
Black-Box Constructive Proofs Are Unavoidable
Lijie Chen !Ï

Miller Institute for Basic Research in Science, UC Berkeley, CA, USA

Ryan Williams ! Ï

CSAIL, MIT, Cambridge, MA, USA

Tianqi Yang ! Ï

IIIS, Tsinghua University, Beijing, China

Abstract
Following Razborov and Rudich, a “natural property” for proving a circuit lower bound satisfies three
axioms: constructivity, largeness, and usefulness. In 2013, Williams proved that for any reasonable
circuit class C , NEXP ̸⊂ C is equivalent to the existence of a constructive property useful against C .
Here, a property is constructive if it can be decided in poly(N) time, where N = 2n is the length of
the truth-table of the given n-input function.

Recently, Fan, Li, and Yang initiated the study of black-box natural properties, which require
a much stronger notion of constructivity, called black-box constructivity: the property should be
decidable in randomized polylog(N) time, given oracle access to the n-input function. They showed
that most proofs based on random restrictions yield black-box natural properties, and demonstrated
limitations on what black-box natural properties can prove.

In this paper, perhaps surprisingly, we prove that the equivalence of Williams holds even with
this stronger notion of black-box constructivity: for any reasonable circuit class C , NEXP ̸⊂ C is
equivalent to the existence of a black-box constructive property useful against C . The main technical
ingredient in proving this equivalence is a smooth, strong, and locally-decodable probabilistically
checkable proof (PCP), which we construct based on a recent work by Paradise. As a by-product,
we show that average-case witness lower bounds for PCP verifiers follow from NEXP lower bounds.

We also show that randomness is essential in the definition of black-box constructivity: we
unconditionally prove that there is no deterministic polylog(N)-time constructive property that is
useful against even polynomial-size AC0 circuits.

2012 ACM Subject Classification Theory of computation → Circuit complexity

Keywords and phrases Circuit lower bounds, natural proofs, probabilistic checkable proofs

Digital Object Identifier 10.4230/LIPIcs.ITCS.2023.35

Funding Ryan Williams: Supported by NSF CCF-2127597.

Acknowledgements We would also like to thank Jiatu Li for discussions during the early stage of
this research project and anonymous reviewers for their comments.

1 Introduction

In a seminal paper [30], Razborov and Rudich argued the following:
1. Most known proofs of circuit lower bounds yield an efficient algorithm (called a natural

property) which takes Boolean truth tables of functions as input, accepts a large fraction
of its inputs, and rejects all functions computable in some circuit class C . (These kinds
of proofs are called “natural proofs”.)

2. Such an efficient algorithm would imply that C cannot support exponentially secure
pseudorandom functions (PRFs), as the algorithm could break any such candidate.

Since PRFs are widely believed to be implementable with even TC0 circuits (constant-depth
circuits of polynomial size, consisting of MAJORITY and NOT gates) [24, 19, 22], the
Razborov-Rudich barrier strongly suggests that proofs yielding natural properties cannot
prove lower bounds against weak circuit classes such as TC0. In this paper, we reconsider
the question of how to “avoid” natural proofs.

© Lijie Chen, Ryan Williams, and Tianqi Yang;
licensed under Creative Commons License CC-BY 4.0

14th Innovations in Theoretical Computer Science Conference (ITCS 2023).
Editor: Yael Tauman Kalai; Article No. 35; pp. 35:1–35:24

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:wjmzbmr@gmail.com
https://www.mit.edu/~lijieche/index.html
https://orcid.org/0000-0002-6084-4729
mailto:rrw@mit.edu
https://people.csail.mit.edu/rrw/
https://orcid.org/0000-0003-2326-2233
mailto:yangtq19@mails.tsinghua.edu.cn
https://tianqiyang.org
https://orcid.org/0000-0001-9476-6880
https://doi.org/10.4230/LIPIcs.ITCS.2023.35
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


35:2 Black-Box Constructive Proofs Are Unavoidable

To formally discuss the barrier, we begin with some notation. Let Bn denote the set of
all n-bit Boolean functions. We use N to denote 2n (the length of a truth table of a function
in Bn). A promise property has the form P = {(Pyes

n ,Pno
n )}n∈N, where Pyes

n ,Pno
n ⊆ Bn and

Pyes
n ∩ Pno

n = ∅ for each n ∈ N. When Pyes
n ∪ Pno

n = Bn, we simply call P a property. (The
original paper [30] only considered properties of Boolean functions; here we consider “promise”
versions, as we wish to study sub-linear time decidable properties.)

Let Γ be a complexity class, and let C be a circuit class. A Razborov-Rudich natural
property satisfies three criteria, defined as follows.

▶ Definition 1.1 (Natural Property). Let P be a promise property.
(Usefulness) We say P is useful against C of size s(n), if (1) |Pyes

n | ≥ 1 for every n ∈ N and
(2) for every function family f = {fn ∈ Bn}n∈N such that f admits s(n)-size C circuits,
there are infinitely many n ∈ N such that fn ∈ Pno

n .1
We say P is useful against C if it is useful against nk-size C circuits for all k ∈ N.

(Largeness) We call P large if there is a polynomial p : N→ N such that for all but finitely
many n ∈ N, Prf∈Bn [f ∈ Pyes

n ] ≥ 1/p(n).
(Constructivity) We say that P is Γ-constructive, if there is a promise-Γ algorithm A such

that for every f ∈ Pyes
n , A(tt(f)) accepts and for every f ∈ Pno

n , A(tt(f)) rejects.
A Γ-natural property against C [30] is a Γ-constructive large property useful against C .2

Circumventing Natural Properties. Since Razborov and Rudich’s work, a considerable
amount of effort (see, e.g., [1, 13, 10]) has gone into the problem of circumventing the
natural proofs barrier, by identifying properties of functions which fail to satisfy one of the
three criteria of natural properties. The usefulness criterion is necessary3, so the goal is
to find properties avoiding either constructivity (the property does not admit an efficient
algorithm) or largeness (the property does not accept a large fraction of functions). In 2013,
Williams [36] proved that constructivity is unavoidable, in a rigorous sense: if even
“weak” circuit lower bounds hold (against NEXP) then there must exist properties satisfying
both constructivity and usefulness.

▶ Theorem 1.2 ([36, 33]). Let C ∈ {AC0, ACC0, TC0, NC1, NC, P/poly}. The following are
equivalent:

NEXP ̸⊂ C .
There is a P/ log N -constructive property useful against C .4

This theorem suggests that we should focus on looking for hard properties that are easily
recognizable on specific functions, but generally do not hold for random functions or for
“easy” functions.

Another Crack in The Natural Proofs Barrier? One potential weakness of the Natural
Proofs barrier is that it does not seem to apply to proving fixed-polynomial size lower
bounds (for a reference, see the discussions by Allender and Koucký in [1, 2]). For example,

1 In particular, this means for every function family f = {fn}n∈N such that fn ∈ Pyes
n , f does not have

s(n)-size C circuits.
2 We also refer to P-natural properties as simply “natural properties”. Razborov and Rudich [30] proved

that assuming there are exponentially secure PRFs computable by C , there is no natural property useful
against C . Indeed, the same argument also shows there is no P-constructive large promise property
useful against C , under the same assumption.

3 f /∈ C if and only if there is a property that accepts f , and rejects all functions computable by C .
4 Recall that P/ log N denote the class of poly(N) time algorithm with log N bits of advice on N -bit inputs.



L. Chen, R. Williams, and T. Yang 35:3

the best known size lower bounds against DeMorgan formulas have been stuck at nearly cubic
(n3−o(1)) for more than two decades [4, 17],5 and the Natural Proofs barrier apparently does
not say anything about the hardness of proving n3+ε-size DeMorgan formula lower bounds.

Partially motivated by this limitation, a line of work on amplifying hardness or hardness
magnification [2, 20, 26, 21, 25, 11] suggested a way to bypass the Natural Proofs barrier
with a two-step process:
(1) prove a weak (fixed-polynomial, say n3+ε-size) lower bound for a specific function, and
(2) prove some “bootstrapping” or “hardness magnification” result showing that the weak

lower bound actually implies a desired super-polynomial lower bound.

These hardness magnification phenomena are especially interesting because of certain
“threshold” phenomena, where one can prove decent weak lower bounds for a specific function,
and one can prove that slight improvements over the decent lower bound would imply
breakthrough lower bounds. For instance, Chen, Jin, and Williams [12] proved that (1) a
sparse variant of MCSP does not have n2−o(1)-size probabilistic De Morgan formulas and (2)
if the lower bound could be improved to n2+ε size6, then we would have major breakthroughs
in complexity theory: more precisely, NP does not have nk-size formulas for every k ∈ N,
and ⊕P ̸⊂ NC1.

Black-Box Natural Properties: Another Barrier. To better understand these bootstrapping
results and their limitations, Fan, Li, and Yang [14] defined the notion of Black-Box Natural
Properties, and applied it to provide a new barrier to bootstrapping results. Black-box
natural properties are natural (promise) properties that are decidable by sublinear-time
randomized algorithms.

▶ Definition 1.3 (Black-Box Natural Properties, [14]). A black-box natural property against C

is a BPTIME[polylog(N)]-constructive large promise property useful against C . In particular,
there is a polylog(N)-time7 randomized oracle algorithm A such that for every f ∈ Pyes

n , Af

accepts with probability at least 2/3, and for every f ∈ Pno
n , Af rejects with probability at

least 2/3.

The authors showed negative results for hardness magnification, in that:
(1) all known non-trivial lower bounds for the specific functions studied in hardness magni-

fication actually yield black-box natural properties, and
(2) under plausible cryptographic assumptions, no black-box natural property can establish

the lower bounds needed in the corresponding bootstrapping results.

Taking Chen-Jin-Williams [12] as an example, their n2−o(1)-size probabilistic formula
lower bound for sparse MCSP yields a black-box natural property, but no black-box natural
property can yield a n2+ε-size lower bound against probabilistic formulas.8

5 There are some recent low-order improvements [31, 32].
6 Under plausible cryptographic assumptions, this sparse variant of MCSP is not even in P/poly, so we

definitely believe the n2+ε-size lower bound should hold.
7 That is, for every f ∈ Bn, Af runs in poly(n) = polylog(N) time.
8 We also remark that prior to Fan, Li, and Yang [14], the work [11] proposed another barrier for

bootstrapping results, called the locality barrier. We do not discuss this barrier here as it is not relevant
to the results in this paper, and refer readers to [11] for details.

ITCS 2023



35:4 Black-Box Constructive Proofs Are Unavoidable

1.1 Our Results
1.1.1 Equivalence of Black-Box Constructive Properties and Circuit

Lower Bounds
Given the results of Fan, Li, and Yang [14], suppose we still wish to apply a bootstrapping
result such as the one from Chen, Jin, and Williams [12]. We would need to find a property
that either avoids black-box constructivity, or avoids largeness (again, usefulness is necessary).
A priori, it may appear that one should try to avoid black-box constructivity, as it is an
extremely strong requirement.

Strengthening the equivalence of Williams [33], we prove that even black-box constructivity
is unavoidable for proving NEXP lower bounds. In fact, we are able to prove that NEXP ̸⊂ C

is equivalent to the existence of a much stronger type of black-box constructive property,
in which the algorithm only makes one-sided error and can distinguish hard functions from
all functions which can be approximated by small circuits. That is, the usefulness criterion
corresponds to an average-case lower bound.

▶ Theorem 1.4 (Black-Box Constructivity is Unavoidable). Let C be a circuit class such that
any s-size AC0[2] ◦ C circuit family can be simulated by an poly(n, s)-size C circuit family.
The following are equivalent:

NEXP ̸⊂ C .
There is a coRTIME[polylog(N)]/ log N -constructive property useful against avgn−6-C .

More precisely, the second item above states there is a promise property P such that:
1. (Average-case useful) For every function family f = {fn ∈ Bn}n∈N such that f can be

(1−n−6)-approximated by s(n)-size C circuits, there are infinitely many n ∈ N such that
fn /∈ Pno

n .9
2. (One-sided error) There is a polylog(N)-time randomized oracle machine A which takes

log N bits of advice, such that every f ∈ Pyes
n is accepted by A with probability 1 and

every f ∈ Pno
n is accepted by A with probability at most 1/3.

The following is an interesting corollary of Theorem 1.4, showing that average-case circuit
lower bounds follow from (worst-case) circuit lower bounds, while only assuming the weak
circuit class contains AC0[2].

▶ Corollary 1.5. Let C be a circuit class such that any s-size AC0[2] ◦ C circuit family can
be simulated by an poly(n, s)-size C circuit family. Then, NEXP ̸⊂ C implies that EXPNP

cannot be (1− 1/n6)-approximated by C .

Can These Properties be Derandomized? It is natural to ask whether we can further
strengthen Theorem 1.4 so that NEXP ̸⊂ C is equivalent to the existence of DTIME[polylog(n)]-
constructive or RTIME[polylog(n)]/ log N -constructive properties useful against C . We show
that this is impossible by proving that for essentially all circuit classes, DTIME[polylog(n)]-
constructive properties useful against them do not exist. In fact we prove that even
NTIME[polylog(N)]/polylog(N)-constructive properties do not exist for any circuit class C

that is expressible enough to simulate CNF formulas (see Section 5 for more details).

▶ Theorem 1.6. For any circuit class C such that all CNFs of t clauses have poly(n, t)-size
C -circuits, there is no DTIME[polylog(n)]-constructive property useful against C .

9 [9] studied a similar notion called tolerant natural proofs, which can be seen as natural proofs for proving
average-case circuit lower bounds.



L. Chen, R. Williams, and T. Yang 35:5

On the positive side, we observe two settings in which natural properties can be imple-
mented in deterministic sublinear time, by examining some random restriction lemmas from
prior work [15, 12].

▶ Theorem 1.7. For every ε ∈ (0, 1), there is a DTIME[polylog(N)]-constructive large
property useful against n2−ε-size formulas.

▶ Theorem 1.8. For every d, k ∈ N, there is a DTIME[polylog(N)]-constructive large property
useful against depth-d AC0 circuits of size nk.

It is important to note that Theorem 1.8 does not contradict Theorem 1.6, since The-
orem 1.6 only says there is no single DTIME[polylog(n)]-constructive property that is useful
against all polynomial-size CNF.

How to Remove the log N -bit Advice. Similar to Williams [33], our equivalence of black-
box constructive properties and NEXP circuit lower bounds from Theorem 1.4 requires
n = log N bits of advice for constructivity. An natural question is whether this advice can
be removed in some cases.

We show that removing the advice is possible, when the NEXP lower bound is proved via
the algorithmic method [35, 37]. Recall that CAPP (Circuit Acceptance Probability
Problem) with error δ (denoted CAPPδ) is the following problem: Given a circuit C on n

inputs, estimate Prx∈{0,1}n [C(x) = 1] within an additive error of δ.

▶ Theorem 1.9. Let K ∈ N be a sufficiently large constant. Let C be a circuit class and
s(n) ≥ n be a size parameter. If there is a 2n/n10 time CAPP0.1 algorithm for s(n)K-size
AC0

2 ◦ C circuits, then there is a coRTIME[polylog(N)]-constructive property useful against
s(n)-size C circuits.

The following corollary follows immediately from Theorem 1.9 and the CAPP algorithm
for ACC0 [37, 34]. (Indeed, the reference [34] provides an algorithm for exactly counting
satisfying assignments.)

▶ Corollary 1.10. For every constant d, m ∈ N, there is a constant ε ∈ (0, 1) and a
coRTIME[polylog(N)]-constructive property useful against 2nε-size AC0

d[m] circuits.

1.1.2 Bootstrapping Results on Black-box Natural Properties
We also obtain some new insights regarding black-box natural properties defined by Fan, Li,
and Yang [14] (i.e., BPTIME[polylog(N)]-constructive large promise properties). We prove
that black-box natural properties against rather small circuit size can be bootstrapped to
black-box natural properties against nk-size circuit classes, for every k ∈ N. This is similar
to (but not implied by) the bootstrapping results for pseudorandom functions of Fan, Li,
and Yang.

We will state our results in the context of De Morgan formulas, but we note that it
applies to all well-studied circuit classes as well; see Section 6 for details.

▶ Theorem 1.11. If there is a black-box natural property a.e.-useful against DeMorgan
formulas of size n2+ε for some ε ∈ (0, 1), then for all k ∈ N, there is a black-box natural
property a.e.-useful against formulas of size nk.10

10 See Definition 2.1 for a formal definition of a.e.-useful properties.

ITCS 2023



35:6 Black-Box Constructive Proofs Are Unavoidable

This theorem is striking in that it shows, regardless of whether PRFs exist or not, proving
an n2+ε-size formula lower bound via a black-box natural property implies superpolynomial-
size formula lower bounds (for example, NEXP ̸⊂ NC1).

Here we consider a.e.-usefulness instead of the (i.o.-)usefulness defined in Definition 1.1,
because all known black-box natural properties are indeed a.e.-useful. It is instructive to
compare Theorem 1.11 to the following result of Fan, Li, and Yang [14].

▶ Theorem 1.12 ([14]). If there is a PRF computable by formulas of polynomial size, then
there is a PRF computable by formulas of size n2.01.

We note that a black-box natural property against C implies that there is no PRF
computable in C , but the reverse direction is not known to hold. Hence, an interesting open
question is to prove an equivalence between black-box natural proofs and the non-existence
of PRFs, or to give evidence that the two notions are not equivalent.

no BB natural proof against Formula[n2.01] no BB natural proof against Formula[nk]

PRF in Formula[n2.01] PRF in Formula[nk]
[14]

Theorem 1.11

Figure 1 Relationships between black-box natural properties and PRFs.

2 Preliminaries

We assume basic knowledge to complexity theory such as the complexity classes P, NP, P/poly,
and ACC0; see the textbook by Arora and Barak [5] for an excellent reference. We define
NE = NTIME[2O(n)]. For constant depth circuit classes such as AC0, we use AC0

d to denote
its subclass of depth at most d.

Let f : {0, 1}n → {0, 1} be a Boolean function. We always use N = 2n to denote the
length of its truth table. We denote the truth table of the function f by tt(f), which is an
N -bit string, where the i-th bit (0-index, base-2) is equivalent to f(i). We define Bn as the
set of all n-bit Boolean functions.

Let C be a circuit class. We define avgδ-C to be the class of function families that are
(1− δ)-approximable by C circuits. More precisely, a function family f = {fn}n∈N belongs
to avgδ-C , if there is another function family g = {gn}n∈N ∈ C such that fn and gn agree
on a least a (1− δ) fraction of inputs from {0, 1}n for every n ∈ N.

We use the notation C -SIZE[s(n)] to denote the class of languages computable by a family
of C circuits of size at most s(n) for all sufficiently large n. Letting D be another circuit
class, we let D ◦ C be the class of circuits with C circuits in the bottom layer (nearest the
inputs) and a D circuit on the top. We say that the class C is closed under D , if D ◦C = C ,
i.e., composing with a D circuit on top does not increase the power of C . We call a circuit
class typical if it is closed under negations, projections, and conjunctions.

Let x, y ∈ {0, 1}n be two bit strings. The statistical distance between x and y is defined
by

∆(x, y) ≜ ∥x− y∥0

n
,



L. Chen, R. Williams, and T. Yang 35:7

where ∥x− y∥0 is the number of indices i ∈ [n] such that xi ̸= yi. We say that x is δ-close to
y if ∆(x, y) ≤ δ. Conversely, we say that x is δ-far from y if it is not δ-close to y. Similarly,
the statistical distance from a string x to a set S is defined by ∆(x, S) = miny∈S ∆(x, y). If
S is empty, we define ∆(x, S) to be 1 for convenience.

2.1 Sublinear Time Classes
We will extensively use complexity classes for problems solvable in sublinear time, such as
DTIME[polylog(N)] and coRTIME[polylog(N)]. Specifically, the underlying Turing machine
of DTIME[polylog(N)] and coRTIME[polylog(N)] has two tapes: an input tape and a work
tape. While the work tape is a “normal” one in the Turing machine sense, the input tape is
read-only and our machine is allowed random access to it.

An alternative way of viewing the situation is that our algorithm has oracle access to
the input string, and our algorithm is required to accept or reject within a sublinear (or
even polylog(N)) number of steps. For example, let A(tt(f)) be an algorithm that takes
the truth-table of a function f ∈ Bn as input. If A is in DTIME[polylog(N)], then A can be
equivalently viewed as a poly(n)-time algorithm Âf (1n) that takes 1n as input and is given
oracle access to the function f ∈ Bn.

These two views are essentially equivalent, and we will use the second one (where we
have oracle access to the input string) when describing our algorithms.

2.2 Properties
We are now ready to formally define what it means for a property being constructive, large,
and useful. Recall that a promise property is P = {(Pyes

n ,Pno
n )}n∈N, where Pyes

n ,Pno
n ⊆ Bn

and Pyes
n ∩ Pno

n = ∅ for every n ∈ N.

▶ Definition 2.1 (Usefulness). For a circuit class C , we say that P is useful against s(n)-size
C circuits, if the following two conditions hold:
|Pyes

n | ≥ 1 for all input lengths n ∈ N,
For every function family f = {fn ∈ Bn}n∈N admitting s(n)-size C circuits, there is an
infinite increasing sequence of input lengths {ni}i∈N such that fni

∈ Pno
ni

for every i ∈ N.

Similarly, we say that P is almost-everywhere useful (a.e.-useful) against s(n)-size C

circuits, if fn ∈ Pno
n for all but finitely many input lengths n ∈ N.

▶ Definition 2.2 (Largeness). A property P is called large if there is a constant c ≥ 1 such
that for all but finitely many n ∈ N,

Pr
f∈Bn

[f ∈ Pyes
n ] ≥ n−c.

Note that the definition above of largeness is different from the definition in [30], where
Prf∈Bn

[f ∈ Pyes
n ] is only required to be greater than 1/poly(2n). These two definitions are

equivalent when we are considering P-constructive properties. Our largeness definition is
more suitable when studying (say) BPTIME[polylog(N)]-constructive properties.

▶ Definition 2.3 (Constructivity). Let Γ be a complexity class. A property P is called
Γ-constructive, if there is a promise-Γ algorithm A such that the following hold:

For every f ∈ Pyes
n , A(tt(f)) accepts.

For every f ∈ Pno
n , A(tt(f)) rejects.

ITCS 2023



35:8 Black-Box Constructive Proofs Are Unavoidable

If a property P is both Γ-constructive and large, we call it Γ-natural. We now compare
these three axioms with previously studied notions in the literature.

▶ Example 2.4 (Natural proof). The classical notion of a natural proof against C [30] can
be stated in our terminology as a P-constructive large property (i.e., P-natural property)
useful against C .

▶ Example 2.5 (Black-box natural proof). The notion of a black-box natural proof against C

defined by Fan, Li, and Yang [14] can be stated as a BPTIME[polylog(N)]-constructive large
(i.e., a BPTIME[polylog(N)]-natural) property useful against C . In other words, there is a
randomized oracle algorithm A such that:

For every f ∈ Bn, A(tt(f)) runs in poly(n) = polylog(N) time.
For every f ∈ Pyes

n , A(tt(f)) accepts with probability at least 2/3.
For every f ∈ Pno

n , A(tt(f)) accepts with probability at most 1/3.

2.3 Nondeterministic Classes and Easy Witnesses
We first need a definition of what it means for a language (and a complexity class) to
have small circuits encoding its witnesses. Similar to Williams [33], we restrict ourselves to
“good” verifiers that only examine witnesses of length equal to a power of two, so that the
witnesses can be viewed as truth-tables of Boolean functions. The following definition is
from Williams [33].

▶ Definition 2.6. Let L ∈ NTIME[T (n)], where T (n) ≥ n is time constructible and always a
power of 2.11 An algorithm V (x, y) is a good predicate for L if

V runs in time O(T (|x|)), and
for all x ∈ {0, 1}∗, x ∈ L if and only if there is a string y ∈ {0, 1}T (|x|) (a witness for x)
such that V (x, y) accepts.

We call T (n) the witness length of V . Let L(V ) denote the language accepted by V .12

Let V be a good predicate with witness length T (n) and C be a circuit class. Let
ℓ(n) = log T (n). We say that V has C witnesses of size s(n), if for all input sequences
{xn}n∈N such that |xn| = n, there is an s(n)-size C circuit family {Cn ∈ Bℓ(n)}n∈N, such
that for all sufficiently large n ∈ N, if x ∈ L, then V (x, tt(C|x|)) accepts.

For simplicity, we say that V has C witnesses if for some polynomial p, V has C witnesses
of size p(n). We say that the class NTIME[T (n)] has C witnesses (of size s(n)), if for every
L ∈ NTIME[T (n)], every good predicate for L has C witnesses (of size s(n)). And similarly,
we say that NEXP has C witnesses (of size s(n)), if for every polynomial p(n), NTIME[2p(n)]
has C witnesses (of size s(n)).

▶ Lemma 2.7 (Theorem 3.1, [33]). Let C be a typical polynomial-size circuit class such that
AC0 ◦ C ⊆ C . NEXP ⊂ C is equivalent to NEXP having C witnesses.13

11 We require T (n) to be a power of 2 for convenience. We note that this is without loss of generality since
any running time bound can be rounded up to the nearest power of 2, which only incurs a constant
multiplicative overhead.

12We note that L is indeed defined by both V and T , so strictly we should write L(T, V ). But T will
always be clear from the context so we will slightly abuse the notation and write it as L(V ).

13 Williams [33] only considered C ∈ {AC0, ACC0, TC0, NC1, NC, P/poly}, but the proof of his equivalence
only requires that AC0 ◦ C ⊆ C .



L. Chen, R. Williams, and T. Yang 35:9

2.4 Probabilistically Checkable Proofs
We now give a brief description of probabilistically checkable proofs (PCPs); see for example
Harsha’s PhD thesis [16] for a comprehensive introduction. We begin with the definition of a
PCP verifier.

▶ Definition 2.8 (PCP verifier). Let T (n) ≥ n be time constructible and always a power
of 2. Let V (x, y) be a good predicate for some language L ∈ NTIME[T (n)]. Let n = |x| be
the input length. A PCP verifier PCPV takes x as input, runs in poly(n) time, and outputs
a non-adaptive oracle circuit PCPV (x, ·) which takes an additional randomness r as input,
makes q queries to the oracle, and satisfies the following two constraints:
(Completeness) For all x ∈ L, there is a proof π such that Prr[PCPV (x, r)π accepts] = 1.
(Soundness) For all x /∈ L and proofs π, we have Prr[PCPV (x, r)π accepts] < 1/3.

The length of the additional randomness r is called the randomness complexity, the
number of queries q made by the oracle circuit is called the query complexity, and the
maximum size of all oracle circuits Dx,r is called the decision complexity.

In general, we can assume that each oracle query is of length ℓ(n) = ⌈|r| log q⌉,14 so we
can identify the oracle π above with a binary string of length 2ℓ(n) (i.e., a Boolean function
on ℓ(n) bits).

We define a PCP system for NTIME[T (n)] to be a mapping that maps every good predicate
V for some language L ∈ NTIME[T (n)], into PCPV , a PCP verifier for L.

We can similarly say that the PCP system has randomness complexity r(n), query
complexity q(n), and decision complexity d(n), if every PCPV in its image has such random-
ness/query/decision complexity.

Note that here we require the oracle circuit to be non-adaptive, meaning that there
is at most one oracle query on any path from an input to the output. We will construct
non-adaptive PCPs in Section 3; restricting ourselves to the non-adaptive setting makes
things cleaner. For simplicity, we define the notation

pacc(PCPπ
V (x)) ≜ Pr

r
[PCPV (x, r)π accepts]

to refer to the acceptance probability of the circuit with oracle π on input x. Then, the
completeness and soundness constraints can be rephrased as “pacc(PCPπ

V (x)) = 1” and
“pacc(PCPπ

V (x)) < 1/3”, respectively. Also for simplicity, we define

Wx ≜ {π | pacc(PCPπ
V (x)) = 1}

to be the set of witnesses to the our PCP verifier.
The standard PCP theorem [6, 7] is equivalent to saying that there exists a PCP system

for NTIME[T (n)] with randomness complexity O(log T (n)), query complexity O(1), and
decision complexity polylog(T (n)).

2.4.1 PCP Witnesses
Similarly to Section 2.3, we can formally define when the PCP verifiers have succinct witnesses.
We first define the witness of a PCP verifier.

14 This is because the number of positions of the oracle to be queried is bounded by 2ℓ(n)q, so we can
always reorganize the oracle so that every query is of this particular length.

ITCS 2023



35:10 Black-Box Constructive Proofs Are Unavoidable

▶ Definition 2.9 (PCP witness). Let T (n) ≥ n be time constructible and always a power of
2. Let PCPV be a PCP verifier for some language L ∈ NTIME[T (n)], and x ∈ L be an YES
instance. An oracle π ∈ Bℓ(n) (ℓ(n) is the query length of PCPV on n-bit inputs) is called a
PCP witness for x if pacc(PCPπ

V (x)) = 1.

Let PCPV be a PCP verifier. Let ℓ(n) be the query length to the oracle while |x| = n.
Similar to a good predicate having C witnesses, we say that PCPV has C PCP witnesses of
size s(n) if for any sequence of inputs {xn}n∈N where xn is of length n, there is a family of
circuits {Cn ∈ Bℓ(n)}n∈N computable by C circuits of size s(n), such that for all sufficiently
large input length n ∈ N, if xn ∈ L, then tt(Cn) is a PCP witness for xn.

Fixing a PCP system, we say that NTIME[T (n)] has C PCP witnesses of size s(n), if
for any good predicate V for some language in NTIME[T (n)], its corresponding PCP verifier
PCPV has C PCP witnesses of size s(n).15

2.4.2 An Efficient PCP System from [8]
In Section 4.2, we will need a PCP construction by Ben-Sasson and Viola [8]. We now
formally state it.

▶ Theorem 2.10 ([8], Theorem 1.1). Let T (n) ≥ n be time constructible and always a power
of 2. Let V (x, y) be a good predicate for some language in L ∈ NTIME[T (n)]. There exists
a PCP verifier PCPV for L with randomness complexity log T (n) + O(log log T (n)), query
complexity polylog(T (n)), and decision complexity polylog(T (n)), such that for any input x,
the oracle circuit PCPV (x, ·) is an AC0

2 oracle circuit.

We note that the decision procedure of the PCP system above is extremely simple: an
AC0 oracle circuit of depth 2. This will be crucial in our later applications.

3 Technical Ingredient: Smooth, Strong, and Locally-Decodable PCPs

In this section, we construct a PCP system which is smooth, strong, and is local-decodable us-
ing low-depth circuits. These properties will be crucial when we prove the equivalence between
NEXP lower bounds and the existence of coRTIME[polylog(N)]-constructive properties in
Section 4.1.

3.1 Definitions
We begin by the notions of smoothness, strongness, and locally decodability.

3.1.1 Smoothness
The notion of smoothness was formally defined by Paradise [28], although the concept
appeared implicitly in much earlier works [23, 27]; see [28] for more discussions.

15 Strictly speaking, we should that say NTIME[T (n)] has C PCP witnesses of size s(n) with respect to a
certain PCP system, as the definition depends on the PCP system we use. We slightly abuse notation
here, since the relevant PCP system will always be clear from the context.



L. Chen, R. Williams, and T. Yang 35:11

▶ Definition 3.1 (Smoothness). A PCP verifier is called smooth if for every input x, the
probability of each bit of the proof oracle π being queried remains the same over randomness
r. Formally, if we define A(x, r, i) be the predicate that PCPπ

V (x, r) queries the i-th bit of the
oracle π, then for every input x and i1, i2 ∈ {0, 1}⌈|r| log q⌉, we have

Pr
r

[A(x, r, i1)] = Pr
r

[A(x, r, i2)].

A PCP system is called smooth if every PCP verifier in its image is smooth.

Sometimes, smoothness is defined by the queries being “marginally uniform”. These
two definitions are essentially equivalent, as long as the queries are non-adaptive (see, e.g.,
Remark 1.4 of [28]). Intuitively, smoothness guarantees that the bits of the proof weigh
equally, so that if an oracle π is close in Hamming distance to some correct witness, then the
verifier is not likely to distinguish π from a correct witness. This was made formal by Alman
and Chen [3]. We include a proof since it is quite short and simple.

▶ Lemma 3.2 (Claim 1 of [3]). Suppose PCPV is a smooth PCP verifier with query complexity
q. For any input x and oracle string π of length 2ℓ(n), it holds that

pacc(PCPπ
V (x)) ≥ 1− q ·∆(π, Wx).

Proof. Suppose that x ∈ L is an accepting input and π is an oracle string. Let y ∈ Wx

be a witness with minimum statistical distance with π, and δ be their statistical distance.
Let I = {i | πi = yi} be the set of indices where π and y coincides, then |I| = (1− δ) · 2ℓ(n)

by the definition of statistical distance. By the union bound and the smoothness of PCPV ,
with probability at least 1− qδ over the randomness r, the oracle circuit PCPV (x, r) only
queries positions in I. Therefore, PCPV (x, r) accepts π with probability at least 1 − qδ,
which completes the proof. ◀

3.1.2 Strongness
We now introduce the notion of strong PCPs, which complements Lemma 3.2.

▶ Definition 3.3 (Strongness). A PCP verifier PCPV is called α-strong if, in addition to the
PCP constraints, it satisfies the strong soundness defined as below:
(Strong soundness) For all x ∈ {0, 1}n and oracle π ∈ {0, 1}2ℓ(n) , we have

pacc(PCPπ
V (x)) ≤ 1− α ·∆(π, Wx).

We call it strong if it is α-strong for some constant α ∈ (0, 1). We say that a PCP system is
(α-)strong, if every PCP verifier in its image is (α-)strong.

We remark here that strongness implies the traditional soundness, since for any x /∈ L,
the set Wx should be empty, so Pr[PCPπ

V (x)] ≤ 1−α. And indeed, α-strongness is a stronger
constraint, since it not only gives an upper bound on the acceptance probability for x /∈ L,
but also for “far from correct” proofs even if x ∈ L.

Completeness and strongness together give us an upper and lower bound on the acceptance
probability of an “incorrect” proof for a YES instance. The following corollary can be observed
directly from Lemma 3.2 and the definition of strongness.

▶ Corollary 3.4. Suppose PCP is a smooth and strong PCP system with constant query
complexity. Then there exist constants 0 < α < 1 < β such that the following holds. For any
good predicate V for some language L, let PCPV be the PCP verifier. For any x ∈ {0, 1}n

and oracle π ∈ {0, 1}2ℓ(n) , we have

α ·∆(π, Wx) ≤ Pr
r

[PCPV (x, r)π rejects] ≤ β ·∆(π, Wx).

ITCS 2023



35:12 Black-Box Constructive Proofs Are Unavoidable

3.1.3 Local Decodability
We also need our PCP system to be locally decodable. To formally define locally decodable
PCPs, we need to first define canonical PCPs.

▶ Definition 3.5 (Canonical PCP). A PCP system is called canonical, if for any good
predicate V (x, y), along with the PCP verifier PCPV , there exists a canonical mapping ΠV :
{0, 1}n×{0, 1}|y| → {0, 1}2ℓ(n) , such that for any oracle π ∈ {0, 1}2ℓ(n) , pacc(PCPπ

V (x)) = 1 if
and only if π = ΠV (x, y) for some y with V (x, y) = 1. That is, there is a canonical mapping
from the witnesses for V to the PCP witnesses for PCPV .

Now we define locally decodable PCPs.

▶ Definition 3.6 (Locally decodable PCP). Let PCP be a canonical PCP system. Let V (x, y)
be a good predicate where |y| = 2ℓ(|x|), let PCPV be its corresponding PCP verifier, and let
ΠV (x, y) be the canonical mapping of witnesses. It is called C -locally decodable within
distance δ, if for any input x ∈ L, there exists a collection of poly(ℓ(|x|))-size C oracle
circuits Cx with input length ℓ(|x|), that satisfies the following. Randomly picking a circuit
C from the collection Cx, when C is given oracle access to π with ∆(π, Wx) < δ, if we let
ŷ = tt(Cπ), then V (x, ŷ) = 1 and ∆(π, ΠV (x, ŷ)) < δ with constant probability. That is,
tt(Cπ

x ) gives a correct witness for the verifier V whose corresponding PCP witness is close to
π. Formally, for any π with ∆(π, Wx) < δ, we have

Pr
C∈Cx

[ŷ ← tt(Cπ); V (x, ŷ) = 1 and ∆(π, ΠV (x, ŷ)) < δ] > 2/3.

A locally decodable PCP provides an efficient way of reconstructing a correct witness
for V from an almost-correct witness for the PCP verifier. Conversely, if a PCP verifier has
succinct witnesses, then the original verifier V has succinct witnesses as well. This property
will be crucial when we prove the equivalence between NEXP lower bounds and the existence
of coRTIME[polylog(N)]-constructive properties.

3.2 The Construction
In this section, we construct a PCP which is smooth, strong, and AC0[2]-locally decodable.
The construction is based on the smooth and strong PCP by Paradise [28]. We observe that
his PCP is locally decodable with an AC0[2] circuit. We firstly restate the theorem formally.

▶ Theorem 3.7. Let V (x, y) be an NTIME[T (n)] verifier for some T = T (n) ≥ n, where
n = |x| is the input length and |y| ≤ T (n) is the proof length. There exists a constand
d ≥ 1 and some PCP verifier PCPV with randomness complexity O(log T ), query complexity
O(1), and decision complexity polylog(T ), such that it is also smooth, strong, canonical, and
AC0

d[2]-locally decodable within distance log−4(T (n)).

Proof. Throughout this proof, we assume that the reader is familiar with the PCP in
Paradise [28].

We only need to show that the PCP there, which is actually based on the original
proof of the PCP theorem ([6, 16]), is AC0[2]-locally decodable within distance log−4(T (n)).
To do so, we only have to focus on what a correct PCP witness looks like. Without
loss of generality, we only need to prove for the particular PCP verifier deciding circuit
satisfiability (CktSAT)16, since every good predicate can be reduced to a CktSAT instance

16 The problem CktSAT is defined as, given a circuit C (under some canonical representation), decide
whether there exists an input x such that C(x) = 1.



L. Chen, R. Williams, and T. Yang 35:13

without modifying the witnesses. In particular, any good predicate running in time T (n) can
be efficiently implemented by a circuit of size s = O(T (n) log T (n)).17 We will prove that it
is AC0[2]-locally decodable within distance log−3(s).

From now on, for simplicity we let n represent the input length to the circuit C (the input
length to C is actually O(T (n)), but redefining to n will significantly simplify the notation
below). In the PCP system of Paradise [28], on an input circuit C ∈ Bn, any x ∈ {0, 1}n

making C(x) = 1 can be transformed into a canonical PCP witness πx, which consists of
several parts πx = πx,1 ◦πx,2 ◦ · · · ◦πx,t.18 Moreover, in the partition of πx, the length of each
part only depends on C and |x|, and there exists a universal constant c ∈ (0, 1) (independent
of C and x), such that |πx,i| ≥ c|πx| for each i ∈ [t] (and hence t ≤ 1/c).

We are mostly interested in one of the parts, πx,1 (since as we will see shortly, from πx,1
alone we can locally decode the original witness x). We now describe its construction as
follows (one may refer to either Section 5.4.1 of [16] and Section 5.4 of [28]).
(1) Let s be the number of gates (including the input gates) in the circuit C. We can

assume without loss of generality that s = Θ(n log n) since we are constructing PCPs for
good predicates (so the running time of the verifier should be linear in the length of the
witnesses).

(2) Let m = ⌊log s/ log log s⌋. We can assume without loss of generality that s = hm for
some integer h, since we can always add dummy gates to the circuit C. Note that
h ≤ O(log s).

(3) The input x induces a unique evaluation of the circuit C, which can be represented as a
function A : [s]→ {0, 1}, where A(i) is the output of the i-th gate in C. For notational
convenience, we permute the ordering of gates in C so that for every i ∈ [n], the i-th
gate in C is the i-th input gate of C. Since s = hm, we can identify [s] with [h]m, so
that we may view A as a function [h]m → {0, 1}.

(4) Let F be a characteristic-two with order which is a sufficiently large polynomial in h and
m (hence |F| ≤ polylog(s)), so that there is an integer ℓ making |F| = 22·3ℓ . We identify
[h] with h distinct elements in F such that the 0 and 1 of [h] map to the 0 and 1 in F,
respectively. There is a unique polynomial Â : Fm → F, with degree at most h− 1 in
each variable, which agrees with A on all inputs from [h]m. We can represent Â by a
table of its values, which can be viewed as a string σ of length |F|m over the alphabet F.

(5) Let ECC : F→ {0, 1}b be an error-correcting code of constant rate and distance, where
2b = O(|F|). We encode each symbol in the string σ using ECC, and obtain an encoded
string σ ∈ ({0, 1}b)|F|m . In other words, the i-th symbol of σ is σi = ECC(σi).

(6) The proof πx,1 is then κ(s) = poly(s) copies of σ.

Now for any oracle π that is log−3(s)-close to a correct witness πx, we can also partition
π into corresponding π1, π2, . . . , πt. Since |π1| ≥ c|π|, π1 should be 1/(c log3(s))-close to
πx,1. Now given i ∈ [n] as input, we wish to recover xi using π1. To do so, we only need to
evaluate A(i). Let d = (h− 1)m be the total degree of the polynomial Â. We first present
the decoding algorithm in Algorithm 1, and then analyze it.

First, we will prove that Algorithm 1 is a local decoding algorithm; after that, we will
argue that the algorithm can be implemented in AC0[2]. To prove the local decoding property,
we observe that since a is a random element in Fm, the element j should also be uniformly
random, so the marginal distribution of each query made by the algorithm (which is µj for a
uniformly selected copy µ) is uniform. By the union bound, with probability at least

17 Without loss of generality, we work over T (n)-time multitape Turing machines, which can be implemented
with circuits of size O(T (n) log T (n)) [29].

18 For two strings x and y, x ◦ y means the concatenation of x and y.

ITCS 2023



35:14 Black-Box Constructive Proofs Are Unavoidable

Algorithm 1 Locally-decoding algorithm in AC0[2].

Input : Oracle access to π1, which is assumed to be πx,1
Input : An index i ∈ [n]

1 Identify i as an element in [h]m ⊆ Fm;
2 Draw a ∈ Fm uniformly at random;
3 Let e1, e2, . . . , ed+1 be distinct non-zero elements in F;
4 for k ← 1 to d + 1 do
5 Let j ← i + a · ek ∈ Fm;
6 Select one copy out of the κ(s) supposed copies of σ in π1 uniformly at random;

let µ ∈ ({0, 1}b)|F|m denote the selected copy;
7 Query the corresponding positions in π1 to get µj ;
8 Decode µj from µj using the decoding algorithm for the ECC;
9 µj should be an element in F which is supposed to be the value Â(j);

10 Let f(ek)← µj ;
11 end
12 Let f̂ : F→ F be the unique polynomial of degree d such that f̂(ek) = f(ek) for all

1 ≤ k ≤ d + 1;
13 return f̂(0);

1− (d + 1)b
c log3(s)

≥ 1− o(1)

every query q by the algorithm has (π1)q = (πx,1)q, that is, π1 and πx,1 coincide at this
position. So with probability at least 1− o(1), f(k) = Â(i + ak) for all 1 ≤ k ≤ d + 1. Since
Â is a polynomial of degree at most d, f̂(0) must be equal to Â(i), hence is equal to A(i).

To prove that the decoding algorithm is implementable in AC0[2], we only need to show
that the ECC decoding and the computation of f̂(0) are both implementable in AC0[2]. For
the ECC decoding, note that b = O(log log s), so we can simply use a look-up table that is
implementable by an AC0

2 circuit of 2O(b) = polylog(s) size. The computation of f̂ itself does
not seem to be computable in AC0[2]. However, observe that we only need the value f̂(0),
which is equal to the constant term of the polynomial f̂ . By Lagrange interpolation, defining

ck =
∏

z∈[d+1]\{k}
(−ez)∏

z[d+1]\{k}
(ek−ez)

, we have

f̂(0) =
d+1∑
k=1

f(k) · ck,

To compute f̂(0), we can hardwire the coefficients ck in the circuit. What remains is an
addition of d + 1 products of f(k) with some hardcoded coefficients. Since F is characteristic
two and has order 22·3ℓ , multiplication and iterated addition are implementable in AC0

d′ [2]
for some universal constant d′ ≥ 1, by work of Healy and Viola [18]. This completes the
proof. ◀



L. Chen, R. Williams, and T. Yang 35:15

4 Black-Box Constructive Properties are Unavoidable

4.1 Equivalence with NEXP Lower Bounds
In this subsection, we prove our main result (Theorem 1.4). We begin by recalling our
theorem.

▶ Theorem 4.1 (Formal version of Theorem 1.4). Let C be a polynomial-size circuit class such
that any s-size AC0[⊕] ◦ C circuit family can be simulated by an equivalent poly(n, s)-size C

circuit family. The following are equivalent:
(1) NEXP ̸⊂ C .
(2) There is a P/ log N -constructive property useful against C .
(3) There is a QP/ log N -constructive19 property useful against C .
(4) There is a BPTIME[polylog(N)]/ log N -constructive property useful against C .
(5) There is a coRTIME[polylog(N)]/ log N -constructive property useful against avgn−6-C .

In the theorem, (2) is the standard constructive property considered in Williams [33],
(4) corresponds to the black-box constructive property in Fan, Li, and Yang [14], and (5)
makes the black-box constructive property both one-sided error and average-case useful. Our
theorem says that they are all equivalent to NEXP circuit lower bounds.

Proof. Note that (5) ⇒ (4) ⇒ (3) is trivial, (2) ⇒ (1) follows from Theorem 1.2, and (3) ⇒
(2) follows from a direct padding argument. So we only need to prove (1) ⇒ (5).

In the rest of the proof, we use the PCP system in Theorem 3.7 that is smooth, strong,
canonical, and AC0[2]-locally decodable within distance log−4(T (n)). We break the theorem
into two claims. The first claim transforms NE witness lower bounds into NE PCP wit-
ness lower bounds; the second claim transforms the NE PCP witness lower bound into a
constructive property.

▷ Claim 4.2. Let s(n) ∈ [n2, 2n/(10n)] be some size function. If NE does not have
C -SIZE[s(n)] witnesses, then there is some constant c ∈ (0, 1) such that NE does not have
avgn−5-C -SIZE[s(cn)c] PCP witnesses.

▷ Claim 4.3. Let s(n) ∈ [n2, 2n/(10n)] be some size function. If NE does not have
avgn−5-C -SIZE[s(n)] PCP witnesses, then there is a coRTIME[polylog(N)]/ log N -constructive
property useful against avgn−6 -C -SIZE[s(Ω(n))].

Indeed, with these two claims and Lemma 2.7, the implication (1)⇒ (5) directly follows.20

The rest of the proof is devoted to proving the two claims.

Proof of Claim 4.2. If NE does not have C -SIZE[s(n)] witnesses, then there is some good
predicate V for some language L ∈ NE, and there is an input sequence {xn}n∈N with |xn| = n,
such that the following holds:

For every circuit family C = {Cn}n∈N that admits s(n)-size C circuits21, there are
infinitely many n ∈ N such that xn ∈ L and V (xn, tt(Cn)) = 0.

19 QP = DTIME[2polylog(n)] is the class deterministic quasi-polynomial time.
20 Also note that NE has C witnesses of size s(n) if and only if for every L ∈ NEXP there is a k such that

L has C witnesses of size s(knk).
21 Suppose L ∈ NTIME[T (n)] for some T (n) = 2Θ(n). Then Cn has log T (n) = Θ(n) bits of input. Note

that here the size bound on Cn is s(n).

ITCS 2023



35:16 Black-Box Constructive Proofs Are Unavoidable

Now let us consider the corresponding PCP verifier PCPV . Recall that we use the notation
ℓ(n) to denote the oracle query length in the PCP system at inputs of length n. For the class
NE here, we should keep in mind that ℓ(n) = Θ(n). We will show that for the same input
sequence {xn}, for some constant c ∈ (0, 1), for every function family π = {πn ∈ Bℓ(n)}n∈N
that can be (1−n−5)-approximated by s(cn)c-size C circuits, there are infinitely many n ∈ N
such that xn ∈ L and πn is not a witness for xn.

Suppose (for a contradiction) that for every c ∈ (0, 1), there is a function family

π = {πn ∈ Bℓ(n)}n∈N

that can be (1− n−5)-approximated by s(cn)c-size C circuits, such that for all sufficiently
large n ∈ N, xn ∈ L implies that πn is a witness for xn. By the assumption on π, there is
another function family π′ = {π′

n ∈ Bℓ(n)}n∈N that admits s(cn)c-size C circuits, such that
π′

n and πn agree on at least a (1− n−5) fraction of inputs, for every n ∈ N.
We now apply the local decoding algorithm of our PCP system. For all sufficiently large

n ∈ N, if xn ∈ L, then there is a collection of poly(n)-size AC0
d[2] oracle circuits Cxn (where d

is the constant in Theorem 3.7), such that for any π with ∆(π, Wxn
) < n−4,

Pr
C∈Cxn

[V (xn, tt(Cπ)) = 1] > 2/3.

So there is some circuit Cn ∈ Cxn
such that V (x, tt(Cπ′

n)) = 1. However, since Cn is an
AC0

d[2] oracle circuit for every n (we can set Cn be the trivial circuit if xn /∈ L) and π′ admits
a C circuit family of size s(cn)c, so {Cπ′

n
n }n∈N admits a C circuit family of size (s(cn)c)K

for some universal constant K > 1.22 This implies a contradiction when c < 1/K. ◁

Proof of Claim 4.3. By the assumption, there is some constant d > 1 and a PCP verifier
PCPV deciding a language L ∈ NTIME[2dn], and an input sequence {xn}n∈N with |xn| = n

such that the following holds:
For every function family π = {πn ∈ Bℓ(n)}n∈N that is (1−n−5)-approximable by s(n)-size
C circuits, there are infinitely many n ∈ N such that xn ∈ L and Prr[PCPπn

V (xn, r)] < 1.

Suppose that on input x of length n, PCPV has a proof oracle of input length ℓ(n). Note
that since L ∈ NTIME[2dn], ℓ(n) > dn. Our first step is to show the following:

For every function family π = {πn ∈ Bℓ(n)}n∈N that can be (1−n−5)-approximated by s(n)-
size C circuits, there are infinitely many n ∈ N such that xn ∈ L and Prr[PCPπn

V (xn, r)] <

1− n−6.

Indeed, if the above does not hold, then there is a function family π = {πn ∈ Bℓ(n)}n∈N
that can be (1− n−5)-approximated by s(n)-size C circuits, such that for every sufficiently
large n ∈ N, xn ∈ L implies that Pr[PCPπn

V (x)] ≥ 1−1/n6. By the smoothness and strongness
of our PCP (Corollary 3.4), there is a family of correct PCP witnesses π̂ = {π̂n}n∈N that is
Θ(n−6)-close to π. There also exists a function family π′ = {π′

n ∈ Bℓ(n)}n∈N that admits a
s(n)-size C circuit family and is n−6-close to π. Therefore, π′ is also Θ(n−6)-close to π̂. But
this means that π̂ is a family of correct PCP witness that can be (1−Θ(n−6))-approximated
by s(n)-size C circuits, a contradiction to our assumption.

Now we can define a property P that is useful against avgn−6-C -SIZE[s(Ω(n))]. The
property is defined in Algorithm 2 where N = 2n and n = ℓ(m) for some integer m.

22 This step crucially uses our assumption on the circuit class C .



L. Chen, R. Williams, and T. Yang 35:17

Algorithm 2 The coRTIME[polylog(N)]/ log N -constructive property P.

Input : Oracle access to a function f : {0, 1}log N → {0, 1}
Advice : αN ∈ {0, 1}∗ and βN ∈ {0, 1}

1 if N ̸= 2ℓ(|αN |) or βN = 0 then
2 accept;
3 else
4 for i← 1 to 100 log6 N do
5 Draw a uniformly random r as the randomness for PCPV ;
6 if PCPV (αN , r)f rejects then
7 reject;
8 end
9 end

10 accept;
11 end

On input length N = 2ℓ(m), we give xm as the advice to Algorithm 2. Since N > 2dm,
the advice length is m < log N . Moreover, it is easy to see that Algorithm 2 runs in
poly(m) = polylog(N) time.

It remains to verify that the usefulness criterion holds. On input length N , if N ̸= 2ℓ(m)

for all m ∈ N, then P accepts every f . If N = 2ℓ(m) for some m ∈ N, if xm /∈ L, then P
again accepts every f . (We use an additional bit of advice, βN , to tell P whether xm ∈ L).
If xm ∈ L, then Algorithm 2 accepts any PCP witness f for PCPV (x) with certainty (since
xm ∈ L, such f exists). In either case, Pyes

N ̸= ∅.
On the other hand, for any function family f = {fℓ(m) ∈ Bℓ(m)}m∈N that can be

(1− ℓ(m)−6)-approximated by s(m)-size C circuits, there are infinitely many m ∈ N such
that PCPfℓ(m)

V (xm) rejects with probability at least 1/m6 > log−6 N . For those m, Algorithm
2 rejects with probability at least 1/6. Hence it indeed defines a coRTIME[polylog(N)]/ log N -
constructive property useful against avgn−6 -C -SIZE[s(Ω(n))]. ◁

◀

Note that by combining Lemma 2.7 and Claim 4.2, we can derive average-case witness
lower bounds directly from NEXP circuit lower bounds.

4.2 Eliminating the Advice with CAPP Algorithms

In this subsection, we prove Theorem 1.9, showing how a nontrivial CAPP algorithm implies
a randomized sublinear-time constructive property without any advice.

▶ Theorem 1.9 Let K ∈ N be a sufficiently large constant. Let C be a circuit class and
s(n) ≥ n be a size parameter. If there is a 2n/n10-time CAPP0.1 algorithm for s(n)K-size
AC0

2 ◦ C circuits, then there is a coRTIME[polylog(N)]-constructive property useful against
s(n)-size C circuits.

Proof of Theorem 1.9. Take an unary language L in NTIME[2m] \ NTIME[2m/m] [38]. We
use the PCP system of Ben-Sasson and Viola [8], which has a PCP verifier PCPL satisfying
the following:

ITCS 2023



35:18 Black-Box Constructive Proofs Are Unavoidable

(Efficiency) PCPL(x, ·) is an non-adaptive AC0
2 oracle circuit that takes ℓ(m) bits of random-

ness, and queries an oracle O : {0, 1}ℓ(m) → {0, 1}, where ℓ(m) = m + O(log m). Without
loss of generality, we assume that ℓ(m) is an increasing function.

(Completeness) If x ∈ L, there is some π : {0, 1}ℓ(m) → {0, 1} such that pacc(PCPπ
L(x)) = 1.

(Soundness) If x /∈ L, then for all π : {0, 1}ℓ(m) → {0, 1}, we have pacc(PCPπ
L(x)) < 1/3.

We now claim there is a coRTIME[polylog(N)]-constructive property useful against C .
On input length n ∈ N, let m ∈ N be such that n = ℓ(m). If there is no such m or 1m /∈ L,
then define Pyes

n = {0, 1}n and Pno
n = ∅. Otherwise, we define the promise property as:

Pyes
n contains all oracles π : {0, 1}n → {0, 1} such that pacc(PCPπ

L(1m)) = 1,
Pno

n contains all oracles π : {0, 1}n → {0, 1} such that pacc(PCPπ
L(1m)) < 2/3.

Suppose the property defined above is not useful against s(m)-size C circuits. Then there
exists a function family f = {fm ∈ Bℓ(m)}m∈N such that for all sufficiently large input length
m, either 1m /∈ L, in which case pacc(PCPπ

L(1m)) < 1/3 for all oracles π ∈ Bℓ(m); or 1m ∈ L

and Pr[PCPfm

L (1m)] > 2/3.
We can then design another algorithm APCP that attempts to solve L faster: On in-

put x, reject immediately if x ̸= 1|x|. Otherwise, guess an s(m)-size ℓ(m)-input C cir-
cuit C, and apply the assumed CAPP0.1 algorithm to estimate the acceptance probability
Prr∈{0,1}ℓ(m) [PCPC

L (x, r)] within an additive error of 0.1 (note that PCPC
L (x, r) for a fixed x

is an ℓ(m)-input AC0
2 ◦ C circuit of s(m)K size, since K is sufficiently large). Our algorithm

accepts if and only if the estimated probability is at least 1/2. The algorithm decides L

on all sufficiently large input lengths, and runs in at most 2m/m nondeterministic time,
contradicting the fact that L /∈ NTIME[2m/m]. ◀

5 On the Impossibility of Stronger Constructivity Notions

Seeing that coRTIME[polylog(N)]-constructive useful properties are equivalent to NEXP
lower bounds, one may naturally ask whether the same equivalence holds for even weaker
constructivity notions (say, DTIME[polylog(N)]) instead of coRTIME[polylog(N)]. In this
section, we show that we cannot prove the same equivalence for RTIME[polylog(N)], or even
NTIME[polylog(N)], in place of coRTIME[polylog(N)].

First, we show in Section 5.1 an impossibility result: there are no DTIME[polylog(N)]-
constructive properties which are useful against all polynomial-size CNFs. In fact, we prove
a stronger statement that even allows both non-determinism and non-uniformity. In Section
5.2, we complement this impossibility result by showing that if we only want our property to
be useful against constant-depth circuits of some fixed polynomial size, then super-efficient
deterministic constructive (and even large) properties can be obtained from known results
on pseudorandom restrictions.

5.1 Non-existence of Deterministic Constructive Properties against
Polynomial-size Classes

We first show the general impossibility result.

▶ Theorem 5.1. Let C be a circuit class such that all CNFs of t clauses have poly(n, t)-size
C circuits. There is no NTIME[polylog(N)]/polylog(N)-constructive property useful against
C -SIZE[poly].



L. Chen, R. Williams, and T. Yang 35:19

Proof. Towards a contradiction, assume there is a constant c > 1 and some O(logc(N))-size
non-deterministic circuit C (with an oracle for the input truth table) computing a property
useful against C . We can express the computation of C as a collection of decision trees
D = {Di} of O(logc(N))-depth, where for any input x ∈ {0, 1}N ,

C(x) accepts ⇐⇒ ∃Di ∈ D such that Di(x) accepts.

By usefulness of the property, there exists some x̂ such that C(x̂) accepts, so there is also
some D̂j ∈ D such that D̂j(x̂) accepts.

Let I = {i1, i2, . . . , ik} be the bit positions queried by the decision tree D̂j on the input
x̂. Since D̂j has depth O(logc(N)), we have k ≤ O(logc(N)) ≤ O(nc). We now define a
function f that agrees with x̂ on I, and is defined to be 1 on all other positions. Formally,

f(j) =
{

x̂j , j ∈ I

1, otherwise
.

Observe that f can be implemented by a CNF with k clauses. Since we assumed that CNFs
of size s can be implemented by poly(s, n) C circuits, we have f ∈ C -SIZE[poly]. However,
as the truth table of f agrees with x̂ on I, D̂j(tt(f)) should accept. This contradicts the
assumption that the family of decision trees D defines a property that is useful against C . ◀

5.2 DTIME[polylog(N)]-natural Properties against
Fixed-polynomial-size Classes from Pseudorandom Restrictions

We can obtain very efficient deterministic properties against classes of circuits for which
there is a pseudorandom restriction of short seed length that simplifies circuits from the class.
In more detail, we need the pseudorandom restriction to have only logarithmic randomness.
Combining with known pseudorandom restrictions in the literature, we can prove Theorem
1.7 and 1.8 from the introduction.

First, we will first formally define what a pseudorandom restriction lemma is; then, we
will show how to derive DTIME[polylog(N)]-natural properties from such a lemma.

▶ Definition 5.2 (Pseudorandom Restriction Lemma). A class C is said to admit a pseudoran-
dom restriction lemma with randomness r(n) and freedom d(n), if there exists a poly(n)-time
algorithm A that on input 1n takes randomness of length r(n) and produces a restriction
ρn ∈ {0, 1, ∗}n (a.k.a. a partial assignment) to n bits of input, such that

(i) The number of undetermined (unset) variables in ρn is at least d(n).
(ii) For every family of circuits C = {Cn ∈ Bn}n∈N ∈ C and for all sufficiently large n,

the function computed by Cn restricted to ρn becomes a constant (all-zeros or all-ones)
function with constant probability. Formally, for all sufficiently large n,

Pr
z∈{0,1}r(n)

[
ρn ← A(1n, z) such that Cn↾ρn

is a constant
]
≥ Ω(1).

▶ Theorem 5.3. Let C be any circuit class. If C admits a pseudorandom restriction
lemma with randomness r(n) = O(log n) and freedom d(n) = 2 log log n, then there is a
DTIME[polylog(N)]-natural property useful against C .

Proof. Without loss of generality, we can assume that the number of undetermined variables is
always exactly d(n), as we can arbitrarily restrict variables until the number of undetermined
variables becomes d(n). Suppose that the algorithm for constructing the pseudorandom
restriction is A(1n, z), where z ∈ {0, 1}r(n) is the randomness. Our property is simple:

ITCS 2023



35:20 Black-Box Constructive Proofs Are Unavoidable

given oracle access to a function f , enumerate over all 2r(n) = poly(n) possible seeds z, and
test if any of the restrictions ρz ← A(1n, z) makes f constant by enumerating all possible
assignments to the inputs left unset by ρz (note there are only 2d(n) = polylog(n) such
assignments). We formally describe this procedure in Algorithm 3.

Algorithm 3 DTIME[polylog(N)]-natural property from pseudorandom restrictions.

Input : Oracle access to a function f : {0, 1}n → {0, 1}
1 for z ∈ {0, 1}r(n) do
2 Let ρz ← A(1n, z).;
3 if f↾ρz

is a constant function then
4 Reject;
5 end
6 end
7 Accept;

The algorithm clearly runs in poly(n) = polylog(N) time. We only need to show that
the largeness and usefulness criteria are satisfied by the algorithm. To prove usefulness,
consider any function f ∈ C . Since A is a pseudorandom restriction as defined in Definition
5.2, by property (ii) there exists some randomness z ∈ {0, 1}r(n) making f↾ρ constant, so
our algorithm must reject. To establish largeness, we upper bound the probability that
Algorithm 3 rejects a random function. This can be done by a simple union bound:

Pr
f∈{0,1}n→{0,1}

[Algorithm 3 rejects] ≤ 2r · 2 · 2−2d

= 2O(log n)−log2 n < o(1). ◀

Applying known pseudorandom restriction lemmas with the desired parameters, we can
obtain DTIME[polylog(N)]-natural properties useful against certain classes. For example,
Goldreich and Wigderson [15] proved that for any constant c > 0, the class of AC0 circuits
of size at most nc admits a pseudorandom restriction lemma with randomness O(log n)
and freedom nΩ(1).23 Therefore by Theorem 5.3, there is a DTIME[polylog(N)]-natural
properties useful against AC0 circuits of size nc (hence proving Theorem 1.8). Applying
the pseudorandom restriction of [14] to Theorem 5.3, we obtain a DTIME[polylog(N)]-
natural property useful against probabilistic DeMorgan formulas of n2−ε size (hence proving
Theorem 1.7).

6 A Bootstrapping Result For Black-Box Natural Properties

We prove general bootstrapping results on the existence of coRTIME[polylog(N)]-constructive
natural properties in this section. In particular, we show that if a circuit class is capable of
efficiently implementing almost-universal hash functions, then black-box natural properties
useful against fixed polynomial size imply such natural properties against all polynomial-size
circuits. We follow an idea of [14] for reducing the complexity of computing PRFs: “kernelize”
the oracle with an almost universal hash function. To begin, we define the notion of almost
universal hash functions.

23 Technically, Theorem 3.2 of [15] only shows that with high probability the restricted function is a
constant-junta (i.e., the remaining function after the restriction depends on at most O(1) variables).
Note that we can always randomly restrict an additional fraction of the inputs to cover all the O(1)
dependent inputs with constant probability.



L. Chen, R. Williams, and T. Yang 35:21

▶ Definition 6.1 (Almost universal hash function). A family of hash function is a collection
H = {Hn}n∈N, where each Hn is defined as a distribution of functions from {0, 1}n to {0, 1}m

with output length m = m(n). H is called ε-almost universal if for all sufficiently large n

and any two x, y ∈ {0, 1}n with x ̸= y,

Pr
h∈Hn

[h(x) = h(y)] ≤ ε(n).

We say that H is almost-universal, if it is n−α(n)-almost universal for some α(n) = ω(1).
We say that H is computable by C circuits of size s(n), if every sequence of functions

from the collection h = {hn ∈ Hn}n∈N admits a C circuit family of size s(n).
We say that H is uniform if the distribution Hn is samplable in poly(n) time.

We now prove that efficient C -circuit constructions of almost-universal hash functions
imply bootstrapping results for black-box natural properties against C -circuits. Recall
that a property is BPTIME[polylog(N)]-natural if it is BPTIME[polylog(N)]-constructive
and large, and a property is a.e.-useful against a circuit class C if it is useful against C

for all but finitely many input lengths. We say that a circuit class C is efficiently closed
under composition, if given two circuit families f = {fn : {0, 1}n → {0, 1}m1(n)}n∈N and
g = {gn : {0, 1}n → {0, 1}m2(n)}n∈N computable by C circuits of size s1(n) and s2(n)
respectively, their composition g ◦ f = {gm1(n) ◦ fn}n∈N can be computed by C circuits of
size s1(n) + s2(m1(n)). Note that all “typical” classes, such as P/poly, NC1, TC0, and AC0,
satisfy this property.

▶ Theorem 6.2. Let C be a circuit class efficiently closed under composition and let s(n) be
a polynomial in n. Suppose for every c ∈ (0, 1), there is a family of almost-universal hash
functions with output length m = m(n) = nc that is uniform and computable by C circuits
of size s(n). Then the following holds:

If there are BPTIME[polylog(N)]-natural properties a.e.-useful against C circuits of size
s(n) +

√
n, then for all k ≥ 1, there are BPTIME[polylog(N)]-natural properties a.e.-useful

against C circuits of nk size.

Proof. Assume there is a BPTIME[polylog(N)]-natural property P = {(Pyes
n ,Pno

n )}n∈N that
is a.e.-useful against C circuits of size s(n) +

√
n. That is, there is a constant c > 0 and an

algorithm Af (1n, r) with randomness |r| ≤ poly(n) and oracle access to f ∈ Bn, running in
nc time, such that

For every f ∈ Pyes
n , Prr

[
Af (1n, r) accepts

]
≥ 2/3.

For every f ∈ Pno
n , Prr

[
Af (1n, r) accepts

]
≤ 1/3.

By the largeness criterion, there is a polynomial p(n) such that Prf∈Bn
[f ∈ Pyes

n ] ≥ 1/p(n).
Let k ≥ 1 be an arbitrary constant such that nk > s(n) for all sufficiently large n. We

now define a BPTIME[polylog(N)]-natural property that is a.e.-useful against C circuits of
size nk. The property is defined by Algorithm 4. In particular, let Algorithm 4 be denoted
by Âf (1n, r) where r = (r0, h) is its internal randomness. We define a (promise) property
P̂ = {(P̂yes

n , P̂no
n )}n∈N as follows: for a function f ∈ Bn,

f ∈ P̂yes
n if Prr

[
Âf (1n, r) accepts

]
≥ 5/8.

f ∈ P̂no
n if Prr

[
Âf (1n, r) accepts

]
≤ 3/8.

We now prove that the property P̂ satisfies the desired conditions.

ITCS 2023



35:22 Black-Box Constructive Proofs Are Unavoidable

Algorithm 4 BPTIME[polylog(N)]-natural property a.e.-useful against nk size C circuits.

Input : 1n

Oracle : oracle access to a function f : {0, 1}n → {0, 1}
1 Let n̂ = n2k, and H be an almost-universal hash function with output length

m(n) = n1/(2k);
2 Randomly sample a function h← Hn̂ in poly(n̂) = poly(n) time;
3 Define f ′ : {0, 1}n̂ → {0, 1} as f ′(x) = f(h(x));
4 Simulate Af ′(1n̂, r0) on random r0, and accept if and only if the simulation accepts;

(Constructivity) Showing P̂ is constructive amounts to showing that Algorithm 4 runs in
poly(log N) time. This follows because A is constructive (it can be implemented in poly(log N)
time).

(Largeness) To prove largeness, we need to show that Prf∈Bn
[f ∈ P̂yes

n ] ≥ 1/poly(n) for all
sufficiently large n.

Fix an input length n and randomness r0. Assume that over oracle f ′, the distinct
positions of the oracle f ′ queried by A(1n̂, r0) are z1, z2, . . . , zt where t ≤ n̂c = nck. Since H
is almost universal, by a simple union bound,

Pr
h∈Hn̂

[∀i ̸= j, h(zi) ̸= h(zj)] ≥ 1− n2ck−ω(1) ≥ 1− n−ω(1).

Let En(h, r0, f ′) denote the event that for all i ̸= j, h(zi) ̸= h(zj). Then we calculate that

Ef∈Bn,r0,h∈Hn̂

[
Âf (1n, r0, h) accepts

]
≥ Ef∈Bn,r0,h∈Hn̂

[
Âf (1n, r0, h) accepts ∧ En(h, r0, f ′)

]
≥ Er0,f ′∈Bn̂

[
Af (1n, r0) accepts

]
− n−ω(1)

≥ 2
3p(n) − n−ω(1).

Applying Markov’s inequality, we find that

Pr
f∈Bn

[
Pr

r0,h∈Hn̂

[
Âf (1n, r0, h) accepts

]
≥ 5/8

]
≥ Ω(1/p(n)),

hence proving the largeness criterion.

(Usefulness) To prove usefulness, we consider any sufficiently large input length n, and
any function f ∈ Bn that admits a C circuit of size nk. For every choice of h ∈ Hn̂, by
our assumptions on C , the function f ′(x) = f(h(x)) is computable by a C circuit of size
s(n̂)+nk = s(n̂)+

√
n̂. By the usefulness of A, we have that Prr0

[
Af ′(1n̂, r0) accepts

]
≤ 1/3.

As this inequality holds for every choice of h, we have

Pr
r0,h∈H

n̂

[
Âf (1n, r0, h) accepts

]
≤ 1/3,

hence f ∈ Pno
n . ◀



L. Chen, R. Williams, and T. Yang 35:23

References
1 Eric Allender. Cracks in the defenses: Scouting out approaches on circuit lower bounds. In

Computer Science - Theory and Applications, Third International Computer Science Symposium
in Russia, CSR 2008, Moscow, Russia, June 7-12, 2008, Proceedings, volume 5010 of Lecture
Notes in Computer Science, pages 3–10. Springer, 2008. doi:10.1007/978-3-540-79709-8_2.

2 Eric Allender and Michal Koucký. Amplifying lower bounds by means of self-reducibility. J.
ACM, 57(3):14:1–14:36, 2010.

3 Josh Alman and Lijie Chen. Efficient construction of rigid matrices using an NP oracle. In
Proc. 60th FOCS, pages 1034–1055. IEEE Comp. Soc., 2019. doi:10.1109/FOCS.2019.00067.

4 Alexander E Andreev. On a method for obtaining more than quadratic effective lower bounds
for the complexity of π-schemes. Moscow Univ. Math. Bull., 42(1):63–66, 1987.

5 Sanjeev Arora and Boaz Barak. Computational Complexity - A Modern Approach. Cambridge
University Press, 2009. URL: http://www.cambridge.org/catalogue/catalogue.asp?isbn=
9780521424264.

6 Sanjeev Arora, Carsten Lund, Rajeev Motwani, Madhu Sudan, and Mario Szegedy. Proof
verification and the hardness of approximation problems. J. ACM, 45(3):501–555, 1998.
doi:10.1145/278298.278306.

7 Sanjeev Arora and Shmuel Safra. Probabilistic checking of proofs: A new characterization of
NP. J. ACM, 45(1):70–122, 1998. doi:10.1145/273865.273901.

8 Eli Ben-Sasson and Emanuele Viola. Short PCPs with projection queries. In Proc. 41st
Internat. Colloq. on Automata, Languages and Programming (ICALP’14), pages 163–173.
Springer, 2014. doi:10.1007/978-3-662-43948-7_14.

9 Marco L. Carmosino, Russell Impagliazzo, Valentine Kabanets, and Antonina Kolokolova.
Agnostic learning from tolerant natural proofs. In Approximation, Randomization, and
Combinatorial Optimization. Algorithms and Techniques, APPROX/RANDOM 2017, August
16-18, 2017, Berkeley, CA, USA, volume 81 of LIPIcs, pages 35:1–35:19. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2017. doi:10.4230/LIPIcs.APPROX-RANDOM.2017.35.

10 Brynmor Chapman and Ryan Williams. The circuit-input game, natural proofs, and testing
circuits with data. In Proceedings of the 2015 Conference on Innovations in Theoretical
Computer Science, ITCS 2015, Rehovot, Israel, January 11-13, 2015, pages 263–270. ACM,
2015. doi:10.1145/2688073.2688115.

11 Lijie Chen, Shuichi Hirahara, Igor Carboni Oliveira, Ján Pich, Ninad Rajgopal, and Rahul
Santhanam. Beyond natural proofs: Hardness magnification and locality. In 11th Innovations
in Theoretical Computer Science Conference, ITCS, pages 70:1–70:48, 2020. doi:10.4230/
LIPIcs.ITCS.2020.70.

12 Lijie Chen, Ce Jin, and R. Ryan Williams. Sharp threshold results for computational
complexity. In Proccedings of the 52nd Annual ACM SIGACT Symposium on Theory of
Computing, STOC 2020, Chicago, IL, USA, June 22-26, 2020, pages 1335–1348. ACM, 2020.
doi:10.1145/3357713.3384283.

13 Timothy Y. Chow. Almost-natural proofs. J. Comput. Syst. Sci., 77(4):728–737, 2011.
doi:10.1016/j.jcss.2010.06.017.

14 Zhiyuan Fan, Jiatu Li, and Tianqi Yang. The exact complexity of pseudorandom functions
and tight barriers to lower bound proofs. Electron. Colloquium Comput. Complex., page 125,
2021. URL: https://eccc.weizmann.ac.il/report/2021/125, arXiv:TR21-125.

15 Oded Goldreich and Avi Wigderson. On derandomizing algorithms that err extremely rarely.
In Symposium on Theory of Computing, STOC 2014, New York, NY, USA, May 31 - June
03, 2014, pages 109–118. ACM, 2014. doi:10.1145/2591796.2591808.

16 Prahladh Harsha. Robust PCPs of Proximity and Shorter PCPs. PhD thesis, Massachusetts
Institute of Technology, 2004.

17 Johan Håstad. The shrinkage exponent of de morgan formulas is 2. SIAM J. Comput.,
27(1):48–64, 1998. doi:10.1137/S0097539794261556.

ITCS 2023

https://doi.org/10.1007/978-3-540-79709-8_2
https://doi.org/10.1109/FOCS.2019.00067
http://www.cambridge.org/catalogue/catalogue.asp?isbn=9780521424264
http://www.cambridge.org/catalogue/catalogue.asp?isbn=9780521424264
https://doi.org/10.1145/278298.278306
https://doi.org/10.1145/273865.273901
https://doi.org/10.1007/978-3-662-43948-7_14
https://doi.org/10.4230/LIPIcs.APPROX-RANDOM.2017.35
https://doi.org/10.1145/2688073.2688115
https://doi.org/10.4230/LIPIcs.ITCS.2020.70
https://doi.org/10.4230/LIPIcs.ITCS.2020.70
https://doi.org/10.1145/3357713.3384283
https://doi.org/10.1016/j.jcss.2010.06.017
https://eccc.weizmann.ac.il/report/2021/125
http://arxiv.org/abs/TR21-125
https://doi.org/10.1145/2591796.2591808
https://doi.org/10.1137/S0097539794261556


35:24 Black-Box Constructive Proofs Are Unavoidable

18 Alexander Healy and Emanuele Viola. Constant-depth circuits for arithmetic in finite fields
of characteristic two. In STACS 2006, 23rd Annual Symposium on Theoretical Aspects of
Computer Science, Marseille, France, February 23-25, 2006, Proceedings, volume 3884 of
Lecture Notes in Computer Science, pages 672–683. Springer, 2006. doi:10.1007/11672142_55.

19 Matthias Krause and Stefan Lucks. Pseudorandom functions in tc0 and cryptographic
limitations to proving lower bounds. Comput. Complex., 10(4):297–313, 2001. doi:10.1007/
s000370100002.

20 Richard J. Lipton and Ryan Williams. Amplifying circuit lower bounds against polynomial
time, with applications. Comput. Complex., 22(2):311–343, 2013.

21 Dylan M. McKay, Cody D. Murray, and R. Ryan Williams. Weak lower bounds on resource-
bounded compression imply strong separations of complexity classes. In Proceedings of the 51st
Annual ACM SIGACT Symposium on Theory of Computing, STOC 2019, pages 1215–1225.
ACM, 2019. doi:10.1145/3313276.3316396.

22 Eric Miles and Emanuele Viola. Substitution-permutation networks, pseudorandom functions,
and natural proofs. J. ACM, 62(6):46:1–46:29, 2015. doi:10.1145/2792978.

23 Dana Moshkovitz and Ran Raz. Two-query PCP with subconstant error. J. ACM, 57(5):29:1–
29:29, 2010. doi:10.1145/1754399.1754402.

24 Moni Naor and Omer Reingold. Number-theoretic constructions of efficient pseudo-random
functions. J. ACM, 51(2):231–262, 2004. doi:10.1145/972639.972643.

25 Igor Carboni Oliveira, Ján Pich, and Rahul Santhanam. Hardness magnification near state-
of-the-art lower bounds. In 34th Computational Complexity Conference, CCC 2019, pages
27:1–27:29, 2019. doi:10.4230/LIPIcs.CCC.2019.27.

26 Igor Carboni Oliveira and Rahul Santhanam. Hardness magnification for natural problems.
In 59th IEEE Annual Symposium on Foundations of Computer Science, FOCS 2018, pages
65–76, 2018. doi:10.1109/FOCS.2018.00016.

27 Christos H. Papadimitriou and Mihalis Yannakakis. Optimization, approximation, and
complexity classes. J. Comput. Syst. Sci., 43(3):425–440, 1991. doi:10.1016/0022-0000(91)
90023-X.

28 Orr Paradise. Smooth and strong pcps. Comput. Complex., 30(1):1, 2021. doi:10.1007/
s00037-020-00199-3.

29 Nicholas Pippenger and Michael J. Fischer. Relations among complexity measures. J. ACM,
26(2):361–381, 1979. doi:10.1145/322123.322138.

30 Alexander A. Razborov and Steven Rudich. Natural proofs. J. Comput. Syst. Sci., 55(1):24–35,
1997. doi:10.1006/jcss.1997.1494.

31 Avishay Tal. Shrinkage of de morgan formulae by spectral techniques. In 55th IEEE Annual
Symposium on Foundations of Computer Science, FOCS 2014, Philadelphia, PA, USA, October
18-21, 2014, pages 551–560. IEEE Computer Society, 2014. doi:10.1109/FOCS.2014.65.

32 Avishay Tal. Formula lower bounds via the quantum method. In Proceedings of the 49th
Annual ACM SIGACT Symposium on Theory of Computing, STOC 2017, Montreal, QC,
Canada, June 19-23, 2017, pages 1256–1268. ACM, 2017. doi:10.1145/3055399.3055472.

33 R. Ryan Williams. Natural proofs versus derandomization. SIAM J. Comput., 45(2):497–529,
2016. doi:10.1137/130938219.

34 R. Ryan Williams. New algorithms and lower bounds for circuits with linear threshold gates.
Theory Comput., 14(1):1–25, 2018. doi:10.4086/toc.2018.v014a017.

35 Ryan Williams. Improving exhaustive search implies superpolynomial lower bounds. SIAM J.
Comput., 42(3):1218–1244, 2013. doi:10.1137/10080703X.

36 Ryan Williams. Natural proofs versus derandomization. In Symposium on Theory of Computing
Conference, STOC’13, Palo Alto, CA, USA, June 1-4, 2013, pages 21–30. ACM, 2013.
doi:10.1145/2488608.2488612.

37 Ryan Williams. Nonuniform ACC circuit lower bounds. J. ACM, 61(1):2, 2014. doi:10.1145/
2559903.

38 Stanislav Žák. A Turing machine time hierarchy. Theoretical Computer Science, 26(3):327–333,
1983.

https://doi.org/10.1007/11672142_55
https://doi.org/10.1007/s000370100002
https://doi.org/10.1007/s000370100002
https://doi.org/10.1145/3313276.3316396
https://doi.org/10.1145/2792978
https://doi.org/10.1145/1754399.1754402
https://doi.org/10.1145/972639.972643
https://doi.org/10.4230/LIPIcs.CCC.2019.27
https://doi.org/10.1109/FOCS.2018.00016
https://doi.org/10.1016/0022-0000(91)90023-X
https://doi.org/10.1016/0022-0000(91)90023-X
https://doi.org/10.1007/s00037-020-00199-3
https://doi.org/10.1007/s00037-020-00199-3
https://doi.org/10.1145/322123.322138
https://doi.org/10.1006/jcss.1997.1494
https://doi.org/10.1109/FOCS.2014.65
https://doi.org/10.1145/3055399.3055472
https://doi.org/10.1137/130938219
https://doi.org/10.4086/toc.2018.v014a017
https://doi.org/10.1137/10080703X
https://doi.org/10.1145/2488608.2488612
https://doi.org/10.1145/2559903
https://doi.org/10.1145/2559903

	1 Introduction
	1.1 Our Results
	1.1.1 Equivalence of Black-Box Constructive Properties and Circuit Lower Bounds
	1.1.2 Bootstrapping Results on Black-box Natural Properties


	2 Preliminaries
	2.1 Sublinear Time Classes
	2.2 Properties
	2.3 Nondeterministic Classes and Easy Witnesses
	2.4 Probabilistically Checkable Proofs
	2.4.1 PCP Witnesses
	2.4.2 An Efficient PCP System from [8]


	3 Technical Ingredient: Smooth, Strong, and Locally-Decodable PCPs
	3.1 Definitions
	3.1.1 Smoothness
	3.1.2 Strongness
	3.1.3 Local Decodability

	3.2 The Construction

	4 Black-Box Constructive Properties are Unavoidable
	4.1 Equivalence with NEXP Lower Bounds
	4.2 Eliminating the Advice with CAPP Algorithms

	5 On the Impossibility of Stronger Constructivity Notions
	5.1 Non-existence of Deterministic Constructive Properties against Polynomial-size Classes
	5.2 DTIME[polylog(N)]-natural Properties against Fixed-polynomial-size Classes from Pseudorandom Restrictions

	6 A Bootstrapping Result For Black-Box Natural Properties

