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Abstract

Random graph models with community structure have been studied extensively in the literature.
For both the problems of detecting and recovering community structure, an interesting landscape
of statistical and computational phase transitions has emerged. A natural unanswered question is:
might it be possible to infer properties of the community structure (for instance, the number and
sizes of communities) even in situations where actually finding those communities is believed to be
computationally hard? We show the answer is no. In particular, we consider certain hypothesis
testing problems between models with different community structures, and we show (in the low-degree
polynomial framework) that testing between two options is as hard as finding the communities.

In addition, our methods give the first computational lower bounds for testing between two
different “planted” distributions, whereas previous results have considered testing between a planted
distribution and an i.i.d. “null” distribution.
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1 Introduction

The problem of detecting and recovering community structure in random graph models
has been studied extensively in the literature. Popular models include the planted dense
subgraph model [2, 12], where an Erdős–Rényi base graph is augmented by adding one or
more “communities” – subsets of vertices with a higher-than-average connection probability
between them – and the stochastic block model (see [1, 18] for a survey). There are by
now a multitude of results identifying sharp conditions based on the problem parameters,
e.g. edge probabilities and number/sizes of communities, under which it is possible (or
impossible) to recover (exactly or approximately) the hidden partition of vertices, given a
realization of the graph as input. Notably, many settings are believed to exhibit a statistical-
computational gap; that is, there exists a “possible but hard” regime of parameters where
it is statistically possible to recover the communities (typically by brute-force search) but
there is no known computationally efficient, meaning polynomial-time, algorithm for doing
so. It may be that this hardness is inherent, meaning no poly-time algorithm exists, which is
suggested by a growing body of “rigorous evidence” including reductions from the planted
clique problem [7, 12] and limitations of known classes of algorithms [4, 9, 15, 19].

Despite all this progress, one question that remains relatively unexplored is the following:
in the aforementioned “hard” regime, even though it seems hard to recover the communities,
might it still be possible to learn something about the community structure (e.g., the number
or sizes of communities)? After all, in some models it has already been established that
detecting the presence of a dense subgraph (i.e., distinguishing the planted subgraph model
from an appropriate Erdős–Rényi “null” model) appears to be strictly easier than actually
recovering which vertices belong to it [7, 8, 12, 19]. Existing detection-recovery gaps of this
nature often occur due to a “trivial” test for detection (e.g., the total edge count), and the
motivation for our work is to understand more precisely which properties of the community
structure can be inferred in the hard regime, and which ones cannot.

A simple testing problem

One of the simplest inference tasks on the community structure is to detect the number of
communities. Let us consider a toy problem of testing between two graph models: under
P the graph contains one community of expected size k, while under Q the graph contains
two communities each of expected size k{2. The community membership of each vertex
is independent in both models (k{n under P and k{p2nq, k{p2nq under Q) and vertices
cannot be members of more than one community. Suppose any pair of vertices from the
same community are connected independently with probability 2q and 3q under P and Q,
respectively, and all the other pairs of vertices are connected independently with probability
q under both models. Such a parameterization matches the expected degrees of the nodes
under the two distributions, so that a simple test based on the total edge count fails to
distinguish between P and Q. One natural test is to threshold the number of triangles. It
is easy to derive that the expected number of triangles under P and Q scale as different
constant multiples of q3k3, and the variance of the number of triangles is of order Θpn3q3q

under both models. Thus, the simple triangle counting algorithm consistently distinguishes
P and Q if q3k3 "

a

n3q3, i.e. qk2{n " 1.
It is intriguing that the condition for the triangle counting algorithm to succeed coincides

with the conjectured computational barrier for the more difficult task of finding all members
of the community under the model P [19]. In other words, in the entire “hard” regime where
one cannot efficiently locate the planted community, the triangle counting algorithm fails to
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even tell whether the graph contains one or two communities. In this paper, we show that
this statement extends beyond the simple triangle counting algorithm to all low-degree tests.
Our main result is given in the following (informal) theorem statement.

▶ Theorem 1.1 (Informal). If qpk2{n_1q ď 1{polylogpnq, then no low-degree test consistently
tests between the graph models with one and two planted communities.

Moreover, the informal result of Theorem 1.1 extends to a much wider class of testing
problems than those for which it is stated. We find that, whenever recovery is computationally
hard, all low-degree tests fail to distinguish models with different numbers of planted
communities of possibly different sizes. In other words, inferring the community structure is
just as hard as finding members of the planted communities themselves. We show a similar
phenomenon for graphs with Gaussian weights. See Theorems 2.4 and 2.5 for the formal
statements. It is important to note that our results apply even in regimes where it is easy
to distinguish P (or Q) from an Erdős–Rényi graph; that is, one cannot recover our results
simply by arguing that both P and Q are hard to distinguish from Erdős–Rényi.

The low-degree testing framework

Unfortunately, it seems to be beyond the current reach of computational complexity theory
to prove that no polynomial-time algorithm can distinguish two random graph models, even
under an assumption like P ‰ NP. Nonetheless, a popular heuristic – the low-degree testing
framework [5, 13, 14, 15] (see [17] for a survey) – gives us a rigorous basis on which to
form conjectures about hardness of such problems. Specifically, we will study the power of
low-degree tests, a class of methods that includes tests based on edge counts, triangle counts,
and other small subgraph counts. Strikingly, low-degree tests tend to be as powerful as all
known polynomial-time algorithms for testing problems that are (informally speaking) of
the flavor that we consider in this paper; see [13, 17] for discussion. In this paper, we will
prove low-degree hardness, meaning failure of all low-degree tests (to be defined formally in
Section 2.1), for certain testing problems; this can be viewed as an apparent barrier to fast
algorithms that we believe is unlikely to be overcome by known techniques, and perhaps
indicates fundamental computational hardness.

Planted-versus-planted testing

We emphasize that there is a key difference between our work and existing hardness results
for high-dimensional testing. The testing problems we consider are between two different
“planted” distributions, each with a different type of planted structure. In contrast, previous
low-degree hardness results for testing (e.g., [13, 14, 15, 17] and many others) have always
considered testing between “planted” and “null,” where the null distribution has i.i.d. or
at least independent entries. On a technical level, planted-versus-null problems are more
tractable to analyze because we can explicitly construct a basis of orthogonal polynomials
for the null distribution, but this strategy seems more difficult to implement for planted-
versus-planted problems.

The idea of planted-versus-null testing goes beyond the low-degree framework. Other
forms of average-case lower bounds typically also, either explicitly or implicitly, leverage
a hard planted-versus-null testing problem; this includes reductions from planted clique
(e.g., [6, 7]), sum-of-squares lower bounds (e.g., [5, 16]), and statistical query lower bounds
(e.g., [10, 11]). In fact, these frameworks seem to struggle in settings where there is not a
hard planted-versus-null testing problem available.

ITCS 2023
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Our work overcomes this barrier that has limited the use of the above methods: we
demonstrate for the first time that low-degree hardness results can be proven for planted-
versus-planted problems. We give some general-purpose formulas (Propositions 2.7 and 2.8)
that can be used to analyze a wide variety of such problems in random graphs or random
matrices, not limited to just the specific models studied in this paper. The proof techniques
are inspired by [19], which studies estimation problems rather than testing. On a technical
level, the core challenge in our analysis is to bound certain recursively-defined quantities
called rα (defined in (1)). These are analogous to the cumulants that appear in [19], and
while the rα are not cumulants, they enjoy a number of similar convenient properties (see
Section 3) that are important for the analysis.

Alternative proof strategy for hardness of recovery

As a byproduct, our results corroborate the computational barrier for planted dense subgraph
recovery established in [19]. Indeed, if there were an algorithm that successfully recovers
a planted community, one could turn this into an algorithm for testing one community
versus two. Therefore the “hard” regime for recovery contains the “hard” regime for testing
community structure.

This provides an alternative method for establishing detection-recovery gaps. For problems
where recovery of the planted structure is strictly harder than detecting its presence, it is not
viable to deduce optimal hardness of recovery from a planted-versus-null testing problem.
However, our work demonstrates that it is possible to attain the sharp recovery threshold via
reduction from a planted-versus-planted problem, as long as the two planted distributions
are appropriately chosen.

Open problems

A natural next step is to investigate whether our method yields sharp computational
thresholds for other problems that exhibit detection-recovery gaps. For example, the problem
of parameter estimation in sparse high-dimensional linear regression likely has a detection-
recovery gap (see [3]) and can potentially be related to a testing problem between two planted
models, e.g. between a sparse linear regression and a mixture of two sparse linear regressions.

Another open question is whether our computational hardness result can be shown in ways
beyond the low-degree testing framework, such as by using the sum-of-squares framework,
statistical query framework, or reduction from the planted clique problem. In particular, if
the problem of testing community structure can be reduced from planted clique, this would
yield a reduction from planted clique to planted dense subgraph recovery, which is an open
problem (see [7]).

2 Main results

2.1 Low-degree testing
We begin by explaining what it means for a low-degree test to distinguish two high-dimensional
distributions.

▶ Definition 2.1. Suppose Pn and Qn are distributions on RN for some N “ Nn. A degree-D
test is a multivariate polynomial fn : RN Ñ R of degree at most D (really, a sequence of
polynomials, one for each problem size n). Such a test f is said to strongly separate P and
Q if, in the limit n Ñ 8,
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d

max
"

Var
Q

rf s, Var
P

rf s

*

“ o p|EPrf s ´ EQrf s|q ,

and weakly separate P and Q if
d

max
"

Var
Q

rf s, Var
P

rf s

*

“ O p|EPrf s ´ EQrf s|q .

Strong separation is a natural sufficient condition for success of a polynomial-based test
because it implies (by Chebyshev’s inequality) that P and Q can be distinguished by
thresholding f ’s output, with both type I and II errors op1q. Weak separation also implies
non-trivial testing, i.e. better than a random guess; see [3, Prop. 6.1]. In this paper, we
characterize the limits of low-degree tests. For upper bounds, in the “easy” regime, we
show that a constant-degree test achieves strong separation, implying a poly-time algorithm
for testing with op1q error probability. For lower bounds, in the “hard” regime, we show
that for some D “ ωplog nq, no degree-D test can achieve even weak separation. Because
many known algorithms can be implemented as degree-Oplog nq polynomials (e.g., spectral
methods; see Section 4.2.3 of [17]), we treat this as “evidence” that no polynomial-time
algorithm achieves non-trivial testing power, i.e. better than a random guess. Our results, in
fact, often rule out much higher degree tests (e.g., D “ nΩp1q), depending on how far the
parameters lie from the critical threshold.

2.2 Model formulation
We consider the problem of testing between two random graph models, both of which contain
planted communities but with different community structures. We focus on testing between
two additive Gaussian models where the edge weights are Gaussian, and between two binary
observation models where the edges are unweighted and the diagonal is set to zero to ensure
no self-loops in the graph.

▶ Definition 2.2 (Additive Gaussian model). Given the number of vertices n, total community
size k, signal strength λ ą 0, number of communities M , and vector of community proportions
x P r0, 1sM with

řM
ℓ“1 xℓ “ 1, define the additive Gaussian model P “ PGaussianpn, k, λ, M, xq

as follows. Under P, independently for each i P rns :“ t1, 2, . . . , nu, the community label σi

is sampled such that σi “ ℓ with probability xℓk{n for each ℓ P rM s and σi “ ‹ (a symbol
indicating membership in none of the communities) with probability 1 ´ k{n. For each pair
of vertices i, j P rns with i ď j, the edge weight Yij is sampled from

Yij „

$

&

%

N
´

λ
xℓ

, 1
¯

, σi “ σj “ ℓ for some ℓ P rM s,

N p0, 1q, otherwise.

For i ą j, the edge weight Yij is defined to be Yji.

Notice that with the above definition, each community ℓ P t1, 2, . . . , Mu is expected to be
of size xℓk and the expected number of vertices which do not belong to any community is
n ´ k. The choice of mean λ{xℓ ensures that on average, the vertices in one community have
the same weighted degree (row sum of Y ) as the vertices in any other community.

ITCS 2023
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▶ Definition 2.3 (Binary observation model). Given the number of vertices n, total community
size k, edge probability parameters q, s ě 0, number of communities M , and vector of
community proportions x P RM with

řM
ℓ“1 xℓ “ 1, define the Binary observation model

P “ PBinarypn, k, q, s, M, xq as follows. The community labels tσiuiPrns are sampled the same
way as in the additive Gaussian model. Given the community labels, for each pair of vertices
i, j P rns with i ă j, the edge weight Yij is sampled from

Yij „

$

&

%

Bernoulli
´

q ` s
xℓ

¯

, σi “ σj “ ℓ for some ℓ P rM s,

Bernoulli pqq, otherwise.

For i ą j, the edge weight Yij is defined to be Yji and the diagonal entries set to zero Yii “ 0.

For example, if we want to model two communities of equal sizes, we can choose M “ 2
and x1 “ x2 “ 1

2 . The communities are then both expected to be of size k{2. If we also set
s “ q we have an in-community connection probability of 3q and every other pair of nodes is
connected with probability q as in the toy model discussed in the Introduction.

The two models introduced in Definitions 2.2 and 2.3 only differ in the edge weight
distributions, as the community labels follow the same distribution under both models.
Alternatively, we can write Sℓ for the set of vertices in community ℓ, so that σi “ ℓ if and
only if i P Sℓ. Note that by definition, each vertex i can belong to at most one community.
In other words, the communities tSℓuℓPrMs are disjoint.

With the other parameters fixed, we consider testing between model P with M planted
communities and community proportions x P r0, 1sM , and the model Q with M 1 planted
communities and community proportions x1 P r0, 1sM 1 for some M 1 ‰ M . In short, for
both Gaussian and Bernoulli edge weight models, we establish a “hard” regime where the
distributions P and Q cannot be weakly separated by low-degree tests. We consider the
regime n Ñ 8 and allow all the parameters k, λ, M, x to depend on n; thus, our results can
apply to a growing number of communities, although our main focus is on the case where
M, M 1 are fixed so that our upper and lower bounds match.

▶ Theorem 2.4 (Additive Gaussian model). Given parameters n, k, λ, M, M 1, x, x1, define
distributions P “ PGaussianpn, k, λ, M, xq and Q “ PGaussianpn, k, λ, M 1, x1q. Assume that
M minℓ xℓ ě C and M 1 minℓ x1

ℓ ě C for some constant C ą 0. Write ĂM “ |M ´ M 1| and
xM “ maxtM, M 1u. We have:

If D5
xM2λ2pk2{n _ 1q “ op1q, then no degree-D test weakly separates P and Q.

If ĂM2λ2k2{n “ ωp1q and ĂM2k{xM2 “ ωp1q, then there exists a degree-1 test that strongly
separates P and Q.

In the regime k2 ě n, xM “ Op1q, and D ď polylogpnq, Theorem 2.4 precisely character-
izes (up to logarithmic factors) the computational threshold for low-degree testing. This
threshold coincides with the conjectured computational threshold for recovering a single
planted community, which has been established in the low-degree polynomial framework [19,
Theorem 2.5]. We focus on the k2 ě n regime in this paper, as this is where there is a
conjectured detection-recovery gap, but we suspect that when xM is constant, λ2pk2{n_1q „ 1
is the computational threshold across the entire parameter regime. The optimal test when
k2 ă n should be based on the maximum diagonal entry, and while this is not a polynomial,
it should be possible to approximate it by one (similar to Section 4.1.1 of [19]).

▶ Theorem 2.5 (Binary observation model). Given parameters n, k, q, s, M, M 1, x, x1, define
distributions P “ PBinarypn, k, q, s, M, xq and Q “ PBinarypn, k, q, s, M 1, x1q. Assume that
M minℓ xℓ ě C and M 1 minℓ x1

ℓ ě C for some constant C ą 0 and that q ` s{pminℓ xℓq ď τ1
for some constant τ1 ă 1. Write ĂM “ |M ´ M 1| and xM “ maxtM, M 1u. We have:
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If D5
xM2ps2{qqpk2{n _ 1q “ op1q, then no degree-D test weakly separates P and Q.

If ĂM2{3ps2{qqk2{n “ ωp1q, xM´1{3sk “ ωp1q and ĂM2k{xM2 “ ωp1q then there exists a
degree-3 test that strongly separates P and Q.

The upper and lower bounds match (up to log factors) provided k2 ě n, xM “ Op1q,
D ď polylogpnq, and q ě 1{n. The condition q ě 1{n is natural since without it there will
be isolated vertices. The regime k2 ă n is more complicated, and some open questions
remain here even for simpler testing and recovery problems than those we study here; see
Section 2.4.1 of [19] for discussion.

2.3 Proof overview
Main quantity to bound: advantage

In order to rule out weak separation between distributions P “ Pn and Q “ Qn on RNn , it
will suffice to bound the degree-D “advantage,” named as such to emphasize that it measures
the ability of low-degree polynomials to outperform random guessing and defined as

AdvďDpP,Qq :“ sup
f deg D

EPrf s
a

EQrf2s
,

where f ranges over polynomials RN Ñ R of degree at most D. The quantity AdvďD is also
the norm of the degree-D likelihood ratio (see [13, 17]), but we will not use this interpretation
here as the likelihood ratio is difficult to work with in our setting. We note that while the
notion of separation is symmetric between P and Q, the notion of advantage is not; for
our purposes, we could just as easily work with AdvďDpQ,Pq instead of AdvďDpP,Qq. The
following basic fact connects AdvďD with strong/weak separation.

▶ Lemma 2.6. Fix a sequence D “ Dn.
If AdvďDpP,Qq “ Op1q then no degree-D test strongly separates P and Q.
If AdvďDpP,Qq “ 1 ` op1q then no degree-D test weakly separates P and Q.

The proof of Lemma 2.6, along with the proofs of all facts in this section, can be found
in Section 5. In light of Lemma 2.6, it remains to bound AdvďD. We will provide a few
general-purpose bounds, one for Gaussian problems and one for binary-valued problems.
Both will involve the following recursively-defined quantities rα introduced in what follows.

Recursive definition for the r-values

Suppose X is a random variable taking values in RN , which may have a different distribution
under P and Q. For α, β P NN where N “ t0, 1, 2, . . .u, define

|α| :“
ÿ

i

αi, α! :“
ź

i

αi!,
ˆ

α

β

˙

:“
ź

i

ˆ

αi

βi

˙

, and Xα :“
ź

i

Xαi
i .

Also define β ď α to mean “βi ď αi for all i” and define β ň α to mean “βi ď αi for
all i and for some i the inequality is strict: βi ă αi.” With this notation in hand, define
rα “ rαpXq P R for α P NN recursively by

rα “ EP rXαs ´
ÿ

0ďβňα

rβ

ˆ

α

β

˙

EQ
“

Xα´β
‰

. (1)
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Bounds on advantage

We have the following general-purpose bounds on AdvďD in terms of rα defined in (1). The
proofs are inspired by [19] and can be found in Section 5.

▶ Proposition 2.7 (General additive Gaussian model). Suppose P and Q take the following
form: to sample Y „ P (or Y „ Q, respectively), first sample X P RN from an arbitrary
prior PX (or QX , resp.), then sample Z „ N p0, IN q, and set Y “ X ` Z. Define rα as
in (1). Then

AdvďDpP,Qq ď

g

f

f

e

ÿ

αPNN , |α|ďD

r2
α

α! .

▶ Proposition 2.8 (General binary observation model). Suppose P and Q each take the following
form. To sample Y „ P (or Y „ Q, respectively), first sample X P RN from an arbitrary
prior PX (or QX , resp.) supported on X P rτ0, τ1sN with 0 ă τ0 ď τ1 ă 1, then sample
Y P t0, 1uN with entries conditionally independent given X and ErYi|Xs “ Xi. Define rα as
in (1). Then

AdvďDpP,Qq ď

g

f

f

e

ÿ

αPt0,1uN , |α|ďD

r2
α

pτ0p1 ´ τ1qq|α|
.

Combinatorial properties of the rα

The upshot of the two propositions above is that to show hardness of distinguishing P versus
Q, it suffices to bound the recursively defined rα. This task is made easier by indentifying
combinatorial properties the rα enjoy. In Section 3, we show general results for how properties
of the probability spaces transfer to behaviour of the rα. We may consider α P NN as a
multigraph, see Section 3.1, and we word the results in this language. Loosely speaking the
results we present are as follows:

If P and Q are multiplicative for disjoint graphs α and β then rαYβ “ rαrβ (Lemma 3.1).
If EPrXτ s “ EQrXτ s for all trees τ , then the r value is zero on trees (Lemma 3.2).
The r-values are indifferent to constant shifts to X (Lemma 3.3).
If we scale X by a constant factor c to construct rr, then rrα “ c|α|rα (Lemma 3.4).

Putting it all together

In Section 4 we pivot back to considering our particular probability spaces P and Q and
calculate the expected value of Xα as a function of properties of the graph α (see Lemma 4.1).
This, together with the multiplicative and tree results for the rα, allow us to bound Adv in
the Gaussian case. The scaling and shifting properties of the rα are used to show we can
deduce the graph case from the Gaussian case.

3 The recursive algebra of planted vs planted

The recursively defined rα play a central role in our proof. By Proposition 2.7, the “advantage”
Adv is bounded above by a sum of squares of the rα; therefore, to show low-degree hardness
for a distinguishing problem, it is enough to control the size of this sum of squares. In this
section, we explore the combinatorial behaviour of these rα and show that they exhibit very
nice properties under only mild assumptions on the probability spaces P and Q. (We will
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write P and Q for the probability spaces in this section both to emphasise that these results
hold for any probability spaces and to ease the notational burden.) We assume throughout
that both P and Q are symmetric, i.e. they are supported on X for which Xij “ Xji.

3.1 The graph interpretation
As in [19], it will be convenient to think of α P NN as a multigraph, possibly with self-loops,
on the vertex set rns where N “ npn ` 1q{2 and we take αij , for each i ď j, to be the number
of edges between vertices i and j. For example, for n “ 3, N “ 6 and if we fix the order to be
α “ pα11, α12, α22, α13, α23, α33q then p0, 2, 0, 1, 1, 0q is the graph and, for n “ 2, N “ 3,
p1, 1, 0q is the graph a single edge with a loop at one vertex. For graphs α and β we
consider β to be a subgraph of α, denoted β Ď α, if the labelled edge set of β is a subset
of the labelled edge set of α. For example, for the graph α “ , the graphs β “ and
β1 “ are distinct subgraphs. For graph α and subgraph β Ď α define αzβ to be the graph
obtained from α by first removing the labelled edges in β and then removing isolated vertices
- e.g. z “ (not ). Similarly, let α X β denote the graph obtained by first taking the
intersection of both graphs and then deleting any isolated vertices.

The usefulness of considering graphs with labelled edge sets is that it simplifies the
expression for the recursion in the definition of rα. To avoid confusion, write vα for the
vector that maps to the graph α. Note first that if vβ ď vα then β Ď α and vice-versa.
However the counts are different. For fixed α and β with vβ ď vα there are

`

vα

vβ

˘

many distinct
edge-labelled graphs β1 such that β1 Ď α and vβ1 “ vβ . Hence, for edge-labelled graphs
the equivalent recursive definition to (1) is as follows, where the sum is over edge-labelled
subgraphs.

For graph α, the term rα is defined recursively by

rα “ EP rXαs ´
ÿ

∅ĎβĹα

rβ EQ

”

Xαzβ
ı

, (2)

starting from the base case of the empty graph r∅ “ 1. For example, if the probability spaces
are exchangeable (i.e. β “ and β1 “ etc. have the same expectations under both P and
Q) then

r “ EP

„

X

ȷ

´ EQ

„

X

ȷ

´ 3r EQ

„

X

ȷ

´ 3r EQ

”

X
ı

.

We will use the notion of edge-labelled subgraphs, denoted Ď, to aid the proofs but for the
rest of the paper we consider α P NN , or equivalently α a graph without edge labels, and
denote by ď the non-labelled subset or subgraph relation.

3.2 Combinatorial properties of the r-values
We will be interested in how properties of the probability spaces transfer to the behaviour of
rα. We will see that the rα behave multiplicatively over taking disjoint unions if the following
property holds for P and Q. Let α Y β denote the disjoint union of α and β. We say the
probability space A is multiplicative over disjoint unions if (3) holds:

EA

“

XαYβ
‰

“ EA rXαsEA

“

Xβ
‰

for any graphs α and β. (3)

▶ Lemma 3.1. Suppose P and Q are symmetric and multiplicative over disjoint unions, i.e.
they satisfy (3), then for any α and β, we have rαYβ “ rα rβ .
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Proof. We proceed by induction on the number of edges.

Base case. Suppose α consists of two disjoint edges, denoted by and . Then from (2),

r “ EP

”

X
ı

EP

”

X
ı

´ r∅ EQ

”

X
ı

EQ

”

X
ı

´ r EQ

”

X
ı

´ r EQ

”

X
ı

,

where we used the multiplicative property of (3) to deduce EP

”

X
ı

“ EP

”

X
ı

EP

”

X
ı

.

Now substituting r∅ “ 1 along with r “ EP

”

X
ı

´ EQ

”

X
ı

and the corresponding
expression for r , we get

r “ EP

”

X
ı

EP

”

X
ı

´EP

”

X
ı

EQ

”

X
ı

´EP

”

X
ı

EQ

”

X
ı

`EQ

”

X
ı

EQ

”

X
ı

“ r r .

Inductive step. Fix τ “ α Y β and assume the factorization of r holds for graphs with fewer
than |τ | “ |α| ` |β| edges. For any graph γ define zγ by zγ :“ EP rXγs ´ rγ . Then, first note

zα zβ “ EP rXαsEP

“

Xβ
‰

´ zα EP

“

Xβ
‰

´ zβ EP rXαs ` rα rβ ,

and that because α and β are disjoint and P satisfies (3), we have EP rXαsEP

“

Xβ
‰

“

EP

“

XαYβ
‰

. Hence,

zα zβ “ EP

“

XαYβ
‰

´ zα EP

“

Xβ
‰

´ zβ EP rXαs ` rα rβ ,

and now (back) substituting EP rXαs “ rα ` zα and EP

“

Xβ
‰

“ rβ ` zβ we find

rα rβ “ EP

“

XαYβ
‰

´ rα zβ ´ rβ zα ´ zα zβ .

By definition, rαYβ “ EP

“

XαYβ
‰

´ zαYβ ; therefore, to complete the proof, it suffices to show
the identity

zαYβ “ zβ rα ` zα rβ ` zα zβ . (4)

Again, write τ “ α Y β and note that by the definitions of rτ and zτ , we have

zτ “ EP rXτ s ´ rτ “ ´
ÿ

γĹτ

rγEQ

”

Xτzγ
ı

. (5)

Now observe that for any γ Ĺ τ since τ “ α Y β we have γ “ γα Y γβ where γα “ γ X α and
γβ “ γ X β. Thus γ is a disjoint union of γα and γβ with strictly fewer total edges than
α Y β and so by the inductive hypothesis rγ “ rγα

rγβ
. Hence, for any fixed γ Ĺ α Y β,

rγ EQ

”

XpαYβqzγ
ı

“ rγα
EQ

”

Xαzγα

ı

rγβ
EQ

”

Xβzγβ

ı

. (6)

There are two special cases for (6). If γα “ α, then

rγ EQ

”

XpαYβqzγ
ı

“ rα rγβ
EQ

”

Xβzγβ

ı

,

and symmetrically for the case γβ “ γ. Note that because γ is a strict subgraph of α Y β

either of γα “ γ or γβ “ β may hold but not both.
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In the expression for zαYβ in (5) we take the sum over tγ : γ Ĺ α Y βu and partition
it into sums over the sets S1 “ tγ : γα “ α, γβ Ĺ βu, S2 “ tγ : γα Ĺ α, γβ “ βu and
S3 “ tγ : γα Ĺ α, γβ Ĺ βu. We begin with S1: by (6),

´
ÿ

γPS1

rγ EQ

”

XpαYβqzγ
ı

“ ´
ÿ

γβĹβ

rα rγβ
EQ

”

Xβzγβ

ı

“ rα zβ .

Similarly taking the sum over S2 yields rβ zα. Lastly, the sum over S3 is given by

´
ÿ

γPS3

rγ EQ

”

XpαYβqzγ
ı

“ ´
ÿ

γαĹα, γβĹβ

rγα
EQ

”

Xαzγα

ı

rγβ
EQ

”

Xβzγβ

ı

“ zα zβ .

By (5), zαYβ can be obtained as a sum of fpγ, α Y βq over γ Ĺ α Y β for some function f .
However, when we sum the same function f over γ in S1, S2 and S3 it gives the three terms
on the right hand side of (4), thus confirming the identity as required. ◀

▶ Lemma 3.2. For all τ where τ is a forest, meaning a graph with no cycles, suppose that
P and Q satisfy EP rXτ s “ EQ rXτ s . Then, rα “ 0 for any forest graph α.

Proof. The proof is almost immediate by induction on the number of edges. For the base case
we note r “ EP

”

X
ı

´EQ

”

X
ı

“ 0. For any fixed forest α and β Ĺ α, the graph β is a forest
on strictly fewer edges and so by induction rβ “ 0, but then rα “ EP rXαs´EQ rXαs “ 0. ◀

We also show that one can add a constant shift to the distribution without changing the
values of the rα. The proof is somewhat technical, so we relegate it to Section 5.

▶ Lemma 3.3. Let rX be defined by rXij “ Xij `yij where yij P R is non-random for each pair
i, j. Then, for any probability spaces P and Q, for rα “ rαpP, Q, Xq and rrβ “ rrβpP, Q, rXq,
and for all γ, we have that rγ “ rrγ .

The following lemma concerns the effect on r of scaling.

▶ Lemma 3.4. Fix a P R and a ‰ 0. Let rX be defined by rXij “ aXij. Then for any
probability spaces P and Q, for rα “ rαpP, Q, Xq and rrβ “ rrβpP, Q, rXq, and for all γ, we
have that rrγ “ a|γ| rγ , where |γ| equals the number of edges in the graph γ, i.e. |γ| “ |Epγq|.

Proof. This proof is a simple induction on |α|. The base case is easy as rr∅ “ r∅ “ 1 as
required. Now, fix α for some |α| ą 1, and assume we have proven the result for |β| ă |α|.
However,

rrα “ EP

”

rXα
ı

´
ÿ

HĎβĹα

rrαzβ EQ

”

rXβ
ı

“ a|α|EP rXαs ´
ÿ

HĎβĹα

rrαzβ a|β|EQ

“

Xβ
‰

.

By the inductive hypothesis, rrαzβ “ a|αzβ| rαzβ and so by the equation above we are done as
a|β|a|αzβ| “ a|α|. ◀

4 Proof

In this section we give the full proofs of the main results, Theorems 2.4 and 2.5.

Proof of Theorem 2.4. Hard regime. We start by proving the computational lower bound.
By definition of the Additive Gaussian model, we can write the observed edge weights
Y “ tYijuiďj as Y “ X ` Z, where Z consists of i.i.d. N p0, 1q entries, and

Xij “

#

λ{xℓ σi “ σj “ ℓ for some ℓ P rM s,

0 otherwise.
(7)
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Recall the sequence rα, defined recursively via

rα “ EP rXαs ´
ÿ

0ďβňα

rβ

ˆ

α

β

˙

EQ
“

Xα´β
‰

.

By Lemma 2.6 and Proposition 2.7, we have that if
ÿ

α : |α|ďD

r2
α

α! “ 1 ` op1q, (8)

then no degree-D test can weakly separate P and Q. Thus, to prove the computational lower
bound, it suffices to show that (8) holds for D5λ2M2pk2{n _ 1q “ op1q.

We will demonstrate (8) by proving the following three facts. (We consider the sets α as
graphs and write V pαq for the vertex set and Cpαq for the set of connected components, see
Section 3.1 for details.)

(i) For all α, the term rα factorizes over the connected components of α. That is,

rα “
ź

βPCpαq

rβ .

(ii) If at least one connected component of α is a tree, then rα “ 0.
(iii) For all α, where |α| “ |Epαq| counts the edges in the graph α,

|rα| ď p|α| ` 1q
|α|

˜

xMλ

C

¸|α|
ˆ

k

n

˙|V pαq|

.

Fact (i) follows directly from Lemma 3.1. To see Fact (ii), we note that by Lemma 3.2 it
suffices to show that for any τ a tree, we have EP rXτ s “ EQ rXτ s. But recall that for a
tree, the number of edges is one less than the number of vertices, i.e. |τ | “ |V pτq| ´ 1 and τ

consists of one connected component so that |Cpτq| “ 1. Thus, by Lemma 4.1 we are done.
Fact (iii) follows from Lemma 4.2. We will state and prove Lemmas 4.1 and 4.2 at the end
of this section.

Next, we argue that the three facts combined yield (8). From fact (iii), we have for
each α,

r2
α ď p|α| ` 1q

2|α|

˜

xMλ

C

¸2|α|
ˆ

k

n

˙2|V pαq|

“ p|α| ` 1q
2|α|

˜

xM2λ2k2

C2n

¸|Epαq|
ˆ

k2

n

˙|V pαq|´|Epαq|

n´|V pαq|.

From (ii), we know that rα is nonzero only when all connected components of α contain at
least one cycle. Denote

Gd,v “ tα : |Epαq| “ d; |V pαq| “ v; for all β P Cpαq, β is not a treeu .

Note that for all d, v such that v ą d, we have that Gd,v “ H because if all connected
components of α contains at least one cycle, we must have |α| ě |V pαq|. Thus for k2 ě n,
we have shown that for all d, v with α P Gd,v,

r2
α ď pd ` 1q

2d

˜

xM2λ2k2

C2n

¸d

n´v.
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On the other hand, for k2 ă n, we have

r2
α ď pd ` 1q

2d

˜

xMλ

C

¸2d
ˆ

k

n

˙2v

ď pd ` 1q
2d

˜

xMλ

C

¸2d

n´v.

Combined with the bound on r2
α for k2 ě n, we have shown that

r2
α ď pd ` 1q

2d

¨

˝

˜

xMλ

C

¸2
ˆ

k2

n
_ 1

˙

˛

‚

d

n´v.

Next, we bound the size of Gd,v by counting the number of graphs with exactly d edges and
v vertices:

|Gd,v| ď

ˆ

n

v

˙ˆ

v

2

˙d

ď nvv2d. (9)

where the factor
`

n
v

˘

enumerates the possibilities for the vertex set in α; the
`

v
2
˘d factor

counts the allocation of the d edges, allowing for edge multiplicity. Combining (12) (see
Lemma 4.2 below) and (9) yields

ÿ

α : |α|ďD

r2
α

α! ď r2
0 `

D
ÿ

d“1

d
ÿ

v“1

ÿ

αPGd,v

r2
α

α!

ď 1 `

D
ÿ

d“1

d
ÿ

v“1
|Gd,v| ¨ pd ` 1q2d

¨

˝

˜

xMλ

C

¸2
ˆ

k2

n
_ 1

˙

˛

‚

d

n´v

ď 1 `

D
ÿ

d“1

d
ÿ

v“1
nvv2dpd ` 1q2d

¨

˝

˜

xMλ

C

¸2
ˆ

k2

n
_ 1

˙

˛

‚

d

n´v

“ 1 `

D
ÿ

d“1

¨

˝pd ` 1q2

˜

xMλ

C

¸2
ˆ

k2

n
_ 1

˙

˛

‚

d
d

ÿ

v“1
v2d

ď 1 ` D
D
ÿ

d“1

¨

˝pD ` 1q2D2

˜

xMλ

C

¸2
ˆ

k2

n
_ 1

˙

˛

‚

d

ď 1 ` D
D
ÿ

d“1

¨

˝

˜

2D2
xMλ

C

¸2
ˆ

k2

n
_ 1

˙

˛

‚

d

“ 1 ` p1 ` op1qq 4D5

˜

xMλ

C

¸2
ˆ

k2

n
_ 1

˙

“ 1 ` op1q,

where the last two equalities follow by the condition D5pxMλq2pk2{n _ 1q “ op1q, under which
the summation over d is a geometrically decreasing sequence, dominated by the first term.

Easy regime. Next, we show that in the “easy” regime λ2
ĂM2pk2{n _ 1q “ ωp1q and ĂM2k “

ωpxM2q, there is a low-degree test that strongly separates P and Q. When λ2
xM2k2{n “ ωp1q,

consider the algorithm that uses pT “
ř

i Yii, the sum of the diagonal elements, as the test
statistic. We can compute the first and second moments of pT under the two models using
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(7) to note that under P, we have Yii “ λ
xℓ

` N p0, 1q if σi “ σj “ ℓ for some ℓ P rM s and
Yii “ N p0, 1q otherwise, where each community label ℓ is selected with probability xℓk

n and
no label is selected with probability 1 ´ k

n . Under Q, we replace x and M with x1 and M 1.

EP

”

pT
ı

“ nEP rY11s “ n

»

–

ÿ

ℓPrMs

λ

xℓ
¨ Ptσ1 “ℓu ` 0 ¨ Ptσ1 “‹u

fi

fl “ n
ÿ

ℓPrMs

kλ

n
“ Mkλ,

EQ

”

pT
ı

“ nEQ rY11s “ M 1kλ,

Var
P

”

pT
ı

ď nEP
“

Y 2
11

‰

“ n

»

–

ÿ

ℓPrMs

ˆ

λ2

x2
ℓ

` 1
˙

¨ Ptσ1 “ℓu ` 1 ¨ Ptσ1 “‹u

fi

fl “ n `
ÿ

ℓPrMs

kλ2

xℓ
,

Var
Q

”

pT
ı

ď nEQ
“

Y 2
11

‰

“ n `
ÿ

ℓPrM 1s

kλ2

x1
ℓ

.

Note also that M minℓ xℓ ě C implies maxℓ 1{xℓ ă M{C; thus,
ř

ℓďM
1

xℓ
ď M2{C. Hence,

when ĂM2k{xM2 “ ωp1q and ĂM2λ2k2{n “ ωp1q,
d

max
"

Var
Q

”

pT
ı

, Var
P

”

pT
ı

*

“ o
´

ˇ

ˇ

ˇ
EP

”

pT
ı

´ EQ

”

pT
ı
ˇ

ˇ

ˇ

¯

.

Thus, thresholding pT strongly separates P and Q. ◀

Proof of Theorem 2.5.

Hard regime. The proof proceeds by comparison to a corresponding Gaussian model,
so that we can reuse the calculations in the proof of Theorem 2.4. Our starting point
is Proposition 2.8. Define X “ Xpq,sq appropriately for our binary testing problem, i.e.,
X

pq,sq

ij “ q ` s{xℓ if σi “ σj “ ℓ, and X
pq,sq

ij “ q otherwise. Let τ0 “ q, and recall that
we have a valid constant τ1 ă 1 by assumption. Consider the additive Gaussian testing
problem (as in Theorem 2.4) with the same parameters n, k, M, x as our binary model, and
with λ :“ s{

a

qp1 ´ τ1q. Let Xpλq denote the corresponding X as per Proposition 2.7, i.e.,
X

pλq

ij “ λ{xℓ if σi “ σj “ ℓ, and X
pλq

ij “ 0 otherwise. Note X
pq,sq

ij “ ps{λqX
pλq

ij ` q and so by
Lemmas 3.3 and 3.4 we have, rαpXpq,sqq “ ps{λq|α|rαpXpλqq. By Proposition 2.8,

AdvďDpP,Qq ď

g

f

f

e

ÿ

αPt0,1uN , |α|ďD

rα

`

Xpq,sq
˘2

pqp1 ´ τ1qq
|α|

“

d

ÿ

αPt0,1uN , |α|ďD

rα

`

Xpλq
˘2

ď

g

f

f

e

ÿ

αPNN , |α|ďD

rα

`

Xpλq
˘2

α! .

In other words, we have related the conclusion of Proposition 2.8 to the conclusion of
Proposition 2.7 but with s{

a

qp1 ´ τ1q in place of λ. The result now follows by the proof of
Theorem 2.4.

Easy regime. We now consider a signed triangle count pR as our test statistic. Let

pR “
ÿ

iăjăk

RijRikRjk where Rij “ Yij ´ q. (10)
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Expectation and variance calculations for pR are computed in Lemma 5.1 of Section 5.5.
Denote by xM the maximum of M and M 1. Then,

ˇ

ˇ

ˇ
EP

”

pR
ı

´ EQ

”

pR
ı
ˇ

ˇ

ˇ
“ 1

3
ˇ

ˇM ´ M 1
ˇ

ˇ s3 k3 `

1 ` Opn´1q
˘

,

and

max
"

Var
P

”

pR
ı

, Var
Q

”

pR
ı

*

ď
1
C

xM2k5s6 ` xMk4s4q `
1
C

xM2k4s5 ` 1
3 n3q3 ` nk2sq2 ` k3q2s ` k3qs2 ` 1

3
xMk3s3

(11)

where C is the constant from the assumption that M minℓ xℓ, M 1 minℓ x1
ℓ ą C. Writing

ĂM “ |M ´M 1|, notice that to prove strong separation it suffices to show that each term in (11)
is opĂM2s6k6q. For the fourth term to be opĂM2s6k6q is equivalent to ĂM2{3s2k2{pnqq “ ωp1q,
one of our assumptions. Similarly for the first term to be opĂM2s6k6q is equivalent to
ĂM2k xM2 “ ωp1q another of our assumptions. For the last term to be opĂM2s6k6q is equivalent
to ĂM2{3

xM´1{3sk “ ωp1q, which is implied by our assumption xM´1{3sk “ ωp1q. All other
terms follow also because of these assumptions. ◀

▶ Lemma 4.1. For each α P NN , and for each x “ px1, . . . , xcq with
ř

ℓ xℓ “ 1,

EP rXαs “ λ|α|

ˆ

k

n

˙|V pαq|
ź

βPCpαq

c
ÿ

ℓ“1
x

|V pβq|´|β|

ℓ .

Proof. First consider β a connected graph. Note that for pi, jq P β, if it is not the case that
i, j P Sℓ for some ℓ then Xpi,jq „ N p0, 1q and so EP

“

Xpi,jq
‰

“ 0 (here, we have used that our
Sℓ’s do not overlap). Hence, for β connected,

EP
“

Xβ
‰

“

c
ÿ

ℓ“1
P pV pβq P Sℓq

ˆ

λ

xℓ

˙|β|

“

c
ÿ

ℓ“1

ˆ

xℓ k

n

˙|V pβq| ˆ

λ

xℓ

˙|β|

.

Notice, it is now enough to show that the Xβ ’s are independent for β’s connected components
of α, as this would imply that EP rXαs “

ś

βPCpαq EP
“

Xβ
‰

and we have the result.
This independence follows because Xpi,jq depends only on the events ri P Sℓs, rj P Sℓ1 s

for each ℓ, ℓ1; thus, Xβ and Xβ1 are independent as long as their vertex sets V pβq and V pβ1q

do not overlap. As the vertex sets of connected components are mutually non-overlapping,
we have finished the proof. ◀

▶ Lemma 4.2. Suppose Mxp1q ě C and M 1x1
p1q

ě C where xp1q :“ minℓ xℓ for some constant
C ą 0. Then there exists editn0 P N such that for n ą n0, for all α, we have that rα satisfies

|rα| ď p|α ` 1|q
|α|

˜

xMλ

C

¸|α|
ˆ

k

n

˙|V pαq|

. (12)

Proof. We will argue by induction on |α|. A graph α with |α| “ 1 is either a tree with two
vertices and one edge, or a self-loop with one vertex and one edge. If α is a tree, then rα “ 0
and (12) trivially holds. If α is a self-loop, we have by Lemma 4.1,

rα “ EP rXαs ´ EQ rXαs “ Mλ

ˆ

k

n

˙

´ M 1λ

ˆ

k

n

˙

ď p|α| ` 1q
|α|

˜

xMλ

C

¸|α|
ˆ

k

n

˙|V pαq|

,

ITCS 2023



94:16 Is It Easier to Count Communities Than Find Them?

where the last inequality is because C ď Mxp1q ď 1. We have shown (12) for |α| “ 1.
Suppose (12) holds for all α with |α| ď d ´ 1; next we show it also holds for |α| “ d.

If α is not connected, then each connected component β P Cpαq has |β| ă d. Thus from
the factorization lemma and the induction hypothesis, we have

|rα| “
ź

βPCpαq

|rβ |ď
ź

βPCpαq

p|β| ` 1q
|β|

˜

λxM

C

¸|β|
ˆ

k

n

˙|V pβq|

ďp|α| ` 1q
|α|

˜

λxM

C

¸|α|
ˆ

k

n

˙|V pαq|

.

Thus (12) holds. Next we show (12) for α connected. If α is a tree, then by Fact (ii) we have
rα “ 0 and (12) holds. Therefore it suffices to consider α that is not a tree. Recall that

rα “ EP rXαs ´ EQ rXαs ´
ÿ

0ăβňα

rβ

ˆ

α

β

˙

EQ

”

Xαzβ
ı

. (13)

For the first term in (13), we can apply Lemma 4.1 for connected α:

EP rXαs “ λ|α|

ˆ

k

n

˙|V pαq|
ÿ

ℓPrMs

x
|V pαq|´|α|

ℓ ď λ|α|

ˆ

k

n

˙|V pαq|
“

Mxp1q

‰|V pαq|´|α|

“
“

Mxp1q

‰|V pαq|´|α|
M1´|V pαq|pMλq|α|

ˆ

k

n

˙|V pαq|

ď

ˆ

Mλ

C

˙|α| ˆ

k

n

˙|V pαq|

for large enough n. The last inequality is because we assumed that α is not a tree. Thus
|V pαq| ď |α|, and pMxp1qq|V pαq|´|α| ď C |V pαq|´|α| ď C |α|.

Next we bound the third term in (13). For each β ň α that is nonempty, |β| ă |α| “ d.
From the induction hypothesis we have

|rβ | ď p|β| ` 1q
|β|

˜

xMλ

C

¸|β|
ˆ

k

n

˙|V pβq|

.

Thus
ˇ

ˇ

ˇ
rβEQXαzβ

ˇ

ˇ

ˇ

ď p|β| ` 1q
|β|

˜

xMλ

C

¸|β|
ˆ

k

n

˙|V pβq|

¨ λ|αzβ|

ˆ

k

n

˙|V pαzβq|
ź

γPCpαzβq

ÿ

ℓPrM 1s

px1
ℓq|V pγq|´|γ|

“p|β| ` 1q
|β|

˜

xMλ

C

¸|α|̂

k

n

˙|V pαq|
˜

xM

C

¸´|αzβ|
ˆ

k

n

˙´|V pβqXV pαzβq|
ź

γPCpαzβq

ÿ

ℓPrM 1s

px1
ℓq|V pγq|´|γ|

ď p|β| ` 1q
|β|

˜

xMλ

C

¸|α|
ˆ

k

n

˙|V pαq|
ź

γPCpαzβq

˜

xM

C

¸´|γ|
ÿ

ℓPrM 1s

px1
ℓq|V pγq|´|γ|.

Next we show that for all γ P Cpαzβq, we have that pxM{Cq´|γ|
ř

ℓPrM 1spx
1
ℓq|V pγq|´|γ| ď 1.

Note that |V pγq| ď |γ| ` 1. We discuss the cases |V pγq| “ |γ| ` 1 and |V pγq| ď |γ| separately.
If |V pγq| “ |γ| ` 1, then

˜

xM

C

¸´|γ|
ÿ

ℓPrM 1s

px1
ℓq|V pγq|´|γ| “

˜

xM

C

¸´|γ|

ď 1.
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If |V pγq| ď |γ|, then we have

˜

xM

C

¸´|γ|
ÿ

ℓPrM 1s

px1
ℓq|V pγq|´|γ| ď

ˆ

M

C

˙´|γ|

M 1 px1
p1qq|V pγq|´|γ|

paq

ď

´

xMx1
p1q

¯|V pγq|´|γ|
xM1´|V pγq| C |γ|

pbq

ď C |V pγq|
xM1´|V p|γ|q|

pcq

ď 1,

where (a) is from M 1 ď M ; (b) is from M 1x1
p1q

ě C and |V pγq| ď |γ|; (c) is from C ď 1,
xM ě 1, and |V pγq| ě 1 for all γ P Cpαzβq. We have shown that

ˇ

ˇ

ˇ
rβEQXαzβ

ˇ

ˇ

ˇ
ď p|β| ` 1q

|β|

˜

xMλ

C

¸|α|
ˆ

k

n

˙|V pαq|

.

Plug in the values of EPrXαs and EQrXαs to (13) to obtain

|rα| ď

˜

xMλ

C

¸|α|
ˆ

k

n

˙|V pαq|

` λ|α|

ˆ

k

n

˙|V pαq|

`
ÿ

0ăβňα

ˆ

α

β

˙

p|β| ` 1q
|β|

˜

xMλ

C

¸|α|̂

k

n

˙|V pαq|

ď

«

1 ` 1 `
ÿ

0ăβňα

p|β| ` 1q
|β|

ff ˜

xMλ

C

¸|α|
ˆ

k

n

˙|V pαq|

ď p|α| ` 1q
|α|

˜

xMλ

C

¸|α|
ˆ

k

n

˙|V pαq|

,

where the last inequality is because

2 `
ÿ

0ăβňα

ˆ

α

β

˙

p|β| ` 1q
|β|

“ 2 `
ÿ

0ăℓă|α|

ˆ

|α|

ℓ

˙

pℓ ` 1qℓ ď p|α| ` 1q
|α|

.

We have shown that (12) holds for all α. ◀

5 Additional proofs

5.1 Proof of Lemma 2.6

First we prove the statement for weak separation. Assume, for the sake of contradiction,
that some degree-D test g : RN Ñ R weakly separates P and Q. Without loss of generality,
we can shift and scale g so that EQrgs “ 0 and EPrgs “ 1. Weak separation guarantees that
for sufficiently large n, VarQrgs “ EQrg2s ď C for some positive constant C ą 0. Defining
f “ g ` C, we have

AdvďD ě
EPrf s

a

EQrf2s
“

1 ` C
a

EQrg2s ` C2
ě

1 ` C
?

C ` C2
“

c

1 ` C

C
,

which is a constant strictly greater than 1, contradicting AdvďD “ 1 ` op1q. The proof for
strong separation is identical, except now C “ op1q.
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5.2 Proof of Proposition 2.7
The proof is similar to the proof of Theorem 2.2 in [19], so we only explain the differences. Our
distribution Q plays the role of the single “planted” distribution in [19]. The only difference
is that the quantity ErfpY qxs from [19] needs to be replaced by our EPrfpY qs, which means
(in the notation of [19]) the vector c needs to be redefined as cα “ EPrhαpY qs “ EPrXαs{

?
α!.

5.3 Proof of Proposition 2.8
Follow the proof of Theorem 2.7 in [19], but redefine c “ pcαqαPt0,1uN by cα “ EPr rXαs where
rXi “ pµ ` 1{µqXi ´ 1{µ and µ “

b

1´τ1
τ0

. This gives the bound

AdvďDpP,Qq ď

g

f

f

e

ÿ

αPt0,1uN , |α|ďD

rαp rXq2

p1 ` τ0 ´ τ1q2|α|

where rαp rXq is defined in (1). Using Lemmas 3.3 and 3.4, we have rαp rXq “ pµ`1{µq|α|rαpXq,
so the above simplifies to give the result.

5.4 Proof of Lemma 3.3
Base case(s). Note that by definition rrH “ rH “ 1. Let |α| “ 1, i.e. α “ tiju for some
1 ď i ď j ď n. Then the base step follows directly from the definition

rrα “ EP

”

rXij
ı

´ EQ

”

rXij
ı

“ EP

“

Xij
‰

` yij ´ EQ

“

Xij
‰

´ yij “ rα.

Inductive step. Fix α with |α| ą 1 and assume rrβ “ rβ for all β Ĺ α. Directly from the
definition of r and the inductive hypothesis,

rrα “ EP

”

rXα
ı

´ EQ

”

rXα
ı

´
ÿ

HĹβĹα

rrαzβ EQ

”

rXβ
ı

“ EP

”

rXα
ı

´ EQ

”

rXα
ı

´
ÿ

HĹβĹα

rαzβ EQ

”

rXβ
ı

.

We consider the third term, call it ˚. Writing yη to indicate
ś

ijPη yij , first notice that

EQ

”

rXβ
ı

“ EQ

«

ź

ijPβ

pXij ` yijq

ff

“ EQ

“

Xβ
‰

`
ÿ

HĹηĎβ

yη EQ

”

Xβzη
ı

;

hence,

˚ “
ÿ

HĹβĹα

rαzβ EQ

“

Xβ
‰

`
ÿ

HĹβĹα

rαzβ

ÿ

HĹηĎβ

yη EQ

”

Xβzη
ı

.

If we let β1 “ βzη, instead of summing over 0 Ĺ β Ĺ α and then H Ĺ η Ď β, we may sum
over H Ĺ η Ĺ α then H Ď β1 Ĺ αzη. Thus, noting also that αzβ “ pαzηqzβ1,

˚ “
ÿ

HĹβĹα

rαzβ EQ

“

Xβ
‰

`
ÿ

HĹηĎα

yη
ÿ

HĎβ1Ĺαzη

rpαzηqzβ1 EQ

”

Xβ1
ı

.



C. Rush, F. Skerman, A. S. Wein, and D. Yang 94:19

But, by the definition of rαzη,
ÿ

HĎβ1Ĺαzη

rpαzηqzβ1 EQ

”

Xβ1
ı

“ rαzη `
ÿ

HĹβ1Ĺαzη

rpαzηqzβ1 EQ

”

Xβ1
ı

“ EP

”

Xαzη
ı

´ EQ

”

Xαzη
ı

,

which gives the following expression for ˚ where we no longer have the sum over β1:

˚ “
ÿ

HĹβĹα

rαzβ EQ

“

Xβ
‰

`
ÿ

HĹηĎα

yη
´

EP

”

Xαzη
ı

´ EQ

”

Xαzη
ı¯

.

Substituting this expression for ˚ into our original expression for rrα we have

rrα “ EP

”

rXα
ı

´EQ

”

rXα
ı

´
ÿ

HĹβĹα

rαzβ EQ

“

Xβ
‰

´
ÿ

HĹηĎα

yη
´

EP

”

Xαzη
ı

´ EQ

”

Xαzη
ı¯

.

However, this last term is precisely what we need to cancel with the difference between
EP

”

rXα
ı

and EP rXαs and the difference between EQ

”

rXα
ı

and EQ rXαs. Therefore,

rrα “ EP rXαs ´ EQ rXαs ´
ÿ

HĹβĹα

rαzβ EQ

“

Xβ
‰

“ rα,

and we have proven the inductive step.

5.5 Calculations for signed triangle counts
In this section we analyse the degree 3 signed triangle count test statistic pR, defined in (10),
and show bounds on the expectation and variance of pR, which will prove it strongly separates
P and Q in the easy regime. Recall,

pR “
ÿ

iăjăk

Rij Rik Rjk where Rij “ Yij ´ q.

▶ Lemma 5.1. Given parameters n, k, q, s, M and x P RM with
ř

ℓPrMs xℓ “ 1, we let
P “ PBinarypn, k, q, s, M, xq. Assume that M minℓ xℓ ě C. Then,

EP

”

pR
ı

“ 1
3 Ms3k3 `

1 ` Opn´1q
˘

,

Var
P

”

pR
ı

ď 1
C M2k5s6 ` Mk4s4q ` 1

C M2k4s5 ` 1
3 n3q3 ` nk2sq2

` k3q2s ` k3qs2 ` 1
3 Mk3s3.

Proof. Recall that in our model, the binary random variable Yij takes value 1 with probability
q `s{xc if σi “ σj “ c for some c P rM s and takes value 1 with probability q otherwise. Thus,
we may calculate the expected values of Rij conditioned on the community assignments of i

and j:

EP rRij | σi “ ci, σj “ cjs “

#

s
xc

if ci “ cj “ c for some c P rM s,
0 otherwise.

(14)

We now split the proof into expectation and variance calculations. All probabilities, expecta-
tions and variances will be with respect to P, but we drop the subscript.
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Expectation. Let

N tri “ ttij, ik, jku : i, j, k P rns, i ă j ă ku ,

and then we may express the signed triangle count pR by pR “
ř

SPNtri RS . Fix a set of
edges in N tri, w.l.o.g. S “ t12, 13, 23u. Then, writing rM s‹ for the set t‹, 1, . . . , Mu (recall ‹

denotes no community membership),

E rRSs “
ÿ

c1,c2,c3PrMs‹

E rR12 R13 R23 |σ1 “ c1, . . . , σ3 “ c3s P pσ1 “ c1, . . . , σ3 “ c3q

“
ÿ

c1,c2,c3PrMs‹

ź

ijPt12,13,23u

E rRij | σ1 “ c1, . . . , σ3 “ c3s

3
ź

i“1
P pσi “ ciq ,

as the expected values of Rij and Rik are independent conditional on the community
assignments of i, j, k. Note by (14), ErRij |σi “ ci, σj “ cjs is equal to zero unless ci “ cj “ c

for some c P rM s. Therefore the only non-zero terms in the sum above are those for which
c1 “ c2 “ c3 “ c for some c P rM s. Let Cc be the event that σ1 “ σ2 “ σ3 “ c, then

E rRSs “

M
ÿ

c“1

ź

ijPS

E rRij | Ccs

3
ź

i“1
P pσi “cq “

M
ÿ

c“1

s3

x3
c

ˆ

kxc

n

˙3
“ Mk3s3n´3.

Because |N tri| “
`

n
3
˘

“ 1
3 n3p1 ` Op 1

n qq, the expectation of pR is as claimed.

Variance. Recall pR “
ř

SPNtri RS and so the variance is

Var
”

pR
ı

“
ÿ

S,T PNtri

E rRSRT s ´ E rRSsErRT s .

Note that if V pSq X V pT q “ ∅, i.e. the sets of pairs have no vertices in common, then RS

and RT are independent and these terms cancel in the expression above. Hence we need only
sum over S, T with one overlapping vertex, with two overlapping vertices or equivalently one
overlapping edge and lastly with all three vertices overlapping or equivalently S “ T . Thus

Var
”

pR
ı

ď
ÿ

S,T PNtri

|V pSqXV pT q|“1

E rRSRT s `
ÿ

S,T PNtri

|SXT |“1

E rRSRT s `
ÿ

SPNtri

E
“

R2
S

‰

. (15)

The terms above correspond to the sets of pairs overlapping as , and respectively
where the gray edges denote pairs in S and the pink edges denote pairs in T .

We begin by bounding the first term in (15), i.e. that corresponding to . Fix some pair
of sets which overlap on one vertex, w.l.o.g. S1 “ t12, 13, 23u and T1 “ t14, 15, 45u. Then,
similarly to the expectation, again writing rM s‹ for the set t‹, 1, . . . , Mu,

ErRS1RT1 s “
ÿ

c1,...,c5PrMs‹

ź

ijPS1YT1

ErRij | σ1 “c1, . . . σ5 “c5s

5
ź

i“1
P pσi “ciq

as the expected values of Rij and Rik are independent conditional on the community
assignments of i, j, k. Note that ErRij |σi “ ci, σj “ cjs is equal to zero unless ci “ cj “ c

for some c P rM s. Therefore the only non-zero terms in the sum above are those for which
c1 “ . . . “ c5 “ c for some c P rM s. Let Cc be the event that σ1 “ . . . “ σ5 “ c, then

ErRS1RT1 s “

M
ÿ

c“1

ź

ijPS1YT1

ErRij | Ccs

5
ź

i“1
P pσi “cq “

M
ÿ

c“1

s6

x6
c

ˆ

kxc

n

˙5
“ k5s6n´5

M
ÿ

c“1

1
xc

.
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Since there are at most n5 ways we may pick S, T P N tri with |V pSq X V pT q| “ 1, we may
conclude that the first term of (15) is at most k5s6 řM

c“1
1

xc
.

We next bound the second term in (15), i.e. that corresponding to . Similarly to above,
fix some pair of sets which overlap on one edge, w.l.o.g. S2 “ t12, 13, 23u and T2 “ t12, 14, 24u.

ErRS2RT2 s “
ÿ

cPrMs4
‹

ErR2
12R13R23R14R24 | σ1 “ c1, . . . , σ4 “ c4s

4
ź

i“1
P pσi “ ciq

“
ÿ

cPrMs4
‹

ErR2
12 | σ “ cs

ź

ijPt13,23,14,24u

ErRij | σ “ cs

4
ź

i“1
P pσi “ ciq (16)

since, as before, Rij and Rik are independent when we have conditioned on the community
assignments of i, j, k. Again, recall ErRij |σi “ ci, σj “ cjs is equal to zero unless ci “ cj “ c

for some c P rM s. Thus for the product over ij P t13, 23, 14, 24u in (16) to be non-zero all
vertices must have the same community assignment to some c P rM s. Hence,

ErYS2YT2 s “

M
ÿ

c“1
ErR2

12 | Ccs
ź

ijPt13,23,14,24u

ErRij | Ccs

4
ź

i“1
P pσi “ cq.

Calculate the conditional expectation of the square.

ErR2
ij | σi “ ci, σj “ cjs “

#

qp1 ´ qq ` s
xc

p1 ´ 2qq if ci “ cj “ c for some c P rM s

qp1 ´ qq otherwise,
(17)

and thus,

ErRS2RT2 s “

M
ÿ

c“1

ˆ

qp1 ´ qq `
s

xc
p1 ´ 2qq

˙ ˆ

s

xc

˙4 ˆ

kxc

n

˙4

“ M

ˆ

ks

n

˙4
qp1 ´ qq `

ˆ

ks

n

˙4
sp1 ´ 2qq

M
ÿ

c“1

1
xc

.

Since there are at most n4 ways we may pick S, T P N tri with |S X T | “ 1, we may conclude
that the second term of (15) is at most Mk4s4q ` k4s5 řM

c“1
1

xc
.

Lastly we bound the third (and last) term in (15), i.e. that corresponding to . Similarly
to above, fix a set S (and T which entirely overlaps with it), w.l.o.g. S3 “ t12, 13, 23u.
Calculate

ErR2
S3

s “ P pD0q pqp1 ´ qqq
3

`

3
ÿ

i“1

M
ÿ

c“1
P rDi,cs

ˆ

qp1 ´ qq `
s

xc
p1 ´ 2qq

˙i

pqp1 ´ qqq
3´i

ď P pD0qq3 `

3
ÿ

i“1

M
ÿ

c“1
P rDi,cs

ˆ

q `
s

xc

˙i

q3´i

where Di,c denotes the set of community assignments such that i of R12, R13, R23 has
distribution Berpq ` s{xcq (while the others have distribution Berpqq), and D0 denotes the
set of community assignments where all three have distribution Berpqq. Observe D1,c is
the set of assignments such that two vertices have label c P rM s and the other vertex
has label in t‹, 1, . . . , Muztcu and thus P pD1,cq ď 3pxck{nq2. Note D2,c “ ∅. Lastly
P pD3,cq “

ř

cPM pxck{nq3 as D3,c is the community assignment where each of the three
vertices has label c. Then P pD0q “ 1 ´

ř

c P pD1,cq ´
ř

c P pD3,cq. Substituting these bounds
for D0 and Di,c for i “ 1, 2, 3 and writing ρc “ kxc{n we get
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ErR2
S3

s ď q3p1 ´ 3ρ2
c ´ ρ3

cq ` 3
M
ÿ

c“1
ρ2

c

ˆ

q `
s

xc

˙

q2 `

M
ÿ

c“1
ρ3

c

ˆ

q `
s

xc

˙3

“ q3 ` 3n´2k2sq2 ` n´3k3

˜

3q2s
M
ÿ

c“1
x2

c ` 3qs2 ` Ms3

¸

.

Since there are
`

n
3
˘

ways to pick S P N tri the third term of (15) is at most 1
3 n3ErR2

S3
s,

1
3 n3ErR2

S3
s ď 1

3 n3q3 ` nk2sq2 ` k3q2s ` k3qs2 ` 1
3 Mk3s3

where we substituted
ř

cPM x2
c ,

ř

cPM x3
c ď 1. To finish, recall we assumed M minc xc ą C

for some constant C, and note this implies maxc 1{xc ă M{C and thus
ř

c 1{x2
c ă M2{C.

Apply this to the bounds from the first and second terms of (15) and we are done. ◀
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