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Abstract
We study the problems of counting copies and induced copies of a small pattern graph H in a large
host graph G. Recent work fully classified the complexity of those problems according to structural
restrictions on the patterns H. In this work, we address the more challenging task of analysing the
complexity for restricted patterns and restricted hosts. Specifically we ask which families of allowed
patterns and hosts imply fixed-parameter tractability, i.e., the existence of an algorithm running
in time f(H) · |G|O(1) for some computable function f . Our main results present exhaustive and
explicit complexity classifications for families that satisfy natural closure properties. Among others,
we identify the problems of counting small matchings and independent sets in subgraph-closed graph
classes G as our central objects of study and establish the following crisp dichotomies as consequences
of the Exponential Time Hypothesis:

Counting k-matchings in a graph G ∈ G is fixed-parameter tractable if and only if G is nowhere
dense.
Counting k-independent sets in a graph G ∈ G is fixed-parameter tractable if and only if G is
nowhere dense.

Moreover, we obtain almost tight conditional lower bounds if G is somewhere dense, i.e., not
nowhere dense. These base cases of our classifications subsume a wide variety of previous results
on the matching and independent set problem, such as counting k-matchings in bipartite graphs
(Curticapean, Marx; FOCS 14), in F -colourable graphs (Roth, Wellnitz; SODA 20), and in degenerate
graphs (Bressan, Roth; FOCS 21), as well as counting k-independent sets in bipartite graphs
(Curticapean et al.; Algorithmica 19).

At the same time our proofs are much simpler: using structural characterisations of somewhere
dense graphs, we show that a colourful version of a recent breakthrough technique for analysing
pattern counting problems (Curticapean, Dell, Marx; STOC 17) applies to any subgraph-closed
somewhere dense class of graphs, yielding a unified view of our current understanding of the
complexity of subgraph counting.
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27:2 Counting Subgraphs in Somewhere Dense Graphs

1 Introduction

We study the following subgraph counting problem: given two graphs H and G, compute
the number of copies of H in G. For several decades this problem has received widespread
attention from the theoretical community, leading to a rich algorithmic toolbox that draws
from different techniques [40, 2, 8, 30] and to deep structural results in parameterised com-
plexity theory [20, 13]. Since it was discovered that subgraph counts reveal global properties
of complex networks [36, 37], subgraph counting has also found several applications in fields
such as biology [1, 44] genetics [46], phylogeny [31], and data mining [47]. Unfortunately,
the subgraph counting problem is in general intractable, since it contains as special cases
hard problems such as Clique. This does not mean however that the problem is always
intractable; it just means that it is tractable when the pattern H is restricted to certain graph
families. Identifying these families of patterns that are efficiently countable has been a key
question for the last twenty years. A long stream of research eventually showed that, unless
standard conjectures fail, subgraph counting is tractable only for very restricted families of
patterns [20, 17, 10, 15, 29, 35, 13, 42, 22].

To circumvent this “wall of intractability”, in this work we restrict both the family
of the pattern H and the family of the host G. Formally, given two classes of graphs H
and G, we study the problems #Sub(H → G), #IndSub(H → G), and #Hom(H → G),
defined as follows. For all of them, the input is a pair (H, G) with H ∈ H and G ∈ G.
The outputs are respectively the number of subgraphs of G isomorphic to H, denoted
by #Sub(H → G), the number of induced subgraphs of G isomorphic to H, denoted by
#IndSub(H → G), and the number of homomorphisms (edge-preserving maps) from H to
G, denoted by #Hom(H → G). Our goal is to determine for which H and G these three
problems are tractable. To formalize what we mean by tractable, we adopt the framework
of parameterized complexity [16]: we say that a problem is fixed-parameter tractable, or in
the class FPT, if it is solvable in time f(|H|) · |G|O(1) for some computable function f . For
instance, we consider as tractable a running time of 2O(|H|) · |G| but not one of |G|O(|H|).
This captures the intuition that H is “small” compared to G, and is the main theoretical
framework for subgraph counting [20]. Thus, the goal of this work is understanding the
fixed-parameter tractability of #Sub(H → G), #IndSub(H → G), and #Hom(H → G) as a
function of H and G. Moreover, when those problems are not fixed-parameter tractable we
aim to show that they are hard for the complexity class #W[1], which can be thought of as
the equivalent of NP for parameterized counting.

We first briefly discuss which properties of G are worthy of attention. When G is the class
of all graphs, it is well known that each of the three problems is either FPT or #W[1]-hard
depending on whether certain structural parameters of H (such as treewidth or vertex cover
number) are bounded or not. Thus, when G is the class of all graphs, the problem is solved.
However, when G is arbitrary, no such characterization is known. This is partly due to the
fact that “natural” structural properties related to subgraph counting are harder to find for G
than for H; subgraph counting algorithms themselves usually exploit the structure of H but
not that of G (think of tree decompositions). There is however one deep structural property
that, if held by G, yields tractability: the property of being nowhere dense, introduced by
Nešetřil and Ossona de Mendez [38]. In a nutshell G is nowhere dense if, for all r ∈ N0, its
members do not contain as subgraphs the r-subdivisions of arbitrarily large cliques; it can be
shown that this generalizes several natural definitions of sparsity, including having bounded
degree or bounded local treewidth, or excluding some topological minor. In a remarkable
result, Nešetřil and Ossona de Mendez proved:
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▶ Theorem 1 (Theorem 18.9 in [39]). If G is nowhere dense then the problems #Hom(H → G),
#Sub(H → G), and #IndSub(H → G) are fixed-parameter tractable and can be solved in
time f(|H|) · |V (G)|1+o(1) for some computable function f .

We note that, in the realm of decision problems, an even more general meta-theorem is
known for first-order model-checking on nowhere dense graphs [27].

Thus the case that G is nowhere dense is closed, and we can focus on its complement –
the case where G is somewhere dense. Hence the question studied in this work is: when are
#Sub(H → G), #IndSub(H → G), and #Hom(H → G) fixed-parameter tractable, provided
that G is somewhere dense?

2 Our Results

We prove dichotomies for #Sub(H → G), #IndSub(H → G), and #Hom(H → G) into FPT
and #W[1]-hard cases, assuming that G is somewhere dense. It is known [43] that a fully
general dichotomy is impossible even assuming that G is somewhere dense; thus we focus
on the natural cases where H and/or G are monotone (closed under taking subgraphs) or
hereditary (closed under taking induced subgraphs). Our dichotomies are expressed in terms
of the finiteness of combinatorial parameters of H and G, such as their clique number or
their induced matching number. Existing complexity dichotomies for subgraph counting are
based on using interpolation to evaluate linear combinations of homomorphism counts [13].
This technique has been exploited for families of host graphs that are closed under tensoring
– the closure is used to create new instances for the interpolation. The host graphs in our
dichotomy theorems do not have this closure property. Nevertheless, we obtain a dichotomy
for all somewhere dense classes using a combination of techniques involving graph fractures
and colourings.

The rest of this extended abstract presents our main conceptual contribution (Section 2.1),
gives a detailed walk-through of our complexity dichotomies (Sections 2.2 - 2.4), provides
some context (Section 3), and overviews the techniques behind our proofs (Section 4). For
full proofs of our claims we refer the reader to the full version of this paper.

Basic preliminaries

We concisely state some necessary definitions and observations. We denote by U the class of
all graphs. We denote by ω(G), α(G), β(G), and m(G) respectively the clique, independence,
biclique, and matching number of a graph G. The notation extends to graph classes by
taking the supremum over their elements. Induced versions of those quantities are identified
by the subscript ind (for instance, mind denotes the induced matching number). Gr denotes
the r-subdivision of G, and F × G denotes the tensor product of F and G. All of our lower
bounds assume the Exponential Time Hypothesis (ETH) [28]; and most of them rule out
algorithms running in time f(k) · no(k/ log k) for any function f , and are therefore tight except
possibly for a O(log k) factor in the exponent.1 All of our #W[1]-hardness results are actually
#W[1]-completeness results; this holds because #Sub(H → G), #IndSub(H → G), and
#Hom(H → G) are always in #W[1] due to a characterisation of #W[1] via parameterised
model-counting problems (see [21, Chapter 14]).

1 This O(log k) gap is not an artifact of our proofs, but a consequence of the well-known open problem
“Can you beat treewidth?” [33, 34].

ITCS 2023
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2.1 Simpler Hardness Proofs for More Graph Families
Our first and most conceptual contribution is a novel approach to proving hardness of
parameterized subgraph counting problems for somewhere-dense families of host graphs. This
approach allows us to significantly generalize existing results while simultaneously yielding
surprisingly simpler proofs.

The starting point is the observation that proving intractability results for parameterized
counting problems is discouragingly difficult, as it often requires tedious and involved
arguments. For instance, after Flum and Grohe conjectured that counting k-matchings is
#W[1]-hard [20], the first proof required nine years and relied on sophisticated algebraic
techniques [11]. This partially changed in 2017 when Curticapean, Dell and Marx [13] showed
how to express a subgraph count #Sub(H → G) as linear combination of homomorphism
counts

∑
F aF · #Hom(F → G), and that computing that linear combination has the same

complexity as computing the hardest term #Hom(F → G) such that aF ̸= 0; a similar
claim holds for induced subgraph counts as well. Thanks to this technique one can prove
intractability of several subgraph counting problems, including for instance the problem of
counting k-matchings.2 These hardness results ultimately yielded complexity dichotomies for
general subgraph counting problems, including notably #Sub(H → G) and #IndSub(H → G)
when G is the class of all graphs.

The technique of [13] does not work for proving hardness of #Sub(H → G) and
#IndSub(H → G) when G ≠ U . Indeed, one caveat of that technique is that the fam-
ily of host graphs G must satisfy certain conditions. One of those conditions is that G is
closed under tensoring, i.e., that G × G′ ∈ G for all G ∈ G and all G′ ∈ U . The reason is
that the interpolation relies on evaluating, say, Sub(H → G × Gi) for several carefully chosen
graphs Gi, with the goal of constructing a certain invertible system of linear equations;
for this to yield a reduction towards counting patterns in graphs from G, it is crucial that
G × Gi ∈ G for all such Gi (Section 4 gives a concrete example using the problem of counting
k-matchings). This is why the technique of [13] works smoothly for G = U ; closure under
tensoring holds trivially in that case. But many other natural graph families G are not closed
under tensoring, including somewhere dense ones (for instance, the family of d-degenerate
graphs for any fixed integer d ≥ 2). Until now, this has been the main obstacle towards
proving hardness of subgraph counting for arbitrary somewhere dense graph families. The
central insight of our work is that this obstacle can be circumvented in a surprisingly simple
way. Using well-established results from the theory of sparsity, we prove the following claim,
which we explain in detail in Section 4:

Every monotone and somewhere dense class of graphs is closed
under vertex-colourful tensor products of subdivided graphs.

Ignoring for a moment its technicalities, this result allows us to lift the interpolation technique
via graph tensors to any monotone somewhere dense class of host graphs, including for
instance the aforementioned class of d-degenerate graphs. In turn this yields complexity
classifications for #Hom(H → G), #Sub(H → G), and #IndSub(H → G) that subsume
and significantly strengthen almost all classifications known in the literature (see below).
Moreover, our approach yields simple and almost self-contained proofs, helping understand
the underlying causes of the hardness.

2 In the field of database theory a similar technique expressing answers to unions of conjunctive queries
as linear combinations of answers of conjunctive queries was independently discovered by Chen and
Mengel [9].



M. Bressan, L. A. Goldberg, K. Meeks, and M. Roth 27:5

2.2 The Complexity of #Sub(H → G)
This section presents our results on the fixed-parameter tractability of #Sub(H → G). We
start by presenting a minimal3 family H for which hardness holds: the family of all k-
matchings (or 1-regular graphs). In this case we also denote #Sub(H → G) as #Match(G).
In the foundational work by Flum and Grohe [20], #Match(U) was identified as a central
problem because of the significance of its classical counterpart (counting the number of
perfect matchings); a series of works then identified #Match(U) as the minimal intractable
case [11, 15, 13]. In this work, we show that #Match(G) is the minimal hard case for every
class G that is monotone and somewhere dense:

▶ Theorem 2. Let G be a monotone class of graphs4 and assume that ETH holds. Then
#Match(G) is fixed-parameter tractable if and only if G is nowhere dense. More precisely,
if G is nowhere dense then #Match(G) can be solved in time f(k) · |V (G)|1+o(1) for some
computable function f ; otherwise #Match(G) is #W[1]-hard and cannot be solved in time
f(k) · |G|o(k/ log k) for any function f .

Theorem 2 subsumes the existing intractability results for counting k-matchings in bipartite
graphs [15], in F -colourable graphs [43], in bipartite graphs with one-sided degree bounds [14],
and in degenerate graphs [7]. It also strengthens the latter result: while [7] establishes
hardness of counting k-matchings in ℓ-degenerate graphs for k + ℓ as a parameter, Theorem 2
yields hardness for d-degenerate graphs for every fixed d ≥ 2.5 Additionally, we show that
Theorem 2 cannot be strengthened to achieve polynomial-time tractability of #Match(G)
for nowhere dense and monotone G, unless #P = P.

As a consequence of Theorem 2 we obtain, for hereditary H, an exhaustive and detailed
classification of the complexity of #Sub(H → G) as a function of invariants of G and H.

▶ Theorem 3. Let H and G be graph classes such that H is hereditary and G is monotone.
Then the complexity of #Sub(H → G) is exhaustively classified by Table 1.

Table 1 The complexity of #Sub(H → G) for hereditary H and monotone G. Here “hard” means
#W[1]-hard and, unless ETH fails, without an algorithm running in time f(|H|)·|G|o(|V (H)|/ log |V (H)|);
“hard†” means the same, but without an algorithm running in f(|H|) · |G|o(|V (H)|).

G n. dense G s. dense
ω(G) = ∞

G s. dense
ω(G) < ∞
β(G) = ∞

G s. dense
ω(G) < ∞
β(G) < ∞

m(H) < ∞ P P P P

mind(H) = ∞ FPT hard hard hard

mind(H) < ∞, βind(H) = ∞ P hard† hard† P

Otherwise P hard† P P

3 Minimal means that, for every class H′, #Sub(H′ → G) is intractable if and only if the monotone
closure of H′ includes H. The same holds for #IndSub with “monotone” replaced by “hereditary”.

4 We emphasize that we do not need our classes to be computable or recursively enumerable. This is due
to the assumed closure properties of the classes.

5 The class of all d-degenerate graphs is somewhere dense for all d ≥ 2.
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Note that the unique fixed-parameter tractability result in Table 1 is a “real” FPT case: we
can show that, unless P = #P, it is in FPT but not in P.

From the classification of Theorem 3 one can derive interesting corollaries. For example,
when H and G are monotone one has essentially the same classification of the case G = U :
only the boundedness of the matching number of H (or equivalently, of its vertex-cover
number) counts [15].

▶ Theorem 4. Let H and G be monotone classes of graphs and assume that ETH holds. Then
#Sub(H → G) is fixed-parameter tractable if m(H) < ∞ or G is nowhere dense; otherwise
#Sub(H → G) is #W[1]-complete and cannot be solved in time f(|H|)·|G|o(|V (H)|/ log(|V (H)|))

for any function f .

We conclude by remarking that Table 1 and the proofs of its bounds suggest the existence of
three general algorithmic strategies for subgraph counting:
1. If G is nowhere dense (first column of Table 1), then one can use the FPT algorithm of

Theorem 1, based on Gaifman’s locality theorem for first-order formulas and the local
sparsity of nowhere dense graphs (see [39]).

2. If m(H) < ∞ (first row of Table 1), then one can use the polynomial-time algorithm of
Curticapean and Marx [15], based on guessing the image of a maximum matching of H

and counting its extensions via dynamic programming.
3. All remaining entries marked as “P” are shown to be essentially trivial. Concretely, we

will rely on Ramsey’s theorem to prove that minor modifications of the naive brute-force
approach yield polynomial-time algorithms for those cases.

2.3 The Complexity of #IndSub(H → G)

In the previous section we proved that, when G is somewhere dense, k-matchings are the min-
imal hard family of patterns for #Sub(H → G). In this section we show that k-independent
sets play a similar role for #IndSub(H → G). Let #IndSet(G) = #IndSub(I → G) where
I is the set of all all independent sets (or 0-regular graphs). We prove:

▶ Theorem 5. Let G be a monotone class of graphs and assume that ETH holds. Then
#IndSet(G) is fixed-parameter tractable if and only if G is nowhere dense. More precisely,
if G is nowhere dense then #IndSet(G) can be solved in time f(k) · |V (G)|1+o(1) for some
computable function f ; otherwise #IndSet(G) cannot be solved in time f(k) · |G|o(k/ log k)

for any function f .

This result subsumes the intractability result for counting k-independent sets in bipartite
graphs of [12]. It also strengthens the result of [7], which shows #IndSet(G) is hard when
parameterized by k+d where d is the degeneracy of G. More precisely, [7] does not imply that
#IndSet(G) is hard for G being the class of d-degenerate graphs, for any d ≥ 2; Theorem 5
instead proves such hardness for every d ≥ 2. Finally, we point out that the FPT case of
Theorem 5 is not in P unless P = #P.

As consequence of Theorem 5, when H is hereditary (and thus in particular monotone)
we obtain:

▶ Theorem 6. Let H and G be classes of graphs such that H is hereditary and G is monotone.
Then the complexity of #IndSub(H → G) is exhaustively classified by Table 2.
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Table 2 The complexity of #IndSub(H → G) for hereditary H and monotone G. Here
“hard” means #W[1]-hard and, unless ETH fails, without an algorithm running in time
f(|H|) · |G|o(|V (H)|/ log |V (H)|); “hard†” means the same, but without an algorithm running in
f(|H|) · |G|o(|V (H)|).

G n. dense G s. dense
ω(G) = ∞

G s. dense
ω(G) < ∞
α(G) = ∞

|H| < ∞ P P P

α(H) = ∞ FPT hard† hard

Otherwise P hard† P

2.4 The Complexity of #Hom(H → G)

Finally, we study the parameterized complexity of #Hom(H → G). We denote by tw(H)
the treewidth of a graph H. Informally, graphs of small treewidth admit a decomposition
with small separators, which allows for efficient dynamic programming. In this work we
use treewidth in a purely black-box fashion (e.g. via excluded-grid theorems); for its formal
definition see [16, Chapter 7]. We prove:

▶ Theorem 7. Let H and G be monotone classes of graphs.
1. If G is nowhere dense then #Hom(H → G) is fixed-parameter tractable and can be solved

in time f(|H|) · |V (G)|1+o(1) for some computable function f .
2. If tw(H) < ∞ then #Hom(H → G) is solvable in polynomial time, and if a tree decom-

position of H of width t is given, then it can be solved in time |H|O(1) · |V (G)|t+1.
3. If G is somewhere dense and tw(H) = ∞ then #Hom(H → G) is #W[1]-hard and,

assuming ETH, cannot be solved in time f(|H|) · |G|o(tw(H)) for any function f .
(The novel part is 3.; we included 1. and 2. to provide the complete picture.)

Unfortunately, in contrast to #Sub and #IndSub, we do not know how to extend
Theorem 7 to hereditary H. We point out however that for hereditary H the finiteness of
tw(H) cannot be the correct criterion: if H is the set of all complete graphs and G is the set
of all bipartite graphs, then H is hereditary and tw(H) = ∞, but #Hom(H → G) is easy
since |V (H)| ≤ 2 or #Hom(H → G) = 0. More generally, the complexity of #Hom(H → G)
appears to be far from completely understood for arbitrary classes H. In fact, it has been
recently posed as an open problem even for specific monotone and somewhere dense G such
as the family of d-degenerate graphs [7, 3]. There is some evidence that the finiteness of
induced grid minors is the right criterion for tractability [7].

In what follows we provide a detailed exposition of our proof techniques, starting with a
brief summary of the state of the art.

3 Related Work

The general idea of using interpolation as a reduction technique for counting problems dates
back to the foundational work of Valiant [48]. Roughly speaking, the key to interpolation is
constructing a system of linear equations that is invertible and thus has a unique solution.
For example, in the classic case of polynomial interpolation (where one has to infer the
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coefficients of a univariate polynomial given an oracle that evaluates it) the system corresponds
to a Vandermonde matrix, which is nonsingular and thus invertible. In the case of linear
combinations of homomorphism counts, an invertible system of linear equations can be
constructed via graph tensoring arguments, as proven implicitly by works of Lovász (see
e.g. [32, Chapters 5 and 6]). It was then discovered by Curticapean et al. in [13] that these
interpolation arguments could be extended to subgraph and induced subgraph counts, by
showing that those counts may be expressed as linear combinations of homomorphism counts.
Using this fact, they proved that interpolation through graph tensoring applies to a wide
variety of parameterised subgraph counting problems. However, their technique fails when
one restrict the class of host graphs G, see above; our work shows how to circumvent this
obstacle.

The idea of using graph subdivisions for proving hardness results appeared in the context
of linear-time subgraph counting in degenerate graphs [4, 5, 3]. For example, [4] observed
that counting triangles in general graphs, which is conjectured not to admit a linear time
algorithm, reduces in linear time to counting 6-cycles in degenerate graphs by subdividing
each edge once (which always yields a 2-degenerate graph). Our work makes heavy use of
graph subdivisions as well, although in a more sophisticate fashion. This is not surprising
since, for each d ≥ 2, the class of d-degenerate graphs constitutes an example of a monotone
somewhere dense class of graphs.

4 Overview of Our Techniques

The present section expands upon Section 2.1 and gives a detailed technical overview of
our proofs of hardness for #Sub(H → G) and #IndSub(H → G) (Section 4.1) and for
#Hom(H → G) (Section 4.2). Those hardness proofs contain virtually all the effort in
characterizing the complexity of the problems, since the complexity of the tractable cases
follows mostly from the running time of existing algorithms.

4.1 Classifying Subgraph and Induced Subgraph Counting
We start by analysing a simple case. Recall that a graph family G is somewhere dense
if, for some r ∈ N0, for all k ∈ N there is a G ∈ G such that Kr

k is a subgraph of G.
From this characterization it is immediate that, if G is somewhere dense and monotone,
then it contains the r-subdivisions of every graph. In turn, this implies that detecting
subdivisions of cliques in G is at least as hard as the parameterised clique problem [19].
Since the parameterised clique problem is W[1]-hard, we deduce that #Sub(H → G) and
#IndSub(H → G) are intractable when H = {Kr

k : k, r ∈ N} and G is monotone and
somewhere dense. Unfortunately, it is unclear how to extend this approach to arbitrary H,
since the elements of H are not necessarily r-subdivisions of graphs that are hard to count.
To show how this obstacle can be overcome, we will focus on #Sub(H → G) when H is
the class of k-matchings, M = {Mk : k ∈ N}; in other words, on the problem of counting
k-matchings, #Sub(M → G). This problem will turn out to be the minimal hard case for
#Sub(H → G), and its analysis will contain the key ingredients of our proof. The proof for
#IndSub(H → G) will be similar.

Let us start by outlining the hardness proof of #Sub(M → G) when G = U , by using
the interpolation technique discussed in Section 3. From [13], we know that for every k ∈ N
there is a function ak : U → Q with finite support such that, for every G ∈ U ,

#Sub(Mk → G) =
∑
H

ak(H) · #Hom(H → G) (1)
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where the sum is over all isomorphism classes of all graphs. By a classic result of Dalmau and
Jonsson [17], computing #Hom(H → G) is not fixed-parameter tractable for H of unbounded
treewidth, unless ETH fails. Hence, if we could use (1) to show that an FPT algorithm
for computing #Sub(Mk → G) yields an FPT algorithm for computing #Hom(H → G) for
some H whose treewidth grows with k, we would conclude that computing #Sub(Mk → G)
is not fixed-parameter tractable unless ETH fails. This is what [13] indeed prove. The idea
is to apply (1) not to G, but to a set of carefully chosen graphs Ĝ1, . . . , Ĝℓ such that the
counts #Hom(Mk → Ĝ1), . . . , #Hom(Mk → Ĝℓ) can be used to solve a linear system and
infer #Hom(H → G) for all H appearing on the right-hand side of (1).

Let us explain this idea in more detail. Suppose we had an oracle for #Sub(M → U), so
that we could quickly compute #Sub(Mk → G) for any desired G. Let ℓ be the size of the
support of ak, which as said above is finite and thus a function of k, and let {Gi}i=1,...,ℓ be
a set of graphs such that each Gi has size bounded by a function of k. It is a well-known
fact that, for all graphs H, G, G′,

#Hom(H → G × G′) = #Hom(H → G) · #Hom(H → G′). (2)

By combining (1) and (2), for each i = 1, . . . , ℓ we obtain

#Sub(Mk → G×Gi) =
∑
H

ak(H)·#Hom(H → Gi)·#Hom(H → G) =
∑
H

ak(H )̸=0

bi
H ·XH , (3)

where bi
H := #Hom(H → Gi) and XH := ak(H) · #Hom(H → G). Now, we can compute

#Hom(H → Gi) in FPT time since |Gi| is bounded by a function of k, and we can compute
#Sub(Mk → G × Gi) using the oracle. Therefore, in FPT time we can comput a system of ℓ

linear equations with the XH as unknowns. By applying classical results due to Lovász (see
e.g. [32, Chapter 5]), Curticapean et al. [13] showed that there always exists a choice of the
Gi’s such that this system has a unique solution. Hence, using those Gi’s one can compute
#Hom(H → G) in FPT time for all H with ak(H) ̸= 0. In particular, one can compute
#Hom(Fk → G) where Fk is any k-edge graph of maximal treewidth, since [13] also showed
that ak(H) ̸= 0 for all H with |E(H)| ≤ k. This gives a parameterized reduction from
#Hom(F → U) to #Sub(M → U), where F is the class of all maximal-treewidth graphs Fk.
Since #Hom(F → U) is hard by [17], the reduction establishes hardness of #Sub(M → U)
as desired.

Our main question is whether this strategy can be extended from U to any monotone
somewhere dense class G. This it not obvious, since the argument above relies on two crucial
ingredients that may be lost when moving from U to G:
(I.1) We need to find a family of graphs F̂ = {F̂k | k ∈ N} such that #Hom(F̂ → G) is hard

and, for all k ∈ N, ak(F̂k) ̸= 0.
(I.2) We need to find graphs Gi such that G × Gi ∈ G. This is necessary since the argument

performs a reduction to the problem of counting #Sub(Mk → G × Gi), and is not
straightforward since G × Gi may not be in G even when both G, Gi are.

It turns out that both requirements can be satisfied in a systematic way. First, we study
#Sub(H → G) in some carefully chosen vertex-coloured and edge-coloured version. It is
well-known that the coloured version of the problem is equivalent in complexity (in the
FPT sense) to the uncoloured version; so, to make progress, we may consider the coloured
version. Next, coloured graphs come with a canonical coloured version of the tensor product
which satisfies (2), so we can hope to apply interpolation via tensor products in the colorful
setting, too. The introduction of colours in the analysis of parameterised problems is a
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common tool for streamlining reductions that are otherwise unnecessarily complicated (see e.g.
[15, 41, 18, 22]). The technical details of the coloured version are not hard, but cumbersome
to state; since here we do not need them, we defer them to the full version. Let us now give
a high-level explanation of how we achieve (I.1) and (I.2).

For (I.1), we let F̂ be the class of all r-subdivisions of a family E of regular expander
graphs. A simple construction then allows us to reduce #Hom(E → U), which is known to
be hard, to #Hom(F̂ → Ur), where Ur is the set of all r-subdivisions of graphs. As noted
above Ur ⊆ G, hence #Hom(F̂ → G) is hard. We show in the coloured version that for each
graph Fk ∈ F̂ with k edges, ak(Fk) ̸= 0. Thus, (I.1) is satisfied.

For (I.2) we construct, for each k, a finite sequence of coloured graphs G1, G2, . . . satisfying
the following two conditions: the system of linear equations given by (the coloured version
of) (3) has a unique solution, and the coloured tensor product between each Gi and any
coloured graph in Ur is in G. Concretely, we choose as Gi the so-called fractured graphs
of the r-subdivisions of the expanders in E . Fractured graphs are obtained by a splitting
operation on a graph and come with a natural vertex colouring. They have been introduced
in recent work on classifying subgraph counting problems [41] and we describe them in detail
in the full version.

Together, our resolutions of (I.1) and (I.2) yield a colourful version of the framework
of [13] that applies to any monotone somewhere dense class of host graphs. As a consequence
we obtain that #Hom(E → U), the problem of counting homomorphisms from expanders in
E to arbitrary hosts graphs, reduces in FPT time to #Sub(M → G) whenever G is monotone
and somewhere dense. Since #Hom(E → U) is intractable, this proves the hardness of
#Sub(M → G) for all monotone and somewhere dense G, as stated in Theorem 2. From this
result we will then be able to prove our general classification for #Sub(H → G) (Theorem 3)
by combining existing results and Ramsey-type arguments on H and G.

This concludes our overview for #Sub(H → G). The proofs for #IndSub(H → G) are
similar, but instead of #Sub(M → G), they use as a minimal hard case #IndSet(G), the
problem of counting k-independent sets in host graphs from G.

4.2 Classifying Homomorphism Counting via Wall Minors
The proof of our dichotomy for #Hom(H → G) for monotone H and G (Theorem 7) requires
us to establish hardness when G is somewhere dense and tw(H) = ∞. Recall that our solution
of (I.1) relied on a reduction from (the coloured version of) #Hom(E → U) to (the coloured
version of) #Hom(F̂ → Ur), where E is a family of regular expander graphs, F̂ is the class
of all r-subdivisions of graphs in E , and Ur is the class of r-subdivisions of all graphs. Since
for all monotone somewhere dense classes G there is an r such that Ur ⊆ G, we would be
done if we could make sure that every monotone class of graphs of unbounded treewidth H
contains F̂ as a subset. Unfortunately, this is not the case. As a trivial example, H could
be the class of all graphs of degree at most 3 while E is a family of 4-regular expanders.
Straightforward weakenings of this condition also fail.

To circumvent this problem, we use a result of Thomassen [45] to prove that, for every
positive integer r and every monotone class of graphs H with unbounded treewidth, the
following holds: for each wall Wk,k, the class H contains a subdivision of Wk,k in which each
edge is subdivided a positive multiple of r times. Now, the crucial property of the class of
all walls W := {Wk,k | k ∈ N} is that #Hom(W → U) is intractable by the classification of
Dalmau and Jonsson [17]. Refining our constructions based on subdivided graphs, we are
then able to show that #Hom(W → U) reduces to #Hom(H → G) whenever H is monotone
and of unbounded treewidth, and G is monotone and somewhere dense. Theorem 7 will then
follow as a direct consequence.
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5 Outlook

Due to the absence of a general dichotomy [43], the following two directions are evident
candidates for future analysis.

Hereditary Host Graphs

Is there a way to refine our classifications to hereditary G? While such results would naturally
be much stronger, we point out that a classification of general first-order (FO) model-checking
and model-counting in hereditary graphs is wide open. Concretely, even if H = U , it currently
seems elusive to obtain criteria for hereditary G which, if satisfied, yield fixed-parameter
tractability of #Sub(H → G), #IndSub(H → G), and #Hom(H → G) and which, if not
satisfied, yield #W[1]-hardness of those problems. In a nutshell, the problem is that there
are arbitrarily dense hereditary classes of host graphs for which those problems, and even
the much more general FO-model counting problem, become tractable; a trivial example is
given by G being the class of all complete graphs. See [23, 25, 26] for recent work on specific
hereditary hosts and [24, 6] for general approaches to understand FO model checking on
dense graphs.

Arbitrary Pattern Graphs

Can we refine our classifications to arbitrary classes of patterns H, given that we stay in
the realm of monotone classes of hosts G? We believe this question is the most promising
direction for future research. While a sufficient and necessary criterion for the fixed-parameter
tractability of, say #Sub(H → G), must depend on the set of forbidden subgraphs of G, we
conjecture that the structure of monotone somewhere dense graph classes is rich enough to
allow for an explicit combinatorial description of such a criterion. In fact, such criteria have
already been established for some specific classes of host graphs, e.g. bipartite graphs [15]
and degenerate graphs [7].
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