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Abstract
Motivated by large-market applications such as crowdsourcing, we revisit the problem of budget-
feasible mechanism design under a “small-bidder assumption”. Anari, Goel, and Nikzad (2018) gave
a mechanism that has optimal competitive ratio 1 − 1/e on worst-case instances. However, we
observe that on many realistic instances, their mechanism is significantly outperformed by a simpler
open clock auction by Ensthaler and Giebe (2014), although the open clock auction only achieves
competitive ratio 1/2 in the worst case. Is there a mechanism that gets the best of both worlds, i.e.,
a mechanism that is worst-case optimal and performs favorably on realistic instances? To answer
this question, we initiate the study of beyond worst-case budget-feasible mechanism design.

Our first main result is the design and the analysis of a natural mechanism that gives an
affirmative answer to our question above:

We prove that on every instance, our mechanism performs at least as good as all uniform
mechanisms, including Anari, Goel, and Nikzad’s and Ensthaler and Giebe’s mechanisms.
Moreover, we empirically evaluate our mechanism on various realistic instances and observe that
it beats the worst-case 1 − 1/e competitive ratio by a large margin and compares favorably to
both mechanisms mentioned above.

Our second main result is more interesting in theory: We show that in the semi-adversarial
model of budget-smoothed analysis, where the adversary designs a single worst-case market for a
distribution of budgets, our mechanism is optimal among all (including non-uniform) mechanisms;
furthermore our mechanism guarantees a strictly better-than-(1 − 1/e) expected competitive ratio
for any non-trivial budget distribution regardless of the market. (In contrast, given any bounded
range of budgets, we can construct a single market where Anari, Goel, and Nikzad’s mechanism
achieves only 1 − 1/e competitive ratio for every budget in this range.) We complement the positive
result with a characterization of the worst-case markets for any given budget distribution and prove
a fairly robust hardness result that holds against any budget distribution and any mechanism.
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1 Introduction

The budget-feasible mechanism design problem was introduced by Singer [20] and has become
a core problem in algorithmic mechanism design [8, 9, 3, 21, 6, 10, 11, 13, 5, 7, 18, 22, 23,
15, 2, 14, 1, 12, 16, 4]. We will use microtask crowdsourcing as a running example for this
problem (see Section 2.1 for a formal setup): An employer (buyer) on a crowdsourcing
platform (market I) such as Mechanical Turk or Microworkers is given a fixed budget B,
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93:2 Beyond Worst-Case Budget-Feasible Mechanism Design

and is looking to acquire some services from a set of workers (sellers) [n]. Each worker i can
perform a microtask (provide a service) that has a utility ui to the employer at an incurred
cost ci to the worker himself. The employer’s total utility is

∑
i∈W ui for the services provided

by each subset of workers W ⊆ [n]. As is common in the literature, the employer knows
the workers’ utilities ui’s (e.g. by grading their work ex-post, or using the worker’s rating
on previous tasks), but does not know their private costs ci’s. Moreover, in large-market
applications like microtask crowdsourcing, it is often very natural to make a small-bidder
assumption: the cost of each worker is a small fraction of the employer’s total budget1.

The objective of budget-feasible mechanism design is to design a truthful mechanism that
maximizes the employer’s total utility while keeping the total payment to the workers within
the budget. Roughly speaking, a truthful mechanism makes sure the workers honestly report
their private costs ci’s by providing them incentives (payments) and decides which subset
of services the employer will get (allocation), and we want the mechanism to maximize the
total utility of the services allocated to the employer, under the constraint that the total
payment does not exceed B.

Without any incentive constraints (i.e., the workers’ costs are public, and the employer
only needs to pay a worker’s cost to get the worker’s service), this becomes the well-known
knapsack problem. Therefore, it is standard to consider the following performance metric
for a mechanism: the ratio between the utility achieved by the mechanism and the optimal
utility of the knapsack problem without incentive constraints in a worst-case market and for
a worst-case budget. This metric is called the worst-case competitive ratio, and a mechanism
is α-competitive if its worst-case competitive ratio is ≥ α ∈ [0, 1].

Research in budget-feasible mechanism design has been focusing on designing (polynomial-
time) mechanisms that achieve optimal worst-case competitive ratio. Under the small-bidder
assumption, [2] gave a (1− 1/e)-competitive mechanism and characterized the worst-case
instances2 for which any mechanism can only achieve at most 1− 1/e competitive ratio.

Although this optimal result provides a satisfactory answer with respect to worst-case
competitive ratio, our quest to design even better mechanisms does not come to an end.
Indeed, recall that worst-case competitive ratio measures a mechanism’s performance in
worst-case market given worst-case budget. Such worst-case market and worst-case budget
rarely appear in practice. Even if we are given an typical-case market and/or an typical-case
budget, a mechanism that achieves optimal worst-case competitive ratio could (potentially)
perform as bad as on the worst-case instance. We probably would not prefer such worst-case
optimal mechanism over other mechanisms that perform much better on the typical-case
instances. To make this point more concrete, consider the following extremely simple instance:

▶ Example 1. The buyer has a budget B = n, and each of n seller’s services has a cost 1 to
the seller himself and a utility 1 to the buyer.

For the simple instance in Example 1 (which satisfies small-bidder assumption), simply offering
a payment of 1 to each seller extracts full utility, but [2]’s worst-case optimal mechanism
only obtains a (1 − 1/e)-fraction. Moreover, instead of identical sellers’ costs, consider a
more natural variant of Example 1, where the sellers’ costs are sampled i.i.d. from a natural
distribution (e.g., Gaussian/uniform/exponential/mixture distribution). Our numerical
simulation shows that [2]’s mechanism only obtains close-to-(1− 1/e) fraction of the optimal
utility for these natural instances, while a simple open clock auction [10], that is equivalent

1 Other important applications where this assumption is natural include allocation of R&D subsidies by
government agencies and emission reduction auctions [2].

2 An instance is specified by a market I and a budget B.
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to setting a single uniform price, obtains significantly larger fractions (see Table 1). Of course
the open clock auction also extracts the full utility for the simple instance in Example 1.
However, it is known that the open clock auction is suboptimal in the worst case: [2] exhibits
a simple example for which the open clock auction has worst-case competitive ratio 1/2.

Is there a mechanism that gets the best of both worlds, i.e., a mechanism that is
worst-case optimal and “performs favorably” on every instance (not just in the worst
case)?

By “perform favorably”, we mean that the mechanism should achieve utility at least as
good as a large class of mechanisms. Which class of mechanism should we consider as an
appropriate benchmark? At least, we want this class to include the previous mechanisms
of [2] and [10]. The most ambitious class is obviously the class of all the mechanisms, but
as we now explain, it is unfair to compare with this class. Consider the mechanism in the
following example:

▶ Example 2. Consider an arbitrary instance (I, B) specified by market I and budget B,
which becomes a knapsack problem when sellers’ costs are public, and the optimal solution
(i.e., the optimal subset of sellers’ services) to this knapsack problem always exists. Now we
hard-code the market I in the following mechanism: When given an input instance (I ′, B′)
(assume for simplicity3 that I ′ has the same number of sellers as I, but the sellers’ costs and
utilities in I ′ can be arbitrarily different from I), this mechanism reads nothing from input
except the budget B′, and it always non-uniformly offers each seller, who is in the optimal
knapsack solution of instance (I, B′), a posted price that is equal to this seller’s cost in I,
and offers nothing to the remaining sellers.

Although the mechanism in Example 2 is silly (because it always decides the allocation and
payments according to I regardless of the actual market I ′ it is facing), it is a well-defined
non-uniform posted price mechanism that is truthful and budget-feasible. Even though we
expect this mechanism to perform poorly in general, it is optimal for the specific market
I that is hard-coded in it, and there is no way we can compete with such unreasonable
mechanism on instance (I, B). In order to exclude such mechanisms while including the
mechanisms of [2] and [10], we restrict our attention to the class of all the uniform mechanisms
(for now4). Roughly speaking, a mechanism is uniform if the distributions of normalized
offers is essentially the same for all the sellers (see Section 2.1.1 for the exact definition).

It is noteworthy that unlike algorithm design, where one can combine two algorithms by
taking the best solution outputted by these algorithms, naively combining two mechanisms
in such way typically does not result in a truthful mechanism, which motivates us to search
for a new mechanism that satisfies the desiderata in our main question. With the above
motivation, we initiate the study of beyond worst-case budget-feasible mechanism design, and
we also make the small-bidder assumption given its wide applicability in practice (see [2,
Section 10]). In the next two subsections, we give an overview of our results. In terms of
the significance, we believe the first main result (instance optimality), which compares our
new mechanism with uniform mechanisms, is more significant from the practical perspective,
and the techniques are arguably not complicated and hence can be applied in practice. The
second main result (budget-smoothed analysis), which compares our new mechanism with
the general (possibly non-uniform) mechanisms is more interesting from the theoretical
perspective. We believe these two results complement each other, and we hope these results

3 This is without loss of generality, because otherwise the mechanism could use an arbitrary mapping
from sellers in I to sellers in I ′.

4 In our results for budget-smoothed analysis, we will compare to all (possibly non-uniform) mechanisms.
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could encourage researchers in the broad area of mechanism design to examine the worst-case
optimal mechanisms for their mechanism design problems through beyond-worst-case lens
and design even better mechanisms with improved beyond-worst-case performance.

1.1 Main result I: instance optimality
The first result of this paper is the design and (theoretical and empirical) analysis of a new
natural mechanism. We prove that our new mechanism performs at least as good as any
uniform mechanism on every instance (Theorem 11).

▶ Theorem 3 (Instance-optimality against uniform mechanisms).
We give a computationally efficient, truthful and strictly budget-feasible randomized mechan-
ism, that, on every instance of the budget-feasible mechanism design problem with additive
buyer’s utility function and small sellers, achieves ≥ (1− o(1)) of the expected utility of any
uniform mechanism.

Moreover, we empirically evaluate our mechanism on many realistic instances and observe
that it beats the worst-case 1− 1/e competitive ratio by a large margin.

Empirical analysis. Specifically, we compare the performance of our mechanism, the open
clock auction [10], and [2]’s mechanism on synthetic instances (see Section 3.4 for details).
We observe that our mechanism and the open clock auction outperform [2]’s worst-case
optimal mechanism on all synthetic instances by a large margin. In the instances where
the distribution of sellers’ cost-per-utility is multi-modal5, our mechanism outperforms both
other mechanisms significantly (recall that we indeed prove that it is always optimal).

Our mechanism in a nutshell. An idealized version of our mechanism, where we know
the market statistics (i.e., the empirical distribution of sellers’ types6), has the following
nice interpretation: each seller is independently offered one of two possible prices, and can
choose to accept or reject the offer she receives. Knowing the market statistics is a reasonable
assumption in many cases in practice, e.g. when the buyer has access to historical bids. In
general, when the statistics are not known, we can randomly partition the sellers into two
subsets, and compute prices for each half based on market statistics estimated from truthful
reporting of costs from the other half.

The main novelty of our mechanism is the design of its idealized version – a greedy-type
uniform “mechanism” (Mechanism 1), which can be interpreted as a probabilistic combination
of at most two uniform prices per utility. We prove that this greedy “mechanism” is instance-
optimal compared to all the uniform mechanisms by a neat greedy exchange argument. We
are surprised that despite being such a natural “mechanism” (from the information-theoretic
point of view), Mechanism 1 has never been studied in the literature to our best knowledge.

In the random partitioning step for estimating the market statistics, the technical part
is how to control the noise caused by random partitioning (overly large noise could ruin
the budget feasibility of the mechanism without giving up a significant fraction of utility).
Thanks to the simple form of our idealized mechanism, we are able to succinctly discretize
the space of candidate allocation rules. Moreover, in order to upper bound the influence of

5 We note that multi-modal sellers’ distribution is possible in the real world. For example, in an
international market, the average cost-per-utility of sellers in a country could differ from that in another
country because of the difference of resources/technology between different countries.

6 A seller’s type is specified by his cost and utility.
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each individual seller during the random partitioning, we truncate the allocation rule, which
does not lose much utility because of small-bidder assumption. By a careful probabilistic
analysis, we show that combining these techniques is sufficient to approximate our idealized
greedy mechanism within negligible error. Therefore, the approximate version of the greedy
mechanism, which is our final mechanism (Mechanism 2), is (nearly) optimal on every
instance compared to any uniform mechanism.

1.2 Main result II: budget-smoothed analysis

We have shown that empirically our mechanism’s performance on realistic instances is much
better than the 1− 1/e competitive ratio on the “worst-case instance”, which suggests that
optimality on the “worst-case instance” is a weak notion that fails to capture better-than-
worst-case performance. We also have shown that our mechanism beats all the uniform
mechanisms on “every instance”, but as we explained before, we restricted our attention
to the class of uniform mechanisms, because it is unreasonable to compare with the class
of non-uniform mechanisms on “every instance”, which suggests that optimality on “every
instance” is somewhat too strong if we hope to compare our mechanism with the more
general non-uniform mechanisms.

Thus in addition to our first result, we strike a reasonable middle ground between “worst-
case instance” and “every instance” by examining our mechanism under the budget-smoothed
analysis framework recently introduced in [19] in the context of submodular maximization.
This framework gives a reasonable notion of beyond-worst-case instances that allows us to
theoretically compare our mechanism to all the (even non-uniform) mechanisms.

Briefly (see the formal definition in Section 2.2), the budget-smoothed analysis framework
is a semi-adversarial model: We first pick a budget distribution and a mechanism, and
then the adversary, who knows the mechanism and the budget distribution, chooses a single
worst-case market, and finally we sample a budget from the distribution and measure the
mechanism’s expected competitive ratio (formally defined in Section 2.2) on the adversarially
chosen market, where the expectation is over the randomness of the budget distribution and
(potentially) the mechanism itself. (The motivation of the budget-smoothed analysis in the
context of budget-feasible mechanism design deserves an in-depth discussion, which we defer
to Section A in the full version due to the interest of space.)

We show the following fundamental results in the budget-smoothed analysis model.

Optimal mechanism and worst-case markets for any budget distribution. We prove
that our mechanism is optimal (see Definition 5) among all the (not necessarily uniform)
mechanisms on the worst-case market for any budget distribution7 (Theorem 13), and
moreover, the expected competitive ratio of our mechanism is guaranteed to be strictly better
than 1− 1/e for every nontrivial budget distribution regardless of the market8 (Theorem
4.3 in the full version). In contrast, given any bounded range of budgets, we construct a
single market where [2]’s worst-case optimal mechanism cannot beat the worst-case 1− 1/e

competitive ratio for any budget in this range (Theorem D.2 in the full version), which
exhibits a strong separation between our mechanism and [2]’s mechanism.

7 It is particularly interesting that our mechanism, which does not require any knowledge of the budget
distribution, is optimal even when compared with the mechanisms that know the budget distribution.
In other words, our mechanism intrinsically adjusts itself to the budget distribution optimally.

8 Moreover, in Section E of the full version, we formulate a (non-convex) mathematical program that
computes the expected competitive ratio on the worst-case market for any given budget distribution.
We solve this program for various distributions and observe nonnegligible improvement over 1 − 1/e.
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Our proof of the optimality result is conceptually appealing: We observe that once we
fix an arbitrary budget distribution, determining the worst-case market and the optimal
mechanism is a min-max game between the adversary and the mechanism designer, in which
the adversary tries to give a market that minimizes the mechanism’s performance, and the
mechanism designer hopes to design a mechanism that performs best on the adversarially
chosen market. We analytically solve the equilibrium for this min-max program, and the
solution comes with a characterization of the worst-case markets for any given budget
distribution (Theorem 13).

Robust hardness result against any budget distribution. On the negative side, we prove
a robust hardness result that shows for any budget distribution and any mechanism, there
is a market on which the mechanism’s expected competitive ratio is bounded away from 1
(specifically, at most 0.854 – see Theorem 4.4 in the full version). In comparison, the previous
worst-case hardness result [2] is very sensitive to budget perturbation: If we perturb (i.e.,
multiply) the budget of the worst-case instance by a significant factor like 2.5, then simply
setting a single uniform price (i.e., [10]’s open clock auction) will achieve 100% of the optimal
utility.

2 Preliminaries

2.1 Problem setup
In the budget-feasible mechanism design (a.k.a., procurement auction) problem with additive
utility, there is a market I consisting of one buyer and n sellers, and each seller i has an item
with a public utility ui ∈ R≥0 and a private cost ci ∈ R≥0. The buyer has a budget B ∈ R≥0
and wants to buy items from the sellers. The goal of the budget-feasible mechanism design
problem is to design a truthful mechanism that maximizes buyer’s total utility while keeping
the total payment to sellers within the budget, which we now explain more formally.

Truthful mechanisms. A mechanism takes as input the buyer’s budget B, the sellers’ public
utilities ui’s and the private costs9 ci’s reported by the sellers, and then outputs which items
should be allocated to the buyer and how much the buyer should pay to each seller. Formally,
the output of a (randomized) mechanism, i.e., allocation and payments, can be represented
by10 an allocation function g : Rn

≥0 → [0, 1]n and a payment function Qg : Rn
≥0 → Rn

≥0, where
g takes the sellers’ cost-per-utility γi := ci/ui’s as input γ⃗, and outputs (the expectation of)
the fraction of each item that is allocated to the buyer (and hence, the expected utility the
buyer gets from seller i is the i-th coordinate of the output of g, which we denote by g(γ⃗)i,
times ui, and the expected cost of seller i is g(γ⃗)i · ci), and Qg takes the same input and
outputs the associated (expected) payment-per-utility for each item (namely, the expected
payment to seller i is the i-th coordinate of the output of Qg, which we denote by Qg(γ⃗)i,
times ui).

A deterministic mechanism is truthful if reporting the true γi always maximizes the net
profit for each seller i ∈ [n], namely, for any γ−i ∈ Rn−1

≥0 (where γ−i denotes all the γj ’s
except γi), for all z ∈ R≥0,

9 We note that there are mechanisms that do not directly ask the sellers to report their costs such as
clock auctions. However, our definition is without loss of generality by the revelation principle.

10 If the mechanism is deterministic, g and Qg output the deterministic allocations and deterministic
payments, respectively, and if the mechanism is randomized, they output the expected allocations and
expected payments.
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Qg(γi, γ−i)i · ui − g(γi, γ−i)i · ci ≥ Qg(z, γ−i)i · ui − g(z, γ−i)i · ci. (1)

In general, a mechanism can be randomized, and a randomized mechanism is simply a
distribution of deterministic mechanisms. In this light, we say a randomized mechanism
is truthful-in-expectation if reporting the true γi only maximizes seller i’s net profit in
expectation over the randomness of the mechanism, i.e., Eq. (1) holds in expectation for the
randomized mechanism.

The celebrated Myerson’s lemma [17] asserts that (i) an allocation function g can be
implemented as a truthful-in-expectation mechanism if and only if g is monotone, i.e., for
all i ∈ [n] and any γ−i ∈ Rn−1

≥0 , gi(·) := g(·, γ−i)i is a non-increasing function, and (ii)
there exists a unique payment function Qgi

associated with gi, which is given by Qgi
(γ) :=

γ · gi(γ) +
∫ ∞

γ
gi(z)dz.

Budget feasibility. Note that we want the randomized mechanisms to strictly satisfy the
budget constraint, i.e., every deterministic mechanism in the support of the distribution has
to satisfy the following budget constraint∑

i∈[n]

Qgi
(γi)ui ≤ B,

and our proposed randomized mechanism will indeed strictly satisfy the budget constraint.
The goal of budget-feasible mechanism design is to design a (randomized) mechanism, that

is (truthful/truthful-in-expectation) and budget-feasible, to maximize the buyer’s (expected)
total utility

∑
i∈[n] gi(γi)ui.

If the sellers’ costs are public, the problem becomes the well-known knapsack problem,
and we call the optimal utility of this knapsack problem the non-IC (i.e., without the
incentive compatible constraints) optimal utility. The standard performance measure for
a (randomized) mechanism M on the instance (I, B) is the competitive ratio, i.e. the ratio
RM(I, B) between the (expected) total utility (over M’s randomness) achieved by M and
the non-IC optimal utility.

Finally, we make a small-bidder assumption [2]: for budget B, we require that each seller’s
cost is at most o(B).

2.1.1 Further important concepts
Uniform mechanism. We call a mechanism11 with allocation function g uniform if given
any γi’s, there exists a 1-dimensional allocation function f : R≥0 → [0, 1] such that for all
i ∈ [n], it holds that gi(·) = f(·). Otherwise, we call the mechanism non-uniform.

Fractional versus indivisible. We mentioned that the allocation function specifies the
fraction of item purchased from each seller. This makes sense when the item is fractional, e.g.,
the item is the time of a worker. However, there are settings where the items are indivisible,
and then, the image of an allocation function should be {0, 1}n instead. Under small-bidder
assumption, an indivisible item procurement problem can be reduced to a fractional problem.
Specifically, there is a rounding procedure from [2, Supplemental Material, Section 7] that
we can directly apply.

11 For example, the idealized versions of [2]’s mechanism (Mechanism 3 in the full version of our paper),
[10]’s mechanism and our mechanism (Mechanism 1) are all uniform mechanisms.
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▶ Lemma 4 ([2, Supplemental Material, Section 7]). Let x̃1, . . . , x̃n be the fractional allocations
and p̃1, . . . , p̃n be the associated payments. Under small-bidder assumption, there is a rounding
procedure that outputs integral allocations x1, . . . , xn and payments p1, . . . , pn, which achieves
approximately the same expected utility as the fractional allocations, while preserving individual
rationality, truthfulness in expectation, and strict budget feasibility.

Henceforth, given this reduction, unless specified otherwise, we only consider
divisible items in this paper, and the results apply to indivisible items as well.

2.2 Budget-smoothed analysis

Budget-smoothed analysis is a semi-adversarial model introduced in [19] in the context of
submodular optimization. In our setting, given any fixed distribution of budgets D, the
performance metric for a mechanism M in the budget-smoothed analysis is the D-budget-
smoothed competitive ratio: the worst possible ratio between the utility achieved by M and
the non-IC optimum in expectation (over budget distribution and mechanism’s randomness),
i.e.,

min
I

E
B∼D

[RM(I, B)],

where E
B∼D

[RM(I, B)] is the expected competitive ratio of M on market I for budget distri-
bution D. Fixing an arbitrary budget distribution D, the goal of the mechanism designer is
to design a mechanism M that achieves optimal D-budget-smoothed competitive ratio, and
hence, we have a max-min game between the mechanism designer and the adversary

max
M

min
I

E
B∼D

[RM(I, B)].

In other words, we are interested in the expected outcome of the following budget-smoothed
analysis game:

Budget-smoothed analysis game

1. Fix a distribution of budgets D. The mechanism designer, who knows the budget
distribution D, picks a mechanisma M.

2. The adversary, who knows the budget distribution D and the mechanismM chosen by
the mechanism designer, chooses a worst-case marketb I (sellers’ costs and utilities).

3. Then, a budget B is drawn at random from D.
4. Finally, the mechanism designer runs M on the instance (I, B) (and compare the

performance to the non-IC optimum).
a Note that the mechanism designer knows D and hence is allowed to choose a mechanism M that is

tailored to D, i.e., the mechanism designer knows D and then specifies what M does for each budget
B in the support of D as she likes. Interestingly, as we will show later, our optimal mechanism does
not need any knowledge of D.

b Note that the adversary chooses the market I after knowing D and M. For example, if the mechanism
designer chose the silly mechanism in Example 2 that hard-codes some market I1, this mechanism
will perform poorly in the budget-smoothed analysis game, because the adversary can choose a
completely different market I2 after observing the mechanism chosen by the mechanism designer.
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▶ Definition 5. A mechanism M∗ is worst-case optimal for a budget distribution D if for
any other mechanism M, minI E

B∼D
[RM∗(I, B)] ≥ minI E

B∼D
[RM(I, B)].

We refer the interested readers to [19] for the original motivation and naming of the
budget-smoothed analysis model. In our context, we can think of the D-budget-smoothed
competitive ratio as the average competitive ratio of multiple employers operating in the
worst-case market I with different budgets (the empirical distribution of their budgets is D),
and the employers’ budgets can easily vary by an order of magnitude because of different
sizes of business (as in the Microworkers example in Table 3 of the full version). Given
such budget distribution supported on a wide range, even if the market I is worst-case, the
“average” employers who use an “average” budget could potentially enjoy a competitive ratio
that is significantly better than the worst-case optimal competitive ratio 1 − 1/e (and by
Markov inequality, most employers achieve strictly better-than-(1− 1/e) competitive ratio).

3 Instance-optimality against uniform mechanisms

In this section, we first derive a uniform “mechanism” in the complete-information setting,
where the sellers’ private costs are known. To be precise, the complete-information uniform
“mechanism” applies a single monotone allocation function and the associated Myerson’s
payment function to all the sellers and guarantees strict budget-feasibility just like a normal
uniform budget-feasible mechanism, and the only caveat is that to compute the allocation
function, the complete-information uniform “mechanism” needs to know all the sellers’ costs.
This complete-information uniform “mechanism” is essentially a greedy procedure. Then, we
show that this greedy “mechanism” is instance-optimal compared to all the uniform budget-
feasible mechanisms. That is, for every market and every budget, compared to all the uniform
budget-feasible mechanisms that satisfy Myerson’s characterization of truthful-in-expectation
mechanisms, the greedy “mechanism” achieves the optimal buyer’s utility.

Apparently, this greedy “mechanism” by itself is not very useful, since we eventually
want a normal mechanism that works in the setting where sellers’ private costs are hidden.
Therefore, we design a randomized mechanism to approximate the greedy “mechanism”, i.e.,
our randomized mechanism is nearly as good as the greedy “mechanism” on every instance.
On a high level, this is done by first randomly partitioning the market into two halves, and
then applying our greedy “mechanism” on each half to get an allocation function and the
associated payment function, and finally applying the allocation and payment function we
get from one half to the other half in a sequential fashion until certain budget threshold is
met.

3.1 Greedy is an instance-optimal uniform “mechanism”
In this subsection, we describe the greedy “mechanism” Greedy in the complete information
setting, where the sellers’ private costs are given, and prove that it is instance-optimal
compared to all the uniform truthful-in-expectation budget-feasible mechanisms. The pseudo-
code of Greedy is given in Mechanism 1.

It works as follows – Suppose that the sellers are grouped and sorted according to their
cost-to-utility ratio c/u. Greedy searches for the best monotone allocation function (and
given the allocation function, the payment is determined by Myerson’s lemma). It does this
iteratively. In each iteration, suppose that it has bought all the items from the sellers with
cost-to-utility ratio at most ci−1/ui−1, then it will choose the sellers whose c/u ranges from
(ci−1/ui−1)+ to cj/uj for some j ≥ i, and simultaneously increase the fraction bought from
these sellers until either they are fully purchased or the budget is exhausted.
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We now explain how Greedy selects the next j in each iteration. For each candidate
seller k, it computes the marginal utility per marginal payment (denoted by ei,k) achieved
by simultaneously increasing the fraction of items purchased from all the buyers in i, . . . , k.
Greedy then greedily selects j to be the index that maximizes the marginal utility per
marginal payment.

Mechanism 1 Greedy.
Input : (ci, ui) for i ∈ [n], B.

1 Merge the sellers with equal cost-to-utility γi := ci

ui
into one seller by summing up

their costs and utilities, and let u0 be the utility of the merged seller with cost 0
(u0 = 0 if there is no such seller) and let γ0 = 0, f(0) = 1. Sort all non-zero-cost
merged sellers such that the γi are non-decreasing, and let n′ be the number of
non-zero-cost merged sellers;

2 i← 1;
3 while i ≤ n′ do
4 Choose j ∈ {i, i + 1, . . . , n′} that maximizes ei,j (ei,j is defined by Eq. (3));
5 if B > qmax

i,j (qmax
i,j is defined in Eq. (2)) then

6 Let f(γ) = 1 for all γ ∈ (γi−1, γj ] and B = B − qmax
i,j ;

7 i = j + 1;
8 else
9 Let f(γ) = B

qmax
i,j

for all γ ∈ (γi−1, γj ] and break;
10 end
11 end
12 for each original seller i ∈ [n] do
13 Purchase f(γi) fraction of seller i’s item and pay uiQf (γi), where Qf is the

payment rule corresponding to f given by Myerson’s lemma, i.e.,
Qf (γ) = γ · f(γ) +

∫ ∞
γ

f(z)dz;
14 end

▶ Theorem 6. For divisible items, Greedy decides the allocation and the payment for all
the sellers using a single monotone allocation function and the associated Myerson’s payment
function, and it is strictly budget-feasible, and moreover, on every instance, Greedy achieves
buyer’s utility no less than any uniform truthful-in-expectation budget-feasible mechanism.

Proof. First, observe that f in Greedy is a non-increasing function, and we apply the
same f, Qf to all the sellers in Greedy. In each iteration of the while loop, suppose we
increase the allocation function f ’s value over (γi−1, γj ] from zero to certain f(γj), the
payment-per-utility Qf (γ) = γ · f(γ) +

∫ ∞
γ

f(z)dz should also increase for every γ ≤ γj .
Specifically, for every γ ≤ γi−1, the γ · f(γ) part does not change, but the

∫ ∞
γ

f(z)dz part
increases from zero to

∫ γj

γ+
i−1

f(γj)dz = f(γj) · (γj − γi−1), and thus, Qf (γ) increases by
f(γj) · (γj − γi−1). For every γ ∈ (γi−1, γj ], the γ · f(γ) part increases from zero to γ · f(γj),
and the

∫ ∞
γ

f(z)dz part increases from zero to
∫ γj

γ
f(γj)dz = f(γj) · (γj−γ), and thus, Qf (γ)

increases by f(γj) · γj in total. Since the total utility of the sellers with cost-per-utility at
most γi−1 is

∑
0≤l≤i−1 ul, and the total utility of the sellers with cost-per-utility in (γi−1, γj ]

is
∑

i≤l≤j ul, it follows that the additional payment the mechanism makes in this iteration is
qi,j := f(γj) · (γj − γi−1) ·

∑
0≤l≤i−1 ul + f(γj) · γj ·

∑
i≤l≤j ul, which is at most (equal when

f(γj) = 1)
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qmax
i,j := (γj − γi−1) ·

∑
0≤l≤i−1

ul + γj ·
∑

i≤l≤j

ul, (2)

and hence, the if condition in Greedy ensures the budget feasibility. Moreover, observe that
the additional utility Greedy gains in this iteration is vi,j := f(γj) ·

∑
i≤l≤j ul. Therefore,

the ratio between the additional utility we gain and the additional price we pay, when we
increase f(γ) uniformly for all γ ∈ (γi−1, γj ], is

ei,j := vi,j

qi,j
. (3)

In each iteration, Greedy selects the best j that maximizes ei,j . Now we show the instance
optimality using a greedy exchange argument. Consider any other monotone allocation rule
g and suppose γi+1 is the smallest among all the sellers’ γ’s such that g(γi+1) ̸= f(γi+1).
(Such γi+1 cannot be 0 because otherwise, letting g(0) = 1 cannot increase the payment or
decrease the utility for g.) Now we show how to make g more consistent with f without
decreasing its achieved utility.

Case (i): g(γi+1) > f(γi+1). Then f(γi+1) < 1 since g(γi+1) ≤ 1. We now argue
that f(γi) = 1. By our choice of γi+1, f(γi) = g(γi) ≥ g(γi+1) > f(γi+1), and given that
f(γi) > f(γi+1), Greedy prefers the items before i+1. Therefore it will not start buying the
(i + 1)-th item until those items are exhausted. Moreover, f(γi+1) must be strictly positive,
because otherwise, f does not spend as much budget as g. Hence indeed f(γi) = 1.

Hence Greedy must have chosen the best ei+1,k for some k > i + 1, where the inequality
is due to the budget feasibility of g. (Indeed, if k = i + 1, then there is enough budget for
Greedy to increase f(γi+1) to g(γi+1), since g is budget-feasible.) Let γ ≥ γi+1 denote the
largest cost-per-utility such that g(γ) > 0. We can assume γ = γl for some l ≥ i + 1 because
otherwise we can truncate the extra part of g while preserving its utility. Note that Greedy
guarantees that ei+1,k ≥ ei+1,l′ for all i + 1 ≤ l′ ≤ l. Hence, if we decrease g over (γi, γl] to 0
and use the saved budget to uniformly increase g over (γi, γk], the resulting utility cannot
decrease.

Case (ii): g(γi+1) < f(γi+1). Suppose that Greedy chose the best ei1,i2 for some
i1 ≤ i + 1 ≤ i2. Therefore, f is a constant on (γi1−1, γi2 ], and by monotonicity of g and our
assumption that γi+1 is the first place where two allocation functions differ, it follows that
f is strictly larger than g on (γi1−1, γi2 ]. Since Greedy guarantees that ei1,i2 ≥ ei1,j for
any j ≥ i1, we can decrease g on (γi1−1, +∞) simultaneously and use the saved budget to
uniformly increase g on (γi1−1, γi2 ], which can not decrease the achieved utility. We keep
doing this unless g reaches 1 on (γi1−1, γi′ ] for some i′ ≤ i2. Then, either f is 1 on (γi1−1, γi2 ],
and hence, g becomes more consistent with f , or f is < 1 on this interval, in which case,
we can decrease g on (γi1−1, +∞) to 0 and use the saved budget to uniformly increase g on
(γi1−1, γi2 ]. ◀

Since [2] showed for a single budget, there is a uniform mechanism (also with knowledge
of all ci’s) that has worst-case competitive ratio 1− 1/e (and there is a matching hardness
result), Theorem 6 implies that Greedy has worst-case competitive ratio 1− 1/e.
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3.2 Greedy allocation rule: a lottery of two posted prices

Before we present the final randomized mechanism, we observe some nice properties of
Greedy which will help us analyze Greedy in a more intuitive way. The key observation,
which follows directly from the design of Greedy, is that the allocation rule of Greedy has
a simple form that can be fully characterized by three parameters12:

▶ Observation 7. The allocation rule f of Greedy is a (≤ 2)-step function, i.e., there exists
some (t, p1, p2) where t ∈ [0, 1) and13 0− ≤ p1 ≤ p2,

f
( c

u

)
=


1 c

u ≤ p1

t p1 < c
u ≤ p2

0 c
u > p2

,

and we say that f is characterized by (t, p1, p2).

Observation 7 allows us to think of the allocation rule of Greedy as a lottery (distribution)
of at most two posted prices:

▶ Observation 8. Given an allocation rule f of Greedy that is characterized by (t, p1, p2)
where t ∈ [0, 1) and 0− ≤ p1 ≤ p2, consider the following randomized posted-price mechanism:

For each seller, the buyer independently tosses a (biased) random coin and offers this
seller either (i) a payment-per-utility p2 with probability t; or (ii) a payment-per-utility
p1 with probability 1− t. Then, each seller can accept the offer (give the item to the
buyer and receive the payment) or leave.

The above randomized posted-price mechanism, which is a lottery of two posted prices,
has the same allocation function as f in expectation.

Proof. Let f̄ denote the expected allocation function of the above randomized posted-price
mechanism. Now we show that f̄ is equivalent to f . First, a seller with a cost-per-utility
c
u ≤ p1 will accept either offer p1 or p2 (because both payments-per-utility are no less than
his cost-per-utility), and hence f̄( c

u ) = 1. On the other hand, a seller with a cost-per-utility
c
u ∈ (p1, p2] will only accept offer p2 (because only p2 is no less than his cost-per-utility), and
hence f̄( c

u ) = Pr[p2 is offered] = t. Finally, a seller with a cost-per-utility c
u > p2 will not

accept either of the offer (because both payments-per-utility are below his cost-per-utility),
and hence f̄( c

u ) = 0. ◀

The same allocation function obviously achieves the same total utility in expectation, and
moreover, by Myerson’s lemma, it also makes the same total payment in expectation.
Therefore, Observation 8 provides a more intuitive way to calculate the total utility and
the total payment for Greedy (using the posted prices rather than explicitly using the
allocation rule of Greedy and Myerson’s payment rule), which we formalize in the following
observation:

12 One might notice that this characterization actually captures a strictly more general class of allocation
rules than just the possible outputs of Greedy. This is for the convenience of analysis later, and we
will call any allocation rule that can be characterized in this way a “greedy allocation rule”.

13 0− denotes a strictly negative number that is arbitrarily close to 0.
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▶ Observation 9. Given an allocation rule f of Greedy that is characterized by (t, p1, p2)
where t ∈ [0, 1) and 0− ≤ p1 ≤ p2, for any subset of sellers S ⊆ [n], let Uf (S) and Bf (S)
denote the total utility and the total payment respectively when we apply f to the sellers in
S, and let Up(S) and Bp(S) denote the total utility and total payment respectively when we
offer a posted price (payment-per-utility) p ∈ R≥0 to the sellers in S (and each seller can
accept the offer or leave). Then, we have that

Uf (S) = (1− t)Up1(S) + tUp2(S),
Bf (S) = (1− t)Bp1(S) + tBp2(S), (4)

and moreover, for all p ∈ R≥0,

Bp(S) = pUp(S),

Up(S) =
∑

i∈S s.t. ci/ui≤p

ui. (5)

Proof. Eq. (4) follows immediately by Observation 8 and the discussion above, and Eq. (5)
follows by definition of the posted-price mechanism. ◀

We remark that Observation 9 makes it easier to prove multiplicative concentration inequalities
for Uf (S) and Bf (S) when S is a random subset of [n] (specifically, by Eq. (4) and Eq. (5),
both Uf (S) and Bf (S) can be written as non-negative linear combination of Up1(S) and
Up2(S), and thus, it suffices to prove multiplicative concentration inequalities for Up1(S) and
Up2(S)).

3.3 Approximating greedy via random sampling
We have shown that Greedy is instance-optimal compared to all the uniform mechanisms
in Theorem 6, but it requires the knowledge of private costs. In this subsection, we present a
proxy of Greedy called Random-Sampling-Greedy, which uses random sampling14 to
approximate the distribution of private costs, and in Theorem 11, we will show that this
randomized mechanism strictly satisfies the budget constraint and with high probability
achieves almost the same utility as Greedy.

Before that, we introduce two subroutines that will be applied in Random-Sampling-
Greedy. The first subroutine handles an edge case of a small subset T of sellers with
exceptionally high utility. The second subroutine adjusts the price p1 to a new price p̂1, to
handle an edge case where Up1([n] \ T ) is very small. Intuitively, after those adjustments
, the utility of any individual seller, who is not in T and has a cost-per-utility at most p̂1,
is tiny relative to Up̂1([n] \ T ). Therefore when S is a uniformly random subset of [n] \ T ,
Up̂1(S) is concentrated around its expectation w.h.p. (We will show this formally in the
analysis of Random-Sampling-Greedy in the full version.)

Pre-purchasing the most valuable items. The first subroutine, which will be the first step
of Random-Sampling-Greedy, is pre-purchasing the items of highest utilities. By the
small-bidder assumption, each seller’s cost is o(B). Thus, for an arbitrarily large integer

14 An alternative method often used in the literature is for every seller, computing the prices for the
market excluding this seller and then offering the computed prices to this seller. We remark there exist
instances for which this method violates budget-feasibility when applied to our idealized mechanism.
Besides, random partitioning is much more computationally efficient than this alternative method.

ITCS 2023



93:14 Beyond Worst-Case Budget-Feasible Mechanism Design

constant C, we can pre-purchase the top C items of highest utilities by making a payment
ϵ1B/C to each of the C sellers, and the remaining budget is (1− ϵ1)B. Henceforth, we let T

denote the set of the top-C items and let U(T ) denote their total utility.

Truncating a greedy allocation rule. We let η > 0 be a parameter which we use for this
truncation step (later we will choose η to be an arbitrarily small constant and then choose
C such that ηC is arbitrarily large). Suppose we are given an allocation rule f of Greedy
that is characterized by (t, p1, p2) where t ∈ [0, 1) and 0− ≤ p1 ≤ p2. We let f̂ denote the
truncated allocation rule of f . Specifically, f̂ is characterized by (t, p̂1, p2), and p̂1 is defined
as follows

p̂1 :=
{

0− Up1([n] \ T ) < U(T )
ηC

p1 Up1([n] \ T ) ≥ U(T )
ηC

.

That is, we get f̂ by decreasing the value of f over [0, p1] to t if Up1([n] \T ) is less than U(T )
ηC

(recall that Up1([n] \ T ) is the total utility of the sellers in [n] \ T whose cost-per-utility is at
most p1 by Observation 9).

We observe that applying truncation will not significantly decrease (relative to U(T )) the
utility attained by the allocation rule:

▶ Observation 10. For all S ⊆ [n], Uf (S)− Uf̂ (S) ≤ U(T )
ηC .

Proof. By our design of the truncation step and Observation 9, Uf (S) − Uf̂ (S) = (1 −
t)(Up1(S)− Up̂1(S)) ≤ Up1(S)− Up̂1(S). Moreover, by definition of p̂1, Up1(S)− Up̂1(S) = 0
if Up1(S) ≥ U(T )

ηC , and obviously Up1(S)− Up̂1(S) ≤ Up1(S) < U(T )
ηC if otherwise. ◀

The Random-Sampling-Greedy mechanism

Now we present Random-Sampling-Greedy (Mechanism 2) and its theoretical guarantee
(Theorem 11). The analysis of Random-Sampling-Greedy (the proof of Theorem 11),
which is rather technical but still interesting, is deferred to Section C in the full version for
the interest of space.

Mechanism 2 Random-Sampling-Greedy.
Input : (ci, ui) for i ∈ [n], B, and parameters ϵ1, δ1, η, C.

1 Buy the items from the top C sellers T of highest utilities and pay each of them
ϵ1B/C;

2 Partition the other sellers [n] \ T into X and Y uniformly at random;
3 (Virtually, aka without making actual allocations or payments) run Greedy

mechanism on X and Y with budget (1−δ1)B
2 , separately, and get the resulting

allocation rules fX , fY ;
4 Truncate fX , fY using parameter η and get f̂X , f̂Y and their associated payment

rules Q̂X , Q̂Y ;
5 In an arbitrary order, sequentially apply f̂X , Q̂X to the sellers in Y until we spend

(1−ϵ1)B
2 on Y , and then sequentially apply f̂Y , Q̂Y to the sellers in X until we spend

(1−ϵ1)B
2 on X;
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▶ Theorem 11. For divisible items, under the small-bidder assumption, for every ϵ > 0, there
exists sufficiently small δ1, η > 0 and sufficiently large C such that, Random-Sampling-
Greedy is truthful-in-expectation and strictly budget-feasible and with high probability
achieves utility at least (1− ϵ)-fraction of the utility attained by Greedy.

3.4 Numerical simulation on synthetic instances
We compare the performance of Greedy, Random-Sampling-Greedy with [2]’s mechanism
AGN, and the best cutoff rule with proper tie breaking Cutoff (i.e., [10]’s open clock
auction) on synthetic datasets, where the market has 1000 sellers, each of whom has unit
utility and cost sampled from various distributions (negative cost is rounded to 0), and
the buyer’s budget is 20000. When we run Random-Sampling-Greedy for this instance,
we simply set ϵ1, δ1, η, C to 0 (these constants were only used to prove asymptotically high
probability bounds). The results are summarized in Table 1 (for each cost distribution, we
take the average and the standard deviation of the results of 100 runs). We observe that
Greedy always dominates other mechanisms since it is instance-optimal uniform mechanism,
and Random-Sampling-Greedy (RS-Greedy) is usually almost as good as Greedy with
only a small difference due to random sampling (as illustrated in Figure 1, this difference
goes to 0 when the size of market increases, which matches Theorem 11). Moreover, on all
the synthetic instances, Greedy and RS-Greedy beat the worst-case 1− 1/e competitive
ratio by a large margin, while AGN only obtains close-to-(1− 1/e) competitive ratio. On the
other hand, for unimodal distributions, Cutoff often performs well, but for multi-modal
distributions, it is significantly outperformed by Greedy and RS-Greedy. This matches
our intuition:

▶ Example 12. Consider the instance where all n sellers have unit utilities, and n/2 sellers
have costs 0 and n/2 sellers have costs 1, and the buyer has budget n. The best cutoff
rule (i.e., setting a best uniform price-per-utility for all sellers) only gets the n/2 sellers
with zero cost and hence achieves competitive ratio 1/2, while Greedy can choose tuple
(t = 1/2, p1 = 0, p2 = 1) and achieve competitive ratio 3/4.

Table 1 Competitive ratios achieved by different mechanisms on synthetic datasets.

Cutoff AGN Greedy RS-Greedy
0.816 ± 0.004 0.632 ± 0.001 0.818 ± 0.004 0.81 ± 0.006
0.709 ± 0.005 0.633 ± 0.003 0.711 ± 0.004 0.702 ± 0.006
0.74 ± 0.008 0.663 ± 0.006 0.743 ± 0.008 0.736 ± 0.009
0.69 ± 0.003 0.633 ± 0.002 0.726 ± 0.003 0.718 ± 0.005
0.68 ± 0.009 0.634 ± 0.003 0.712 ± 0.006 0.706 ± 0.007

Each row contains the results for a distinct cost distribution. The distributions from top to bottom are
N (20, 5), Unif(0, 40), Exp(20), 1

2 N (10, 3) + 1
2 N (30, 3), 1

3 N (5, 3) + 1
3 N (20, 3) + 1

3 N (35, 3).

4 Budget-smoothed analysis

In this section, we analyze our mechanism in the budget-smoothed analysis framework. Our
main results of budget-smoothed analysis are:

Our mechanism obtains near-optimal budget-smoothed competitive ratio for any budget
distribution when compared to all (possibly non-uniform) mechanisms (Theorem 13).
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Figure 1 This figure shows that the difference between competitive ratios achieved by Greedy
and RS-Greedy (y-axis) diminishes when the market size n (x-axis) increases. In each subplot, the
market has n sellers, each of whom has unit utility and cost sampled from a distinct distribution
(negative cost is rounded to 0), and the buyer’s budget is 20n. Each datapoint in the plot is the
average of 20 runs, and the shaded area captures one standard deviation.

Our mechanism obtains strictly better than 1− 1/e budget-smoothed competitive ratio
on any non-trivial budget distribution (Theorem 4.3 in the full version). In Section E of
the full version, we also formulate a (non-convex) mathematical program that computes
the budget-smoothed competitive ratio for any given budget distribution. We solve this
program for various distributions and observe non-negligible improvement over 1− 1/e.
Given any bounded range of budgets, there is a single market on which, simultaneously
for every budget in the range, [2]’s mechanism obtains only 1 − 1/e competitive ratio
(Theorem D.2 in the full version).
Our mechanism (and hence all possibly non-uniform mechanisms by Theorem 13) has
budget-smoothed competitive ratio bounded away from 1 (specifically, at most 0.854) for
any budget distribution (Theorem 4.4 in the full version).

4.1 Greedy is optimal for any budget distribution
In this subsection, we analyze the budget-smoothed competitive ratio of our complete-

information “mechanism” Greedy for any budget distribution. We show that Greedy
is optimal for any budget distribution –even among non-uniform mechanisms– and the
ratio goes beyond 1 − 1/e when there are multiple budgets in the support of the budget
distribution. These results extend to Random-Sampling-Greedy due to Theorem 11. We
will characterize the worst Bayesian market for truthful-in-expectation uniform mechanisms,
where n sellers have the same utility, and their costs are drawn from a continuous distribution.
This characterization can be viewed as a generalization of the worst-case instance15 in [2].
Then, we argue that this Bayesian market is as hard for truthful-in-expectation non-uniform
mechanisms. But before that, we explain why the continuous cost distribution and equal
utilities are not restrictions, i.e., for an arbitrary market, we can construct a Bayesian market
with continuous cost distribution and equal utilities that exhibits the same hardness for
truthful-in-expectation uniform mechanisms as the original market.

4.1.1 From arbitrary market to Bayesian market
Given an market I with n sellers of utilities ui’s and costs ci’s, we first construct a Bayesian
market I1 with a discrete distribution. The market I1 has M ·

∑
i ui sellers16, where M is

a sufficiently large number. Let D1 be a distribution over { ci

Mui
| i ∈ [n]} such that the

15 J.Z. wants to thank Nima Anari for an inspiring discussion of the worst-case instance in [2].
16 Without loss of generality, we assume that M ·

∑
i
ui is an integer.
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probability of ci

Mui
is ui/(

∑
j uj). Each seller has utility 1

M , and his cost is drawn from D1.
We need to verify two things: (i) the non-IC optimal utilities of the knapsacks for I and I1
are almost equal, and (ii) the best achievable utilities by uniform mechanisms for I and I1
are also almost the same. For (ii), it suffices to consider Greedy because of Theorem 6.
The reason both of these hold is that the optimal utility and the best achievable utility only
depend on the cost-to-utility ratio c

u ’s and the total utility of the sellers with the same c
u ,

and if M is sufficiently large, with high probability these quantities do not change much in
I1 compared to I.

Next, we construct a Bayesian market I2 with the same setup as I1 but a continuous
distribution for sellers’ costs. To this end, consider the CDF of D1, which is some step
function F (c), we can approximate each step in F arbitrarily well by a logistic function and
glue them together such that the CDF is differentiable. For the same reason as above, the
best achievable competitive ratio of a uniform mechanism for I2 is approximately equal to
that for I1.

4.1.2 Characterizing the worst Bayesian market
▶ Theorem 13. For any distribution D over any m budgets B1 < B2 · · · < Bm, let F (c)
be the CDF of the distribution of costs of the worst17 Bayesian market for D. Then, the
following hold:

Consider the plot of cF (c) with respect to F (c). cF (c) is a piecewise-linear function of
F (c) with at most m non-zero linear pieces, and has non-decreasing slope.
For each budget, the utility-maximizing allocation rule for this market is a uniform cutoff
rule, namely, f(c/u) = 1(c/u ≤ c∗/u∗) for some c∗/u∗.
Greedy is worst-case optimal for budget distribution D (see Defintion 5) compared
to all the truthful-in-expectation (not necessarily uniform) mechanisms. (Note that the
optimality also holds for Random-Sampling-Greedy due to Theorem 11.)

Proof. From the previous discussion, it suffices to consider a Bayesian market, where n

sellers have the same utility, and their costs are drawn from a continuous distribution, the
CDF of which is some continuous F . The following min-max program computes the cost
distribution that gives the worst expected competitive ratio for budget distribution D against
uniform allocation rules (later we will show that non-uniform rules are not any better for the
worst distribution),

inf
F

sup
f1,...,fm

m∑
i=1

Pr[Bi] ·
F (0) +

∫ ∞
0+ fi(c) dF (c)

τi

s.t. ∀i ∈ [m],
∫ τi

0
c dF (c)︸ ︷︷ ︸

total payment of non-IC optimum

= Qfi
(0) · F (0) +

∫ ∞

0+
Qfi

(c) dF (c)︸ ︷︷ ︸
Myerson’s payment for fi

= Bi,

∀i ∈ [m],∀c ≥ 0, fi(c) ∈ [0, 1],
and F is a continuous CDF,

where Pr[Bi] is the probability of Bi according to D, fi is the allocation function for i-th
budget, and τi’s denote the expected non-IC optimal utility for the corresponding budgets,
and we hard-code in the program those τi’s which result in the worst expected ratio. Although
we did not require fi’s to be monotone here, later we will show that if we add the monotonicity

17 By “worst for D”, we mean it minimizes the best possible expected competitive ratio that is achievable
by any mechanism given budget distribution D.
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constraint, the worst ratio does not change. Also, note that we only require budget feasibility
in expectation for the allocation function, and hence, the optimality of Greedy will hold
even among ex ante budget-feasible mechanisms. We should have restricted the non-IC
optimal solution to be ex post budget-feasible, but this is fine, because as market size n

grows, with high probability, the budget spent in the optimal solution is concentrated around
its expectation, and cutting the budget slightly does not decrease the optimal utility much
(see Lemma B.5 in the full version).

Now we derive that∫ ∞

0+
Qf (c) dF (c) =

∫ ∞

0+

(
f(c) · c +

∫ ∞

c

f(x) dx

)
dF (c) (Myerson’s payment identity)

=
∫ ∞

0+
f(c) · c dF (c) +

(
F (c) ·

∫ ∞

c

f(x) dx

)
|∞0+

−
∫ ∞

0+
F (c) d

(∫ ∞

c

f(x) dx

)
(Integration by parts)

=
∫ ∞

0+
f(c) · c dF (c)− F (0) ·

∫ ∞

0+
f(x) dx

+
∫ ∞

0+
f(c) F (c)dc︸ ︷︷ ︸

= F (c)
F ′(c) dF (c)

=
∫ ∞

0+
f(c) ·

(
c + F (c)

F ′(c)

)
dF (c)− F (0) ·Qf (0).

Therefore, the maximization problem in the min-max program can be seen as a fractional
knapsack (where dF (c) is the value of an item c, and c + F (c)

F ′(c) is its weight per value), and
the best allocation function should choose the c’s with small c + F (c)

F ′(c) = d(cF (c))
dF (c) . We now

prove several structural properties about the plot (curve) of cF (c) with respect to F (c).

Any feasible curve should have non-decreasing slope from the origin. Notice that d(cF (c))
dF (c)

is the slope of this curve at F (c), and c is the slope of the line from the origin to the point of
the curve at F (c). Any feasible curve should have non-decreasing slope from the origin since
F (c) is non-decreasing in c and vice versa.

Now we show the structural result about the worst-case F for one budget, and later we
will extend to many budgets.

The curve is piecewise-linear w.l.o.g. Given a feasible curve for some F , we discretize
the smooth curve into a piecewise-linear curve. The discretization is sufficiently fine-grained
such that the slope of the curve and the slope to the origin at each point are close to those
of the original curve, and there are only finitely many non-differentiable points. Hence the
min-max program is still valid, and its result does not change much. It suffices to consider
such piecewise-linear curves.

Worst-case curve has non-decreasing slope. Our first observation is that the worst-case
curve should have non-decreasing slope. If it does not, we can re-order the linear pieces
according to their slopes, and the re-ordering preserves the probability mass of c’s with any
fixed slope. Hence the best allocation rule makes the same utility as before. Meanwhile,
the slope to the origin at each c can only become smaller than that before re-ordering.
The budget spent by the non-IC optimal solution to get the same utility as before is the
integration of the slope from origin from 0 to some τ , which can only decrease. Therefore,
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F (c)

cF (c)

1
(a) 1 budget.

F (c)

cF (c)

1c2c1

(b) 2 budgets.

Figure 2 On the left: Starting from an arbitrary piecewise linear curve (red dotted), we can
re-order its pieces to get blue dashed curve and then again into the green solid curve. These steps
only make the market worse. The worst F (green solid) for one budget is “ReLU shaped”.
On the right: The worst F for 2 (m respectively) budgets should have at most 2 (m respectively)
non-zero linear pieces. Consider the optimal allocation functions for two budgets, which are cutoff
rules, if neither cutoff lies in (c1, c2), then changing the red dashed curve into the blue solid curve
makes the market worse.

the re-ordering can only decrease the competitive ratio of the best allocation rule. This is
illustrated in Figure 2 (a), when we re-order the red dotted curve and get the blue dashed
curve.

A claim following from the non-decreasing slope is that the best allocation rule should be
a cutoff rule.

▷ Claim 14. Utility-maximizing allocation function for a convex F (c)-to-cF (c) curve is a
cutoff rule.

Proof of Claim 14. Indeed, since the best allocation rule comes from solving the fractional
knapsack problem we mentioned above and the value per weight (equal to slope) is non-
decreasing, the solution should be f(c) = 1 for all c ≤ c1, and f(c) = t < 1 for all c1 < c ≤ c2,
for some c1 < c2. This rule can be seen as a probabilistic combination of two cutoff rules,
i.e., with some probability α offer cutoff price c1 and offer c2 otherwise, and the expected
utility and payment are αF (c1) + (1− α)F (c2) and αc1F (c1) + (1− α)c2F (c2) respectively.
Consider the c3 such that F (c3) = αF (c1) + (1 − α)F (c2), because the curve is convex,
c3F (c3) ≤ αc1F (c1) + (1−α)c2F (c2). Hence the cutoff rule at c3 makes the same utility but
spends no more than the probabilistic rule, and the claim follows. ◁

Worst-case curve for one budget is a ReLU function. Next, we argue that the worst-case
(convex) curve for one budget should be a ReLU function, i.e., it is zero at first and then
becomes a linear function. Suppose otherwise, we let c∗ be the cutoff price of the best
allocation rule. We can draw a line between (F (c∗), c∗F (c∗)) and the F (c)-axis with slope
equal to the slope of the worst curve at (F (c∗), c∗F (c∗)). Consider the ReLU curve whose
non-zero linear part is this line. Notice that (F (c∗), c∗F (c∗)) does not change and is still
optimal, and hence the optimal utility achievable by any allocation rule does not change.
Meanwhile, the slope from origin at each c can only become smaller, and therefore, the
budget spent by the non-IC optimal solution to get the same utility as before can only
decrease. This is illustrated in Figure 2 (a), where we change the blue dashed curve into the
green solid curve. Furthermore, the part of the original curve after (F (c∗), c∗F (c∗)) has slope
larger than the slope at this point, and decreasing this part to the line with the slope at this
point only decreases the spent budget for the non-IC optimal solution and does not change
the result of the best allocation rule. The final curve is a ReLU, and the best achievable
competitive ratio only gets worse.

ITCS 2023
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Characterizing the worst-case curve for many budgets. Now we show that the worst-case
curve for m budgets has at most m non-zero linear pieces by generalizing the above argument.
Consider the m optimal cutoff rules for m budgets respectively, if there are more than m

non-zero linear pieces, then there is one piece from some (F (c1), c1F (c1)) to some other
(F (c2), c2F (c2)) such that the open interval (c1, c2) does not contain any optimal cutoff.
If this is not the last piece of the curve, we can extend the piece before (F (c1), c1F (c1))
upwards and the piece after (F (c2), c2F (c2)) downwards until they intersect, which decreases
the number of linear pieces. Similar to the one budget case, this step does not change the
payments of optimal cutoff rules and can only decrease the payments of non-IC optimal
solutions, and therefore, this only makes the market worse. This is illustrated in Figure 2 (b),
where we change the red curve to the blue. If it is the last piece of the curve, namely
F (c2) = 1, then we can simply extend the piece before (F (c1), c1F (c1)) upwards until it hits
1 horizontally. The argument in this case is analogous.

Adding monotonicity constraints to the min-max program. Next, we explain why restrict-
ing fi’s to be monotone does not change the optimal value to the min-max program. As
we argued above, the best allocation rules for the worst distribution F ∗ are cutoff rules f∗

i ,
which are monotone. Since (F ∗, {f∗

i | i ∈ [m]}) is an equilibrium of the min-max program
without monotonicity constraints, (F ∗, {f∗

i | i ∈ [m]}) is obviously also an equilibrium of the
min-max program with monotonicity constraints. Notice that the min-max program with
monotonicity constraints satisfies the conditions of Sion’s minimax theorem (see Lemma B.6
in the full version). Hence the optimal value to this program is equal to the objective value
at this equilibrium.

Non-uniform allocation rule is not better. We show that for a Bayesian market that
matches our characterization, non-uniform rules do not outperform uniform rules. Consider
a general (possibly non-uniform) mechanism where each seller i has its own allocation rule
A

(i)
c−i . Now let P

(i)
c−i(c) = 1−A

(i)
c−i(c). An implementation of A

(i)
c−i is sampling cutoff prices

from the distribution whose CDF is P
(i)
c−i To see this, the probability that the item of price

ci is bought is 1− P
(i)
c−i(ci) = A

(i)
c−i(ci), and the expected payment is∫ cmax

ci

cdP (i)
c−i

(c) = cP (i)
c−i

(c)|cmax
ci
−

∫ cmax

ci

P (i)
c−i

(c)dc

= cmax − ciP
(i)
c−i

(ci)−
∫ cmax

ci

P (i)
c−i

(c)dc

= cmax − ci(1−A(i)
c−i

(ci))−
∫ cmax

ci

(1−A(i)
c−i

(c))dc

= ciA
(i)
c−i

(ci) +
∫ cmax

ci

A(i)
c−i

(c)dc,

which is exactly the Myerson payment corresponding to A
(i)
c−i . Since the allocation rule

A
(i)
c−i can be seen as a probabilistic combination of cutoff rules, as we have shown before,

by convexity of the F (c)-to-(cF (c)) curve (see Claim 14), there is a cutoff rule p
(i)
c−i that

achieves the same utility but with less or equal payment compared to A
(i)
c−i . Moreover, p

(i)
c−i ’s

together can be seen as a probabilistic cutoff rule that depends on random variable c−i,
and hence again by the same argument, there is a cutoff rule pi that does as good as the
random p

(i)
c−i for seller i. Finally, for the same reason, the uniform cutoff rule p such that

F (p) = 1
n

∑n
i=1 F (pi) is as good as the non-uniform rule pi’s.
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Since Greedy uses the best monotone uniform allocation rule for any instance by
Theorem 6, the min-max program with additional monotonicity constraint solves for the
worst-case expected competitive ratio for Greedy. Thus, the observation in the above
paragraph implies that Greedy is worst-case optimal compared to all the truthful-in-
expectation (even non-uniform) mechanisms. ◀
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