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Abstract
We introduce a classical algorithm to approximate the free energy of local, translation-invariant,
one-dimensional quantum systems in the thermodynamic limit of infinite chain size. While the
ground state problem (i.e., the free energy at temperature T = 0) for these systems is expected to
be computationally hard even for quantum computers, our algorithm runs for any fixed temperature
T > 0 in subpolynomial time, i.e., in time O(( 1

ε
)c) for any constant c > 0 where ε is the additive

approximation error. Previously, the best known algorithm had a runtime that is polynomial in 1
ε

where the degree of the polynomial is exponential in the inverse temperature 1/T . Our algorithm
is also particularly simple as it reduces to the computation of the spectral radius of a linear map.
This linear map has an interpretation as a noncommutative transfer matrix and has been studied
previously to prove results on the analyticity of the free energy and the decay of correlations. We
also show that the corresponding eigenvector of this map gives an approximation of the marginal of
the Gibbs state and thereby allows for the computation of various thermodynamic properties of the
quantum system.
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1 Introduction and Main Result

Multipartite quantum systems are described by a Hilbert space, which is a tensor product of
the single-particle d-dimensional spaces. The behaviour of a quantum-many body system is
described by a Hamiltonian which models the interaction between the different particles. Of
particular interest are k-local Hamiltonians that can be written as a sum of terms acting
nontrivially on at most k particles, with k being a constant. At thermal equilibrium, the
system is described by the Gibbs state
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ρ = e−βH/Zβ(H) (1)

where β = 1/T is the inverse temperature, and Zβ(H) = tr
[
e−βH

]
is the partition function.

The free energy of the system at inverse temperature β is defined as

Fβ(H) = − 1
β

log Zβ(H). (2)

At zero temperature, i.e., β = +∞, Fβ(H) becomes λmin(H), the ground energy of H. The
problem of computing the ground energy for a given local Hamiltonian is known to be
QMA-complete [14], and is the central problem in the area of Hamiltonian complexity [10].
This problem remains QMA-complete even if we restrict ourselves to 2-local Hamiltonians
that are translation-invariant on a chain [11, 4], i.e., H =

∑
i hi,i+1 where the operators

hi,i+1 are given by some Hermitian operator h (the same one for every i) acting on particles
i and i + 1.1

In order to understand the physical properties of the system at nonzero temperature, it is
crucial to understand not only the ground energy, but also the free energy function Fβ(H) as
a function of β > 0 [2]. Indeed, computing Fβ(H) and its derivatives with respect to β and
parameters of the Hamiltonian determines phase transitions and gives access to fundamental
physical properties of the system in thermal equilibrium such as the internal energy, specific
heat, or magnetic susceptibility [19].

1.1 Main result

In this paper, we focus on 2-local translation-invariant quantum systems on an infinite chain.
As the free energy scales with the system size, in the thermodynamic limit of infinite systems
we consider the free energy per particle fβ(h). Note that fβ(h) only depends on the finite
matrix h of size d2 × d2. Our objective is to design an algorithm to approximate fβ(h) with
a good scaling in terms of the target error ε and the local dimension d. As argued in recent
works on Hamiltonian complexity in the thermodynamic limit [25, 1], understanding the
dependence of the complexity in terms of the desired precision for infinite systems is often
closer to capturing the fundamental problems in many-body physics than understanding the
dependence in the system size. Our main result is an algorithm that given as input h and
a target error ε outputs an approximation of fβ(h) and of the k-particle marginals of the
Gibbs state.

▶ Theorem 1. There is a deterministic algorithm that takes as input a Hermitian operator
h acting on Cd ⊗ Cd satisfying ∥h∥ ≤ 1 and ε ∈ (0, 1/e) and outputs an approximation
f̃β satisfying |f̃β − fβ(h)| ≤ ε, where fβ(h) is the free energy per particle of the infinite
translation-invariant Hamiltonian on a chain defined by h. For any fixed β > 0, the running
time of the algorithm is exp

(
O

(
log d log(1/ε)

log log(1/ε)

))
. Moreover, this algorithm can also compute

an ε-approximation of the marginal of the Gibbs state on an interval of size k with the same
running time for any fixed k.

Before describing the algorithm and proof method, we make some remarks and discuss
related works.

1 Technically, because of the choice of specification of input in [11], the problem is complete for a scaled
version of QMA called QMAEXP.
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Remarks

We note that the temperature dependence of the running time is hidden in the O(.) nota-
tion as we are interested in the algorithm for fixed temperature. If we want to make
the dependence on the inverse temperature β explicit, the running time takes the form
exp

(
O

(
log d log(1/ε)

log log(1/ε)

)
exp(O(β))

)
, where O(.) only hides universal constants.2 An im-

provement to an exponential dependence in β should not be expected due to the QMAEXP-
hardness of the ground energy problem [11]. The ground energy can be approximated
by the free energy for a large value of β. In particular, by reduction of the ground state
problem to the free energy problem, we establish QMAEXP-hardness of the infinite translation-
invariant free energy problem with the temperature as an additional problem input. This
shows that, unless QMAEXP = EXP, no algorithm can have a running time of the form
exp(polylog(β, 1/ε)).

To appreciate the algorithm we use to prove Theorem 1, it is instructive to consider first
a naive algorithm for this problem sometimes called exact diagonalization. The idea of this
algorithm is to consider the Hamiltonian H[1,n] =

∑n−1
i=1 hi,i+1 restricted to only n particles.

Computing the free energy per particle fβ,n of H[1,n] (for any value of β) can be done in
time polynomial in dn by explicitly writing the dn × dn matrix H[1,n]. The sequence fβ,n

does converge to fβ as n→∞, but the convergence is in general slow with an error decaying
as 1

n due to the missing interaction term at the boundary. As a result, for a desired precision
ε, we obtain a runtime which is exponential in 1/ε. In order to obtain the subpolynomial
dependence on 1/ε in Theorem 1, we need to develop a more refined algorithm.

1.2 Related work
In recent years, there have been multiple works about computing the free energy (or equi-
valently the partition function) at finite inverse temperature for a given Hamiltonian. In
particular, for local Hamiltonians on an arbitrary bounded-degree graph, algorithms have
been developed in [15, 12, 18] with performance guarantees when the inverse temperature β

is below some critical inverse temperature. The runtime of these algorithms is polynomial or
quasi-polynomial in the number of particles and in 1/ε. These works rely on the so called
cluster expansion, which, at its core, is a Taylor expansion of the partition function at β = 0.
Truncating this expansion at a certain order and bounding the remainder terms allows for
the approximation of the free energy for β small enough. Indeed, the sum of remainder terms
no longer converges if β is too large which introduces a critical inverse temperature above
which such algorithms do not have convergence guarantees.

However, a different method was used in [16] to obtain an algorithm for all temperatures
for one-dimensional finite quantum systems. This algorithm combines several results from
the analysis of 1D-systems: quantum belief propagation [13], together with a locality result
about Gibbs states which was only recently proven in general [6]. For a system of n particles
in 1D, the running time of the algorithm is n( 1

ε )O(1), where O(1) is a constant that depends
exponentially on β. This algorithm can readily be applied to the infinite translation-invariant
chain by setting n = 1/ε and this leads to an algorithm that is polynomial in 1/ε. For its
implementation, the algorithm involves several choices of length scales to ensure convergence
and numerical integrations to obtain the operators from the belief propagation.

2 The dependence is worse when computing marginals of the Gibbs state, see full version [8].
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In a different regime, classical algorithms have been designed in [7] to compute the free
energy of dense Hamiltonians based on convex relaxations. These algorithms have a runtime
that is exponential in 1/ε.

Besides this line of work on provably convergent algorithms to which our work shall also
contribute, there are numerous algorithms that effectively address the problem despite having
no convergence results or only in special cases. For the free energy problem this includes most
notably Quantum Monte Carlo methods [24, 23]. These probabilistic algorithms lack rigorous
results on their runtime except for few special cases and are known to fail for Hamiltonians
that have the so-called sign problem. Another example of effective algorithms for the ground
state energy problem (β = +∞) in one dimension are tensor networks and the DMRG
algorithm [26, 20]. The convergence of a related algorithm to the ground state energy has
been proven under the additional assumption that the Hamiltonian is gapped [17].

1.3 Proof technique
Before giving an overview of the algorithm establishing Theorem 1, it is worth mentioning
that the analogous classical problem has a very simple solution. In fact, using the technique
of transfer matrices (see e.g. [9]), for any β the free energy per particle can be obtained from
the eigenvalue of a simple d× d matrix and thus the problem reduces to standard numerical
algorithms applied to some fixed matrix. This implies very efficient algorithms for any β

including β = +∞.
However, the quantum case is significantly more complicated. This is illustrated for

example by the fact that, when β = +∞, the problem is QMA-hard, and also that the
simple Markov property for classical Gibbs states in one-dimension does not hold in the
quantum setting. In his seminal work, Araki [3] proposed a quantum analogue of the transfer
matrix, but it is a linear map between infinite-dimensional spaces. In our algorithm, we use
a finite-dimensional approximation to this map. Our main technical result is to prove that
the spectral radii of these finite-dimensional approximations converge superexponentially fast
to e−βfβ(h). The algorithm (see Algorithm 2) is then simply to choose the finite-dimensional
approximation parameter L for the transfer matrix as a function of the desired precision ε

and then compute the spectral radius of the corresponding linear map.

Algorithm 2 Algorithm for computing the free energy per particle. The constant C is a
number that can be obtained from our proofs.

Parameters: Inverse temperature β, universal constant C

Input: d local dimension, Hamiltonian term h ∈ Cd2×d2 such that ∥h∥ ≤ 1, error ε

Output: f̃β approximation to the free energy fβ(h)
1 L← log(1/ε) exp(C(β + 1))/ log(log(1/ε)); /* parameter for approximation */

/* matrix representation of linear map from CdL−1×dL−1
to itself: */

2 L∗
L(·)← trL

(
e−βH[1,L]/2eβH[2,L]/2(1⊗ ·)eβH[2,L]/2e−βH[1,L]/2)

;
3 rL ← spectral radius of L∗

L ;
4 f̃β ← −(log rL)/β ;

To analyse the algorithm we make extensive use of Araki’s expansionals [3] to show that the
marginal ρL on the first L−1 sites of the infinite Gibbs state, is an approximate eigenvector of
the finite-dimensional map L∗

L, i.e., that ∥L∗
L(ρL)− e−βfβ(h)ρL∥1 decays superexponentially

fast in L. By using variational expressions of the spectral radius of positive maps (so
called Collatz-Wielandt formula), this allows us to show that the spectral radius of L∗

L
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is superexponentially close to e−βfβ(h). We note that standard perturbation bounds for
eigenvalues of non-normal operators have a very bad dependence on dimension, and are thus
not usable here, see e.g., [5, Chapter VIII]. To prove that the corresponding eigenvector of
L∗

L is close to ρL, we establish a quantitative primitivity condition for L∗
L, i.e., we prove

that a sufficiently high power of L∗
L maps nonzero positive semidefinite operators to positive

definite ones. Using tools from the Perron-Frobenius theory of positive operators – more
precisely the Hilbert projective metric – , this allows us to show that ρL is superexponentially
close to the eigenvector of L∗

L associated to its spectral radius.
Let us also mention that the above techniques based on [3] are specific to one dimension.

In particular, the results in there are related to the absence of thermal phase transitions,
which do occur in higher dimensions so an extension of this approach to higher dimension
is not possible, see also [21, 22] for hardness results of the classical partition function on
bounded degree graphs.

1.4 Numerical implementation
We also implement our algorithm and run it on a Hamiltonian for which the free energy
function is known exactly. We observe very small errors (machine precision) already for
moderate choices of L. We also observe that for this example the scaling of the error with
inverse temperature is better than the worst-case estimates derived theoretically.
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