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—— Abstract
Local to global machinery plays an important role in the study of simplicial complexes, since the
seminal work of Garland [11] to our days. In this work we develop a local to global machinery for
general posets. We show that the high dimensional expansion notions and many recent expansion
results have a generalization to posets. Examples are fast convergence of high dimensional random
walks generalizing [2,14], an equivalence with a global random walk definition, generalizing [6] and a
trickling down theorem, generalizing [20].

In particular, we show that some posets, such as the Grassmannian poset, exhibit qualitatively
stronger trickling down effect than simplicial complexes.

Using these methods, and the novel idea of posetification to Ramanujan complexes [18,19], we
construct a constant degree expanding Grassmannian poset, and analyze its expansion. This it the
first construction of such object, whose existence was conjectured in [6].
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1 Introduction

High dimensional expanders are at the focus of an intensive recent study. What is a
high dimensional expansion phenomenon? We argue that the high dimensional expansion
phenomenon is the situation when certain global properties of a high dimensional object, such
as fast convergence of random walks, are determined by certain properties of its marginals,
i.e., by local properties of its “links”, which are “small” substructures that compose it and
correspond to local neighborhoods of the global object.

This philosophy, that the global behaviour of a simplicial complex is determined by
the behaviour of its local links, was present in many recent researches in mathematics
and computer science [2,7,10-14,20]. This yoga was initiated in the pioneering work of
Garland [11], who used, in the language of this paper, expansion of links in simplicial
complexes to deduce vanishing of cohomologies, and since then had found many applications.
This local to global philosophy for simplicial complexes is by now well studied. Developing
such a theory beyond simplicial complexes and exploiting its consequences to the study of
high dimensional expansion of more general objects is the first main goal of this work.
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A more general framework in which one can study high dimensional expansion is the
framework of general posets as was suggested by [6,17] etc. The most notable example of
an expanding poset, which is not a simplicial complex, is the Grassmannian Poset. It was
recently studied in relation to proving the 2-to-1 games conjecture [8,9,16,17] . However, in
this more general setting what does it mean for the object to be a high dimensional expander?
Can we still adopt the yoga of local to global behaviour in the general case?

The work of [6] defined high dimensional expansion as a global property which roughly
occurs when two certain related random walks defined on the poset (the up-down walk and
the down-up walk) are “close” to each other with respect to a natural norm. [6] show, under
some assumptions, that this global definition coincides with an earlier (two-sided) local
definition in the case of simplicial complexes.

The focus of our work is to define high dimensional expansion for general posets as a
local to global property. Namely, we say that a general poset is a high dimensional expander,
iff all its links, which are posets of lower dimensions, possess certain expansion properties.
We further show that in such a case there is a way to deduce global properties of the poset,
such as fast convergence of random walks on the poset, by local expansion properties of its
links. This is the philosophy we advocate in this work: For this we need to explain what do
we mean by general posets; we should then define their links; and then we have to show that
expanding links imply that many global properties of the poset are dictated by the local
properties of its links.

A central challenge is to find the correct axioms a poset should satisfy in order to have a
certain property of interest. We do it in three levels of generality: structural axioms (see
below in this section) and axioms on weights which generalize the former axioms.We show
that with the correct axiomatizations the main expansion theorems of [2,6,14,20] generalize.
These results can serve as a tool box for future works on the subject.

Among these generalizations, notable is the generalization of Oppenheim’s Trickling
down [20]. In this generalization different posets exhibit qualitatively different behaviours.
For some posets, such as the Grassmannian poset, the expansion improves while going down
the links.

Finally, we use the tools we develop in this work to construct a family of expanding
high dimensional bounded degree posets that are not simplicial complexes. This is the first
construction of such an object, whose existence was previously conjectured in [6]. This
construction is achieved by sparsifying the Grassmannian poset using a high dimensional
expander.

1.1 Posets; Links, Random Walk operators and regularity properties

We start by briefly recalling what are posets, and their basic properties (see also Section 2).

1.1.1 Posets and Graded Posets

A poset (P, <) is a set P, together with a binary order relation < . We say b covers a if a < b
and there is no intermediate ¢ with a < ¢ < b. A subposet is a subset of a poset, endowed
with the restriction of the binary relation <.

Two useful examples of posets are simplicial complexes and Grassmannian poset.

The simplicial complex Poset. For a given set S, all its subsets form a poset with respect
to the containment order C . Any subposet of such a poset, for an arbitrary underlying set
S, is called a simplicial complex.
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The Grassmannian Poset. Let V be a space over a field F, the collection of its subspaces
forms a poset, again with respect to containment. The poset is finite when F is finite and
dimp(V) < 0o0. A Grassmannian poset is any subposet of this poset, for an arbitrary V.

A graded poset is a triple (P, <, p) such that (P, <) is a poset, together with a rank
function (See Section 2.2). For simplicial complexes the rank of a set A can be taken to
be p(A) = |A| — 1. For the Grassmannian poset, we can also define a rank by putting
p(U) = dlm[F(U) — 1.

We put P(i) = p~!(i), and C* = RP® the space of real functions on P(i). We write
1 € C for the constant function 1. The rank of P is the maximal d for which P(d) # (. A
graded poset is said to be pure if there exists d such that for every element x € P there exists
y € P(d), x <y. In this case P(d) is the set of maximal elements. Throughout this work all
graded posets we consider, unless specified differently, are assumed to be finite and pure.

1.1.2 Weighted Posets and Weighted Random Walks

A weighted graded poset is a triple (P, <, p,m, p) where (P, <, p) is a graded poset, together
with a weight function m : P — Ry, and transition probabilities p : P x P — Ry
which satisfy some relations (for the exact definition, and for other definitions in this
subsection, see Subsection 2.3). A weight scheme in which the transition probabilities
Prsy = F0T Covtre Ty ] is called standard, and a graded poset with such a weight scheme
is called standard graded (weighted) poset. The weight function endows C* with a natural
inner-product (-,-). The associated norm is denoted || - || . The “standard” transitions p;_,

are only for y covered by x, other transitions are zero.

1.1.2.1 The Up, Down Operators and the associated Random walks

The data of weights and transition probabilities allows defining the Up and Down operators.

The Up operator Uy maps C* — C**+1, while the down operator Dy, maps C* to C*~1. Both
mappings are defined using the structure constants of the weighted poset.

Combining these two operators we obtain two random walks which are defined on the
weighted posets: The up-down random walk operator, M,:r = Dy11Uy, corresponds to the
random walk on P(k) defined as follows: given a x € P(k), choose randomly (according to
the parameters of the weighted poset) y € P(k + 1) such that y covers z and then choose
randomly (according to the parameters of the weighted poset again) z € P(k), that is covered
by y.

The down-up random walk operator, M, = Uj_1 Dy is similarly defined, only that now
starting from x € P(k), we first choose randomly z € P(k — 1) that is covered by x, and
then choose randomly y € P(k) such that y covers z.

We also define the [th Adjacency operator A; : C* — C!, which is a non lazy version of
the up-down walk. We write A = Ay, for the zeroth adjacency operator (also called the
adjacency operator). We normalize these operators so that the largest eigenvalue is 1.

1.1.3 Links and induced weight functions

Let P be a poset, and = € P. The subposet P, made of x and all elements y > z, is called
the link of x. If P is graded, then so is P,, and the induced rank function p, is given by

pa(y) = p(y) — p(z) — 1.
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If P is in addition weighted, then we can also induce the weight function and transition
probabilities (for exact definitions see Section 2.4). We write C? for the space of real functions
on P, and write (—,—),, || — || for the induced inner products and norms, we can also
define the operator D, ;, U, ; as above, only with m,, p,, instead of m, p. The localization is

the linear map from C* to L@~ which maps f to f,, defined by f.(y) = f(y) for y € P,.

1.1.3.1 Basic Localization

The starting point of what is now known as Garland’s technique, is the observation [11] that
the global inner products (f,g), (Df, Dg), (Uf,Ug), in the case of simplicial complexes,
can be written as sums of local inner products over links. In this work we investigate to
which extent these results can be generalized to more general posets.

» Proposition 1.1 (Basic Localization Property). Let P be a graded weighted poset of rank d.
Let -1 <k<l1<d, and f,g € C'. Then

1. <f7 g> = ZmeP(k) m(x)<fa:>gz>w
2. (Duf,Dug) = 3 pepiy @) (Dag—k—1fz, Dojg—k—19z) -

1.1.4 Regularity properties of posets

Instead of providing the rather technical assumptions on the weights and transition prob-
abilities of the weighted posets which give rise to the different localizations, we describe
regularity properties of the structure of posets which are important special cases of those
localization assumptions, and are the motivation for them. For more details on the regularity
properties, see Subsection 2.5. In the body of the article we shall describe the more general
assumptions, and verify that they indeed generalize these structural properties.

1.1.4.1 Lower regularity

A graded poset P is said to be lower reqular at level i for i > —1, if there exists a constant
N[, such that every x € P(i), covers exactly N, elements of P(i — 1). The poset is lower
reqular if it is lower regular at level ¢, for every ¢« > —1.

1.1.4.2 Middle regularity

A graded poset P is said to be middle reqular at level i, i > —1, if there exists a constant
NPid such that for any z > z with x € P(i + 1),z € P(i — 1) there are precisely N4
elements y € P(i) which cover z and are covered by x. P is middle regular if it is middle
regular at level ¢ for each ¢ > —1.

1.1.43 A — V regularity

P is A — V regular at level i, i > —1, if there is a constant N/*7Y, such that for any
y1,y2 € P(i) which are covered by an element z € P(i + 1) there are precisely N/\7V
elements z € P(i — 1) covered by both. P is A — V regular if it has this property at each at
level ¢ > —1.

A regularity. P is X regular if there exists a constant R~ = R™~(P) such that for each
u € P(2), y1 # yo € P(0), with u > y1, 9, there are exactly R elements z € P(1) satisfying
Y1,Y2 <z < u.
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A poset is regular if it is lower, middle and A — V regular. A poset P is 2—skeleton
reqular if it is lower regular at levels 1,2, middle regular at level 1, and A regular.

One can also consider local regularity properties, which means that the links are also
required to be regular, and in a uniform way (which may depend on the rank). For example
P is locally 2—skeleton regular if for all s € P(< d — 3), Ps is 2—skeleton regular with
regularity structure constants which depend only on the level of s.

1.1.4.4 Regularity of the simplicial complex poset and the Grassmannian poset

A simplicial complex is regular and 2—skeleton regular. The regularity constants are
N =i+1, NMd =2 N "2V =1 R*=1. Also a Grassmannian poset over F, is regular

and 2—skeleton regular, with constants N;” = [i + 1],, N™d =g+ 1, N*?V =1, R* = 1.

1.1.5 Definitions of expanding posets

We will study different notions of expanding posets. A poset is connected if M, induces an
irreducible Markov chain.
The following global definition of an expanding poset was given in [6].

» Definition 1 (Eposet - Global expanding poset). A poset P of rank d is a A-global eposet if
for all1 < j <d—1 there exist constants r,0; such that

I Dj+1U; = 0;Uj1Dj = rjldes [[< A

In this work we suggest an alternative, local to global definition of an expanding poset,
generalizing the local to global definition that was studied for simplicial complexes.

» Definition 2 (One sided local spectral expander). Let P be a standard, weighted, graded
poset of rank d. Then P is called one-sided \-local spectral expanding poset if P and any link
P,, for x € P(i), i <d — 2, are connected, and the non trivial eigenvalues of the adjacency
matriz of the link Py, for every x € P(i), i < d — 2, are upper bounded by \.

» Definition 3 (Two sided local spectral expander). Let P be a standard, weighted, graded
poset of rank d. Then P is called two-sided [v, \]-local spectral expanding poset if P and
any link Py, for x € P(i), i < d — 2 are connected, and the non trivial eigenvalues of the
adjacency matriz of the link P, for every x € P(i), i < d —2, lie in [v, )] .

1.1.5.1 Local spectral expansion in the non standard setting

The current definition of local spectral expansion in posets assumes that the adjacency matrix
is diagonalizable with real eigenvalues. Moreover, for most applications we need assume that
this matrix is self adjoint. This happens automatically in the standard setting, but it does
not need to happen more generally. An alternative way to define the local spectral expansion
of posets can be by using the spectral gap of M;.m x € P(< d— 2), which is always self
adjoint with respect to the natural inner product induced from the weights, and is positive
semi definite. Such a definition does not assume a standard weight scheme. It should be
noted that analyzing the spectrum of M is not equivalent to analyzing the spectrum of the
adjacency matrix. It is equivalent when P is standard and locally lower regular at level 1.
Then the spectra of M T and of the adjacency matrix differ by some scaling and shifting. In
this work we chose to define local spectral expansion according to the spectra of the link
adjacency matrices, but many of the tools we have developed apply also for the alternative
choice.
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1.2 Local to global theorems for general posets

For the simplicial complex poset the following three theorems form a cornerstone in the
study of local to global properties, and have led to several recent breakthroughs in computer
science, such as counting bases of matroids [4] and optimal mixing in Glauber dynamics [3,5].

Random walks convergence from one-sided expanding links: One sided local expansion in
all links imply fast convergence of all high dimensional random walks [2, 14].
Trickling-down Theorem: If all top most links expand, and the complex and its links are
connected, then the global underlying graph of the complex expands [20].

Equivalence between global random walk convergence and two-sided expanding links: All
links are two-sided expanders iff at each degree the Up-Down walk operator is almost
identical to Down-Up walk operator [6].

In what follows we generalize the above theorems for general posets which satisfy the
previously mentioned localization assumptions (or in particular the previously defined
regularity properties) and whose links are sufficiently expanding. Not only do we obtain
generalizations of the above local to global theorems for general posets, but we also observe
that different posets behave qualitatively different under these generalization. The different
behaviour might have desired effects. One notable example is the Trickling Down theorem.
This theorem for simplicial complexes, that was known prior to our work, bounds the
expansion of the global complex by the expansion of its links, but in general the global
expansion tends to be inferior to the expansion of the links. We show that for general posets
with certain regularity conditions, that occur e.g, in the Grassmannian poset, the expansion
of the global poset is superior to that of the links. This plays an important role in our
construction of bounded degree expanding posets that are not simplicial.

1.2.1 Fast Random walk convergence from one sided local expansion for
posets

Our first main theorem is that we get fast mixing of random walks on general posets from
local one-sided spectral expansion in links. This is the first result of mixing of random walks
for general posets that relies only on one-sided local expansion in links. Previous works that
discussed expanding posets defined them to be expanding using global properties of their
random walks [1,6]. In particular these previous works relied on two sided global expansion
bounds.

For simplicity we state the theorem for standard regular posets, although it holds for any
poset (not even standard) satisfying the more general Up Localization property.

» Theorem 1.2. Let P be a standard regular poset which is one sided X local spectral expander
with X small enough then:

m
+
OB £ 1) 1 (o} + Mo~ me R
with the constants
_ 1 mid _ ; l mid
N Nmid _ q N- Nmzd N7 —1
ay=1- = ]j\m_,v R =] W
I+1 j=p 7 +1+'r j=r+1 J
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1.2.1.1 Implications for Random walks in simplicial complexes and in the
Grassmannian poset

For one-sided A—local expanding simplicial complexes we recover a result of [14]: In particular
forany fe CF, f 11

(MEf )< (= +=—5=N I I

k+2
For one-sided A—local expanding Grassmannian posets we get for any f € C*, f L 1

so that the largest eigenvalue of M, | is at most kel 4 EHL), which is [14, Theorem 5.4].

[k + 1],

MELD < (g,

+ Sk, QN F -

1
i=0 ~ [k+2 q
[k+1]q

[k+2]q

where S(k,q) = SF s Note that as q grows, S(k,q) = k+ 1+ O(=), and
1
L

1.2.1.2 Random walks from sequence of spectral gaps on links

We generalize the recent result of [2], which bounds the second eigenvalue of M ,j by the
sequence of bounds p; on the second eigenvalues of the adjacency matrices of level 4 links, to
general posets. Again, for the clarity of the introduction we state the result in the special
case of standard regular posets.

» Theorem 1.3. Let P be a standard reqular poset. Suppose that for all i, the second
etgenvalue of any adjacency matriz of a level ¢ link is bounded from above by ;. Then

k=1 n— ,—1 k—1
MO <1 [ V2L T ).
j=—1 Jj+2 j=-1
1.2.2 Equivalence between global RW convergence and two-sided
expanding links

Our next main theorem is a generalization of theorem of [6] showing that for simplicial
complexes global random walks expansion is equivalent to two-sided local spectral expansion
in links.

The equivalence between two-sided local spectral expanders and eposets proven in [6] was
for simplicial complexes and decomposable posets. Now, that we have defined local spectral
expanding posets, and developed general local to global machinery we can generalize the
equivalence between two-sided spectral expanders and eposets to a more general setting. We
are following similar ideology to the one studied by [6] and applies it to our more general
setting.

» Theorem 1.4. Suppose P is standard and regular poset then P is two-sided A-local-spectral
expander iff it is O(\)-eposet.

1.2.3 Trickling Down theorem from local expansion for posets

We generalize the notable Trickling-Down theorem of Oppenheim [20]. Finding the correct

axiomatization that allows this generalization is more tricky than in the previous situations.

But it results with higher gain. We show that different posets behave qualitatively different
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under the trickling down process, and we learn a surprising fact: Unlike the simplicial complex
case, where the bound for expansion deteriorates as we go down the links, for posets with
large local lower regularity, such as the Grassmanian poset, the global expansion is improving
over the links.

Again we state the theorem in this section under simplifying assumptions, we also write
only the “one-step” version of the theorem, leaving the full theorem with the repetitive
application to the full version of this paper [15].

» Theorem 1.5. Let P be a standard graded weighted poset. Suppose that P is 2—skeleton
regular, with constants Ny , Ny , N/ and R*. Assume in addition that P and any link P,,
for x € P(0), are connected, and that the non trivial eigenvalues of the adjacency matriz of
the link P, lie in [v,pu]. Then

v (N;N;—N{"?)R*(R*—l) b (N;'Nf—N{”i'd)R*(R*—l)
Ny—1  (NHU-1)(N)2 (N —1)2 <A< Ny =1 (NU=1) (N2 (N —=1)2 .
1-v 1—p

1.2.3.1 Implications for Trickling down for simplicial complexes and for
Grassmannian poset

When P is a simplicial complex we obtain the following upper and lower bound on the non
trivial eigenvalues of the adjacency matrix: ;%5 < A < ﬁ7 reproducing the result of [20].

Moving to the Grassmannian poset, we obtain the following upper and lower bound on the
-

The map z — q(%w), for ¢ > 1, has two fixed points, 0 and q%ql. The former is attractive
and the latter is repulsive. Thus, if we have a rank d locally connected Grassmannian poset,
whose d — 2 links have all their nontrivial eigenvalues in [v, u], then if p < q(;ll, the non
trivial eigenvalues become smaller in absolute value as we consider links of elements of lower

non trivial eigenvalues of the adjacency matrix: ﬁ <A<

and lower ranks. For simplicial complexes such phenomenon existed only for the negative
eigenvalues. These ideas, and % being a critical value for the trickling process, will play a
role in the analysis of Section 3 below.

1.3 A construction of non simplicial bounded degree expanding posets

Recall that the Ramanujan complexes [18,19] are bounded degree expanding simplicial
complexes. They can be seen as a sparsification of the complete simplex. It was asked by [6]
whether a similar sparsification exists for the Grassmannian poset, and can the expansion
parameter be arbitrary small. Namely, whether it is possible to construct a subposet of the
Grassmannian that is expanding and is of bounded degree.

In Section 3 we provide an explicit sparsification of the complete Grassmannian, via a
process which we call posetification. We prove, using the tools developed in this work, that it
is indeed expanding, with expansion parameters of magnitude %, partially answering the
question of [6]. To the best of our knowledge, this is the first proof of existence, and the first
known construction, of a bounded degree expanding subposet of the complete Grassmannian.

The posetification process which we describe below uses the sparsification for simplicial
complexes obtained by a Ramanujan complex, to sparsify the the complete Grassmannian.
The analysis of expansion relies heavily on the general trickling down we develop, and on the
fact it amplifies expansion when one goes down the links, as opposed to the simplicial case.
We then use the other tools we developed to bound the spectra of random walk operators
on it.
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» Theorem 1.6 (Informal, For formal see Corollary 3.2). Let q be a prime power and d a
natural number. Let X be a d—dimensional Ramanujan complex of thickness' Q, where Q
1s large enough as a function of q,d. Then the posetification Vx is a bounded degree global
expanding, and a two-sided local spectral expanding Grassmannian poset. The second largest
etgenvalue of each link is at most %1 + o(1), while the lowest eigenvalue is at least —%.

1.4 Plan of the paper

Section 2 provides basic definitions for graded weighted posets, including those of links,
localizations and regularity properties, and proves basic localization results a-la-Garland [11].
In Section 3 we construct a bounded degree expanding Grassmannian poset. Due to space
limitations the Random Walk theorems , The Tricking down theorem and the equivalence
theorem between local to global expansion definitions for posets are excluded from this short
conference version.

2 Weighted graded posets: definitions, regularity properties and the
basic decomposition

We begin by reviewing the standard definition of partially ordered set (poset), and the
slightly less standard notions of graded poset, and weighted graded posets. We then describe
some additional properties that many posets share, and will play a role in our study.

2.1 Posets

A poset (P, <) is a set P together with a binary relation < which satisfies
1. Reflezivity Va € P, a < a.
2. Antisymmetry If a < b and b < a then a = b.
3. Transitivity If a < b and b < ¢ then a < c.
We write a < b (a is strictly less that b) if a < b and a # b. a is covered by b (equivalently, b
covers a) if a < b but there is no intermediate ¢ with a < ¢ < b. In this case we write a <1 b.
We can similarly define the relations >, >,>. For z € P we write N~ (z) for the number of
elements covered by z. A minimal element for a set of elements {aq}q is an element b in the
set, which is smaller or equal all other elements in the set. A minimal element is a minimal
element for all the elements in the poset. Mazimal elements are similarly defined.

The poset is finite if the underlying set is. A subposet is a subset of a poset, endowed
with the restriction of the binary relation < .

A chain from y to x is a tuple ¢ = (e, ..., ¢n) where each ¢; € P, ¢; = z,¢,, = y and
¢i < ¢i4+1 for all 4. A chain is maximal if for all ¢, ¢; < ¢;41. Cy—, denotes the collection of
chains from y to z.

» Example 2.1. Examples of posets are the N, Z,R together with the standard orders. The
former has a unique minimal element 1. The others do not have. Neither have a mazximal
element.

For a given set S, all its subsets form a poset with respect to the containment order C .
This poset is finite precisely when |S| < co. The unique minimal element here is 0, and the
unique maximal is S. Any subposet of such a poset, for an arbitrary underlying set S is called

! the thickness of the Ramanujan complex is the number of top cells a given codimension 1 cell touches,
minus 1

78:9

ITCS 2023



78:10

Garland’s Technique for Posets and High Dimensional Grassmannian Expanders

a simplicial complex. The subposet obtained by restricting to subsets of size at most k has
the sets of size k as maximal elements. We are thinking of subposets as downword closed
with regard to the original poset.

Let M be a matroid, then its independent sets form a poset with respect to inclusion.
This poset has the empty set as the unique minimal element, maximal elements are the bases,
but usually there is no unique mazximal element. This poset can naturally be considered as a
simplicial complex whose underlying set is (the self independent) elements of M, and whose
simplices correspond to independent sets.

Let V be a space over a field F, the collection of its subspaces forms a poset, again with
respect to containment. The poset is finite when F is finite and dimp(V') < oco. The unique
minimal element here is the 0 vector space, and the unique mazximal is V. A Grassmannian
poset is any subposet of this poset, for an arbitrary V. The subposet obtained by restricting to
sub vector spaces of dimension at most k has the vector subspaces of dimension k as mazximal
elements.

2.2 Graded posets

A graded poset is a triple (P, <, p) such that (P, <) is a poset, together with a rank function
p: P — Z>_; which is an order preserving map. We further impose that

1. If a < b then p(b) = p(a) + 1.

2. There is a single element x € p~1(—1).

We put P(i) = p~1(i), and C* = RP(® the space of real functions on P(i). We write 1 € C°
for the constant function 1. The rank of P is the maximal d for which P(d) # 0. A graded
poset is pure if there exists d such that for every element « € P there exists y € P(d), = < y.
In this case P(d) is the set of maximal elements. The ith skeleton, denoted P(< i), is the
subposet p~!([—1,4]). Throughout this work, all graded posets we consider are finite and
pure.

» Example 2.2. Returning to Example 2.1, for a given set S define a rank function p : 25 —
Z>_1 by putting p(A) = |A| — 1. If S is a matroid, we may use the same rank function,
restricted to independent sets. For the vector spaces example we can define a rank by putting
p(U) =dimp(U) — 1.

2.3 Weighted graded posets

We now turn to consider weighted posets, following [6]. A weighted poset is a triple (P, <, m, p)
where (P, <) is a poset, together with a weight function m : P — R, , and transition
probabilities p : P x P — R>( which satisfy

1. py,, > 0if and only if y > z.

2. Wy, Yy Pyse = L.
3. For any = € P which is not maximal,

m(z) = > pyem(y). (1)

y>x

Thus, m is determined by its values on maximal elements and the transition probabilities. In
particular, any choice of weights m for maximal elements of P, can be extended to a weight
function m satisfying
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i.e. all transition probabilities from y equal ﬁ We call such a weight scheme a standard
weight scheme, and the weighted poset is called a standard weighted poset.
We define U : R” — R” to be the Markovian transition operator,

VgeR, ye P, (Ug)(y) =D by .9(x).

<y

We similarly define D : R — R

m
v eRP, e P, (D)) = Y0 P g
iz m(@)
For a maximal chain ¢ = (¢1,...,¢y) from y to & we set

m—1

p(c) = H Peiyr—es
=1

A weighted graded (pure) poset (called measured poset in [6]) of rank d is a weighted and
graded poset P such that m(x) = 1. We write
Ci Cl — Ci_l, U =U

mi:m|p(i), D, =D Ci :Ci—>C’i+1.

» Observation 2.3. Let P be a (finite, pure) graded weighted poset of rank d. Then for any
k<l<d, and x € P(k),

m)= Y > pleym(y).
yeP(l) ceC(y—x)
Consequently, each m; is a probability distribution. In addition, for ally € P(1),
o> plo=1 (2)

z€P (k) ceC(y—x)

The weight function m induces a non degenerate inner product on C* given by

Vi,g€Ch, (f,9) = m(z)f(x)g(x).

zeP;
We write || — || for the induced norm.

» Lemma 4. Under the above assumptions, U; is dual to D;y1.

Proof.
(fUg) =Y. m@)f(2)(Uig)(w) =
2€P(i4+1)
= > m@)f(2)Y P9 =
zeP(i+1) y<lz
= Y miy) (Z %J‘(@) 6) = (Dis f.9). <
yEP(i) z>y
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» Lemma 5. Whenever defined, D;1 = U;1 = 1. In addition, for every f € C°

Do(f) = (f,1).

Proof. By the definition of the transition probabilities,

= pr—w =1,

y<x

and by (1)

(D)) =3 m)Pye _

s m(@)

When « is the unique minimal element, for every y € P(0), p,_,, = 1 and m(x) = 1. Thus,

Vf e’ Dof(x) = m(y)fy) = (f,1). <

y>*

2.3.1 The upper and lower walks

Using the operators (D;, U;); we can define natural random walks on P(7). The i—th lower
walk is the random walk on C?, i > 0 induced by M; = U;_1D;, the i—th upper walk is the
random walk on C?, for i less than the rank of P, is random walk induced by MZJr =D;1U;.

» Lemma 6. Consider f € C*. The upper and lower walks can be described as follows.

(ML) () = (Z ’””“) e Y (Z m”““) i@ ®
z#Y

= mw) oeP ) s, M)

M7 () = 3 (Z ““) m(z)f (z). (1)

2€P(i) \z<z,y m(z)
Proof
DU =3 %(Uim)(z) _
z~>y m(z) z—xlPz—y
I O BEES OIS L
2>y <z xeP(i) \z>z,y

The last equality is obtained by changing the order of summation. (3) is obtained from the
last expression by separating into the cases = y and z # y. Similarly,

(Ui Di(£))(y) = Y pyosa(Dif)(2) =

z<y

N LY

z<y >z zeP(i)

(m(w) ) p;f’f) f@). -

z<x,y

» Observation 2.4. M , My | have the same non-zero eigenvalues, including multiplicities.
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Indeed, this is always the case for two operators of the form AA*, A*A, and
M;f = Dy1Up, My, = UpDpy1, Diyr = Uy
The multiplicity of the zero eigenvalue can be different.

» Example 2.5. In case P is a standard weighted graded poset, a single step of the lower
random walk from y is obtained by choosing a uniformly random z covered by y, and then
choosing x which covers z, according to the transition probabilities % A single step
of the upper random walk from y is obtained by choosing a random z which covers y, with

probability %, and then choosing uniformly a random element x < z.
An immediate corollary of Lemma 5 is

» Corollary 2.6. If P has a unique minimum x € P(—1) then
My My = M, .

» Definition 7. We define the [-th adjacency matrix of P by its action on f € C*:

AW =3 ( > ’””““) 1), (5)

2\ 2 T p,mly)

2 The zeroth adjacency matriz is sometimes referred as the adjacency matriz, and we
sometimes write only A.

1 € C! is always a eigenvector for eigenvalue 1 of the adjacency matrix. The eigenvalues of
eigenvectors which are not constant are called non trivial eigenvalues. If the weight scheme
is standard the adjacency operator is self-adjoint. If, in addition, each z € P(l + 1) covers
the same number of elements N~ (2) = N, ; (this property will be called ’lower regular’ in
what follows), then 4; is related to M;" by

—1
Al = H»%M[F +
Nl+1 +1

1

Idet. (6)

2.4 Links and localization

Let P be a poset, and z € P. We will call the subposet made of all elements y > x the link of
x and we shall denote it by P,. If P is graded, then also P,, and the induced rank function
P is given by

pa(y) = ply) — pla) — 1.

If P is graded, weighted (finite and pure), then we can also induce the weight function and
transition probabilities by putting

mo() =20 S ), (7)

ceC(y—x)

2 In what follows, whenever we work with the [—th adjacency matrix we shall implicitly assume that
any z € P(I+ 1), for covers at least two elements, otherwise the adjacency matrix is ill defined. This
assumption is valid in almost all interesting applications.
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pz—>y ZceC(y%z) p(c)
ZcéC(z—)x) p(c)

(8)

(Px)z—w =

We need to verify that the properties of transition probabilities and weights hold for the
induced weights and probabilities. We will verify Property (1), the other properties are
straight forward:

m m(z) . Pzoy ZcEC(y%a:) p(c)
Z :c pr ' Z (.I') el p( ) Zcec(zﬂx) p(C)
)

:Zm;(lj;ay Z p(c)

z>y ceC(y—x)

— 20 Y bl =)

ceC(y—x)

zP>y

the one before last passage used (1) for m, and the last passage is just the definition of m,.
It is also straightforward to observe that the localization of a standard graded weighted
poset is “standard in rank 1” in the sense that-

» Observation 2.7. If P is a standard weighted graded poset of rank d, then for any
v € P(<d—2), and any z € P,(1), for any y € P,(0), with y < z

1
) = e BOw )
We write Ci = C*(P,) for the space of real functions on P,, and write (—, —),, | — || for

the induced inner products and norms, we can also define the operator D, ;,U, ; as above

only with m,,p, instead of m,p. The localization is the linear map from C? to i pla)=

which maps f to f,, defined by f.(y) = f(y) for y € P,.

A poset P is connected if the 0—th upper walk is irreducible, i.e. for any y,z € P(0),
there exists a power j > 0 such that the z entry of (MS')jey is non zero, where e, is the
vector whose w component is dy.,. P is locally connected if P and all of its proper links, for
any x of rank at most d — 2, are connected.

The following simple but powerful proposition generalized a classic result by Garland [11]
to our setting. It provides a decomposition of inner products and of inner products of the
operator D to sum of local terms.

» Proposition 2.8. Let P be a graded weighted poset of rank d. Let —1 < k <1 < d, and
f,g € CL. Then
1.

(frg)= > m@)(fe go)a 9)

xzeP(k)

(Dif, Dig) = Z m(z)(Da1—k-1fzs Do 1—k—192) - (10)
z€P(k)
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Proof. For (9),

Z m(z)(fe, ga)z = Z m(x) Z myg (y) fo(Y)92(y)

) 2€P(k) yeP, (I—k—1)
=Y w3 jflgyi S b | fwety)
xzeP(k) yEP, (I—k—1) ceC(y—x)
= > > m(y) > plo) | F(W)g)
z€P (k) yeP,(I—k—1) ceC(y—x)
= > m@fwew) | Y. > bl
yeP(l) z€P(k) ceC(y—x)
= Y m)fWe) = (f.9),
yeP(l)

the first three equalities and the last one follow from the definitions, the fourth one from
changing order of summation and the fifth one from (2).

For (2),
> m()Degk1fe Daok1gs)-
zeP(k)
=Y e Y w3 Ml MO ()
z€P(k) zeP,(I—k—2) Yy1,y2>x * ?
m (y1) (P, )y1 »amz (¥2)(P,)ys—a
= fy1)g(y2) m(z)
ylywzep(l) wEP(l—;:eqyl,yg zEPkZ,z<z mz(m)
m(z)
= fy1)g(y2) m(z)
ylywzep(l) :ceI;l—U, zEPkZ,z<cc m(:c) Z:CGC(zHZ) p(c)

<Y1,Y2

. m(yl) Z p(C) Py; -z ZCEC(I*}Z) p(C) m(yQ) Z p(C) Pys—a Ecé(‘,’(z%z) p(C)

R Sl Lcecw-nPe) M) 2 cec(ya—s) P(O)

> m)fy)mye)g(ye) > ﬁpyﬁzpyw Y p

c€C(y2—z)

y1,92€P(1) zEP(I-1), z<y1,y2 2€Py,, 2<x ceC(z—2)
1
= D mfemg) D PusPaoe
y1,¥2€P(1) z€P(I-1), z<y1,y2
m(y1)Py, o m(y2)Py, oz
_ v Py = (D\f, Dig).
D m@) Y AR ) Y — e () = (Dif Dig)
zeP(1—-1) y1>x ya>x

the third equality uses the definitions of the localizations of the weights and transition
probabilities, the second before last uses (2). |

2.5 Regularity properties and their basic consequences

In practice, many posets which appear in the literature and in applications have more
structure. In Subsection 1.1.4 we described several structural reqularity properties possessed
by many posets of interest. We now study the most basic properties of such posets. We will
see throughout this article that these additional structural properties allow generalizing many
non trivial results from the class of simplicial complexes to more general graded weighted
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posets. More precisely, in later sections we will generalize these structural properties to
properties of weighted graded posets. We will show that the more general properties yield
strong spectral consequences. Then we will see that standard weighted graded posets which
possess some of the structural regularity, also possess corresponding more general properties
of the weight schemes, hence their consequences.

Recall the regularity properties of Subsection 1.1.4. When P is lower regular, middle and
A — V regular, the corresponding structure constants are not independent. Indeed, for a
given z € P(I + 1), the number of triples (z,y, s) with « # y, 2> z,y, and x,y > s is, on the
one hand N, (N, — 1)N/*7Y, if we first count z,y and then s. But if we first count z,

N, (N4 —1). Thus

then s and then y we obtain N,

NO(Np—-1)
( 41— 1)N1A_>v

(11)

» Example 2.9. If P is a simplicial complex then it is lower reqular with N =i+ 1,
it is middle reqular with N™4 = 2 and it is A — V regular with N"?V = 1. If P is a
Grassmannian poset, where the ground field Fy has q elements, then it is lower regular with
N; = [i+1]y, it is middle reqular with N/™® = q+1 and it is A — V regular with N7V = 1.

Note that for a poset P which is lower regular at levels 1,2 and middle regular at level 1,
for every u € P(2),
Ny Ny
N{nid '

{a € PO)|e < u}| = (12)

Indeed, there are N, N; chains of length 2 descending from u, and by the definition of

middle regularity, they are grouped into groups of size Ni™d of chains having the same

endpoints. Thus, the number of different descendants of u is N]\zfrj\i’; .
1

If P is 2—skeleton regular then

_ NNy - 1)
o NgAp '
N{I“d

R (13)

-1
Indeed, given P(2) 5 u >y € P(0) we count pairs of the form

{(z,2) € P(0) x P(1)|z # y,ul>z>x,y}.

Ny N

omd — 1 choices for
1

On the one hand, if we first count z, and then z, we obtain, by (12)
NNy 1)R*. On

mid
Nl

the other hand, we can first choose z, there are N4 ways to do that. Then, there are

x, and then, by definition R~ choices of z. All together this number is (

N; — 1 choices for an element = # y covered by z. The total number is then N™d (N, —1).
Comparing the expressions, (13) follows.

For any poset property @, e.g. regularity, lower regularity at level 1, etc., we say that P
is locally @ if P, and all its links on which it is possible to verify property ) possess property
Q, and if () depends on parameters, e.g. N, , then the parameters of @) at the link depend
only on p(s). For example, being middle regular is equivalent to being locally level 1 lower
regular.

Another example is that a graded poset P of rank d is locally A regular if there exist
constants R, —1 < i < d — 3, such P and all its links P,, s € P(< d — 3) are A regular,

and moreover, the constants depend only on the level, in the sense that R~(P,) = R;\(S).
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A graded poset P is 2—skeleton regular if it is lower regular at levels 1,2, middle regular
at level 1, and N regular. Similarly it is locally 2—skeleton regular if for all s € P(< d — 3),
P; is 2—skeleton regular with uniform structure constants. The lower, middle and A — V
regularity constants at a link of level ¢ will be denoted Niy: Nig, N{f‘fd, respectively.

» Example 2.10. Simplicial complexes and Grassmannian posets are locally N reqular with
Rf\ =1 for all i. They are also locally 2—skeleton reqular, where for both types of posets
Ni; =Ny, N, =Ny, N7 =N Vi,

Z7

2.6 Expansion notions for posets

For a diagonalizable n x n matrix M with eigenvalues \; > Ao > ... > \,, we write
A(M) = max{Aa, | An|}-

We shall now provide local and global definitions of expansion in posets.

We first define local expansion notions.

» Definition 8. Let P be a standard®, weighted, graded poset of rank d. P is called one-sided
A-local spectral expander if P and any link Py, for x € P(< d —2) are connected, and the
non trivial eigenvalues of the adjacency matriz of the link Py, for every © € P(< d —2), are
bounded by A.

» Definition 9. Let P be a standard, weighted, graded poset of rank d. P is called a two-sided
[v, A]-local spectral expander if P and any link P,, for x € P(< d — 2) are connected, and
the non trivial eigenvalues of the adjacency matrix of the link P,, for every x € P(< d — 2)
lie in [v, A].

In [6] the following definition of expansion was given, and they termed posets which
satisfy this definition eposet. We shall call these posets global eposets, to distinguish them

from the local ones defined above, and because the definition is via a global criterion.*

» Definition 10. A weighted graded poset P of rank d is a A-global eposet if for all
1<j<d—1 there exist constants r;,6; such that

I Dj1U; = ;U1 Dj = rildes ||[< A

3 Posetification and constructions of sparse expanding posets

Let S be a set, and X a set of subsets of S, which includes the empty set, and is closed under
taking subsets. Such sets X are in natural bijection with simplicial complexes on the vertex
set S, and the poset structure on X is the containment order. Suppose we are given a poset
P and an order preserving association I — Py € P, I € X. Write Px for the posetification
of X which is the subposet of P defined by

Px ={ye P|3I € X st. y < Pr}.

3 In this definition and the next one we require P to be standard so that the adjacency matrices will be
self adjoint, and will thus be diagonalizable with real eigenvalues.

4 Note that this definition does not assume that the adjacency matrix of the links have real eigenvalues
hence it applies also to non standard posets.
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When X is endowed with a standard weight scheme the posetification is also naturally endowed
by a standard scheme, defined by putting m(Vy) = m(7), for any maximal simplex I.

It turns out that when the simplicial complex X is an expander, then Px inherits
expansion properties which depend on the expansion properties of X and of P.

We illustrate this idea in the following theorem, which, to the best of our knowledge, is
the first example of a sparse expanding Grassmannian poset.

» Theorem 3.1. Let X be a local spectral expander of dimension d, on the vertex set [n].
Suppose that X is locally connected®, and the links of all its d — 2-dimensional cells are
regular bipartite expanders, with a second eigenvalue bounded by €. Let V be a vector space
over F, with basis e1, ..., ey, and to each I C [n] associate the vector space

Vi = span{v;|i € I} C V.

Then the posetification Vx is a Grassmannian poset which satisfies:

1. It is a subposet of the Grassmannian poset on V.

2. Suppose that each cell of X of dimension k, for any k > 0, is contained in at most Q) cells
of dimension k + 1. Then for every element of Vx of rank k > 0, the number of elements
of rank k 4+ 1 which cover it is upper bounded by a function of q,Q and d (independent of

3. The second largest eigenvalue of each link is at most q%l + f(e,d, q), where f is a function
which tends to 0 as € — 0, while the lowest eigenvalue is at least —%.

Proof. The first two items are clear. For the third, we first prove that for any = € (Vx)4—2,
all non trivial eigenvalues of the link adjacency matrix A, lie in the interval [—%, a=dte)

There are three cases. The first is when z is not contained in any V; with |I| = d, hence
it is contained in a single V; for |I| = d + 1. The second is that = C V; for I C [n], |I| =d,
but x # V; for any J C [n] with |J]| = d — 1. The last case is that = V; for some subset
ICin], |I|=d-1.

The first case is the easiest. In this case the link of x is equivalent to the Grassmannian
poset of F2, meaning the ((Vx).)(0) are the ¢ + 1 lines in a vector space isomorphic to
]Fg. The corresponding adjacency matrix is the normalized adjacency matrix of K41, the
complete graph on ¢ + 1 elements, and its eigenvalues are 1, with multiplicity 1, and f%
with multiplicity q.

Turning to the second case, suppose x is contained in precisely p d + 1-spaces Vi, ,...,Vr,

with (N, I, = I. The link of x is equivalent to the subposet of Fy{eo,...,ep}, where
{eo,...,ep} are independent generators, with

((Vx)z)1 = {span(eo, e1),span(eg, e2), ... ,span(eo, ep)},

and ((Vx).)(0) are all the lines contained in these 2—spaces.
The adjacency matrix is the normalized adjacency matrix of a bouquet of p Ky41. This

isa (pg+ 1) x (pg + 1) matrix with 0 diagonal, all non diagonal entries in the last row are
1
Pq’ , .
the (i,7) entry is 0if [ 7| # [], and otherwise it is %. This matrix has the constant vector
as the eigenvector of 1.

while all non diagonal entries in the last column are %. For any different 0 < 7, j < pq,

5 we remind the reader that ’locally connected’ means that each link P, for z € P(< d — 2), including

P = Py, is connected.
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It has two other families of eigenvectors: vgp, a =0,...,p—1, b € [¢ — 1], all of whose
entries are 0, except the aq entry which is 1 and the aq + b entry which is —1. These are
eigenvectors for —%. The other family v;, @ € [p — 1] is a family of eigenvectors for q;—l. All
entries of v; are 0, except the first ¢ which are 1 and the entries iq,ig+1,...,ig+ ¢ — 1 which
are —1. By considering the support of the vectors in each family it is straight forward to
verify that they are linearly independent. These families span two orthogonal spaces, which
are also orthogonal to the constant vectors. Thus, these families, and the eigenvector of 1
amount to pqg independent eigenvalues. Their sum is

1+p(q— 1)*1 + (- 1)g =1

q q q

Trace considerations show that the remaining eigenvalue is also —*.

We now turn to the last case. Now x is a vector space of dimension d — 1. It corresponds to
ad—2cell of X. Let G = (V, E) be the link of this cell, which is a graph. By assumptions it
is bipartite, connected, and the second eigenvalue is at most e. Similarly to the previous cases,
the adjacency matrix of the link of z is the normalized adjacency matrix of the graph G’
obtained from G as follows The vertex set of G’ is VU (E x [¢ — 1]). There is an edge between
v,u € V if they were connected in G, there is an edge between and (e, 1), (e, j), 4,7 € [¢ — 1],
and there is an edge between v, (e,4) if e is an edge of v in G. G’ is a connected graph on
m + (¢ — 1)|E| vertices, where m = |V|. We now write three families of eigenfunctions for
the normalized adjacency matrix of G’.

1. H(G,Z), the first homology of G, is of rank |E|—m+1, and is generated by simple cycles
of even length in G, by bipartiteness. Let C1,...,C|g|_n41 be simple cycles representing
such generators. Simple induction on the construction of the cycles allows assuming that
each C; contains an edge e; such that e; ¢ C; for j < i. For each C; order its edges
starting from e; in any way which agrees with one of its two cyclic orders. Let ¢; to be
the vector whose (e, j) entries are 1, if e is an edge at an even place in C;, according to
this order, they are —1 if e is located in an odd place, and all other entries are 0. These
vectors are eigenfunctions for =2,

2. Foreverye € E, i € [g—2] set fe; to be the vector all of whose entries are 0, but the (e, )
and (e,q — 1) which are 1, —1 respectively. These (¢ — 2)|E| vectors are eigenfunctions
for =L,

3. Let g1, ..., gm be the eigenfunctions of G, ordered according to the order 1 = A1 > Ay >
... > Ay, = —1, of the corresponding eigenvalues. Define g% € RVU(EX[g—1]) 1y

QZ|V =9, gile,i) =a(gr(v) + gr(u)), fore= {u,v}.
Applying the adjacency operator of G’ to g we obtain

(Aerg)) = (25 + Sg = D1+ W)eiv)

(Acrgf)(e,i) = (é n Q

Note that g, assigns opposite values to neighboring vertices, hence g%, is independent

of a and it is easy to see that its eigenvalue is ’71. We write g, for g% . In order for

)(gr(v) + gr(u)), for e = {u,v}.

gy, k # m, to be an eigenfunction we must have

A a _ 1 alg—2)
(5 + 5@~ DA+ M))a =4+ ———, (14)
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and in this case the eigenvalue will be % + %(q — 1)(1+ Ag). (14) is equivalent to
a®(q—1)(1+ M) +a(Ady —qg+2)—1=0.

This quadratic equation has two different solutions, a = and a = ———. We denote

jeors
by g,j the eigenfunction for the former solution, and by g, the elgenfunctlon for the
latter. The eigenvalue of g,j is )\z = =1 while the elgenvalue of g, is A\, = —l
Altogether we wrote 2m — 1+ |E| —m + 1+ |E|(q —2) = (¢ —1)|E| + m. We claim that
these vectors are a complete set of eigenfunctions. Since they are of the correct cardinality,
it is enough to prove linear independence. In addition, it is enough to prove the linear
independence inside the sets of eigenfunctions for the same eigenvalue.

Regarding the eigenvalue —%, the vectors g, ..., ¢, are linearly independent, as can be
seen from their restriction to the V —entries, and using the independence of g1, ..., gn. They
are orthogonal to the elements f.;, e € E, i € [¢ — 2], hence independent of them as well.
The latter vectors are also easily seen to be independent.

Regarding the eigenvalue %, the elements ¢; are linearly independent. Indeed, assume
towards contradiction that Y a;c; = 0, for some scalars a;, not all are 0. Let i* be the
maximal index with a non zero coefficient. When evaluating on (e;«,1) we obtain, on
the one hand (3 a;c;)(e;x,1) = 0. On the other hand, by the choice of the edges e;,
> aci)(ei, 1) = apei-(ei«, 1) = %a;«, which is a contradiction. Since no A\; = —1, for

—2 —2 . .
k # m, no )\f = qT, o there are no more qT eigenfunctions.

We are left only with g:, k € [m — 1]. These have eigenvalues different from the previous
ones we considered, and again they can be seen to be linearly independent by restricting to
V' and using the independence of g1, ..., gm—1-

Note that for any w € [—l 0], the map w +— Tw = Ty satisties Tw € [w, 0]. Similarly,

T maps [0, ;] onto itself. For w > 2, Tw > w, but, since qql is a fixed point of T', one
has

Td72(q71+€) — q—
q q

where, for fixed d,q, f — 0 as e = 0, by the continuity of 7.
Thus, by applying the Tricking down theorem with the parameters of the Grassmannian,all

non trivial eigenvalues of the adjacency matrix of each link are seen to be at most q%ql +
fle,d,q). <

The Ramanujan complexes constructed in [18,19] are d—dimensional simplicial complexes
which are obtained as arithmetic quotients of Bruhat-Tits buildings of dimension d. They are

+ f(e,d, q),

locally connected, their d — 2—dimensional links are bipartite graphs and, and all non trivial
eigenvalues of the adjacency matrices of the links are bounded from above by O(%), where

Q, the thickness of the Ramanujan complex is the number of top cells touched by a given
codimension 1 cell, minus 1. For any @y and given d there exist d dimensional Ramanujan
complexes with @ > Qg.

» Corollary 3.2. Let q be a prime power, and let X be a d—dimensional Ramanujan complex
of thickness @, large enough as a function of q,d. Then the posetification Vx is a two sided
bounded degree expanding Grassmannian poset. The second largest eigenvalue of each link is
at most q;—l + o(1), while the lowest eigenvalue is at least —é.

In [6] it was conjectured that there exist high dimensional bounded degree expanding
Grassmannian posets for any bound p > 0. This corollary proves this conjecture for p =
L+ o(1),
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The question for general p still awaits for an answer. Based on the trickling down for
Grassmannians, if one can find a bounded degree Grassmannian complex of high enough
dimension such that the second eigenvalue of the top links is bounded from above by
A< % — ¢, for some positive ¢, lower skeletons will be p—local spectral Grassmannian
expanders, for arbitrary small p (there is a trade off between ¢, u, the dimension and how
low one should go).

Regarding how large must @) be, observe that the derivative of the transformation x — T'x,
from the end of the previous proof, at (¢ — 1)/q is g. Thus, for € small enough, as a function
of q,d,

Q71+€)7q*1

Td72(
q q

+¢% %€ + o(e).

Since for Ramanujan complexes ¢ = O(—=) in order to obtain expansion we need Q > ¢

Q

2d—4
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