
Non-Uniform Complexity via Non-Wellfounded
Proofs
Gianluca Curzi ! Ï

University of Birmingham, UK

Anupam Das !Ï

University of Birmingham, UK

Abstract
Cyclic and non-wellfounded proofs are now increasingly employed to establish metalogical results
in a variety of settings, in particular for type systems with forms of (co)induction. Under the
Curry-Howard correspondence, a cyclic proof can be seen as a typing derivation “with loops”,
closer to low-level machine models, and so comprise a highly expressive computational model that
nonetheless enjoys excellent metalogical properties.

In recent work, we showed how the cyclic proof setting can be further employed to model com-
putational complexity, yielding characterisations of the polynomial time and elementary computable
functions. These characterisations are “implicit”, inspired by Bellantoni and Cook’s famous algebra
of safe recursion, but exhibit greater expressivity thanks to the looping capacity of cyclic proofs.

In this work we investigate the capacity for non-wellfounded proofs, where finite presentability is
relaxed, to model non-uniformity in complexity theory. In particular, we present a characterisation
of the class FP/poly of functions computed by polynomial-size circuits. While relating non-
wellfoundedness to non-uniformity is a natural idea, the precise amount of irregularity, informally
speaking, required to capture FP/poly is given by proof-level conditions novel to cyclic proof theory.
Along the way, we formalise some (presumably) folklore techniques for characterising non-uniform
classes in relativised function algebras with appropriate oracles.

2012 ACM Subject Classification Theory of computation → Complexity theory and logic; Theory
of computation → Proof theory

Keywords and phrases Cyclic proofs, non-wellfounded proof-theory, non-uniform complexity, poly-
nomial time, safe recursion, implicit complexity

Digital Object Identifier 10.4230/LIPIcs.CSL.2023.16

Related Version Full Version: https://arxiv.org/abs/2211.16104

Funding Both authors are supported by a UKRI Future Leaders Fellowship, Structure vs. Invariants
in Proofs, project reference MR/S035540/1.

Acknowledgements We thank the anonymous reviewers for their helpful comments and suggestions.

1 Introduction

Non-wellfounded proof theory is the study of possibly infinite (but finitely branching) proofs,
where appropriate global correctness criteria guarantee logical consistency. This area origin-
ates (in its modern guise) in the context of the modal µ-calculus [31, 16], serving as an altern-
ative framework to manipulate least and greatest fixed points, and hence to model inductive
and coinductive reasoning. Since then, non-wellfounded proofs have been widely investigated
in many respects, such as predicate logic [8, 6], algebras [14, 15], arithmetic [32, 5, 12],
proofs-as-programs interpretations [2, 17, 11, 24, 13], and continuous cut-elimination [30, 18].
Special attention in these works is drawn to cyclic (or regular) proofs, i.e. non-wellfounded
proofs with only finitely many distinct subproofs, comprising a natural notion of finite
presentability in terms of (possibly cyclic) directed graphs.

© Gianluca Curzi and Anupam Das;
licensed under Creative Commons License CC-BY 4.0

31st EACSL Annual Conference on Computer Science Logic (CSL 2023).
Editors: Bartek Klin and Elaine Pimentel; Article No. 16; pp. 16:1–16:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:g.curzi@bham.ac.uk
http://gianlucacurzi.com
mailto:a.das@bham.ac.uk
https://anupamdas.com
https://doi.org/10.4230/LIPIcs.CSL.2023.16
https://arxiv.org/abs/2211.16104
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

16:2 Non-Uniformity via Non-Wellfoundedness

The Curry-Howard reading of non-wellfounded proofs has revealed a deep connection
between proof-theoretic properties and computational behaviours [11, 24, 13]. On the one
hand, the typical correctness conditions ensuring consistency, called progressing (or validity)
criteria, correspond to totality: functions computed by progressing proofs are always well-
defined on all arguments. On the other hand, regularity has a natural counterpart in the
notion of uniformity: circular proofs can be properly regarded as programs, i.e. as finite sets
of machine instructions, thus having a “computable” behaviour.

In a recent work [10], the authors extended these connections between non-wellfounded
proof theory and computation to the realm of computational complexity. We introduced
the proof systems CB and CNB capturing, respectively, the class of functions computable
in polynomial time (FP) and the elementary functions (FELEMENTARY). These proof
systems are defined by identifying global conditions on circular progressing proofs motivated
by ideas from Implicit Computational Complexity (ICC).

ICC, broadly construed, is the study of machine-free (and often bound-free) characterisa-
tions of complexity classes. One of the seminal works in the area is Bellantoni and Cook’s
function algebra B for FP based on safe recursion [4]. The prevailing idea behind safe
recursion (and its predecessor, ramified recursion [26]) is to partition function arguments
into “safe” and “normal”, namely writing f(x1, . . . , xm; y1, . . . , yn) when f takes m normal
inputs x⃗ and n safe inputs y⃗. In functions of B, the recursive parameters are always normal
arguments, while recursive calls can only appear in safe position; hence, no recursive call
can be used as recursive parameters of other previously defined functions. Our system CB
morally represents a cyclic proof theoretic formulation of B.

To establish the characterisation result for CB we developed a novel function algebra for
FP, called B⊂. Roughly, the latter extends B with a more expressive recursion mechanism on a
special well-founded preorder, “⊂”, based on permutation of prefixes of normal arguments, and
whose definition requires relativisation of the algebra to admit oracles. The characterisation
theorem is then obtained by a “sandwich” technique, where the function algebras B and B⊂

serve, respectively, as lower and upper bounds for CB.
In this paper we investigate the computational interpretation of more general non-

wellfounded proofs, where finite presentability is relaxed in order to model non-uniform
complexity. In particular we consider the class FP/poly of functions computable in polynomial
time by Turing machines with access to polynomial advice. Equivalently, FP/poly is the
class of functions computed by families of polynomial-size circuits. Note, in particular, that
FP/poly includes undecidable problems, and so cannot be characterised by purely cyclic
proof systems or usual function algebras, which typically have only computable functions.

We define the system nuB (“non-uniform B”), allowing a form of non-wellfoundedness
somewhere between arbitrary non-wellfounded proofs and full regularity, and show that nuB
duly characterises FP/poly. The characterisation theorem for nuB relies on an adaption
of the aforementioned sandwich technique for CB to the current setting. This requires a
relativisation of both B and B⊂ to a set of oracles, which we call R, deciding properties of
string length. As a byproduct of our proof method we also obtain new relativised function
algebras for FP/poly based on safe recursion, B(R) and B⊂(R); these are folklore-style results
that, as far as we know, have not yet appeared in the literature.

The overall structure of our result relies on a “grand tour” of inclusions, summarised as:

FP/poly
P.27
⊆ B(R1;0)

P.32
⊆ CB(R1;0)

P.33
⊆ nuB

T.36
⊆ CB(R1;1)

L.43
⊆ B⊂(R1;1)

P.42
⊆ FP(R)

P.26
⊆ FP/poly

While this may seem like a long route to take, the structure of our argument is designed so
that each of the above inclusions are relatively simple to establish and, as we said, yields
several intermediate characterisions of FP/poly of self-contained interest.

G. Curzi and A. Das 16:3

Related work. Characterisations of non-uniform complexity classes in the style of ICC
have been considered in the context of the λ-calculus [27] and variants of linear logic [29].
The former captures the class P/poly, i.e., the languages decided by families of polynomial
circuits, while the latter also captures L/poly, i.e., the languages decided by families of
polynomial size branching programs (i.e. decision trees with sharing). However this is the
first work (as far as we know) that attempts to relate non-wellfoundedness in proof theory to
non-uniformity in complexity theory.

The relativised proof systems and function algebras presented in this paper only query
“bits of real numbers”. Proof systems based on linear logic and implementing polytime
computation over actual binary streams have been considered, e.g., in [20], which provide an
ICC-like characterisation of Ko’s class of polynomial time computable functions over real
numbers [23].

Outline of the paper. This paper is structured as follows. In Section 2 we recall some
preliminaries on non-uniform and implicit complexity, in particular a proof theoretic for-
mulation of the algebra B. In Section 3 we recall the circular system CB from [10], and
introduce our new system nuB. In Section 4 we take an interlude to present some relativised
characterisations of FP/poly, both in the machine setting and the implicit setting, that will
later serve use in our grand tour of inclusions. In Section 5 we employ those characterisations
to establish the lower bound for nuB, and in Section 6 we recast nuB as a sort of relativised
circular system. Finally in Section 7 we adapt results from [10] translating circular proofs
to an appropriate function algebra to the relativised setting, thereby achieving the upper
bound for nuB.

2 Preliminaries on computational complexity and safe recursion

Throughout this work we only consider (partial) functions on natural numbers. We write
|x| for the length of the binary representation of a number x, and for lists of arguments
x⃗ = x1, . . . , xn we write |x⃗| for the list |x1|, . . . , |xn|.

2.1 Non-uniform complexity classes

FP is the class of (total) functions computable in polynomial time on a Turing machine.
The “non-uniform” class FP/poly is an extension of FP that intuitively has access to a
polynomial amount of “advice”, determined only by the length of the input. Formally:

▶ Definition 1 (Non-uniform polynomial time). FP/poly is the class of functions f(x⃗) for
which there are strings αn⃗ ∈ {0, 1}∗, of size polynomial in n⃗, and some f ′(x, x⃗) ∈ FP with:

|αn⃗| is polynomial in n⃗.
f(x⃗) = f ′(α|x⃗|, x⃗).

The strings {αn⃗}n⃗ represent the polynomial advice given to a polynomial-time computation,
here f ′(x, x⃗). Note that f(x⃗) only “receives advice’ depending on the lengths of its inputs, x⃗.

Note, in particular, that FP/poly admits undecidable problems. E.g. the function f(x) = 1
just if |x| is the code of a halting Turing machine (and 0 otherwise) is in FP/poly. Indeed, the
point of the class FP/poly is to rather characterise a more non-uniform notion of computation.
In particular, the following is well-known (see, e.g., [1, Theorem 6.11]):

▶ Proposition 2. f(x⃗) ∈ FP/poly iff there are polynomial-size circuits computing f(x⃗).

CSL 2023

16:4 Non-Uniformity via Non-Wellfoundedness

2.2 The Bellantoni-Cook algebra

A two-sorted function is a function f(x⃗; y⃗) whose arguments have been delimited into “normal”
ones (x⃗, left of “;”), and “safe” ones (y⃗, right of “;”).

The two-sorted algebra B was introduced in [4] and is defined as follows:

▶ Definition 3 (Bellantoni-Cook). B is the smallest class of two-sorted functions containing,
0(;) := 0
s0(; x) := 2x

s1(; x) := 2x + 1
πm;n

j; (x0, . . . , xm−1; y0, . . . , yn−1) := xj , whenever j < m.
πm;n

;j (x0, . . . , xm−1; y0, . . . , yn−1) := yj , whenever j < n.
p(; x) = ⌊ x

2 ⌋

cond(; w, x, y, z) :=


x w = 0
y w = 0 mod 2, w ̸= 0
z w = 1 mod 2

and closed under:
(Safe composition)

if g(x⃗;) ∈ B and h(x⃗, x; y⃗) ∈ B then also f(x⃗; y⃗) ∈ B where f(x⃗; y⃗) := h(x⃗, g(x⃗;); y⃗).
if g(x⃗; y⃗) ∈ B and h(x⃗; y⃗, y) ∈ B then also f(x⃗; y⃗) ∈ B where f(x⃗; y⃗) := h(x⃗; y⃗, g(x⃗; y⃗))

(Safe recursion on notation) if g(x⃗; y⃗) ∈ B and h0(x, x⃗; y⃗, y), h1(x, x⃗; y⃗, y) ∈ B then also
f(x, x⃗; y⃗)∈B where:

f(0, x⃗; y⃗) := g(x⃗; y⃗)
f(s0x, x⃗; y⃗) := h0(x, x⃗; y⃗, f(x, x⃗; y⃗)) x ̸= 0
f(s1x, x⃗; y⃗) := h1(x, x⃗; y⃗, f(x, x⃗; y⃗))

Safe composition ensures that safe arguments may never appear in a normal position. Note
that, in the recursion scheme, the recursion parameter is always a normal argument, whereas
recursive calls must appear in safe position. Along with the constraints on safe composition,
this ensures that the position of a recursive call is never the recursion parameter of another
recursion. This seemingly modest constraint duly restricts computation to polynomial time,
yielding Bellantoni and Cook’s main result:

▶ Theorem 4 ([4]). f(x⃗) ∈ FP if and only if f(x⃗;) ∈ B.

2.3 A proof-theoretic presentation of Bellantoni-Cook

We shall work with a formulation of B as a S4-style type system in sequent-calculus style,
where modalities are used to distinguish the two sorts (similarly to [21]).

We consider types (or formulas) N (“safe”) and □N (“normal”) which intuitively vary
over the natural numbers. We write A, B, etc. to vary over types. A sequent is an expression
Γ ⇒ A, where Γ is a list of types (called the context or antecedent) and A is a type (called

the succedent). For a list of types Γ =
k︷ ︸︸ ︷

N, . . ., N , we write □Γ for
k︷ ︸︸ ︷

□N, . . .,□N .

▶ Definition 5. A B-derivation is a (finite) derivation built from the rules in Figure 1.

G. Curzi and A. Das 16:5

id
N ⇒ N

Γ ⇒ N Γ, N ⇒ B
cutN

Γ ⇒ B

Γ ⇒ □N □N, Γ ⇒ B
cut□ Γ ⇒ B

Γ ⇒ B
wN

Γ, N ⇒ B

Γ ⇒ B
w□

□N, Γ ⇒ B

Γ, A, B, Γ′ ⇒ C
e
Γ, B, A, Γ′ ⇒ C

Γ, N ⇒ A
□l

□N, Γ ⇒ A

□Γ ⇒ N
□r

□Γ ⇒ □N

0
⇒ N

1
⇒ N

Γ ⇒ A
s0

Γ ⇒ A

Γ ⇒ A
s1

Γ ⇒ A

Γ ⇒ N □N, Γ, N ⇒ N □N, Γ, N ⇒ N
srec

□N, Γ ⇒ N

Γ ⇒ N Γ, N ⇒ N Γ, N ⇒ N
condN

Γ, N ⇒ N

Γ ⇒ N □N, Γ ⇒ N □N, Γ ⇒ N
cond□

□N, Γ ⇒ N

Γ ⇒ N Γ, N ⇒ N
|cond|N

Γ, N ⇒ N

Γ ⇒ N □N, Γ ⇒ N
|cond|□

□N, Γ ⇒ N

Figure 1 B as a sequent-style type system.

fid(; y) := y

fcutN (D0,D1)(x⃗; y⃗) := fD1 (x⃗; y⃗, fD0 (x⃗; y⃗))
fcut□(D0,D1)(x⃗; y⃗) := fD1 (fD0 (x⃗; y⃗), x⃗; y⃗)

fwN (D0)(x⃗; y⃗, y) := fD0 (x⃗; y⃗)
fw□(D0)(x, x⃗; y⃗) := fD0 (x⃗; y⃗)

feN (D0)(x⃗; y⃗, y, y′, y⃗′) := fD0 (x⃗; y⃗, y′, y, y⃗′)
fe□(D0)(x⃗, x, x′, x⃗′; y⃗) := fD0 (x⃗, x′, x, x⃗′; y⃗)

f□l(D0)(x, x⃗; y⃗) := fD0 (x⃗; y⃗, x)
f□r(D0)(x⃗;) := fD0 (x⃗;)

fi(;) := i

fsi(D0)(x⃗; y⃗) := si(; fD0 (x⃗; y⃗))

fsrec(D0,D1,D2)(0, x⃗; y⃗) := fD0 (x⃗; y⃗)
fsrec(D0,D1,D2)(six, x⃗; y⃗) := fDi+1 (x, x⃗; y⃗,

fsrec(D0,D1,D2)(x, x⃗; y⃗))
fcondN (D0,D1,D2)(x⃗; y⃗, 0) := fD0 (x⃗; y⃗)

fcondN (D0,D1,D2)(x⃗; y⃗, siy) := fDi+1 (x⃗; y⃗, y)
fcond□(D0,D1,D2)(0, x⃗; y⃗) := fD0 (x⃗; y⃗)

fcond□(D0,D1,D2)(six, x⃗; y⃗) := fDi+1 (x, x⃗; y⃗)
f|cond|N (D0,D1)(x⃗; y⃗, 0) := fD0 (x⃗; y⃗)

f|cond|N (D0,D1)(x⃗; y⃗, siy) := fD1 (x⃗; y⃗, y)
f|cond|□(D0,D1)(0, x⃗; y⃗) := fD0 (x⃗; y⃗)

f|cond|□(D0,D1)(six, x⃗; y⃗) := fD1 (x, x⃗; y⃗)

Figure 2 Semantics of system B, where i ∈ {0, 1} and six ̸= 0 and siy ̸= 0.

The colouring of type occurrences in Figure 1 may be ignored for now, they will be-
come relevant in the next section. We may write D = r(D1, . . . , Dn) (for n ≤ 3) if r is
the bottom-most inference step of a derivation D whose immediate subderivations are, re-
spectively, D1, . . . , Dn. As done in [10], we shall assume w.l.o.g. that sequents have shape
□N, . . . ,□N, N, . . . , N ⇒ A, i.e. in the left-hand side all □N occurrences are placed before
all N occurrences.

We construe the system of B-derivations as a class of two-sorted functions by identifying
each rule instance as an operation on two-sorted functions as follows:

▶ Definition 6 (Semantics of B). Given a B-derivation D of
m︷ ︸︸ ︷

□N, . . .,□N,

n︷ ︸︸ ︷
N, . . ., N ⇒ A

we define a two-sorted function fD(x1, . . . , xm; y1, . . . , yn) in Figure 2 by induction on the
structure of D (all rules as typeset in Figure 1).

This formal semantics exposes how B-derivations and functions in the algebra B relate.
The rule srec in Figure 1 corresponds to safe recursion, and safe composition along safe
parameters is expressed by cutN . Note, however, that the interpretation of cut□ in Figure 2

CSL 2023

16:6 Non-Uniformity via Non-Wellfoundedness

apparently does not satifsfy the required constraint on safe composition of a function g along
a normal parameter of a function h, which forbids the presence of safe parameters in g.
However, this admission turns out to be harmless, and we are able to obtain the following
result that justifies the overloading of the notation “B”:

▶ Proposition 7 ([10]). f(x⃗; y⃗) ∈ B iff there is a B-derivation D for which fD(x⃗; y⃗) = f(x⃗; y⃗).

▶ Remark 8 (Bootstrapping). Note that the rules 1, |cond|N and |cond|□ are semantically
redundant, being derivable from the others by: f1 = fs1(0), f|cond|N (D0,D1) = fcondN (D0,D1,D1),
and f|cond|□(D0,D1) = fcond□(D0,D1,D1). Indeed, our original presentation of the system in [10]
did not include these rules, but we have “bootstrapped” our system here in order to facilitate
the definitions of our restricted “non-wellfounded” systems later for characterising FP/poly,
in particular in Section 3.

3 Non-wellfounded systems based on Bellantoni-Cook

In this section we recall a “coinductive” version of B that was recently introduced in our
earlier work [10], and go on to introduce the new system nuB of this work. In particular we
shall give global criteria that control the computational strength of non-wellfounded typing
derivations. Throughout this section we shall work with the system B− := B − {srec}.

▶ Definition 9 (Coderivations). A (B−-)coderivation D is a possibly infinite rooted tree
generated by the rules of B−. Formally, we identify D with a (labelled) prefix-closed subset of
{0, 1, 2}∗ (i.e. a ternary tree). Each node is labelled by an inference step from B− such that,

whenever ν ∈ D is labelled by a step
S1 · · · Sn

S
, for n ≤ 3, ν has n children in D labelled

by steps with conclusions S1, . . . , Sn respectively. Sub-coderivations of a coderivation D
rooted at position ν ∈ {0, 1, 2}∗ are denoted Dν , so that Dε = D.

Examples of coderivations can be found in Figure 3 (some of them are from [10]), whose
computational meaning is discussed in Example 13, and employ the following conventions:

▶ Convention 10 (Representing coderivations). Henceforth, we may mark steps by • (or
similar) in a coderivation to indicate roots of identical sub-coderivations. Moreover, to avoid
ambiguities and to ease parsing of (co)derivations, we shall often underline principal formulas
of a rule instance in a given coderivation and omit instances of structural rules eN , e□,
wN and w□, absorbing them into other steps (typically cuts) when it causes no confusion.
Finally, when the sub-coderivations D0 and D1 above the second and the third premise of the
conditional rule (from left) are similar, we may compress them into a single “parametrised”
sub-coderivation Di (with i = 0, 1).

As discussed in [13, 11, 24], coderivations can be identified with Kleene-Herbrand-Gödel
style equational programs, in general computing partial recursive functionals (see, e.g., [22,
§63] for further details). We shall specialise this idea to our two-sorted setting.

▶ Definition 11 (Semantics of coderivations). To each B−-coderivation D we associate a
two-sorted Kleene-Herbrand-Gödel partial function fD obtained by construing the semantics
of Definition 6 as a (possibly infinite) equational program. Given a two-sorted function
f(x⃗; y⃗), we say that f is defined by a B−-coderivation D if fD(x⃗; y⃗) = f(x⃗; y⃗).

▶ Remark 12. The notion of computation for equational programs is given by (finitary)
reasoning in equational logic (see, e.g., [22, §63]): for numerals m⃗, n⃗, we have that fD(m⃗; n⃗)
is well-defined and returns some numeral k just if the equation fD(m⃗; n⃗) = k can be (finitely)

G. Curzi and A. Das 16:7

id
N ⇒ N

s1
N ⇒ N

□l

□N ⇒ N
□r

□N ⇒ □N

...
cut□ •

□N ⇒ N
cut□ •

□N ⇒ N

G

□N⃗ ⇒ N

...
cond□ •

□N,□N⃗ ⇒ N
□r

□N,□N⃗ ⇒ □N

Hi

□N,□N⃗ ,□N ⇒ N
cut□

□N,□N⃗ ⇒ N
cond□ • i=0,1

□N,□N⃗ ⇒ N

id
N ⇒ N

...
cond□ ◦

□N, N ⇒ N
si

□N, N ⇒ N
cond□ ◦ i=0,1

□N, N ⇒ N

...
cond□ •

□N,□N, N ⇒ N
si

□N,□N, N ⇒ N
cond□ • i=0,1

□N,□N, N ⇒ N

id
N ⇒ N

s0
N ⇒ N

...
cond□ •

□N, N ⇒ N

...
cond□ •

□N, N ⇒ N
cutN

□N, N ⇒ N
cond□ •

□N, N ⇒ N

f(0)

⇒ N

f(1)

⇒ N

...
|cond|□

□N ⇒ N
|cond|□

□N ⇒ N
|cond|□

□N ⇒ N

0
⇒ N

...
|cond|□ •

□N ⇒ N
s0
□N ⇒ N

...
|cond|□ •

□N ⇒ N
s1
□N ⇒ N

F(r)

□N ⇒ N

id
N ⇒ N

id
N ⇒ N

id
N ⇒ N

condN

N, N, N ⇒ N
cutN

□N, N, N ⇒ N
cutN

□N, N ⇒ N
cutN

□N ⇒ N
|cond|□ •

□N ⇒ N

Figure 3 Examples of coderivations: I (top left), R (top right), C (second line), E (third line,
left), F(f) with f : N → N (third line, right), A(r) with r : N → {0, 1} (bottom).

derived in equational logic (with basic numerical axioms) over the equational program for D.
Implicit here is the fact that the semantics of B−-coderivations yield coherent equational
programs: whenever fD(m⃗; n⃗) = k and fD(m⃗; n⃗) = k′ are derivable then k = k′ [13, 11].

▶ Example 13. By purely equational reasoning, we can simplify the Kleene-Gödel-Herbrand
style semantics in Definition 11 of the coderivations in Figure 3 to get the equational programs
in Figure 4: fI represents a function that is always undefined, as its equational program
keeps increasing the length of the input; fR is an instance of a non-safe recursion scheme
(on notation), as the recursive call appears in normal position; fC computes concatenation of
the binary representation of three natural numbers; fE has exponential growth rate (as long
as y ̸= 0), since fE(x; y) = 22|x| · |y|; the (infinite) equational program for fF(f) computes
f(|x|) by simply exhausting the values of |x|; finally, fA(r) on input x returns the binary
string r(0) · r(1) · · · · · r(|x| − 1) if x > 0, and 0 otherwise.

The above examples illustrate several recursion theoretic features of B−-coderivations
that we shall seek to control in the remainder of this section:

(I) non-totality (e.g., the coderivation I);
(II) non-computability (e.g., the coderivation F(f), with f non-computable);

(III) non-safety (e.g., the coderivation R), despite the presence of modalities implementing
the normal/safe distinction of function arguments;

(IV) nested recursion (e.g., the coderivation E).

CSL 2023

16:8 Non-Uniformity via Non-Wellfoundedness

fI(x;) = fI(s1x;)
fR(0, x⃗;) = fG(x⃗;)

fR(six, x⃗;) = fHi (x, x⃗, fR(x, x⃗;);)
fC(0, 0; z) = z

fC(0, siy; z) = sifC(0, y; z)
fC(six, y; z) = sifC(x, y; z)

fE(0; y) = s0(; y)
fE(six; y) = fE(x; fE(x; y))

{fF(f)(x;) = f(|x|)}|x|∈N

fA(r)(0;) = 0

fA(r)(six;) =

{
s0fA(r)(x;) if fF(r)(x;) = 0
s1fA(r)(x;) otherwise

Figure 4 Equational programs derived from the coderivations in Figure 3, where i ∈ {0, 1}.

To address (I) we shall adapt to our setting a well-known “totality criterion” from non-
wellfounded proof theory (similar to those in [13, 11, 24]). First we need to recall some
standard structural proof theoretic notions:

▶ Definition 14 (Ancestry). Fix a coderivation D. We say that a type occurrence A is an
immediate ancestor of a type occurrence B in D if they are types in a premiss and conclusion
(respectively) of an inference step and, as typeset in Figure 1, have the same colour. If A

and B are in some Γ or Γ′, then furthermore they must be in the same position in the list.

For a definition of immediate ancestry avoiding colours, we point the reader to standard
proof theory references, e.g. [9, Sec. 1.2.3]. Being a binary relation, immediate ancestry forms
a directed graph upon which our totality criterion is built:

▶ Definition 15 (Progressing coderivations). Fix a coderivation D. A thread is a maximal
path in the graph of immediate ancestry. We say that a (infinite) thread is progressing if it
is eventually constant □N and infinitely often principal for a cond□ rule or a |cond|□ rule.
A coderivation is progressing if each of its infinite branches has a progressing thread.

In [10] we showed that the progressing criterion is indeed sufficient (but obviously not
necessary) to guarantee that the partial function computed by a coderivation is, in fact, total
(see also [24, 11, 13]):

▶ Proposition 16 (Progressing implies totality, [10]). If D is progressing, then fD is total.

The argument for this proposition is by contradiction: assuming non-totality, construct an
infinite “non-total branch”, whence a contradiction to well-orderedness of N is implied by a
progressing thread along it. We shall use similar argument later in the proof of Lemma 37.

▶ Example 17. In Figure 3, I has precisely one infinite branch (that loops on •) which
contains no instances of cond□ or |cond|□ at all, so I is not progressing. On the other hand,
C has two simple loops, one on • and the other one on ◦. For any infinite branch B we
have two cases: if B crosses the bottommost conditional infinitely many times, it contains a
progressing blue thread; otherwise, B crosses the topmost conditional infinitely many times,
so that it contains a progressing red thread. Therefore, C is progressing. By applying the
same reasoning, we conclude that E , F(f), A(r), and R are progressing (if G and Hi are).

To address (III)-(IV) we recall the following properties of coderivations from [10]:

▶ Definition 18 (Safety, left-leaning). We say that a coderivation D is safe if each branch
crosses only finitely many cut□-steps, and left-leaning if each branch goes right at a cutN -step
only finitely often.

G. Curzi and A. Das 16:9

▶ Example 19. In Figure 3, the only non-safe coderivations are R and I, as the branches
looping on • contain infinitely many cut□. E is the only non-left-leaning coderivation, as it
has a branch looping at • that crosses infinitely many times the rightmost premise of a cutN .

Finally, concerning (II), recall that the aim of this work is to characterise non-uniform
classes, which may contain non-computable predicates and functions. To this end we introduce
a generalisation of the notion of “regularity”, typically corresponding to computability (e.g.
in [11, 13, 24]), that is commonplace in cyclic proof theory:

▶ Definition 20 (Generalised regularity). Let R ⊆ B−. A B−-coderivation D is R-regular if it
has only finitely many distinct sub-coderivations containing rules among R. If R = B−, i.e. it
has only finitely many distinct sub-coderivations, then we say that D is regular (or circular).

Note that, while usual derivations may be naturally written as finite trees or dags, regular
coderivations may be naturally written as finite directed (possibly cyclic) graphs. Also, from
a regular coderivation D we obtain a finite equational program for fD. In particular, while
there are continuum many (non-wellfounded) coderivations, there are only countably many
regular ones.

▶ Example 21. In Figure 3, F(f) and A(r) are the only non-regular coderivations (as long
as G, Hi are regular). Also, A(r) is R-regular for any R ⊆ B− − {0, 1, |cond|□}, since r(i) is
computed by just a 0 or 1 step when r : N → {0, 1}.

We are now ready to present the non-wellfounded proof systems that will be considered
in this paper:

▶ Definition 22 (CB and nuB). CB is the class of regular progressing safe and left-leaning
B−-coderivations. nuB is the class of {cond□, condN , s0, s1, id}-regular progressing safe and
left-leaning B−-coderivations. A two-sorted function f(x⃗; y⃗) is CB-definable (resp. nuB-
definable) if there is a coderivation D ∈ CB (resp. D ∈ nuB) such that fD(x⃗; y⃗) = f(x⃗; y⃗).

Recalling Examples 17, 19 and 21, C is the only coderivation in CB, while A(r) is an
example of coderivation in nuB for any r : N → {0, 1}. The system CB was already introduced
in [10], where we showed that CB = FP (among other results), whereas nuB (read “non-
uniform B”) is new. The main result of this paper is to show that nuB admits just the right
amount of non-wellfoundedness to duly characterise the analogous non-uniform class:

▶ Theorem 23. nuB = FP/poly

The rest of this work is devoted to the proof of this result. In particular, the two directions
of the equality are given by Corollary 35 and Corollary 44.
▶ Remark 24 (On proof checking). Let us point out that all conditions on coderivations we have
considered so far are decidable on regular coderivations. In particular, progressiveness may be
decided by reduction to universality of Büchi automata. In the presence of safety, however, it
turns out that proof checking becomes easier: checking whether a regular coderivation is in
CB is actually decidable in NL [10, Cor. 32]. Of course, as nuB coderivations are not finitely
presented (indeed like FP/poly programs), such decidability issues are no longer relevant.

4 On relativised characterisations of FP/poly

In this section we consider recursion theoretic characterisations of FP/poly via relativised
function algebras. This will serve not only as a “warm up” to motivate our main character-
isation, but will also provide several of the intermediate results necessary to that end. The
results of this section are based on textbook techniques and are (presumably) folklore.

CSL 2023

16:10 Non-Uniformity via Non-Wellfoundedness

4.1 Non-uniformity via resource-bounded oracle machines
A relation is a function r(x⃗) such that we always have r(x⃗) ∈ {0, 1}.

▶ Definition 25 (Relativised complexity classes). Let R be a set of relations. The class FP(R)
consists of just the functions computable in polynomial time by a Turing machine with access
to an oracle for each r ∈ R.

For instance, using this notion of relativised computation, we can define the levels of the
functional polynomial hierarchy FPH by □p

1 := FP, □p
2 := FP(NP), □p

3 := FP(Σp
2), etc.

Let us write R := {r : Nk → {0, 1} | |x⃗| = |y⃗| =⇒ r(x⃗) = r(y⃗)}. Note that the notation R
is suggestive here, since its elements are essentially maps from lengths/positions to Booleans,
and so may be identified with Boolean streams.

▶ Proposition 26. FP/poly = FP(R).

Proof sketch. For the left-right inclusion, let p(n) be a polynomial and C = (Cn)n<ω be
a circuit family with each Cn taking n Boolean inputs and having size < p(n). We need
to show that the language computed by C is also computed in FP(R). Let c ∈ R be the
function that, on inputs x, y returns the |y|th bit of C|x|. Using this oracle we can compute
C|x| by polynomially queries to c, and this may be evaluated as usual using a polynomial-time
evaluator in FP.

For the right-left inclusion, notice that a polynomial-time machine can only make polyno-
mially many calls to oracles with inputs of only polynomial size. Thus, if f ∈ FP(R) then
there is some pf with f ∈ FP(R<pf), where R<pf is the restriction of each r ∈ R to only
its first pf (|x⃗|) many bits. Now, since f can only call a fixed number of oracles from R,
we can collect these finitely many polynomial-length prefixes into a single advice string for
computation in FP/poly. ◀

4.2 A relativised Bellantoni-Cook characterisation of FP/poly
We shall employ the following writing conventions for the remainder of this work. For a set
of (single-sorted) functions F , let us write:

F1;0 for the set of two-sorted functions f(x⃗;) for each f(x⃗) ∈ F ;
F1;1 for the set of two-sorted functions f(x⃗; y⃗) for each f(x⃗, y⃗) ∈ F .

Given a set F of two-sorted functions, the algebra B(F) is defined just like B but with
additional initial (two-sorted) functions F . Note that, since functions of B(F) are given by
finite programs, they can only depend on finitely many members of F .

▶ Proposition 27. FP/poly ⊆ B(R1;0)

One natural way to prove this result would be to go via FP(R), in light of Proposition 26.
Indeed Bellantoni established foundational results relating FP(R) and versions of B(R), for
R a set of relations, in [3], but unfortunately the sorting of the corresponding arguments is
subtle and does not immediately give the result we are after. For this reason we give a direct
proof, that nonetheless inlines some ideas from [3].

Proof of Proposition 27. Let C = (Cn)n<ω be a circuit family with each Cn taking n inputs
and having size < p(n), for some (monotone) polynomial p. We need to show that the
language computed by C is also computed in B(R1;0).

First, let Eval(x, y) evaluate the circuit described by x on the input y. Since Eval ∈
FP, we have as standard (e.g. by [4, Lemma 3.2]) a function Eval(m; x, y) ∈ B and a
monotone polynomial q such that |m| ≥ q(|x|, |y|) =⇒ Eval(m; x, y) = Eval(x, y). Now,

G. Curzi and A. Das 16:11

in particular, if x is the description of some Cn and n = |y|, then also |x| ≤ p(|y|), and so

|m| ≥ q(p(|y|), |y|) =⇒ Eval(m; x, y) = Eval(x, y). Finally, denoting
n︷ ︸︸ ︷

s1 . . . s1 0 by 1n, this
means that we have Eval(y; x) := Eval(1q(p(|y|),|y|); x, y) ∈ B, that in particular evaluates,
when x describes C|y|, the circuit C|y| on input y.

Now, let c ∈ R1;0 with c(y, z;) = |z|th bit of C|y|. We show that the function C(y, z;) =
c(y, 0;) · c(y, 1;) · · · · · c(y, 1|z|−1;) is in B(c) by the following instance of safe recursion:

C(y, 0;) = 0
C(y, siz;) = cond(; c(y, z;), s0(; C(y, z;)), s1(; C(y, z;)))

So we have that C(y;) := C(y, 1p(|y|);) computes the description of C|y|. Now we can decide
whether y is accepted by C|y| simply by calling the function Eval(y; C(y;)) ∈ B(c). ◀

It turns out that we also have the converse inclusion too. This will be subsumed by our
later results but we include it here for the sake of completeness. The key is to establish a
general form of Bellantoni and Cook’s polymax bounding lemma to account for modulus of
continuity as well as growth:

▶ Lemma 28 (Relational bounding lemma for B). Let R be a set of two-sorted relations, and
suppose f(R)(x⃗; y⃗) ∈ B(R). Then there is a polynomial pf such that, setting mf (m⃗, n⃗) :=
pf (m⃗) + max n⃗, we have:

(Polynomial modulus of growth) |f(R)(x⃗; y⃗)| < mf (|x⃗|, |y⃗|)
(Polynomial modulus of continuity) f(R)(x⃗; y⃗) = f(λ|u⃗|, |v⃗| < mf (|x⃗|, |y⃗|).r(u⃗; v⃗))r∈R(x⃗; y⃗)

Using this we may establish:

▶ Proposition 29 (E.g. see [3]). Let R be a set of relations. B(R1;1) ⊆ FP(R).

We shall not actually need this result directly in this work, rather recovering (a version of) it
from a more refined grand tour of inclusions. However this does lead to the first “implicit”
characterisation of FP/poly of this work:

▶ Corollary 30. B(R1;0) = FP/poly

5 FP/poly ⊆ nuB via relativised circular systems

In this section we establish one direction of Theorem 23. In particular, by the end of this
section, we will have established the following inclusions,

FP/poly ⊆ B(R1;0) ⊆ CB(R1;0) ⊆ nuB

where CB(F) is an extension of CB by new initial sequents for two-sorted functions in F .

5.1 Relativised simulation of B in CB
We shall consider “relativised” versions of CB, that may include new initial sequents. Formally:

▶ Definition 31. Let F be a set of two-sorted functions. A B−(F)-coderivation is just a

usual B−-coderivation that may use initial sequents of the form f

□Nni , Nmi ⇒ N
, when

f ∈ F takes ni normal and mi safe inputs. We write CB(F) for the set of CB-coderivations
allowing initial sequents from F . The semantics of such coderivations and the notion
of CB(F)-definability are as expected, with fD(F) denoting the induced interpretation of
D(F) ∈ CB(F).

CSL 2023

16:12 Non-Uniformity via Non-Wellfoundedness

Note, again, that since CB(F) coderivations are regular, they only depend on finitely
many members of F . By a modular extension of the result that B ⊆ CB from [10], we obtain:

▶ Proposition 32. Let F be a set of two-sorted functions. B(F) ⊆ CB(F).

The proof is simply by structural induction on the definition of a B(F) function, where the
recursion cases are handled by circularity as in [10]. In particular, if f is defined by safe
recursion on notation from g, h0, h1 then the corresponding CB-coderivation is given by:

g

Γ ⇒ N

...
cond□ •

□N, Γ ⇒ N

hi

□N, Γ, N ⇒ N
cutN

□N, Γ ⇒ N
cond□ • i = 0, 1

□N, Γ ⇒ N

The only new cases in the induction are for an initial function from F , which is simply
translated into the appropriate initial sequent.

5.2 Simulating R1;0 oracles in nuB
In this subsection we shall establish:

▶ Proposition 33. CB(R1;0) ⊆ nuB.

By definition of nuB and CB, it suffices to only consider the new initial sequents from R1;0.
For this we simply appeal to the following lemma:

▶ Lemma 34. For each r(x⃗;) ∈ R1;0, there is a nuB-coderivation defining it, in particular
using only the rules 0, 1, |cond|□.

Proof. We proceed by induction on the length of x⃗. When the list is empty, then r(;) is just
a Boolean, in which case we can derive it with just the 0 or 1 step. Now, for r(x, x⃗;) we
have:

IH(r0)

□N⃗ ⇒ N

IH(r1)

□N⃗ ⇒ N
...

|cond|□
□N,□N⃗ ⇒ N

|cond|□
□N,□N⃗ ⇒ N

where ri(x⃗) is the function r(1i, x⃗) and the coderivations marked IH(ri) are obtained by the
inductive hypothesis for ri. ◀

Note that, by putting together Proposition 27, Proposition 32 (setting F = R1;0) and
Proposition 33, we now have one half of our main result:

▶ Corollary 35. FP/poly ⊆ nuB

6 nuB as relativised regular coderivations

To facilitate the other direction of Theorem 23, let us first address a form of converse to
Proposition 33 above, that duly embeds nuB into a relativised circular system, which we
shall rely on in the next section:

G. Curzi and A. Das 16:13

▶ Theorem 36. nuB ⊆ CB(R1;1).

Before giving the proof, we need to first establish some intermediate results:

▶ Lemma 37. If D is progressing and {s0, s1, id}-free then fD is a relation, i.e. fD(x⃗; y⃗) ≤ 1.

Proof sketch. We proceed by contradiction, always assuming Proposition 16, that progressing
coderivations compute total functions.

If fD(x⃗; y⃗) > 1 then we argue that there is an immediate sub-coderivation D′ of D and
arguments x⃗′, y⃗′ such that fD′(x⃗′; y⃗′) > 1. Some of the critical cases are:

If D = cutN (D0, D1) then fD(x⃗; y⃗) = fD1(x⃗; y⃗, fD0(x⃗; y⃗)), and we set D′ := D1, x⃗′ := x⃗

and y⃗′ := y⃗, fD0(x⃗; y⃗) (since fD0(x⃗; y⃗) is well-defined). The case for cut□ is similar.
If D = cond□(D0, D1, D2) then x⃗ = x, z⃗ with fD(0, z⃗; y⃗) = D0(z⃗; y⃗) and fD(six

′, z⃗; y⃗) =
fDi+1(x′, z⃗; y⃗). If x = 0 we set D′ := D0, x⃗′ := z⃗, and y⃗′ := y⃗. If x = six

′ then we
set D′ := Di+1, x⃗′ := x′, z⃗, and y⃗′ := y⃗. The cases for condN , |cond|N , and |cond|□ are
similar.
In all other cases D ends with a unary rule so that D′ is the only immediate sub-
coderivation, and x⃗′, y⃗′ are determined by the semantics of the rule (cf. Figure 2).

Note that, in the absence of s0, s1, we indeed have that f ′(x⃗′; y⃗′) = f(x⃗; y⃗) > 1 so we
may continually apply this process to build up a branch B = (D = D(0), D(1), D(2), . . .)
and arguments (x⃗; y⃗) = (x⃗(0); y⃗(0)), (x⃗(1); y⃗(1)), (x⃗(2); y⃗(2)), . . . such that fD(k)(x⃗(k); y⃗(k)) =
fD(x⃗; y⃗) > 1. Observe that B cannot end at an id step, by assumption that D is id-free. Also,
if B ends at a 0 or 1 step we have by construction that fD(x⃗; y⃗) ∈ {0, 1}, a contradiction.
Thus B must be infinite. Since D is progressing there is a progressing thread along B, say
(□N i)i≥k, where each □N i is an occurrence of □N . Let us examine the values, say xi,
assigned to each □N i. Notice that:

by inspection of the rules and their interpretations from Definition 11, we have that
xi+1 ≤ xi; and,
if □N i is principal for a cond□ or a |cond|□ step then xi+1 < xi.

If follows that (xi)i≥k is a non-increasing sequence of natural numbers that does not converge,
contradicting the well-ordering property of N. ◀

▶ Lemma 38. If D is {cond□, condN , id}-free, |x⃗| = |x⃗′| and |y⃗| = |y⃗′|, then fD(x⃗; y⃗) =
fD(x⃗′; y⃗′), whenever f(x⃗; y⃗) is well-defined.

Proof sketch. Being given by an equational program, we have that fD(x⃗; y⃗) = m has a (finite)
equational derivation for some m ∈ N, by assumption that it is well-defined (cf. Remark 12).
Replacing x⃗, y⃗ by x⃗′, y⃗′ in this derivation yields fD(x⃗′; y⃗′) = m too. The only critical cases are
the steps |cond|N , |cond|□, whose semantics only depend on the length of their arguments. ◀

Putting the two above Lemmata together we have:

▶ Proposition 39. If D is progressing and {cond□, condN , s0, s1, id}-free, then fD ∈ R1;1.

Now we can prove Theorem 36:

Proof sketch. Let D be a nuB-coderivation and let V be the set of minimal nodes ν such that
Dν is {cond□, condN , s0, s1, id}-free, and so by Proposition 39 we have that each fDν

∈ R1;1.
Now, let DV be obtained from D by simply deleting each sub-coderivation Dν , for ν ∈ V ,

and construing each of their conclusions as new initial sequents. By definition of nuB, note
that DV is now a coderivation in CB(fDν

)ν∈V ⊆ CB(R1;1) and we are done. ◀

CSL 2023

16:14 Non-Uniformity via Non-Wellfoundedness

7 nuB ⊆ FP/poly: a relativised algebra subsuming circular typing

The final part of our chain of inclusions requires us to translate (relativised) circular coderiv-
ations into an appropriate function algebra. The idea is that, in the presence of safety, one
can reduce circularity to a form of recursion on “permutations of prefixes” that nonetheless
remains feasible. This was (one of) the main result(s) of [10] and, fortunately, we are able to
import those results accounting only for additional initial relations.

7.1 Safe recursion on permutations of prefixes
Let us write x⃗ ⊆ y⃗ if x⃗ is a permutation of prefixes of y⃗, i.e. x⃗ = x0, . . . , xn−1 and y⃗ =
y0, . . . , yn−1 and there is a permutation π : [n] → [n] s.t. each xi is a prefix of yπi. We shall
write x⃗ ⊂ y⃗ if for at least one i < n we have that xi is a strict prefix of yπi. Note in particular
that ⊂ is a well-founded pre-order so admits an induction and recursion principles.

To formulate recursion over well-founded relations it is convenient to employ (two-sorted)
oracles as placeholders for recursive calls. Due to the necessary constraints on composition,
we shall formally distinguish these oracles (metavariables, a, b, etc.) from additional initial
functions (metavariables f, g etc. until now).

▶ Definition 40. Let F be a set of two-sorted functions. The algebra B⊂(F, a⃗) is the smallest
class of two-sorted functions containing,

all the initial functions of B;
each (two-sorted) function ai among a⃗;
each (two-sorted) function f ∈ F ;

and closed under:
(Relativised safe composition)

if g(x⃗; y⃗) ∈ B⊂(F, a⃗) and h(x⃗; y⃗, y) ∈ B⊂(F, a⃗) then
f(x⃗; y⃗) := h(x⃗; y⃗, g(x⃗; y⃗)) ∈ B⊂(F, a⃗);
if g(x⃗;) ∈ B⊂(F) and h(x⃗, x; y⃗) ∈ B⊂(F, a⃗) then f(x⃗; y⃗) := h(x⃗, g(x⃗;); y⃗) ∈ B⊂(F, a⃗);

(Safe recursion on ⊂)
if h(a)(x⃗; y⃗) ∈ B⊂(F, a, a⃗) then f(x⃗; y⃗) := h(λu⃗ ⊂ x⃗, λv⃗ ⊆ y⃗.f(u⃗; v⃗))(x⃗; y⃗) ∈ B⊂(F, a⃗).

To be clear, the “guarded” abstraction notation above is formally defined as

(λu⃗ ⊂ x⃗, λv⃗ ⊆ y⃗.f(u⃗; v⃗)) (u⃗′; v⃗′) :=
{

f(u⃗′; v⃗′) u⃗′ ⊂ x⃗, v⃗′ ⊆ y⃗

0 otherwise

B⊂(∅, a⃗) is the same as the notion B⊂(⃗a) from [10]. Note in particular the distinction
between F and a⃗ in the safe composition scheme: when composing along a normal parameter
(second line), the function g(x⃗;) must not contain any oracles among a⃗.

Adapting the Bounding Lemma from [10, Lemma 38] to account for further initial relations
gives:

▶ Lemma 41 (Relational Bounding lemma). Let R be a set of two-sorted relations and
f(R)(x⃗; y⃗) ∈ B⊂(R). There is a polynomial pf (n⃗) such that, writing mf (x⃗, y⃗) = pf (|x⃗|) +
max |y⃗|, we have:

|f(R)(x⃗; y⃗)| < mf (x⃗, y⃗)
f(R)(x⃗; y⃗) = f(λ|u⃗r|, |v⃗r| < mf (x⃗, y⃗).r(u⃗r; v⃗r))r∈R(x⃗; y⃗)

G. Curzi and A. Das 16:15

The first point is common to implicit complexity, being essentially Bellantoni and Cook’s
“polymax bounding lemma” from [4]. The second point expresses a dual property: while the
first bounds the modulus of growth, the second bounds the modulus of continuity.

Here it is important the the new initial functions are relations, or at least that they have
constant/limited growth rate. In fact, for the proof, cf. [10], one needs a more complicated
statement accounting for growth properties of the intermediate oracles a⃗ used for recursion,
even though we only ultimately need the statement above for our purposes, once all such
oracles a⃗ are “discharged”.

Using the Bounding Lemma we have from [10] (again accounting for further initial
relations) the main characterisation result for B⊂:

▶ Proposition 42 (Relativised characterisation). For a set R of relations, B⊂(R1;1) ⊆ FP(R).

The main point for proving this result is that the graph of ⊆ is relatively small, in particular
for each y⃗ there are only polynomially many x⃗ ⊆ y⃗.1 So we can calculate a function
f(x⃗; y⃗) ∈ B⊂(R) simply by polynomial-time induction (at the meta level) on ⊂, storing all
previous values in a lookup table. This table will have only polynomially many entries, by
the previous observation about the size of the graph of ⊆, and each entry will have only
polynomial size by the Bounding Lemma.

7.2 CB(R1;1) ⊆ B⊂(R1;1): from circular proofs to recursive functions
The point of B⊂ in [10] was to play the role of a target algebra to translate circular
coderivations into. The Translation Lemma from that work [10, Lemma 47], accounting for
further initial relations, gives:

▶ Lemma 43 (Relativised translation). Let R be a set of relations. CB(R1;1) ⊆ B⊂(R1;1).

Note that we specialise the statement above only to sets of relations to avoid size issues
potentially caused be new initial funtions of arbitrary growth rate. In fact, this proof requires
closure of B⊂(F, a⃗) under a simultaneous version of its recursion scheme, upon which a careful
translation from circular coderivations in “cycle normal form” (see, e.g., [7, Definition 6.2.1])
to an equational specification can be duly resolved in B⊂.

Now by setting R = R, we have the following consequence of Proposition 42:

▶ Corollary 44. nuB ⊆ FP/poly

Proof. We have nuB ⊆ CB(R1;1) by Theorem 36, CB(R1;1) ⊆ B⊂(R1;1) by Lemma 43,
B⊂(R1;1) ⊆ FP(R) by Proposition 42, and finally FP(R) ⊆ FP/poly by Proposition 26. ◀

Along with Corollary 35, we have now established both directions of our main result
Theorem 23 that nuB = FP/poly, hence completing the proof.

8 Conclusions

In this work we presented the two-sorted non-wellfounded proof system nuB and proved
that it characterises the complexity class FP/poly. Our results build on previous work [10],
where we defined the cyclic proof systems CB and CNB capturing, respectively, FP and

1 Of course, this polynomial depends on the length of y⃗, but for a given function of the algebra this is
some global constant.

CSL 2023

16:16 Non-Uniformity via Non-Wellfoundedness

FELEMENTARY [10]. The system nuB is obtained from CB by associating non-uniformity
in computation to a form of non-wellfoundedness in proof theory. To establish the charac-
terisation theorems, we also formalised some (presumably) folklore results on relativised
function algebras for FP/poly.

For future research, the first author is investigating non-wellfounded approaches to
FP/poly in the setting of linear logic [19]. In particular, we are studying a non-wellfounded
version of Mazza’s Parsimonious Logic [28], a variant of linear logic where the exponential
modality ! satisfies Milner’s law (!A ≃ !A ⊗ A). This provides a natural computational
interpretation of formulas !A as types of streams on A. Mazza showed in [29] that Parsi-
monious Logic can be used to capture P/poly using wellfounded proofs that are essentially
infinitely branching. We conjecture that a similar characterisation can be obtained in a
non-wellfounded (and finitely branching) setting, using ideas from this work.

Another direction is to explore applications of the results of this paper to probabilistic
complexity. In particular, we aim to study fragments of nuB modelling the class BPP
(bounded-error probabilistic polynomial time), essentially by leveraging on well-known
derandomisation methods showing the inclusion of BPP in FP/poly, and hence in FP(R)
(see Proposition 26). A challenging aspect of this task is to obtain characterisation results
that are entirely in the style of ICC, since BPP is defined by explicit (error) bounds, as
observed in [25]. We suspect that nuB represents the right framework for investigating fully
implicit characterisations of this class, where additional proof-theoretic conditions can be
introduced to restrict computationally the access to oracles and, consequently, to model
bounded-error probabilistic computation.

As [10] also established a system CNB for FELEMENTARY, it would be pertinent to ask
whether ideas in this work can be applied to CNB to characterise FELEMENTARY/poly,
i.e., the class of functions computable in elementary time by a Turing machine with access to
a polynomial advice. Unfortunately, the modulus of continuity established for CNB in [10] is
super-polynomial (indeed elementary), meaning that the same technique, a priori, would not
restrict computation to only polynomial advice. Consideration of this issue is left to future
research.

References

1 Sanjeev Arora and Boaz Barak. Computational Complexity – A Modern Approach. Cambridge
University Press, 2009. URL: http://www.cambridge.org/catalogue/catalogue.asp?isbn=
9780521424264.

2 David Baelde, Amina Doumane, and Alexis Saurin. Infinitary proof theory: the multiplicative
additive case. In Jean-Marc Talbot and Laurent Regnier, editors, 25th EACSL Annual
Conference on Computer Science Logic, CSL 2016, August 29 – September 1, 2016, Marseille,
France, volume 62 of LIPIcs, pages 42:1–42:17. Schloss Dagstuhl – Leibniz-Zentrum für
Informatik, 2016. doi:10.4230/LIPIcs.CSL.2016.42.

3 Stephen Bellantoni. Predicative recursion and the polytime hierarchy. In Peter Clote and
Jeffrey B. Remmel, editors, Feasible Mathematics II, pages 15–29, Boston, MA, 1995. Birkhäuser
Boston.

4 Stephen Bellantoni and Stephen Cook. A new recursion-theoretic characterization of the
polytime functions (extended abstract). In Proceedings of the Twenty-Fourth Annual ACM
Symposium on Theory of Computing, STOC ’92, pages 283–293, New York, NY, USA, 1992.
Association for Computing Machinery. doi:10.1145/129712.129740.

5 Stefano Berardi and Makoto Tatsuta. Equivalence of inductive definitions and cyclic proofs
under arithmetic. In 32nd Annual ACM/IEEE Symposium on Logic in Computer Science,
LICS 2017, Reykjavik, Iceland, June 20-23, 2017, pages 1–12. IEEE Computer Society, 2017.
doi:10.1109/LICS.2017.8005114.

http://www.cambridge.org/catalogue/catalogue.asp?isbn=9780521424264
http://www.cambridge.org/catalogue/catalogue.asp?isbn=9780521424264
https://doi.org/10.4230/LIPIcs.CSL.2016.42
https://doi.org/10.1145/129712.129740
https://doi.org/10.1109/LICS.2017.8005114

G. Curzi and A. Das 16:17

6 Stefano Berardi and Makoto Tatsuta. Classical system of Martin-Lof’s inductive definitions
is not equivalent to cyclic proofs. Log. Methods Comput. Sci., 15(3), 2019. doi:10.23638/
LMCS-15(3:10)2019.

7 James Brotherston. Sequent calculus proof systems for inductive definitions. PhD thesis,
University of Edinburgh, 2006. PhD thesis.

8 James Brotherston and Alex Simpson. Sequent calculi for induction and infinite descent.
Journal of Logic and Computation, 21(6):1177–1216, 2011.

9 Samuel R. Buss. Chapter i – an introduction to proof theory. In Samuel R. Buss, editor,
Handbook of Proof Theory, volume 137 of Studies in Logic and the Foundations of Mathematics,
pages 1–78. Elsevier, 1998. doi:10.1016/S0049-237X(98)80016-5.

10 Gianluca Curzi and Anupam Das. Cyclic implicit complexity. CoRR, abs/2110.01114, 2021.
To appear in proceedings of LICS 2022. arXiv:2110.01114.

11 Anupam Das. A circular version of Gödel’s T and its abstraction complexity. CoRR,
abs/2012.14421, 2020. arXiv:2012.14421.

12 Anupam Das. On the logical complexity of cyclic arithmetic. Log. Methods Comput. Sci.,
16(1), 2020. doi:10.23638/LMCS-16(1:1)2020.

13 Anupam Das. On the logical strength of confluence and normalisation for cyclic proofs. In
Naoki Kobayashi, editor, 6th International Conference on Formal Structures for Computation
and Deduction, FSCD 2021, July 17-24, 2021, Buenos Aires, Argentina (Virtual Conference),
volume 195 of LIPIcs, pages 29:1–29:23. Schloss Dagstuhl – Leibniz-Zentrum für Informatik,
2021. doi:10.4230/LIPIcs.FSCD.2021.29.

14 Anupam Das and Damien Pous. A cut-free cyclic proof system for Kleene algebra. In
International Conference on Automated Reasoning with Analytic Tableaux and Related Methods,
pages 261–277. Springer, 2017.

15 Anupam Das and Damien Pous. Non-Wellfounded Proof Theory For (Kleene+Action) (Al-
gebras+Lattices). In Dan Ghica and Achim Jung, editors, 27th EACSL Annual Conference
on Computer Science Logic (CSL 2018), volume 119 of Leibniz International Proceedings
in Informatics (LIPIcs), pages 19:1–19:18, Dagstuhl, Germany, 2018. Schloss Dagstuhl –
Leibniz-Zentrum für Informatik. doi:10.4230/LIPIcs.CSL.2018.19.

16 Christian Dax, Martin Hofmann, and Martin Lange. A proof system for the linear time µ-
calculus. In International Conference on Foundations of Software Technology and Theoretical
Computer Science, pages 273–284. Springer, 2006.

17 Abhishek De and Alexis Saurin. Infinets: The parallel syntax for non-wellfounded proof-
theory. In Serenella Cerrito and Andrei Popescu, editors, Automated Reasoning with Analytic
Tableaux and Related Methods – 28th International Conference, TABLEAUX 2019, London,
UK, September 3-5, 2019, Proceedings, volume 11714 of Lecture Notes in Computer Science,
pages 297–316. Springer, 2019. doi:10.1007/978-3-030-29026-9_17.

18 Jérôme Fortier and Luigi Santocanale. Cuts for circular proofs: semantics and cut-elimination.
In Computer Science Logic 2013 (CSL 2013). Schloss Dagstuhl – Leibniz-Zentrum für Inform-
atik, 2013.

19 Jean-Yves Girard. Linear logic. Theor. Comput. Sci., 50:1–102, 1987. doi:10.1016/
0304-3975(87)90045-4.

20 Emmanuel Hainry, Damiano Mazza, and Romain Péchoux. Polynomial time over the reals
with parsimony. In Keisuke Nakano and Konstantinos Sagonas, editors, Functional and Logic
Programming – 15th International Symposium, FLOPS 2020, Akita, Japan, September 14-16,
2020, Proceedings, volume 12073 of Lecture Notes in Computer Science, pages 50–65. Springer,
2020. doi:10.1007/978-3-030-59025-3_4.

21 Martin Hofmann. A mixed modal/linear lambda calculus with applications to Bellantoni-Cook
safe recursion. In Mogens Nielsen and Wolfgang Thomas, editors, Computer Science Logic,
11th International Workshop, CSL ’97, Annual Conference of the EACSL, Aarhus, Denmark,
August 23-29, 1997, Selected Papers, volume 1414 of Lecture Notes in Computer Science, pages
275–294. Springer, 1997. doi:10.1007/BFb0028020.

CSL 2023

https://doi.org/10.23638/LMCS-15(3:10)2019
https://doi.org/10.23638/LMCS-15(3:10)2019
https://doi.org/10.1016/S0049-237X(98)80016-5
http://arxiv.org/abs/2110.01114
http://arxiv.org/abs/2012.14421
https://doi.org/10.23638/LMCS-16(1:1)2020
https://doi.org/10.4230/LIPIcs.FSCD.2021.29
https://doi.org/10.4230/LIPIcs.CSL.2018.19
https://doi.org/10.1007/978-3-030-29026-9_17
https://doi.org/10.1016/0304-3975(87)90045-4
https://doi.org/10.1016/0304-3975(87)90045-4
https://doi.org/10.1007/978-3-030-59025-3_4
https://doi.org/10.1007/BFb0028020

16:18 Non-Uniformity via Non-Wellfoundedness

22 Stephen Cole Kleene. Introduction to Metamathematics. Bubliotheca Mathematica. Wolters-
Noordhoff Publishing, 7 edition, 1971.

23 Ker-I Ko. Complexity Theory of Real Functions. Birkhauser Boston Inc., USA, 1991.
24 Denis Kuperberg, Laureline Pinault, and Damien Pous. Cyclic proofs, system T, and the power

of contraction. Proc. ACM Program. Lang., 5(POPL):1–28, 2021. doi:10.1145/3434282.
25 Ugo Dal Lago and Paolo Parisen Toldin. A higher-order characterization of probabilistic

polynomial time. Inf. Comput., 241:114–141, 2015. doi:10.1016/j.ic.2014.10.009.
26 Daniel Leivant. A foundational delineation of computational feasiblity. In Proceedings of

the Sixth Annual Symposium on Logic in Computer Science (LICS ’91), Amsterdam, The
Netherlands, July 15-18, 1991, pages 2–11. IEEE Computer Society, 1991. doi:10.1109/LICS.
1991.151625.

27 Damiano Mazza. Non-uniform polytime computation in the infinitary affine lambda-calculus. In
Javier Esparza, Pierre Fraigniaud, Thore Husfeldt, and Elias Koutsoupias, editors, Automata,
Languages, and Programming – 41st International Colloquium, ICALP 2014, Copenhagen,
Denmark, July 8-11, 2014, Proceedings, Part II, volume 8573 of Lecture Notes in Computer
Science, pages 305–317. Springer, 2014. doi:10.1007/978-3-662-43951-7_26.

28 Damiano Mazza. Simple parsimonious types and logarithmic space. In Stephan Kreutzer,
editor, 24th EACSL Annual Conference on Computer Science Logic, CSL 2015, September 7-10,
2015, Berlin, Germany, volume 41 of LIPIcs, pages 24–40. Schloss Dagstuhl – Leibniz-Zentrum
für Informatik, 2015. doi:10.4230/LIPIcs.CSL.2015.24.

29 Damiano Mazza and Kazushige Terui. Parsimonious types and non-uniform computation. In
Magnús M. Halldórsson, Kazuo Iwama, Naoki Kobayashi, and Bettina Speckmann, editors,
Automata, Languages, and Programming – 42nd International Colloquium, ICALP 2015, Kyoto,
Japan, July 6-10, 2015, Proceedings, Part II, volume 9135 of Lecture Notes in Computer
Science, pages 350–361. Springer, 2015. doi:10.1007/978-3-662-47666-6_28.

30 Grigori E Mints. Finite investigations of transfinite derivations. Journal of Soviet Mathematics,
10(4):548–596, 1978.

31 Damian Niwiński and Igor Walukiewicz. Games for the µ-calculus. Theoretical Computer
Science, 163(1-2):99–116, 1996.

32 Alex Simpson. Cyclic arithmetic is equivalent to peano arithmetic. In Javier Esparza and
Andrzej S. Murawski, editors, Foundations of Software Science and Computation Structures –
20th International Conference, FOSSACS 2017, Held as Part of the European Joint Conferences
on Theory and Practice of Software, ETAPS 2017, Uppsala, Sweden, April 22-29, 2017,
Proceedings, volume 10203 of Lecture Notes in Computer Science, pages 283–300, 2017.
doi:10.1007/978-3-662-54458-7_17.

https://doi.org/10.1145/3434282
https://doi.org/10.1016/j.ic.2014.10.009
https://doi.org/10.1109/LICS.1991.151625
https://doi.org/10.1109/LICS.1991.151625
https://doi.org/10.1007/978-3-662-43951-7_26
https://doi.org/10.4230/LIPIcs.CSL.2015.24
https://doi.org/10.1007/978-3-662-47666-6_28
https://doi.org/10.1007/978-3-662-54458-7_17

	1 Introduction
	2 Preliminaries on computational complexity and safe recursion
	2.1 Non-uniform complexity classes
	2.2 The Bellantoni-Cook algebra
	2.3 A proof-theoretic presentation of Bellantoni-Cook

	3 Non-wellfounded systems based on Bellantoni-Cook
	4 On relativised characterisations of FP / poly
	4.1 Non-uniformity via resource-bounded oracle machines
	4.2 A relativised Bellantoni-Cook characterisation of FP / poly

	5 FP / polysubseteq nu B via relativised circular systems
	5.1 Relativised simulation of B in CB
	5.2 Simulating #1_{1;0}R oracles in nu B

	6 nu B as relativised regular coderivations
	7 nu Bsubseteq FP / poly: a relativised algebra subsuming circular typing
	7.1 Safe recursion on permutations of prefixes
	7.2 CB(#1_{1;1} R) subseteq B^{permpref}(#1_{1;1}R): from circular proofs to recursive functions

	8 Conclusions

