run quickly”) versus those that are hard for
NPNP (“intractable even if all calls to the SAT solver run in unit time”) is especially relevant
in this context.

We list a couple of concrete open problems suggested by our work. A natural one is to
improve on the bound of O(Cert(f)5) given by Theorem 2:

▶ Open Problem 1. Is there a BPPNP certification algorithm that returns certificates of
length O(Cert(f))?

Next, Theorem 3 shows that given f and x⋆, it is optimally NPNP-hard to approximate the
size of the smallest certificate for f ’s value at x⋆, i.e. to approximate the quantity Cert(f, x⋆).
Since there is an NPNP algorithm that computes it exactly, this settles the complexity of the
problem. It is equally natural to consider the problem of computing/approximating Cert(f).
There is a simple Π3 algorithm that computes it exactly. However, little is known in terms
of lower bounds:

▶ Open Problem 2. Is certificate complexity Π3-hard to compute and what is the complexity
of approximating this quantity?

ITCS 2023

18:8 Certification with an NP Oracle

Concluding on a speculative note, in the spirit of interactive proofs, it would be interesting
to extend our BPPNP algorithm to the setting where the algorithm interacts with a powerful
but untrusted oracle. More broadly, there should be much to be gained by bringing techniques
from interactive proofs to bear on problems, such as certification, that are motivated by
explainable machine learning. Such an “interactive theory of explanations” was listed as a
specific direction in the 2020 TCS Visioning Report [7] and aligns well with ongoing efforts
in machine learning [31], but to our knowledge has thus far not been explored much.

4 Basic results regarding the certification problem

4.1 The necessity of an NP oracle
Verifying a certificate is coNP-complete

Given a candidate certificate for an input, verifying the certificate is computationally hard.
Indeed, we observe that such a problem is coNP-complete. This lemma shows that we at
least need access to a coNP oracle or equivalently an NP oracle.

▶ Definition 12 (VerifyCert). Given a polynomial-size circuit for f : {0, 1}n → {0, 1},
input x ∈ {0, 1}n, and candidate certificate S ⊆ [n], decide whether S is indeed a certificate
for f ’s classification of x.

▶ Lemma 13 (Observed in [29]). VerifyCert is coNP-complete.

To prove this lemma, we give a reduction from the canonical coNP-complete problem
Tautology.

▶ Definition 14 (Tautology [8]). Given a Boolean formula φ : {0, 1}n → {0, 1}, decide
whether φ is a tautology: φ(x) = 1 for all x ∈ {0, 1}n.

Proof of Lemma 13. First, we show that VerifyCert ∈ coNP. Specifically, we observe
that VerifyCert ∈ NP. Given f : {0, 1}n → {0, 1}, an input x ∈ {0, 1}n, and a candidate
S ⊆ [n], one can nondeterministically guess a string y such that xS = yS and f(x) ̸= f(y).
This string y exists if and only if S is not a certificate for x.

Next, we show VerifyCert is coNP-hard via a reduction from Tautology. Let
φ : {0, 1}n → {0, 1} be a Boolean formula. We show how to determine if φ is a tautology
using VerifyCert. Let x ∈ {0, 1}n be arbitrary. If φ(x) = 0 output “not a tautology”.
Otherwise, call VerifyCert on the instance f = φ, S = ∅ and x. If ∅ is a certificate for
x then φ is a tautology: all y ∈ {0, 1}n satisfy φ(y) = φ(x) = 1. Otherwise, there is some
input y for which φ(y) = 0. ◀

Solving the certificate finding problem efficiently without an NP oracle would prove
P = NP (Fact 1)

Next, we show that any efficient algorithm for certification can be used to solve
GappedCert(0, Ψ): the promise problem of distinguishing whether Cert(f) is 0 or ev-
ery input requires size-Ψ(n) certificates. Perhaps surprisingly, GappedCert(0, Ω(n)) turns
out to be NP-hard. As a result, we should not expect certification to be efficiently solvable
without access to an NP oracle.

▶ Definition 15 (GappedCert(0, Ψ)). Given a polynomial-size circuit for f : {0, 1}n →
{0, 1} and a growth function Ψ : N→ N, the GappedCert(0, Ψ) problem is to distinguish
between

G. Blanc, C. Koch, J. Lange, C. Strassle, and L.-Y. Tan 18:9

YES: Cert(f, x) ≥ Ψ(n) for all x ∈ {0, 1}n;
NO: Cert(f) = 0.

As a promise decision problem, any algorithm for GappedCert(0, Ψ) is allowed to answer
arbitrarily on input instances which do not fall into the two cases. Note that SAT reduces
to GappedCert(0, 1) since GappedCert(0, 1) is equivalent to determining whether f is
constant. To obtain hardness against the certification problem, we require hardness for
GappedCert where the growth function is nonconstant.

▶ Lemma 16. GappedCert(0,
√

n) is NP-hard.

Proof. Let φ : {0, 1}n → {0, 1} be a Boolean formula. Recall the definition of BlockwisePar :
({0, 1}ℓ)n → {0, 1}n

BlockwisePar(z(1), . . . , z(n)) = (⊕ℓ
j=1z

(1)
j , . . . ,⊕ℓ

j=1z
(n)
j).

We let f = φ ◦ BlockwisePar. For all z ∈ ({0, 1}ℓ)n, we have

Cert(f, z) ≥ Cert(φ, BlockwisePar(z)) · ℓ

since ℓ coordinates of f need to be fixed in order to fix one coordinate of φ. In particular, if φ

is nonconstant, then Cert(φ, BlockwisePar(z)) ≥ 1 and so Cert(f, z) ≥ ℓ for all z ∈ ({0, 1}ℓ)n.
Therefore, to determine satisfiability of φ it is sufficient to solve GappedCert(0, ℓ) for

the function f : ({0, 1}ℓ)n → {0, 1}. Choosing ℓ = n yields the hardness in the lemma
statement. ◀

Lemma 16 is sufficient to establish Fact 1. However, we also note that a slightly more
technical proof yields near-optimal gapped hardness.

▶ Lemma 17 (Near-optimal gapped hardness). GappedCert(0, Ω(n)) is NP-hard.

We provide a proof of Lemma 17 can be found in the appendix of the full version of the
paper.

▶ Lemma 18. If there is a polynomial-time algorithm for the certification problem which
returns certificates of size Φ(Cert(f)) for some growth function Φ : N→ N, then there is a
polynomial-time algorithm for GappedCert(0, Ψ) for all growth functions Ψ : N→ N.

Proof. Suppose such an algorithm exists for the certification problem. Let Ψ : N→ N be an
arbitrary growth function and let f : {0, 1}n → {0, 1} be an instance of GappedCert(0, Ψ).
Let S ⊆ [n] be a certificate obtained by running the algorithm for the certification problem
on f for any input x⋆ ∈ {0, 1}n. Output “NO” if |S| < Ψ(n) and “YES” if |S| ≥ Ψ(n).

The correctness of our output follows from the observation that Cert(f, x) ≤ |S| ≤
Φ(Cert(f)) and so

|S| ≥ Ψ(n) ⇒ Ψ(n) ≤ Φ(Cert(f))
|S| < Ψ(n) ⇒ Cert(f, x) < Ψ(n).

Assuming n is large enough, the first case implies Cert(f) > 0 which allows us to rule out
being in the NO case of GappedCert(0, Ψ). The second case rules out being in the YES
case of GappedCert(0, Ψ). ◀

Fact 1 follows as an immediate consequence of Lemmas 16 and 18: any polynomial-
time algorithm for the certification problem yields a polynomial-time algorithm for
GappedCert(0,

√
n) which implies NP = P. Likewise, any randomized polynomial-time

algorithm for the certification problem yields a randomized polynomial-time algorithm for
GappedCert(0,

√
n) which implies NP ⊆ BPP.

ITCS 2023

18:10 Certification with an NP Oracle

4.2 Certificate complexity, minimal certificates, and monotonicity

In this section, we prove Fact 4 and Fact 5. We start with a formal definition of minimal
certificates.

▶ Definition 19 (Minimal certificates). A certificate S ⊆ [n] for f : {0, 1}n → {0, 1} on
x ∈ {0, 1}n is a minimal certificate if no S′ ⊊ S is a certificate for f on x.

Proof of Fact 4. Suppose S ⊆ [n] is a minimal 1-certificate for f ’s value on a string x⋆ ∈
{0, 1}n (if S is a 0-certificate the argument is symmetric). First, we observe that S can
only contain 1-coordinates of x⋆. Indeed, if S contained a 0-coordinate, the certificate S′

obtained from S by removing that 0-coordinate would still certify x⋆ by monotonicity and
would therefore contradict the minimality of S. Consider the string x′ ∈ {0, 1}n formed
by setting all the coordinates in S to 1 and all the coordinates outside S to 0. Then,
|S| = Cert(f, x′) ≤ Cert(f). Specifically, any minimal certificate for f ’s value on x′ must be
a subset of its 1-coordinates and hence a subset of S. The minimality of S implies no S′ ⊊ S

can certify f ’s value on x′. ◀

Proof of Fact 5. This fact is witnessed by the addressing function, Addressr : [r] ×
{0, 1}r → {0, 1} defined as Addressr(x, y) = yx. Viewing Addressr as a Boolean function
on log r + r bits, we have Cert(Addressr) = log r + 1 but any fixing of the r bits of y

constitutes a minimal certificate. ◀

5 A structural result for functions with low certificate complexity

Notation and useful definitions. All distributions over {0, 1}n are uniform unless otherwise
specified. We use boldface to denote random variables (e.g. x ∼ {0, 1}n) and we write
“w.h.p.” to mean with probability ≥ 1− 1/nω(1).

▶ Definition 20 (Variance). For any function f : {0, 1}n → {0, 1}, the variance of f is
defined as

Var(f) := Var
x∼{0,1}n

[f(x)] = Pr
x∼{0,1}n

[f(x) = 0] · Pr
x∼{0,1}n

[f(x) = 1].

▶ Definition 21 (Influence). For any functions f : {0, 1}n → {0, 1}, we define the influence
of the coordinate i ∈ [n] to be

Infi(f) := Pr
x∼{0,1}n

[f(x) ̸= f(x⊕i)]

where x⊕i ∈ {0, 1}n is the unique point that differs from x in only the ith coordinate. We
also define the total influence as

Inf(f) :=
∑
i∈[n]

Infi(f),

and the maximum influence as

MaxInf(f) := max
i∈[n]
{Infi(f)} .

G. Blanc, C. Koch, J. Lange, C. Strassle, and L.-Y. Tan 18:11

Main structural result

In this section we prove the following structural result: iteratively and randomly restricting
a function f by its most influential variable causes it to become constant w.h.p. after
O(Cert(f)4) iterations. To do so, we analyze the following family of decision trees.

▶ Definition 22. For a function f : {0, 1}n → {0, 1}, the influence-maximizing tree of depth
d for f , denoted Tf (d), is the complete tree of depth d such that for each internal node v, the
variable i(v) queried is the one with the largest influence in the subfunction fv:

Infi(v)(fv) ≥ Infj(fv) for all j ∈ [n].

Ties are broken arbitrarily, and for convenience, variables are still queried even if the function
is already constant before depth d.

We interpret the leaves and internal nodes of Tf (d) as functions obtained from f by
restricting each variable corresponding to an edge in that node’s path. Note that a random
leaf ℓ ∼ Tf (d) corresponds a random restriction where we iteratively and randomly restrict
the most influential variable of f for d iterations.

▶ Lemma 23. Let f be a function with certificate complexity Cert(f) ≤ k. Then, for a leaf
ℓ drawn uniformly at random from Tf (d) for d = O(k4 + k3 log(1/ε)), we have

Pr
ℓ

[
fℓ is constant

]
≥ 1− ε.

5.1 Useful facts for the proof of Lemma 23
The proof of Lemma 23 is by a potential function argument, where the potential function is
the average total influence of leaf functions fℓ in Tf (d):

ϕ(d) := Eℓ∼Tf (d)[Inf(fℓ)].

In the remainder of this subsection, we will prove an upper bound on the initial value ϕ(0)
and a lower bound on the drop in ϕ as we increment d. To do so, we use some basic facts
about certificates and query complexity, and a well-known inequality of [16].

▶ Definition 24 (Deterministic query complexity). The depth, or deterministic query complexity
of f is the depth of the minimum-depth decision tree computing f :

Depth(f) := min
T computing f

max
ℓ∈T

[depth(ℓ)].

Certificate complexity and query complexity are well known to be within a polynomial
factor of one another. See e.g. [6].

▶ Fact 25. For any f : {0, 1}n → {0, 1}, Cert(f) ≤ Depth(f) ≤ Cert(f)2.

We’ll need to lower and upper bound Inf(f) as a function of Var(f).

▶ Proposition 26. For any f : {0, 1}n → {0, 1}, 4 Var(f) ≤ Inf(f) ≤ 4 Var(f) · Cert(f).

Proof. The first inequality is the well-known Poincaré inequality for the Boolean cube [15].
For the second, let Sens(f, x) be the number sensitive coordinates of x, i.e. the number
distinct i ∈ [n] for which f(x) ̸= f(x⊕i). We rewrite the definition for the total influence
of f ,

ITCS 2023

18:12 Certification with an NP Oracle

Inf(f) = E
x∼{0,1}n

[Sens(f, x)]

= E
x∼{0,1}n

[Sens(f, x) · 1[f(x) = 0] + Sens(f, x) · 1[f(x) = 1]].

Every sensitive edge (i.e. (x, x⊕i) where f(x) ̸= f(x⊕i)) must contain one endpoint classified
as 0 and one endpoint classified as 1. Therefore, the two terms in the above sum are
equal. Furthermore, any certificate for x must include all Sens(f, x) sensitive coordinates, so
Sens(f, x) ≤ Cert(f, x) ≤ Cert(f). We can therefore bound,

Inf(f) = 2 ·min
(
E[Sens(f, x) · 1[f(x) = 0]],E[Sens(f, x) · 1[f(x) = 1]]

)
≤ 2 · Cert(f) ·min(Pr[f(x) = 0], Pr[f(x) = 1])
≤ 4 · Cert(f) · Pr[f(x) = 0] · Pr[f(x) = 1] = 4 · Cert(f) ·Var(f). ◀

Using the bound Var(f) ≤ 1
4 for any f with range {0, 1}, we obtain the following corollary.

▶ Corollary 27. For any f : {0, 1}n → {0, 1}, Inf(f) ≤ Cert(f).

The corollary provides the upper bound on ϕ(0), since ϕ(0) is just Inf(f). To lower bound
the drop in ϕ as we increment d, we need the following two claims. Together, they lower
bound the drop in influence of subfunctions if you query the most influential variable in a
function with low query complexity.

▶ Theorem 28 (Corollary of Theorem 1.1 from [16]). For any f : {0, 1}n → {0, 1},

MaxInf(f) ≥ 4 Var(f)
Depth(f) .

▶ Proposition 29. For any function f and variable xi,

Inf(f)− Infi(f) = 1
2 (Inf(fxi=0) + Inf(fxi=1)).

Finally, in addition to these statements about the behavior of ϕ, we also need a condition
under which we can be assured that a leaf is constant.

▶ Fact 30 (Granularity of variance). Let f be a function with certificate complexity k. Then
if Var(f) < 2−k − 2−2k, it must be the case that Var(f) = 0, and thus f is constant.

Proof. Var(f) is defined as Pr[f(x) = 0] · Pr[f(x) = 1]. If f(x) = 0 for some x, then
there must be a 0-certificate for x; i.e. there must be a subcube of codimension ≤ k for
which f is constant 0. Thus, Pr[f(x) = 0] ≥ 2−k, and more generally, if f is not constant
then min(Pr[f(x) = 0], Pr[f(x) = 1]) ≥ 2−k. The function p(1 − p), for p ranging from
2−k to 1 − 2−k, is minimized at the endpoints of that interval, where it takes the value
2−k − 2−2k. ◀

5.2 Proof of Lemma 23
With the claims presented in the previous subsection in hand, we can now prove Lemma 23.
A lower bound on the drop in ϕ in terms of variable influences in Tf (d− 1) follows directly
from Proposition 29:

G. Blanc, C. Koch, J. Lange, C. Strassle, and L.-Y. Tan 18:13

▶ Corollary 31 (Corollary of Proposition 29). For any function f and depth d ≤ n,

ϕ(d) = ϕ(d− 1)− Eℓ∈Tf (d−1)[Infi(ℓ)(fℓ)],

where i(ℓ) is the variable queried at ℓ in Tf (d− 1).

▶ Lemma 32 (Upper bound on ϕ(d)). For a function f with certificate complexity k, and
any depth d ≤ n, we have

ϕ(d) ≤ k ·
(

1− 1
k3

)d

Proof. Each depth-d node of Tf (d) maximizes influence in the corresponding leaf function fℓ

of Tf (d− 1). By Theorem 28, this means its influence on fℓ is at least 4 Var(fℓ)/k2. Because
fv has certificate complexity at most k, Proposition 26 guarantees that 4 Var(fv)/k2 ≥
Inf(fv)/k3. We now apply Corollary 31:

ϕ(d) = ϕ(d− 1)− Eℓ∈Tf (d−1)[Infi(ℓ)(fℓ)] (Corollary 31)
≤ ϕ(d− 1)− Eℓ∈Tf (d−1)[Inf(fℓ)/k3] (Theorem 28)

≤ ϕ(d− 1)− ϕ(d− 1)
k3 (definition of ϕ)

≤ ϕ(0) ·
(

1− 1
k3

)d

. (solution to recurrence relation)

The lemma follows from the fact that ϕ(0) ≤ k, which is a consequence of Corollary 27. ◀

Proof of Lemma 23. Let d = k3(2k + ln k + log(1/ε)), which is O(k4 + k3 log(1/ε)). We
begin with the fact that

ϕ(d) ≤ k ·
((

1− 1
k3

)k3)2k+ln k+log(1/ε)

≤ k · e−(2k+ln k+log(1/ε))

< ε · 2−2k.

By Markov’s inequality, at least a 1− ε fraction of the leaf functions must have influence
at most 2−2k. By Proposition 26, this implies that their variance is also at most 2−2k. Since
each leaf function has certificate complexity at most k, from Fact 30 we may infer that these
leaves are constant, which concludes the proof. ◀

5.3 A robust version of Lemma 23
Algorithmically, we need not build the influence-maximizing tree in order for the potential
function argument to go through. Suppose we estimate influences to within a factor of
two instead. Then the influence of the queried variable is at least 2 Var(fv)/k2, and the
multiplicative drop in ϕ(d) becomes (1 − 1/2k3). Thus, to achieve the 1 − ε probability
guarantee with 2-approximate influences, it suffices to grow the tree to twice the depth. We
state the “robust” version of this statement as a corollary.

▶ Corollary 33 (Robust version of Lemma 23). Let f be a function with certificate complexity
at most k, and Tf be any decision tree of depth O(k4 +k3 log(1/ε)) such that for each internal
node v, the variable i(v) queried has influence within a factor of 2 of the largest influence in
the subfunction fv:

Infi(v)(fv) ≥ 1
2 MaxInf(fv).

ITCS 2023

18:14 Certification with an NP Oracle

Then, for a leaf ℓ drawn uniformly at random from Tf , we have

Pr
ℓ

[fℓ is constant] ≥ 1− ε.

6 Balanced influences and an algorithmic version of Corollary 33

In this section, we will prove Lemma 6, restated below.

▶ Lemma 34 (Formal version of Lemma 6). For any n ∈ N and δ ∈ (0, 1), given any
poly(n)-sized circuit f : {0, 1}n → {0, 1} and an NP oracle, there is a randomized algorithm
running in poly(n, log(1/δ))-time that, with probability at least 1− δ, finds a restriction π to
O(Cert(f)4) variables such that fπ is a constant function.

Find-Restriction(f):
Given: A circuit representation of f : {0, 1}n → {0, 1} and an NP oracle.
Output: A restriction π such that fπ is constant.

1. Initialize π ← ∅.
2. While fπ is not constant (which is checked using the NP oracle), {

a. Using Lemma 8, estimate BalInfi(fπ) for each i ∈ [n] to within ± 1
4n with

success probabilities ≥ 1− 1
4n2 and let i⋆ be the index with the largest estimate.

b. Update π with a random restriction to xi⋆ : π ← π∪{xi⋆ ← b} where b ∼ {0, 1}
is uniform random.

}
3. Return π.

Figure 1 Algorithm for finding a restriction that fixes f to a constant.

Lemma 34 is an easy consequence of Lemma 35: The algorithm in Lemma 34 simply
repeats Find-Restriction(f) log(1/δ) times and returns the shortest certificate it outputted.

▶ Lemma 35. The algorithm Find-Restriction(f) from Figure 1, with probability at least
1
2 , returns a restriction π of length at most O(Cert(f)4).

Before proving Lemma 35 we discuss why it uses balanced influences rather than influences.
As we are applying Corollary 33, we wish to determine a variable with influence at least
half as large as MaxInf(f). The definition of influence immediately suggests an algorithm
for estimating influences: Randomly sample x ∼ {0, 1}n and then compute whether f(x) ̸=
f(x⊕i). Using poly(1/ε) iterations of that procedure, we can estimate influences to additive
accuracy ±ε. To guarantee we pick a variable with influence at least half of MaxInf(f),
we would want to estimate influences to accuracy in ± MaxInf(f)

4 . Unfortunately, the naive
influence estimator requires 1/poly(MaxInf(f)) queries to do so, which is intractable when
MaxInf is too small.

A first hope is that the bound of MaxInf(f) ≥ 4 Var(f)/Depth(f) from Theorem 28 will
ensure that MaxInf is not too small. Unfortunately, in the proof of Lemma 23, we can have
Var as small as 2−Cert(f). When Var(f) is small, almost all inputs are labeled the same
way by f , so it is unlikely that a random edge (x, x⊕i) will be labeled differently. Balanced
influences (Definition 7) correct for this effect by ensuring that the initial point, x, is equally
likely to be labeled 0 or 1 by f .

G. Blanc, C. Koch, J. Lange, C. Strassle, and L.-Y. Tan 18:15

If f is already balanced, meaning it is equally likely to output 0 or 1, then D(f)
bal is just

the uniform distribution and BalInfi(f) = Infi(f). Otherwise, as we show in the following
Lemma, balanced influences are proportional to influences scaled by variance.

▶ Lemma 36 (Balanced influences proportional to influences). For any non-constant function
f : {0, 1}n → {0, 1} and coordinate i ∈ [n],

BalInfi(f) = Infi(f)
4 Var(f) .

Proof. Let Si := {x ∈ {0, 1}n | f(x) ̸= f(x⊕i)} be the set of all inputs to f that are sensitive
at the ith coordinate. Then,

Infi(f) = Pr
x∼{0,1}n

[x ∈ Si] = |Si|
2n

.

Similarly,

BalInfi(f) = 1
2

(
Pr

x∼f−1(0)
[x ∈ Si] + Pr

x∼f−1(1)
[x ∈ Si]

)
.

The key observation is that for every x ∈ Si it is also true that x⊕i ∈ Si, so f classifies
exactly half the inputs in Si as 0, and the other half as 1. Therefore,

BalInfi(f) = 1
2

(
|Si|

2
|f−1(0)| +

|Si|
2

|f−1(1)|

)
.

For each b ∈ {0, 1}, we use pb as shorthand for Prx∼{0,1}n [f(x) = b]. Then,

BalInfi(f) = 1
4

(
|Si|
2np0

+ |Si|
2np1

)
= |Si|

2n
· p1 + p0

4p0p1

= Infi(f) · 1
4p0p1

(Infi(f) = |Si|
2n , p1 + p0 = 1)

= Infi(f)
4 Var(f) . (Var(f) = p0p1)

◀

The following is a direct corollary of Lemma 36, Theorem 28, and the fact that Depth(f) ≤ n

for any f : {0, 1}n → {0, 1}.

▶ Corollary 37. For any non-constant function f : {0, 1}n → {0, 1}, there is a coordinate
i ∈ [n] satisfying

BalInfi(f) ≥ 1
Depth(f) ≥

1
n

.

We are now able to prove Lemma 35 contingent on Lemma 8 stating that balanced
influences can be efficiently estimated, which will appear in the next subsection.

Proof of Lemma 35. Find-Restriction makes at most n2 estimates of balanced influence,
so with probability at least 3

4 , all those estimates are within ± 1
4n of the true balanced

influences. By Corollary 37, there is always a variable with balanced influence at least

ITCS 2023

18:16 Certification with an NP Oracle

1
n , so as long as all estimates succeed, Find-Restriction will always choose an i⋆ such
that BalInfi⋆(f) ≥ maxi(BalInfi(f)). By Lemma 36, that also implies that infi⋆(f) ≥
MaxInf(f)/2.

As a result, Find-Restriction builds a uniformly random path of the tree Tf described
in Corollary 33. All but 1

4 -fraction of paths in Tf at depth O(Cert(f)4) reach a restriction π

for which fπ is constant. Hence, by a union bound, the probability Find-Restriction does
not terminate with |π| ≤ O(Cert(f)4) is at most 1

4 + 1
4 ≤

1
2 . ◀

6.1 Estimating balanced influences
Definition 7 suggests a procedure for estimating balanced influences: Randomly sample
x ∼ D(f)

bal and compute whether f(x) ̸= f(x⊕i). Using poly(1/ε) iterations of that procedure
is sufficient to estimate balanced influences to additive accuracy ±ε.

The challenge in sampling from D(f)
bal is that when Var(f) is small, the D(f)

bal is far from
the uniform distribution. Here, we utilize an NP oracle for a uniform generation algorithm.3

▶ Theorem 38 (Uniform generation with an NP oracle, [3]). There is an efficient randomized
algorithm A which, given a satisfiable poly-sized circuit f : {0, 1}n → {0, 1} and NP oracle,
with high probability, outputs a uniform x ∼ f−1(1). In the failure case, A outputs ⊥.

As an easy corollary, we can sample from D(f)
bal .

▶ Corollary 39 (Sampling from D(f)
bal). There is an efficient randomized algorithm A which,

given a poly-sized non-constant circuit f : {0, 1}n → {0, 1}, with high probability outputs a
uniform x ∼ D(f)

bal . In the failure case, A outputs ⊥.

Proof. A first samples a uniform b ∼ {0, 1}. If b is 1, it uses the uniform generation
algorithm from Theorem 38 on f . Otherwise, it uses that uniform generation algorithm on
¬f , which is still a poly-sized circuit.

By union bound, the failure probability (of outputting ⊥) of A is still small. When it
does not fail, A outputs a uniform sample from D(f)

bal . ◀

Finally, we note that Lemma 8 is a direct consequence of Corollary 39 and Definition 7:
The algorithm with failure probability 1− δ takes poly(1/ε, log(1/δ)) samples x ∼ D(f)

bal and
counts the fraction of those samples for which f(x) ̸= f(x⊕i).

6.2 Technical remarks
Comparison with [4]

[4] solved the certification problem for monotone f , and also computed influences over a certain
balanced distribution as a key step. For any non-constant monotone f : {0, 1}n → {0, 1},
there is guaranteed to be some p⋆ ∈ (0, 1), called the critical probability, satisfying,

E
x∼Dp⋆

[f(x)] = 1
2

where x ∼ Dp⋆ means each xi is independently 1 with probability p⋆ and 0 otherwise. [4]
are able to show that there is a coordinate with high influence at the critical probability,
meaning Prx∼Dp⋆ [f(x) ̸= f(x⊕i)] is large.

3 [12] gave an algorithm for approximate uniform generation, which would have also sufficed for our
purpose. For simplicity, we cite the more recent work that gives exact uniform generation.

G. Blanc, C. Koch, J. Lange, C. Strassle, and L.-Y. Tan 18:17

While the ways in which [4] and this work use the existence of a coordinate with high
influence is quite different, we find it intriguing that both rely on finding such a coordinate on
a distribution on which f is balanced. A natural avenue for future work is to establish a formal
connection between the two works. Is there some definition of “balancing a distribution for
f ,” that encompasses both this work and [4]’s techniques, and is sufficient for certification?

An alternative approach through approximate counting

Given a poly-sized circuit f : {0, 1}n → {0, 1} and coordinate i ∈ [n], we can construct the
poly-sized circuit gi(x) := 1[f(x) ̸= f(x⊕i), which measures whether f is sensitive in the ith

direction at the input. In the proof of Lemma 36, we saw that Infi(f) = |g−1
i

(1)|
2n . This gives

an alternative approach to estimating the coordinate with largest influence: Approximately
count the number of accepting inputs of gi for each i ∈ [n] and output the i maximizing
that count. This approximate count just needs to be accurate to a constant multiplicative
accuracy (i.e., counti ∈ [3

4 · |g
−1
i (1)|, 5

4 · |g
−1
i (1)|]).

Classical results of [21, 22] show that approximate counting can be done efficiently and
deterministically given a Σ2 oracle, and [12] observed that implicit in those results, an NP
oracle is sufficient if we allow for randomized algorithms. Furthermore, they proved an
equivalence between (almost) uniform generation and approximate counting, so it’s not
surprising that our algorithm has two alternative approaches, one through uniform generation
and one through approximate counting.

Given two equivalent approaches, we chose to highlight that through uniform generation
as we find it more intuitive. It also illuminates the possible connection, detailed earlier,
with [4]’s algorithm for certifying monotone functions.

7 Our certification algorithm: Proof of Theorem 2

In this section, we show how any procedure that takes a function as input and outputs a
certificate for an arbitrary input can be converted into a procedure that takes a function and
a string as inputs and outputs a certificate for the function’s value on that string. Using this
construction and the certification procedure from Section 5, we obtain our main certification
algorithm.

Find-Certificate(f, x⋆):
Given: A circuit representation of f : {0, 1}n → {0, 1} and an input x⋆ ∈ {0, 1}n.
Output: A certificate S ⊆ [n] for f ’s value on x⋆

1. Initialize S ← ∅
2. While S is not a certificate for f ’s value on x⋆:

a. S ← S ∪Restriction(fS←x⋆)
3. Return S

Figure 2 Algorithm for the certification problem using Restriction as a subroutine.

The procedure Restriction(f) in Figure 2 is a (possibly randomized) procedure that
takes as input a circuit representation of f : {0, 1}n → {0, 1} outputs a set of coordinates
S ⊆ [n] such that there is some u ∈ {0, 1}|S| such that fS←u is a constant function
(equivalently S is a certificate for f ’s value on some input).

ITCS 2023

18:18 Certification with an NP Oracle

The algorithm works by iteratively building a certificate S using Restriction(·) as
a subroutine. While S is not yet a certificate for f ’s value on x⋆, the algorithm calls
Restriction(·) on the subfunction obtained by restricting f according to S and x⋆. It then
augments the candidate certificate with the output from Restriction(·).

▶ Lemma 40 (Solving the certification problem using Restriction(·)). The algorithm in
Figure 2 runs in polynomial-time with access to an NP oracle and outputs a certificate of size
at most 2 · Cert(f) · γ(Cert(f)) for f ’s value on x⋆ where γ : N→ N is any nondecreasing
function satisfying |Restriction(f)| ≤ γ(Cert(f)).

We write Cert0(f) = maxx∈f−1(0){Cert(f, x)} to denote the 0-certificate complexity of
f and Cert1(f) = maxx∈f−1(1){Cert(f, x)} for the 1-certificate complexity of f . Our proof
relies on the following fact which states that the 0-certificate complexity of a function
decreases when restricting the coordinates of a 1-certificate to any set of values and vice versa
for a 1-certificate. For the proof of this result, see [4, Theorem 6]. The main idea underlying
the proof is that every 0-certificate has a nonempty intersection with every 1-certificate.

▶ Proposition 41 (See [4, Theorem 6]). Let f : {0, 1}n → {0, 1}, S ⊆ [n] and u ∈ {0, 1}|S|.
If fS←u(x) is the constant function for all x ∈ {0, 1}n−|S|, then

Cert1(f) + Cert0(f)− 1 ≥ Cert0(fS←u) + Cert1(fS←u)

for all u′ ∈ {0, 1}|S|.

Proof of Lemma 40. We claim that the algorithm depicted in Figure 2 satisfies the lemma
statement.

Each step of the algorithm can be implemented efficiently using an NP oracle. In particular,
determining if S ⊆ [n] is a certificate for f ’s value on x⋆ is equivalent to checking if fS←x∗

is the constant function. This task can be accomplished by restricting the circuit for f

to obtain a circuit for fS←x∗ and checking whether the restricted circuit is satisfiable (or,
possibly unsatisfiable depending on whether f(x⋆) = 1). Moreover, the correctness of the
algorithm follows immediately from the condition of the while loop. Therefore, it suffices to
bound the runtime.

If S = Restriction(f), then

Cert1(f) + Cert0(f)− 1 ≥ Cert1(fS←u) + Cert0(fS←u) (Proposition 41)
> 0

for all u such that fS←u is nonconstant. Therefore, each step of the algorithm decreases
the sum Cert1(fS←x∗) + Cert0(fS←x∗) by at least 1 and terminates when this quantity
reaches 0. It follows by induction that the main loop terminates after at most 2 · Cert(f) ≥
Cert0(f) + Cert1(f) calls to Restriction(·). Each loop iteration adds

|Restriction(fS←x∗)| ≤ γ(Cert(fS←x⋆))
≤ γ(Cert(f)) (Cert(fS←x∗) ≤ Cert(f))

coordinates to the candidate certificate. Hence, the overall size of the final certificate is
bounded by 2 · Cert(f) · γ(Cert(f)). ◀

Proof of Theorem 2 using Lemmas 6 and 40. By Lemma 6, there is a randomized
polynomial-time algorithm with an NP oracle that implements Restriction(f). This
algorithm has the guarantee that |Restriction(f)| ≤ O(Cert(f)4). Therefore, the algo-
rithm in Figure 2 satisfies Theorem 2 by Lemma 40: it runs in polynomial-time with NP
oracle access and w.h.p. (over the randomness of Restriction(f)) outputs a certificate of
size O(Cert(f)5) for f ’s value on a given input. ◀

G. Blanc, C. Koch, J. Lange, C. Strassle, and L.-Y. Tan 18:19

8 Hardness of instance-wise guarantees: Proof of Theorem 3

Theorem 3 follows as a consequence of the following lemma.

▶ Lemma 42. There is a polynomial-time algorithm that takes a co-nondeterministic circuit
C : {0, 1}n × {0, 1}n → {0, 1} accepting a nonempty monotone set and a parameter m ≥ n

and outputs a circuit representation of a function f : {0, 1}n+m → {0, 1} which satisfies the
following.
1. If C accepts an input with ≤ k ones, then Cert(f, (1n, 1m)) ≤ k.
2. If every x that C accepts has > k′ ones, then |S| > min{k′, m− n− logc(m)} for every

certificate S ⊆ [m + n] of f ’s value on (1n, 1m)
where k′ > k and c > 1 is an absolute constant.

The proof of this lemma involves zero-error bit-fixing dispersers. At a high level, a
disperser is a nearly-surjective function that remains nearly-surjective even after restricting
all but a small number of the input bits. More specifically, an ε-error disperser with entropy
threshold λ is an efficiently constructible function D : {0, 1}m → {0, 1}n such that the image
of the function after restricting all but λ input bits is at least an (1− ε)-fraction of {0, 1}n.
For our application, we require ε = 0 so that the function remains fully surjective after
restricting the input bits.

▶ Definition 43 (Zero-error bit-fixing disperser with entropy threshold λ). Consider a function
D : {0, 1}m → {0, 1}n. Let S ⊆ [m] be a subset of size |S| ≤ m− λ and let u = {0, 1}|S| be
an assignment to that subset. Then DS←u : {0, 1}m−|S| → {0, 1}n is the function D with the
variables in S fixed according to u. We say that D is a zero-error bit-fixing disperser with
entropy threshold λ if for all such S and u, the image of DS←u is {0, 1}n.

We use the following key result due to [10] about explicit zero-error bit-fixing dispersers.

▶ Theorem 44 (Explicit constructions of zero-error bit-fixing dispersers [10, Theorem 9]). There
exists a constant c > 1 such that for large enough m and λ ≥ logc m, there is an explicit
zero-error bit-fixing disperser D : {0, 1}m → {0, 1}λ−logc m with entropy threshold λ.

With this theorem in hand, we are able to prove Lemma 42.

Proof of Lemma 42. Let C : {0, 1}n × {0, 1}n → {0, 1} be co-nondeterministic circuit that
accepts a non-empty monotone set and let m ≥ n be a parameter. We define the function
f : {0, 1}n × {0, 1}m → {0, 1} as

f(x, z) := C(x, D(z))

where D : {0, 1}m → {0, 1}n is a zero-error bit-fixing disperser as in Theorem 44. Note that
D’s entropy threshold is λ = n + logc(m). We show that solving the certification problem for
f ’s value on the input 1⃗ = (1n, 1m) satisfies the lemma statement. We first consider the case
where C accepts a low Hamming weight input and then consider the case where all accepted
strings have large Hamming weight.

C accepts an input with ≤ k ones. Suppose C accepts an input x ∈ {0, 1}n with ≤ k

ones. Then, by the monotonicity of C, the set S = {i : xi = 1} ⊆ [n + m] consisting of the
indices on which x is one is a certificate of size ≤ k for f ’s value on the input 1⃗.

ITCS 2023

18:20 Certification with an NP Oracle

Every x that C accepts has > k′ ones. In this case, we show that every certificate S

for f ’s value on 1⃗ has at least min{k′, m − n − logc(m)} coordinates. Let S ⊆ [n + m] be
an arbitrary certificate for f ’s value on 1⃗. We partition S into two sets S = Sn ∪ Sm where
Sn ⊆ [n] consists of the indices from the first n-coordinates of (1n, 1m) and Sm ⊆ [m] consists
of the indices from the last m-coordinates of (1n, 1m). We split into two cases depending on
the size of Sm. In the first case, we lower bound |S| by k′ and in the second case we lower
bound |S| by m− n− logc(m). Since the two cases are exhaustive, the lemma follows.
1. Sm is small: |Sm| ≤ m − (n + logc(m)). The image of DSm←1⃗ is {0, 1}n because

D is a disperser with entropy threshold λ = n + logc(m). It follows that for every
x ∈ {0, 1}n−|Sn| and every y ∈ {0, 1}n,

CSn←1⃗(x, y) = f (⃗1).

Therefore, Sn alone is a certificate for f ’s value on 1⃗. But this implies |S| ≥ |Sn| > k′ by
our assumption that every x that C accepts has at least k′ ones.

2. Sm is large: |Sm| > m − (n + logc(m)). In this case, we have |S| ≥ |Sm| >

m− (n + logc(m)) which gives the desired lower bound.
Finally, we observe that our algorithm is efficient since a circuit for f can be constructed

by adding wires from the output gates of D to the appropriate input gates of C. ◀

8.1 Putting it all together: Proof of Theorem 3

Proof. Suppose the theorem were false. That is, there is an efficient algorithm that can
distinguish between inputs having certificate size k versus requiring size at least k · n1−ε for
some fixed constant ε > 0. Then, we will obtain a contradiction to Theorem 11 by solving
MMWW with a gap of n1−ε.

Let (C, k) be an instance of MMWW. Let f : {0, 1}n+m → {0, 1} and x⋆ = 1⃗ be the
function and input obtained from Lemma 42 for m = 3n. Run the certification algorithm on
(f, 1⃗) and output YES if the algorithm outputs YES and NO otherwise. To show correctness,
we consider the two cases of Theorem 11: either C accepts an input of length k or every
accepted input has length at least k · n1−ε.

C accepts an input with k ones. By the guarantee of Lemma 42, there is a certificate of
size ≤ k for f ’s value on 1⃗. Therefore, our algorithm correctly outputs YES.

All strings C accepts have at least k·n1−ε ones. Using k′ = kn1−ε and m = 3n, Lemma 42
guarantees that all certificates |S| for f ’s value on 1⃗ have size at least min{kn1−ε, 2n −
logc(3n)}. We observe

2n− logc(3n) > n ≥ k · n1−ε

where the last step follows by our assumption on C (trivially, any input that C accepts can
have at most n ones so n < kn1−ε would be impossible). Therefore,

|S| > min{kn1−ε, 2n− logc(3n)} = kn1−ε

for all certificates S of f ’s value on 1⃗ and therefore our algorithm correctly outputs NO. ◀

G. Blanc, C. Koch, J. Lange, C. Strassle, and L.-Y. Tan 18:21

References
1 Dana Angluin. Queries and concept learning. Machine learning, 2(4):319–342, April 1988.

doi:10.1023/A:1022821128753.
2 Pablo Barceló, Mikaël Monet, Jorge Pérez, and Bernardo Subercaseaux. Model interpretability

through the lens of computational complexity. Advances in Neural Information Processing
Systems (NeurIPS), 33:15487–15498, 2020.

3 Mihir Bellare, Oded Goldreich, and Erez Petrank. Uniform generation of np-witnesses using
an np-oracle. Information and Computation, 163(2):510–526, 2000.

4 Guy Blanc, Caleb Koch, Jane Lange, and Li-Yang Tan. The query complexity of certification.
In Proceedings of the 54th Annual ACM SIGACT Symposium on Theory of Computing, STOC
2022, pages 623–636, New York, NY, USA, 2022. Association for Computing Machinery.
doi:10.1145/3519935.3519993.

5 Guy Blanc, Jane Lange, and Li-Yang Tan. Provably efficient, succinct, and precise explanations.
Advances in Neural Information Processing Systems, 34, 2021.

6 Harry Buhrman and Ronald de Wolf. Complexity measures and decision tree complexity: a
survey. Theoretical Computer Science, 288(1):21–43, 2002.

7 Shuchi Chawla, Jelani Nelson, Chris Umans, and David Woodruff. Visions in theoretical
computer science: A report on the TCS visioning workshop 2020. arXiv preprint, 2021.
arXiv:2107.02846.

8 Stephen A. Cook. The complexity of theorem-proving procedures. In Proceedings of the Third
Annual ACM Symposium on Theory of Computing, STOC ’71, pages 151–158, New York, NY,
USA, 1971. Association for Computing Machinery. doi:10.1145/800157.805047.

9 Remi Delannoy and Kuldeep S. Meel. On almost-uniform generation of SAT solutions: The
power of 3-wise independent hashing. In Proceedings of the 37th Annual ACM/IEEE Symposium
on Logic in Computer Science (LICS), pages 17:1–17:10, 2022. doi:10.1145/3531130.3533338.

10 Ariel Gabizon and Ronen Shaltiel. Invertible zero-error dispersers and defective memory
with stuck-at errors. In Approximation, Randomization, and Combinatorial Optimization:
Algorithms and Techniques, 2012.

11 Meghal Gupta and Naren Sarayu Manoj. An optimal algorithm for certifying monotone
functions. arXiv preprint, 2022. arXiv:2204.01224.

12 Mark R Jerrum, Leslie G Valiant, and Vijay V Vazirani. Random generation of combinatorial
structures from a uniform distribution. Theoretical computer science, 43:169–188, 1986.

13 Stasys Jukna. Boolean Function Complexity: Advances and Frontiers. Springer Publishing
Company, Incorporated, 2012.

14 Elchanan Mossel and Christopher Umans. On the complexity of approximating the VC
dimension. Journal of Computer and System Sciences, 65(4):660–671, 2002.

15 Ryan O’Donnell. Analysis of Boolean Functions. Cambridge University Press, 2014.
16 Ryan O’Donnell, Michael Saks, Oded Schramm, and Rocco Servedio. Every decision tree has

an influential variable. In Proceedings of the 46th Annual IEEE Symposium on Foundations of
Computer Science (FOCS), pages 31–39, 2005.

17 Marco Túlio Ribeiro, Sameer Singh, and Carlos Guestrin. Anchors: High-precision model-
agnostic explanations. In Proceedings of the 32nd AAAI Conference on Artificial Intelligence
(AAAI), pages 1527–1535, 2018.

18 Marcus Schaefer and Chris Umans. Completeness in the polynomial-time hierarchy: Part ii.
SIGACT News, 33(4):22–36, 2002.

19 Marcus Schaefer and Christopher Umans. Completeness in the polynomial-time hierarchy: A
compendium. SIGACT news, 33(3):32–49, 2002.

20 Andy Shih, Arthur Choi, and Adnan Darwiche. A symbolic approach to explaining bayesian
network classifiers. In Proceedings of the 27th International Joint Conference on Artificial
Intelligence, pages 5103–5111, 2018.

21 Michael Sipser. A complexity theoretic approach to randomness. In Proceedings of the fifteenth
annual ACM symposium on Theory of computing, pages 330–335, 1983.

ITCS 2023

https://doi.org/10.1023/A:1022821128753
https://doi.org/10.1145/3519935.3519993
http://arxiv.org/abs/2107.02846
https://doi.org/10.1145/800157.805047
https://doi.org/10.1145/3531130.3533338
http://arxiv.org/abs/2204.01224

18:22 Certification with an NP Oracle

22 Larry Stockmeyer. The complexity of approximate counting. In Proceedings of the fifteenth
annual ACM symposium on Theory of computing, pages 118–126, 1983.

23 Amnon Ta-Shma, Christopher Umans, and David Zuckerman. Loss-less condensers, unbalanced
expanders, and extractors. In Proceedings of the 33rd Annual ACM Symposium on Theory of
Computing (STOC), pages 143–152, 2001.

24 Christopher Umans. Hardness of approximating Σp
2 minimization problems. In Proceedings of

the 40th Annual Symposium on Foundations of Computer Science (FOCS), pages 465–474,
1999.

25 Christopher Umans. On the complexity and inapproximability of shortest implicant problems.
In Proceedings of the 26th International Colloquium on Automata, Languages, and Programming
(ICALP), pages 687–696, 1999.

26 Christopher Umans. The minimum equivalent DNF problem and shortest implicants. Journal
of Computer and System Sciences, 63(4):597–611, 2001.

27 Christopher Umans. Optimization problems in the polynomial-time hierarchy. In International
Conference on Theory and Applications of Models of Computation, pages 345–355. Springer,
2006.

28 Christopher Matthew Umans. Approximability and completeness in the polynomial hierarchy.
University of California, Berkeley, 2000.

29 Leslie Valiant. A theory of the learnable. Communications of the ACM, 27(11):1134–1142,
1984.

30 Moshe Vardi. The SAT revolution: Solving, sampling, and counting. Available at https:
//www.cs.rice.edu/~vardi/papers/highlights15.pdf.

31 Daniel S Weld and Gagan Bansal. The challenge of crafting intelligible intelligence. Commu-
nications of the ACM, 62(6):70–79, 2019.

https://www.cs.rice.edu/~vardi/papers/highlights15.pdf
https://www.cs.rice.edu/~vardi/papers/highlights15.pdf

	1 Introduction
	1.1 Our results

	2 Proof overviews
	2.1 Overview of the proof of Theorem 2
	2.2 Overview of the proof of Theorem 3

	3 Discussion and future work
	4 Basic results regarding the certification problem
	4.1 The necessity of an NP oracle
	4.2 Certificate complexity, minimal certificates, and monotonicity

	5 A structural result for functions with low certificate complexity
	5.1 Useful facts for the proof of Lemma 23
	5.2 Proof of Lemma 23
	5.3 A robust version of Lemma 23

	6 Balanced influences and an algorithmic version of Corollary 33
	6.1 Estimating balanced influences
	6.2 Technical remarks

	7 Our certification algorithm: Proof of Theorem 2
	8 Hardness of instance-wise guarantees: Proof of Theorem 3
	8.1 Putting it all together: Proof of Theorem 3

