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Abstract
We study the impact of adding both counting quantifiers and a single transitive relation to the
fluted fragment – a fragment of first-order logic originating in the work of W.V.O. Quine. The
resulting formalism can be viewed as a multi-variable, non-guarded extension of certain systems of
description logic featuring number restrictions and transitive roles, but lacking role-inverses. We
establish the finite model property for our logic, and show that the satisfiability problem for its k-
variable sub-fragment is in (k+1)-NExpTime. We also derive ExpSpace-hardness of the satisfiability
problem for the two-variable, fluted fragment with one transitive relation (but without counting
quantifiers), and prove that, when a second transitive relation is allowed, both the satisfiability
and the finite satisfiability problems for the two-variable fluted fragment with counting quantifiers
become undecidable.
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1 Introduction

The fluted fragment, or FL, is a fragment of first-order logic in which, roughly speaking, the
sequence of quantification of variables coincides with the order in which those variables appear
as arguments of predicates. The fluted fragment with counting, or FLC, is the extension of
FL with the standard counting quantifiers ∃[≤M ], ∃[≥M ] and ∃[=M ], where M is a (numeral
denoting a) positive integer. The following sentence is in FLC:

At most three lecturers introduce a professor to at least five students
∃[≤3]x1

(
lectr(x1) ∧ ∃x2

(
prof(x2) ∧ ∃[≥5]x3(std(x3) ∧ intro(x1, x2, x3))

)) (1)

It was shown in [31] that FL has the finite model property, whence its satisfiability problem
is decidable. The complexity bound of NExpTime claimed in [32] is incorrect, and as
shown later in [28], the problem is non-elementary; however, the satisfiability problem for
the k-variable sub-fragment of FL is known to be in (k−2)-NExpTime for k ≥ 3 [29]. This
result extends to the fragment FLC, though with a best-known upper complexity bound of
(k−1)-NExpTime for k in the same range [27].

It is impossible, within the fluted fragment, to express the property of transitivity: in
particular, the formula ∀x1∀x2

(
r(x1, x2)→ ∀x3

(
r(x2, x3)→ r(x1, x3)

))
is not fluted, because

the variable sequence in the atom r(x1, x3) omits x2. The question therefore arises as to
whether the fragments FL or even FLC can be extended by declaring certain distinguished
binary predicates to be interpreted as transitive relations. For FL, this question was largely
resolved in [30]. It was shown that FL with equality and one distinguished transitive
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32:2 Adding Transitivity and Counting to the Fluted Fragment

relation lacks the finite model property, but has decidable satisfiability and finite satisfiability
problems; the former problem, restricted to the k-variable sub-fragment is shown to be
in k-NExpTime, and the latter in (k+1)-NExpTime. In the presence of two transitive
relations but without equality, the fluted fragment loses the finite model property, with the
decidability of satisfiability and finite satisfiability both unknown. With either two transitive
relations and equality or three transitive relations, satisfiability and finite satisfiability are
both undecidable. In the present paper, we consider the combination of transitivity and
counting. We show that, in the absence of equality, we may add a single transitive relation
to the fragment FLC without losing the finite model property, and we establish an upper
complexity bound of (k+1)-NExpTime on the satisfiability problem for the k-variable sub-
fragment. In the presence of two transitive relations, however, the satisfiability and finite
satisfiability problems for FLC are undecidable, even in the absence of equality.

The impact of counting quantifiers and transitivity on decidability and complexity of
satisfiability has been widely studied in the context of other fragments of first-order logic. Of
particular interest in this regard are propositional modal logics and description logics, as these
are mapped to the fluted fragment via the standard translation. The simplest of these logics
is the propositional modal logic K, in which the modalities □ and ♢ are interpreted with
respect to a single accessibility relation. By allowing counting modalities of the form ♢≤n,
♢=n and ♢≥n, we obtain propositional graded modal logic GrK; and by imposing on these
systems the requirement that the accessibility relation be interpreted as a transitive relation,
we obtain, respectively, the logics known as K4 and GrK4. Thus, GrK4 is a sub-fragment
of FLC with one transitive relation. The satisfiability problems for K, GrK and K4 are all
PSpace-complete [25, 36]; the corresponding problem for GrK4 is NExpTime-complete [17].
It is instructive to consider the further extension of these logics with the converse modalities
⊟ and �. Denoting the extension of K with converse modalities by Kc, and similarly for the
other fragments, we find that the satisfiability problems for Kc, GrKc and K4c all remain
in PSpace; but the corresponding problem for GrK4c, is undecidable (see [2, 37]). Thus,
transitivity and counting can be combined in the context of modal logics; but decidability of
satisfiability is lost when converse modalities are added. Yet converse modalities are precisely
what we cannot express in fluted logic. It is therefore natural to ask whether it is not in fact
fluting that is the critical factor here.

The basic description logic ALC is a notational variant of propositional multi-modal
logic. Extensions of ALC are defined by allowing additional constructs, in particular: number
restrictions (denoted Q) corresponding to counting quantifiers as defined in this paper,
transitivity of roles (denoted S), role hierarchies (H) corresponding to inclusions of binary
relations, nominals (O) and role “inverses” (I).1 The logic SHOQ constitutes a maximal
description logic that can be embedded into FLC with transitive relations. Now it is
known [15] that an unrestricted combination of number restrictions and transitivity leads
to undecidability of concept satisfiability even in the smaller logic SHQ. Indeed, it was
shown in [18] that just three roles (two of them transitive) are sufficient for undecidability.
In response to these negative results, description logics standardly impose the syntactic
restriction that transitive roles or their super-roles do not appear in number restrictions.
With these restrictions, decidability is restored: concept satisfiability for SHOQ is ExpTime-
complete, and for SHOIQ it is NExpTime-complete [35]. On the other hand, there is no
problem with allowing transitive relations to appear under number restrictions in description
logics too weak to allow these roles to interact with each other. Thus, for example, concept

1 In description logic, the term “inverse” has become established instead of the more normal “converse”.
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satisfiability for SOQ is decidable [16]: hardness is inherited from GrK4 [17] and the optimal
upper bound has been recently shown in [13]. In the logic considered in the present paper,
only one transitive relation is available, but it is allowed to combine freely with other
relations. We show that this comparative freedom is, from the point of view of decidability
of satisfiability, unproblematic as long as we remain within the confines of fluted logic – in
effect, provided we have no access to role inverses.

In knowledge representation and database theory an important reasoning problem is the
query entailment problem over incomplete databases enriched by ontologies described in
some logic L. This problem reduces to unsatisfiability of the conjunction φ ∧ ¬q, where
φ describes the ontology and q is a Boolean query. So, (finite) query entailment under
L is computationally no easier than the corresponding (finite) unsatisfiability problem.
Decidability of query entailment for various fragments of restricted SHOIQ has already
been shown [9, 10, 5, 11]. Finite entailment for SHOIQ was shown undecidable in [33],
leaving decidability of the general entailment problem open. Since in real-life ontologies it
is natural to find properties where transitivity interacts with counting (see e.g. [14]) the
search for logics with decidable (finite) query entailment allowing such an interaction has a
strong practical motivation. This quest has brought some positive results: decidability in
2-ExpTime of entailment of regular path queries for SQ [14], a corresponding lower bound
from [12] as well as decidability of both general and finite entailment for SQO and for a
restricted fragment of SIQ, where inverse roles are not used under number restrictions. In
the fluted fragment query entailment is decidable provided some form of guardedness is
added [1].

The quest for decidable logics with counting and/or transitivity is not, of course, limited
to description or modal logics. We mention in this context the guarded fragment, the unary
negation fragment and the recently introduced triguarded fragment, each of them being as a
different generalization of propositional modal logic (not subsuming fluted logic), enjoying
the finite model property, and not being able to express transitivity or related properties.
Considerable work has been done to understand the limits of decidability for extensions of
these fragments where (restricted) transitivity is allowed. The general picture that emerges
is that, when considering more than one transitive relation, the interaction between them
must be restricted in order to secure decidability of satisfiability. For instance, satisfiability is
undecidable for the the two-variable guarded fragment with two transitive relations [19], but
is restored even in the presence of any number of transitive relations if the transitive relations
are allowed to appear only in guard positions [34]. Similarly, satisfiability is undecidable for
the two-variable guarded fragment over signatures with two linear orders, but is restored
if we restrict the linear orders to guard positions and in addition forbid any other binary
relations in the signature (a property analogous to the restriction of number restrictions to
simple roles in description logics) [21]. Technically, the crucial property behind the decision
procedures for the satisfiability problem in these cases is that satisfiable formulas exhibit
some kind of tree-like models in which the transitive relations are defined independently of
each other. For a wider picture we refer the reader to the recent papers on extensions of: the
guarded fragment [24], the unary negation fragment [7, 8], the triguarded fragment [22, 23]
and the references therein.

The rest of the paper is organised as follows. After defining the main notions in Section 2
we begin in Section 3 by showing the ExpSpace-hardness of the satisfiability problem for
the two-variable fluted logic with one transitive relation. In Section 4 we discuss Presburger
quantifiers, which are a generalization of counting quantifiers. In Section 5 we show that
the two-variable fragment of FLC with one transitive relation has the finite model property
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32:4 Adding Transitivity and Counting to the Fluted Fragment

when restricted to signatures consisting of unary predicates and one distinguished transitive
relation. In Section 6 we first lift this result to arbitrary signatures, and then drop the
restriction to two-variables. In Section 7 we show that the satisfiability and finite satisfiability
problems for FLC with two transitive relations are undecidable even in the two-variable case.

2 Preliminaries

In the sequel, we use Fraktur letters for structures and the corresponding Roman letters
for their domains: thus, A is the domain of A etc. Logical variables are taken from the
sequence x̄ω = x1, x2, . . ., and all signatures are purely relational, i.e., there are no individual
constants or function symbols. We begin by establishing the syntax of the fragment FLC,
the fluted fragment with counting. Define the sets of formulas FLC[k], for all k ≥ 0, by
simultaneous structural recursion as follows:

(i) any atom p(xℓ, . . . , xk), where xℓ, . . . , xk is a contiguous subsequence of x̄ω and p a
(non-equality) predicate of arity k − ℓ+ 1, is in FLC[k];

(ii) FLC[k] is closed under boolean combinations;
(iii) if φ is in FLC[k+1], then ∃xk+1 φ and ∀xk+1 φ are in FLC[k],
(iv) if φ is in FLC[k+1] and M a non-negative integer, then ∃[≤M ]xk+1 φ, ∃[≥M ]xk+1 φ and

∃[=M ]xk+1 φ are in FLC[k].
It is intended that Clause (i) allows the case ℓ = k+1 (empty sequence of arguments), so that
the atoms in question are proposition letters. Clause (iv) speaks of non-negative integers
occurring in formulas; when calculating the size ||φ|| of an FLCk-formula φ, we assume these
to be represented as bit-strings (i.e. binary coding of counting subscripts). Define FL[k] to
be the fragment of FLC[k] in which no counting quantifiers occur, i.e. Clause (iv) is dropped.
Define the fragment FLC to be the union

⋃
k≥0 FLC

[k]; similarly FL =
⋃

k≥0 FL
[k]. By

FLC+1Tr, we understand the same set of formulas as FLC, but with a distinguished binary
predicate t, which is required to be interpreted as a transitive relation; similarly for FL+ 1Tr.
Finally, define FLCk to be the fragment of FLC in which at most the variables x1, . . . , xk

appear (free or bound); and similarly for FLk, FLCk+1Tr and FLk + 1Tr. Incidentally, do
not confuse FLCk with FLC[k]: for example, formula (1) is in FLCk for all k ≥ 3 but in
FLC[k] only for k = 0. By sentence, we mean a formula with no free variables – that is, up
to a shift of variable indices, a formula of FLC[0].

Assuming, as we shall, that the arity of any predicate is fixed in advance, variables
in fluted logic convey no information at all, and therefore can be omitted. For example,
formula (1) can be unambiguously reconstructed – up to a shift of variable indices – from

∃[≤3]

(
lectr ∧ ∃

(
prof ∧ ∃[≥5](std ∧ intro)

))
. (2)

Consequently, we employ this variable-free notation for FLC in the sequel, as it is more
compact. The issue of ambiguity with respect to shifts in variable indexing bears emphasis,
however. Under variable-free notation, any formula of FLC[k] is, without lexical change, also a
formula of FLC[k+1]. For example, the sub-formula ∃(prof∧∃[≥5](std∧ intro)) of (2) may be
reconstructed not only as the FLC[1]-formula φ(x1) given by ∃x2(prof(x2)∧∃[≥5]x3(std(x3)∧
intro(x1, x2, x3))), but also as the (logically equivalent) FLC[2]-formula φ′(x1, x2) given by
∃x3(prof(x3) ∧ ∃[≥5]x4(std(x4) ∧ intro(x2, x3, x4))), and so on. This feature will actually be
useful in Sec. 6, when we come to reduce the number of variables in FLC+1Tr-formulas.
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Using variable-free notation, we say that an FLCk-formula (k ≥ 2) is in normal-form if it
conforms to the pattern

m∧
h=1
∀k−1(αh → ∃[≶hMh] βh), (3)

where the αh are quantifier-free FLCk−1-formulas, the βh are quantifier-free FLCk-formulas,
the Mh are non-negative integers and the symbols ≶h are chosen from the set {≤,≥,=}.

▶ Lemma 1. Let φ be a sentence of FLCk (k ≥ 2). Then we may compute, in time bounded
by a polynomial function of ||φ||, a normal-form FLCk-sentence ψ such that: (i) |= ψ → φ;
and (ii) any model of φ can be expanded to a model of ψ.

Proof. The proof is essentially the same as for FL, via standard re-writing techniques. See,
e.g. [29, Lemma 4.1]. Note that a formula of the form ∀kθ, with θ ∈ FLCk quantifier-free, is
logically equivalent to the normal-form conjunct ∀k−1(⊤ → ∃[=0]¬θ). ◀

If L is any language, we denote the satisfiability problem for L by Sat(L). Since all of
the problems Sat(L) with which we shall be concerned have relatively high complexity (well
above NPTime), we may assume henceforth that proposition letters do not occur in formulas,
as their truth-values can simply be guessed.

In this paper, we shall make some limited use of Presburger arithmetic, the first-order
theory of the structure N = (N, <, 0, 1,+), where N = {0, 1, 2 . . .} is the domain of natural
numbers, and the symbols <, 0, 1, + have their usual interpretations. A Presburger formula
is any formula Θ in this language. We call Θ existential if it is of the form ∃v̄ Ξ, where v̄ is a
(possibly empty) tuple of variables and Ξ is quantifier-free. If ā = a1, . . . , ak is a tuple of
numbers and M a number, we write ā ≤M , to mean ai ≤M for all i (1 ≤ i ≤ k). If Θ is a
Presburger formula featuring only the variables w̄, where w̄ and ā have the same arity, we
say ā satisfies Θ(w̄) if N |= Θ[ā]. We allow constants for all natural numbers in Presburger
formulas, since these can be succinctly defined using 0, 1 and +. We also allow ourselves to
use relativized quantification ∃(v̄ ≤M), again defined in the obvious way.

3 ExpSpace-hardness

In this section, we show that Sat(FL2 + 1Tr) is ExpSpace-hard. This improves the already
known NExpTime-lower bounds from GrK4 [17] and FL2 [29]. Note that FL2 + 1Tr,
the two-variable fluted fragment with one transitive relation, features neither equality nor
counting quantifiers. The material also serves as an opportunity for familiarization with
the variable-free syntax for fluted logic just introduced. By the well-known correspondence
between deterministic and alternating complexity classes [6], it suffices to show a polynomial
time reduction from the acceptance problem for an alternating Turing machine working in
exponential time. The reduction can be effected using similar ideas as in, e.g. [20], where the
complexity of satisfiability for the two-variable guarded fragment with one-way transitive
guards was studied. However, special care needs to be taken to encode the required properties
using only fluted formulas. In particular, it is essential for us to consider signatures featuring
several binary predicates, in contrast to the non-fluted case [20], where ExpSpace-hardness
is shown even when the distinguished transitive relation is the only binary predicate.

We employ a natural representation of integers as bit strings. Let s̄ = sz−1, . . . , s0 be a
bit-string representing an integer n =

∑z−1
i=0 si · 2i (s0 is the least significant bit). Within

a structure A interpreting unary predicates p0, . . . , pz−1, each element b can be associated
with the integer value between 0 and 2z − 1 represented by the bit-string sz−1, . . . , s0, where,
for all i (0 ≤ i < z), si = 1 if A |= pi[b], and 0 otherwise.
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32:6 Adding Transitivity and Counting to the Fluted Fragment

Turning to the actual reduction, let M be an alternating Turing machine working in time
2nk , for some k ≥ 1. Let Σ be the tape alphabet of M and Q the set of states; we write
Q = Q∃ ∪ Q∀, where Q∃ (Q∀) is the set of existential (universal) states. Without loss of
generality, we assume that for each combination of a state and alphabet symbol M has exactly
two transitions, which we think of as leading to “left” and “right” successor-configurations.
This notion refers only to the organization of the computation tree of M and not to the
directions of the head defined by the transitions of M . We also assume that M never
moves left from the initial tape cell and that it accepts or rejects in exactly the 2nk -th step.
The idea of the reduction is to write a formula Φ such that each of its models encodes a
binary tree whose nodes correspond to configurations of M on input w: the root of the tree
encodes the initial configuration, and successors of a node encode successor configurations
corresponding to transitions on M . An extra unary predicate lft is used to distinguish the
“left” successor-configuration of a node. A configuration is encoded by 2nk elements, each of
them corresponding to a single cell of the tape of M .

Fix some input w for M of length n, and, letting z = nk, take two sets of unary predicates
p0, . . . , pz−1, c0, . . . , cz−1 that will encode, for each element b in any structure A interpreting
them, two integer values valAP (b) and valAC(b) in the range [0, 2z − 1], as described above.
Thinking of b as a tape cell in some node of the computation tree of M on input w, we are
invited to read valP (b) as the position of the tape cell in question and valC(b) as the time
step of the node in question (i.e. depth in the computation tree). For each D ∈ {C,P}, we
add to the signature the unary predicates zeroD and maxD and the binary predicates predD,
succD and eqD. We then write a satisfiable formula Φcount with the property that any model
A |= Φcount satisfies the following conditions:
(c1) A |= zeroD[b]⇔ (valAD(b) = 0), and A |= maxD[b]⇔ (valAD(b) = 2z − 1),
(c2) A |= eqD[b, b′]⇔ valAD(b) = valAD(b′),
(c3) A |= predD[b, b′]⇔ valAD(b′) = valAD(b)− 1 modulo 2z,
(c4) A |= succD[b, b′]⇔ valAD(b′) = valAD(b) + 1 modulo 2z.
Thus, we may informally read zeroC(x) as “x corresponds to some tape cell in the root node
(i.e. time=0); succP (x, y) as “x corresponds to a tape cell in some node, and y to the tape
cell immediately to its right (in some possibly different node); and so on. The construction
of Φcount is routine; for details, see [29, pp. 1026-27]).

The predicate t is used to encode the structure of the computation tree. Intuitively, we
take t[b, b′] to mean that b and b′ are tape cells in the same node with b lying to the left of b′,
or that b and b′ are tape cells in different nodes, with the latter being a proper descendant
of the former in the computation tree. We denote by Φtree the conjunction Φ1 ∧ Φ2 ∧ Φ3
establishing that any model of Φtree includes a tree substructure, where

Φ1 ≡ ∃(zeroC ∧ zeroP ∧ lft)
Φ2 ≡ ∀

(
¬maxP → (lft→ ∃(t ∧ eqC ∧ succP ∧ lft)

)
∧
(
¬lft→ ∃(t ∧ eqC ∧ succP ∧ ¬lft)

)
Φ3 ≡ ∀

(
maxP ∧ ¬maxC → ∃(t ∧ lft ∧ zeroP ∧ succC) ∧ ∃(t ∧ ¬lft ∧ zeroP ∧ succC)

)
.

To help the reader further with the variable-free notation we give the formula Φ3 in
standard first-order syntax:

∀x1
(
maxP (x1) ∧ ¬maxC(x1)→∃x2(t(x1, x2) ∧ lft(x2) ∧ zeroP (x2) ∧ succC(x1, x2))∧

∃x2(t(x1, x2) ∧ ¬lft(x2) ∧ zeroP (x2) ∧ succC(x1, x2))
)
.

The conjunct Φ1 specifies that each model contains an element belonging to the root
of the tree, for which both counters are set to 0. This element is also marked as satisfying
lft and it will correspond to the first tape cell of the initial configuration of M on w. The
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conjunct Φ2 provides remaining elements belonging to the same node. They will correspond
to successive tape cells within the configuration encoded in this node: these elements form
a chain connected by t with the P -counter increasing from 0 to 2z − 1, and the C-counter
stable. The predicate lft is uniformly true or false for all elements in such a chain, depending
on whether the first element (with P -counter 0) is marked lft. The conjunct Φ3 provides
elements that belong to successors of a given node in the tree; they will correspond to the
first tape cell in the configurations encoded by the successor nodes. Specifically, each element
with valP = 2z − 1 and valC < 2z − 1 has two witnesses connected by t, each with the
C-counter incremented by 1 and the P -counter set to 0: one satisfying lft, the other one ¬lft.
Note that by transitivity of t each element belonging to a given node is connected by t to all
elements in descendant nodes.

To encode a configuration of M , we employ further unary predicates: h, a0, . . . , as,
q0, . . . , qr. Here, h indicates the position of the head of M , a0, . . . , as correspond to the
symbols of the alphabet of M , and q0, . . . , qr correspond to the states of M . We assume that
a0 represents the blank symbol, as a special start-of-tape symbol, q0 the initial state and qr

the only rejecting state. Note that we use the same letters for the alphabet symbols of M
and the predicates representing them in the signature of Φ; similarly for states.

Let ΦM be a conjunction of formulas describing the following basic properties of an
accepting computation tree of M :
(m1) every tape cell contains exactly one symbol,
(m2) in each configuration the head is scanning at most one cell: ∀(h→ ∀(t ∧ eqC → ¬h)),
(m3) the information about the current state is stored in elements scanned by the head,
(m4) the root of the computation tree contains the initial configuration of M on input w,
(m5) when moving from a configuration to its successor configurations only tape cells scanned

by the head are allowed to change:
∧

0≤i≤s ∀(ai ∧ ¬h→ ∀(t ∧ eqP ∧ succC → ai)).
Properties (m1), (m3) and (m4) are one-variable formulas, so they clearly belong to FL2.

To encode the transition function of M we consider separately transitions from existential
and from universal states. Suppose M has the following possible transitions for an existential
state q and letter a: δ(q, a) = {(q′, a′, R), (q′′, a′′, L)}. We want to ensure that the left child
of nodes corresponding to configurations of M in state q reading a encodes one of the possible
next configurations. This can be formalized by the formula Φ∃

q,a below:

Φ∃
q,a ≡ ∀

(
q ∧ a ∧ h→

(
∀(t ∧ lft ∧ succC → (eqP → a′) ∧ (succP → q′ ∧ h)) ∨

∀(t ∧ lft ∧ succC → (predP → q′′ ∧ h) ∧ (eqP → a′′))
))
.

When encoding the computation at universal states we require that one transition is encoded
by the left child and the other one by the right child. In particular, when M has the transitions
δ(q, a) = {(q′, a′, R), (q′′, a′′, L)} and q ∈ Q∀, we define the formula Φ∀

q,a as follows:

Φ∀
q,a ≡ ∀

(
q ∧ a ∧ h→ ∀

(
t ∧ lft ∧ succC → (eqP → a′) ∧ (succP → q′ ∧ h)

)
∧

∀
(
t ∧ ¬lft ∧ succC → (predP → q′′ ∧ h) ∧ (eqP → a′′)

))
.

Finally, let Φ ≡ Φcount ∧ Φtree ∧ ΦM ∧
∧

a∈Σ(
∧

q∈Q∃
Φ∃

q,a ∧
∧

q∈Q∀
Φ∀

q,a) ∧ ∀¬qr. The role of
the last conjunct of Φ is to ensure that M never enters a rejecting state. The length of Φ is
polynomial in the length of w, regarding M as fixed.

It is not difficult to show that Φ is satisfiable if and only if M accepts w. For the
only-if direction, suppose that there is an accepting computation tree of M with input w; we
construct a model A of Φ in the form of a tree. The initial configuration of M is transformed
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32:8 Adding Transitivity and Counting to the Fluted Fragment

into the root of A as suggested by part (m4) of ΦM . Then we proceed recursively. When a
configuration C in the computation tree of M corresponding to a node b in A is universal, we
transform the left subtree of C into the left subtree of b in A, and the right subtree of C into
the right subtree of b. If C is existential we transform the accepting subtree of C into both
the left and the right subtree of b. Since M is accepting, the formula Φ is true in the model.

For the opposite direction, suppose A |= Φ. We construct an accepting computation
tree for M on input w, starting with the initial configuration, and then proceed recursively.
Suppose we have constructed a configuration C of M on w of depth d < 2z − 1. The formula
Φtree ensures that A contains two chains of elements b̄ = b0, . . . , b2z−1 and b̄′ = b′

0, . . . , b
′
2z−1

(i.e. for all i (0 ≤ i < 2z − 1) A |= t[bi, bi+1] ∧ t[b′
i, b

′
i+1]) connected to the elements

representing C by t such that for all i (0 ≤ i ≤ 2z − 1) we have: A |= valP [bi] = valP [b′
i] = i,

A |= valC [bi] = valC [b′
i] = d + 1, A |= lft[bi] ∧ ¬lft[b′

i]. If C is existential we translate the
information encoded by the chain b̄ of elements b0, . . . , b2z−1 into a successor configuration
of C. If C is universal we translate the information encoded by the chain b̄ into the left
successor of C, and the information encoded by the chain b̄′ into the right successor of C.
The conjuncts Φ∃

q,a and Φ∀
q,a ensure that the tree constructed in such a way is a computation

tree of M , and by the conjunct ∀¬qr of Φ, the tree is accepting.
Hence, we have

▶ Theorem 2. Sat(FL2 + 1Tr) is ExpSpace-hard.

4 Presburger quantifiers

In Sec. 3, we obtained a lower complexity bound on Sat(FLC2+1Tr) by investigating the
corresponding problem for the sub-fragment of that logic without counting quantifiers. In
Secs. 5–6, we will obtain upper complexity bounds on Sat(FLCk+1Tr) (k ≥ 2) by investigating
the corresponding problem for a super-fragment of that logic in which the notion of counting
quantifier has been generalized. These generalized counting quantifiers were introduced
in [27] in the context of FLC (but see [3] for a closely related idea); this section provides a
more streamlined presentation.

Fix k ≥ 1. A fluted k-atom over Σ is a predicate p ∈ Σ of arity d ≤ k. A fluted k-literal
over Σ is a fluted k-atom over Σ or its negation. A fluted k-type over Σ is a maximal
consistent set of fluted literals over Σ. It is worth explaining how variable-free notation
is to be understood here: we think of a literal ±p in a fluted k-type as “really” being the
formula ±p(xk−d+1, . . . , xk), so that variables are aligned in such a way that all literals
notionally have the same last variable. We denote the set of fluted k-types over Σ by FtpΣ

k .
If M ≥ 0, an M -bounded, fluted k-profile over Σ is a function ζ : FtpΣ

k+1 → {0, . . . ,M}. An
M -bounded, fluted k-star-type over Σ is a pair ⟨π, ζ⟩, where π is a fluted k-type over Σ and ζ
an M -bounded, fluted k-profile over Σ. In all cases, reference to Σ is suppressed when clear
from context. (The intuition behind these definitions will be explained presently.) We use π
to range over fluted 1-types, ρ, σ, τ to range over fluted k-types (for various k), and ζ, η to
range over M -bounded, fluted k-profiles (for various M and k). To reduce notational clutter,
and assuming that Σ is finite, we silently identify fluted k-types with their conjunctions
where convenient, thus allowing ourselves to write, for instance, τ for the quantifier-free
FLCk-formula

∧
τ .

Let A be a structure interpreting a finite signature Σ and ā a k-tuple of elements of A.
The set of fluted k-literals over Σ satisfied by ā in A is evidently a fluted k-type, τ . We say
that ā realizes τ , and refer to it as the fluted k-type of ā in A, denoted ftpA[ā]. Intuitively, a
fluted k-type is to be thought of as a specification, for some k-tuple of elements, of which
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fluted literals are satisfied by that k-tuple. Now consider the (k+1)-tuples āb extending
ā by a single element b. Each such (k+1)-tuple has some fluted (k+1)-type in FtpΣ

k+1,
and we may count, up to some bound M , the number of times each (k+1)-type in FtpΣ

k+1
arises in this way. More precisely, the M-bounded, fluted profile of ā in A is the function
fprAM [ā] : FtpΣ

k+1 → {0, . . . ,M} defined by

fprAM [ā](τ) = min(|{b ∈ A : ftpA[āb] = τ}|,M).

Clearly, fprAM [ā] is an M -bounded, fluted k-profile, as defined in the preceding paragraph.
Intuitively, an M -bounded, fluted k-profile is to be thought of as a specification, for some
k-tuple of elements, of how many different (k+1)-tuples it can be extended to (up to a ceiling
of M) satisfying each of the possible fluted (k+1)-types. Finally, we say that the M -bounded,
fluted star-type of ā in A is the pair fstAM [ā] = ⟨ftpA[ā], fprAM [ā]⟩. Intuitively, an M -bounded,
fluted k-star-type is simply a combination of a fluted k-type and an M -bounded, fluted
k-profile.

We now turn to the promised generalization of counting quantifiers. By way of motivation,
let β be a quantifier-free FLCk+1-formula, and consider the FLCk-formula ∃≤Mβ. Applied to
any k-tuple of elements ā, this latter formula makes a statement about the fluted (k+1)-types
satisfied by the various (k+1)-tuples āb as b ranges over the domain of quantification, namely,
that for at most M such elements b, the fluted type of āb entails β. This formulation invites
generalization. For each fluted (k+1)-type τ over the relevant signature, let vτ be the number
of elements b such that āb has fluted type τ , up to some fixed ceiling M (after which we stop
counting). Then we can impose any set of conditions on the collection of integers vτ (in the
range [0,M ]) thus obtained. Accordingly, we say that a computable counting quantifier is an
expression Q(k,Σ,M,Θ), where k ≥ 1, Σ is a signature, M ≥ 0 and Θ a set of M -bounded
fluted k-profiles over Σ, presented in some way which allows membership to be effectively
determined. (For example, Θ could be presented as a Turing machine that terminates on all
inputs.) We regard computable counting quantifiers as FLCk-formulas in their own right. If
A is any structure interpreting a signature including Σ, and ā is a k-tuple of elements from
A, then we define

A |= Q(k,Σ,M,Θ)[ā] iff fprAM [ā] ∈ Θ.

In particular, if β is a quantifier-free FLCk+1-formula, then the FLCk-formula ∃≤Mβ can
be equivalently written as Q(k,Σ,M + 1,Θ), where Θ is the set of (M + 1)-bounded, fluted
k-profiles ζ satisfying the condition∑

{ζ(τ) : τ ∈ FtpΣ
k+1, |= τ → β} ≤M.

Thus, computable counting quantifiers generalize ordinary counting quantifiers applied to
quantifier-free formulas. Conversely, computable quantifiers can be expressed in terms of
counting quantifiers, using the fact that all numbers concerned are subject to the finite bound
M . Thus, Q(k,Σ,M,Θ) can be written as the (huge) FLCk+1-formula∨
ζ∈Θ

(∧
{∃[=ζ(τ)] τ | τ ∈ FtpΣ

k+1 s.t. ζ(τ) < M} ∧
∧
{∃[≥M ] τ | τ ∈ FtpΣ

k+1 s.t. ζ(τ) = M}
)
.

Hence there is no difference in expressive power between ordinary counting quantifiers and
computable counting quantifiers. However, there may be a complexity-theoretic difference:
the condition Θ may be presented in a more compact way than ordinary counting quantifiers
make possible. One such way will be of particular significance in this paper. Let v̄ be a
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collection of variables vτ (in some fixed order) as τ ranges over FtpΣ
k+1, and let Θ(v̄) be a

formula of Presburger arithmetic in the variables v̄. Now, any tuple of numbers chosen from
{0, . . . ,M} satisfying Θ corresponds to a function mapping each fluted (k+1)-type τ to the
number assigned to the variable vτ . Thus, Θ specifies a set of M -bounded, fluted k-profiles
in a natural way. A computable counting quantifier in which Θ is presented as a formula of
Presburger arithmetic in this way will be called a Presburger quantifier. If Θ is an existential
Presburger formula, i.e. a formula of the form ∃w̄Ξ(v̄, w̄), then we speak of an existential
Presburger quantifier.

These considerations lead us to define a sequence of languages based on existential
Presburger quantifiers. For any k ≥ 2, let FLUk be the collection of formulas of the form

m∧
h=1
∀k−1(αh → Q(k − 1,Σ,M,Θh)) (4)

where Σ is a purely relational signature, m a positive integer, the αh quantifier-free FLCk−1-
formulas over Σ, M a non-negative integer and the Θh existential Presburger formulas with
free variables v̄ indexed by the fluted k-types over Σ. The signature of such a formula is taken
to be Σ. We need a careful parametrization of FLUk+1Tr-formulas in the sequel. If ψ is of
the form (4), define the effective size of ψ, denoted #(ψ), to be the quantity |Σ|+ logM +m.
We define the fragment FLUk+1Tr to consist of the set of formulas of the form (4), over a
signature featuring t, again required to be interpreted as a transitive relation.

It is simple to re-write any normal-form FLCk-formula φ of the form (3) over a signature
Σ as a logically equivalent formula ψ of the form (4), where M = max(M1, . . .Mm) + 1.
Moreover, ψ can be computed in exponential time. (Exponential time is required, because
the variables in the embedded Presburger formulas are indexed by fluted 1-types, of which
there are exponentially many.) Note however that #(ψ) ≤ ||φ||. Thus, using Lemma 1, we see
that any decision procedure for the problem Sat(FLUk) yields a decision procedure for the
problem Sat(FLCk). To obtain such a procedure, we show how to reduce Sat(FLUk+1+1Tr)
to Sat(FLUk+1Tr) (but with exponential blow-up), where k ≥ 2. The principal difficulty is
to then establish the base case, namely, Sat(FLU2+1Tr).

We approach our task in two stages. We consider first a sub-fragment of FLU2+1Tr
obtained by restricting attention to signatures featuring no predicates of arity higher than 1
except for the distinguished predicate t. Sec. 5 is devoted to a small model property for this
sub-fragment. Then, in Sec. 6, we first lift this result to the whole of FLU2+1Tr, and then
generalize to Sat(FLUk+1Tr) for all k ≥ 2. We remark that the same basic strategy was
employed in [27] to decide Sat(FLC). There, however, one has the luxury of an easy base
case: the logic FLC2 is contained in C2, the two-variable fragment of first-order logic with
counting, for which decidability of satisfiability is known. Indeed, the same argument shows
the decidability of Sat(FLC) even in the presence of a single distinguished binary predicate
required to be interpreted as an equivalence relation, since the corresponding extension of
C2 is known to have a decidable satisfiability problem [26]. Unfortunately, adding a single
transitive relation to C2 yields a logic with undecidable satisfiability problem. Thus, the main
work of this paper is to establish the decidability of Sat(FLU2+1Tr) from scratch.

Since satisfaction of a Presburger quantifier by a tuple ā is determined by the profile of ā,
the following observation is immediate:

▶ Lemma 3. Let φ be a formula of FLUk (or of FLUk+1Tr) of the form (4), with k ≥ 2,
over a signature Σ. Let A, B be structures interpreting Σ such that every M -bounded, fluted
(k − 1)-star-type realized in B is realized in A. Then A |= φ implies B |= φ.
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5 Two variables, unary predicates

Define FLU2
u+1Tr to be the sub-fragment of FLU2+1Tr in which only unary predicates or

the distinguished binary predicate t occur. In this section we show that FLU2
u+1Tr has the

finite model property, and that Sat(FLU2
u+1Tr) is in 2-NExpTime.

We briefly outline the technique employed. Because FLU2
u+1Tr is not guarded, we

cannot easily build tree-like models of satisfiable formulas as with modal or description
logics. Because FLU2

u+1Tr features a transitive relation, we cannot easily employ equational
techniques as with the two-variable fragment with counting, C2. Instead, we show how, from
an arbitrary model A of some FLU2+1Tr-formula φ, we can extract a model B of cardinality
bounded by some doubly exponential function in the size of φ. A priori, the directed graph
(A, tA) may contain infinite or even dense paths, so that it is hard to know where to start
removing vertices. Our solution, paradoxically, is to add vertices. By a judicious choice of
such additions, we are subsequently able to remove edges in such a way that no long paths
remain. It is then straightforward to obtain a model subject to the desired size bound.

Fix some signature Σ featuring only unary predicates and the distinguished binary
predicate t. Observe that the fluted 2-types over Σ are simply the fluted 1-types over Σ
together with either of the fluted literals t or ¬t. For the remainder of this section, we
generally suppress reference to Σ. We find it helpful to think of an M -bounded fluted 1-profile
ζ as a pair of functions (ζ+, ζ−), each mapping FtpΣ

1 to [0,M ], given by:

ζ+(π) = ζ(π ∧ t); ζ−(π) = ζ(π ∧ ¬t).

Thus, the components ζ+ and ζ− simply separate out the “positive” and “negative” 2-types,
from the point of view of the fluted atom t. If A is a structure interpreting t, we call any
maximal subset Q of A having the property that A |= t[a, b] for all distinct a, b ∈ Q, a
clique. Thus, A is partitioned into cliques. If Q is a clique with |Q| > 1, then, by transitivity,
A |= t[a, a] for all a ∈ Q. If Q = {a}, then it may or may not be the case that A |= t[a, a]. If
Q and Q′ are cliques and c an element, we write A |= t[Q, c] to mean A |= t[a, c] for some
(equivalently, any) a ∈ Q; similarly for A |= t[c,Q] and A |= t[Q,Q′].

Let ζ = (ζ+, ζ−) and η = (η+, η−) be M -bounded fluted 1-profiles. We write ζ ⪯ η if,
for all π ∈ FtpΣ

1 , ζ+(π) ≥ η+(π) and ζ−(π) ≤ η−(π). Evidently, if A is a structure and
A |= t[a, b], then fprA[a] ⪯ fprA[b]. If ζ is an M -bounded, fluted 1-profile realized in A,
we call the set of elements B = {b ∈ A : fprA[b] = ζ} a profile set. A cluster is a weakly
connected component of the directed graph (B, tA ∩B2), where B is a profile set – that is, a
maximal subset C ⊆ B such that, for all distinct a, b ∈ C, there exists a sequence of elements
a = a1, . . . , as = b such that, for all i (1 ≤ i < s), either A |= t[ai, ai+1] or A |= t[ai+1, ai].
Obviously, a cluster is a union of cliques. Observe that, for any cluster C, there is no triple of
elements c, d, e with c, e ∈ C, d ̸∈ C such that A |= t[c, d] and A |= t[d, e]. Indeed, otherwise,
we have fprA[c] ⪯ fprA[d] ⪯ fprA[e] = fprA[c] contradicting the supposition that d ̸∈ C.

▶ Lemma 4. Let C be a cluster in a structure A whose elements have M-bounded, fluted
1-profile ζ, let π ∈ FtpΣ

1 and suppose that either ζ+(π) < M or ζ−(π) < M . Then any two
elements of C are related by t in A to the same elements of A having fluted 1-type π.

Proof. Since C is a weakly connected component of the directed graph (B, tA ∩B2), where
B is a profile set, it suffices to show that any two elements c, d ∈ C such that A |= t[c, d] are
related by t in A to the same elements of A having fluted 1-type π. By transitivity, we have
{b ∈ A : A |= t[c, b] and ftpA[b] = π} ⊇ {b ∈ A : A |= t[d, b] and ftpA[b] = π}, and similarly
{b ∈ A : A ̸|= t[c, b] and ftpA[b] = π} ⊆ {b ∈ A : A ̸|= t[d, b] and ftpA[b] = π}. If ζ+(π) < M ,
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then the former two sets have equal finite cardinality, and hence are equal; if ζ−(π) < M ,
then the latter two sets are. Either way, c and d are related by t in A to the same elements
of A having fluted 1-type π. ◀

A clique Q in a cluster C in a structure A will be called the superior clique of C if
A |= t[a,Q] for every a ∈ C. It is possible for there to be no superior clique in C, but if it
exists, it is unique.

▶ Lemma 5. Let C be a cluster in a structure A whose elements have M-bounded, fluted
1-profile ζ. Let π ∈ FtpΣ

1 . If either ζ+(π) < M or ζ−(π) < M and there exists b ∈ C such
that ftpA[b] = π and a ∈ C such that A |= t[a, b], then the superior clique of C exists and
contains every element c ∈ C such that ftpA[c] = π and A |= t[a, c] for some a ∈ C.

Proof. By Lemma 4, if such a and b exist, then every element of C is related to b by tA,
whence b is in the superior clique. But there can only be one superior clique. ◀

An important notion in the ensuing argument is that of a stable clique. If A is a structure
interpreting Σ, π a fluted 1-type and Q a clique of A included in a cluster C with M -bounded,
fluted 1-profile ζ, we say that π is sensitive for Q if

|{b ∈ (A \ C) ∪Q : A |= t[Q, b] and ftpA[b] = π}| < ζ+(π).

Intuitively, π is sensitive for Q if the elements of Q need to be related by t to elements having
fluted 1-type π belonging to other cliques of C in order to make up the quota of witnesses
demanded by ζ+ – in other words, if there are not enough witnesses either outside C or
inside Q. We call a clique Q stable if, for every fluted 1-type π sensitive for Q and every
element a ∈ A \ C such that A ̸|= t[a,Q], |{c ∈ C : A ̸|= t[a, c] and ftpA[c] = π}| ≥M . That
is, Q is stable if, for every fluted 1-type π that is sensitive for Q, every element not related
by t to Q is not related to at least M elements of C satisfying π. A special case of stability
is where Q has no sensitive fluted 1-types; in that case, we say that Q is trivially stable.

▶ Lemma 6. If A is a structure, and Q a clique of A included in a cluster C, then either Q
is stable, or there exists a stable clique Q′ ⊆ C such that A |= t[Q,Q′].

Proof. Given the clique Q and cluster C ⊇ Q, define the procedure stabilize as shown in
Fig. 1, in which the auxiliary variable f stores a function mapping the set of fluted 1-types
FtpΣ

1 to [0,M ]. The goal of stabilize is to find the clique Q′ guaranteed by the lemma.
The idea is to examine the list Π of sensitive fluted 1-types for the clique currently under
consideration (initially Q). By selecting a π ∈ Π which has been encountered least often, we
move along a t-edge to another clique of C in which π is realized. Before any execution of
line 6, Π will have been assigned the set of fluted 1-types sensitive for P ; hence π ∈ Π implies
that there exists b ∈ (C \ P ) such that A |= t[P, b] and ftpA[b] = π, whence the instruction
in line 7 can be executed. Furthermore, any run of stabilize terminates, since one of the
values f(π) less than M + 1 is incremented by every execution of line 8. Let Q′ be the clique
returned as the value of P in line 11. We claim that Q′ is stable. Indeed, suppose π is
sensitive for Q′. Then there is a clique path Q1, . . . QM , Q′ with Qi containing an element of
type π, say ci, for all i (1 ≤ i ≤M). Hence, if a ∈ A \ C with A ̸|= t[a,Q′], then A ̸|= t[a, ci]
for all i (1 ≤ i ≤M), as claimed. ◀

We can now prove the key lemma concerning FLU2
u+1Tr. We say that a clique path in a

structure A is a sequence of distinct cliques Q1, . . . , Qs (s ≥ 1) such that A |= t[Qi, Qi+1] for
all i (1 ≤ i < s); the length of the clique path is s− 1. The depth of A is the maximal length
of any clique path plus 1 (∞ if there is no maximum).
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1. begin stabilize
2. for all fluted 1-types π do f(π)← 0
3. P ← Q

4. Π← the set of fluted 1-types sensitive for P
5. until f(π) = M + 1 for all π ∈ Π
6. choose π ∈ Π for which f(π) is smallest
7. choose a clique P ′ ⊆ C containing some element of 1-type π

with P ′ ̸= P and A |= t[P, P ′]
8. f(π)← f(π) + 1
9. P ← P ′

10. let Π be the set of fluted 1-types sensitive for P
11. return P
12. end stabilize

Figure 1 Procedure stabilize of Lemma 6.

▶ Lemma 7. Let φ be a formula of FLU2
u+1Tr of the form (4) with k = 2, featuring the

constant M . Let Σ be the signature of φ. If φ is satisfiable, then φ has a model of depth
(M + 1) · 2|Σ|+1.

Proof. Suppose A |= φ. By the downward Löwenheim-Skolem theorem, we may assume that
A is finite or countably infinite.

Stage 1. The goal of this stage is to flatten any clusters having superior cliques. We modify
A, proceeding cluster by cluster. Number the clusters of A as C0, C1, . . . , and let A0 = A.
Supposing Ai to have been defined, we define Ai+1, over the same domain, A. If Ci lacks a
superior clique, we do nothing, and set Ai+1 = Ai. Otherwise, let Q be the superior clique
of Ci; thus, A |= t[b,Q] for all b ∈ Ci. We define Ai+1 to be the same as Ai, except that
we take tAi+1 on Q to be Ci ×Q: i.e. Ai+1 |= t[c, e] if and only if either (i) Ai |= t[c, e] and
{c, e} ̸⊆ Ci, or (ii) c ∈ Ci and e ∈ Q. Thus, tAi+1 ⊆ tAi , and the two relations agree on
pairs of elements which do not both lie in Ci. That tAi+1 is transitive follows from the fact
that there is no triple of elements c, d, e with c, e ∈ Ci, d ̸∈ Ci such that Ai |= t[c, d] and
Ai |= t[d, e].

We claim that the M -bounded, fluted 1-profiles are preserved in the transition from Ai

to Ai+1. Consider a ∈ A and define ζ = fprAi

M [a] and η = fprAi+1
M [a]; we show that ζ = η. We

may assume that a ∈ Ci, for otherwise there is nothing to show. Fix a fluted 1-type π. Since
tAi+1 ⊆ tAi , ζ+(π) ≥ η+(π) and ζ−(π) ≤ η−(π). To show the reverse comparisons, observe
that we can find ζ+(π) elements b ∈ (A \ Ci) ∪ Q such that ftpAi [b] = π and Ai |= t[Q, b].
But for each such b, Ai+1 |= t[a, b], by construction of Ai+1. Hence η+(π) ≥ ζ+(π). Turning
now to ζ−, suppose ζ−(π) < M . Then, by Lemma 5 the only elements b ∈ Ci such that
Ai |= t[a, b] and ftpAi [b] = π must lie in Q, and these witnesses are preserved in Ai+1. Hence
the number of elements b such that Ai+1 ̸|= t[a, b] and ftpAi+1 [b] = π is at most ζ−(π). This
establishes our claim that ζ = η, and hence, that the M -bounded, fluted 1-profiles are
preserved. In particular, Ai+1 |= φ.

From the above construction, for any pair of integers i, j, the induced substructure
Ak↾(Ai ∪Aj) stays the same for all k > max(i, j). Thus, it makes sense to speak about the
limit structure A′ obtained by running the above process to infinity. Moreover, since each tAi

is transitive, tA′ is also transitive, and A′ |= φ. Finally, in the model A′, no cluster having a
superior clique contains any clique path of length greater than 1.
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Stage 2. The goal of this stage is to add elements to stable cliques in clusters lacking a
superior clique. We modify A′, proceeding clique by clique. Number the cliques of A′ as
Q0, Q1, . . . , and let A′

0 = A′. Supposing A′
i to have been defined, we build the structure

A′
i+1. If Qi either occurs in a cluster having a superior clique, or is not stable, we do nothing,

and set A′
i+1 = A′

i. Otherwise, we form A′
i+1 as follows. Letting Π be the set of fluted

1-types sensitive for Qi, for each π ∈ Π, we add M elements to Qi with fluted 1-type π. More
precisely, let X be a set of M · |Π| fresh elements, and let A′

i+1 = Ai ∪X. We define A′
i+1 on

this set by declaring M elements of X to have fluted 1-type π for each π ∈ Π, setting tA
′
i+1

to be total on Qi ∪X, and finally setting A′
i+1 |= t[a,Qi ∪X] if and only if A′

i |= t[a,Qi] and
A′

i+1 |= t[Qi ∪X, a] if and only if A′
i |= t[Qi, a], for all a ∈ A′

i \Qi.
We again claim that the M -bounded fluted profiles of existing elements do not change.

Given a ∈ A′
i, define ζ = fprA

′
i

M [a] and η = fprA
′
i+1

M [a], and fix a fluted 1-type π ∈ Π; we show
that ζ(π) = η(π). Since elements having fluted 1-type π are added in the construction of
A′

i+1, η+(π) ≥ ζ+(π) and η−(π) ≥ ζ−(π); we establish the reverse inclusions.
If A′

i |= t[a,Qi], then a is unrelated by t to exactly the same elements in both structures,
whence η−(π) = ζ−(π). Now, let C be the cluster containing Qi. Since π is sensitive for Qi,
there exists an element b ∈ C \ Qi such that ftpA′

i [b] = π and A′
i |= t[Qi, b]. And since C

has no superior clique, by Lemma 5 we have ζ+(π) = M ≥ η+(π). If, on the other hand,
A′

i ̸|= t[a,Qi], then a is related by t to exactly the same elements in both structures, whence
η+(π) = ζ+(π). Furthermore, since π ∈ Π and Qi is stable, a is unrelated by tA

′
i to at least

M elements of fluted 1-type π, whence ζ−(π) = M ≥ η−(π). This establishes that ζ = η,
and hence, our claim that the M -bounded fluted 1-profiles are preserved.

Since the elements of X, i.e. the new elements of A′
i+1, are part of the clique Qi ∪X of

A′
i+1, we see that A′

i+1 and A′
i realize the same M -bounded fluted 1-profiles. Indeed, they

realize the same M -bounded fluted 1-star-types. For even if Qi contains no elements of fluted
1-type π ∈ Π, some other element in the same cluster as Qi will. Hence, Ai+1 |= φ. We
remark also that no fluted 1-types are sensitive for the clique Qi ∪X of A′

i+1: any required
witnesses are provided by X. That is, the clique Qi ∪X is trivially stable. Using the same
reasoning as in Stage 1, we may speak about the limit structure A′′ obtained by running the
above process to infinity; evidently, tA′′ is transitive, and A′′ |= φ. Finally, in the model A′′,
no cluster having a superior clique contains any clique path of length greater than 1, and, in
all remaining clusters, all stable cliques are trivially stable.

Stage 3. The goal of this stage is to flatten any remaining clusters. We finally modify A′′,
proceeding cluster by cluster. Number the clusters of A′′ as D0, D1, . . . and let A′′

0 = A′′.
Supposing A′′

i to have been defined, we build the structure A′′
i+1. If Di has a superior clique,

we do nothing, and set A′′
i+1 = A′′

i . Otherwise, we call those elements of Di lying in a stable
clique stable, and the remainder unstable, and we define A′′

i+1 to be the same as A′′
i except

that the relation tA
′′
i+1 on Di is taken to be

{⟨a, b⟩ : A′′
i |= t[a, b] and A′′

i |= t[b, a]}∪{⟨a, b⟩ : A′′
i |= t[a, b], a is unstable, and b is stable}.

Thus, tA
′′
i+1 ⊆ tA

′′
i , and the two relations agree on pairs of elements which do not both lie

in Di. To check that tA
′′
i+1 is transitive, we recall that there is no triple of elements c, d, e

with c, e ∈ Di, d ̸∈ Di such that A′′
i |= t[c, d] and A′′

i |= t[d, e]. Furthermore, it is immediate
from the above construction of A′′

i+1 that no clique path in Di has length greater than 1.
Consider a ∈ A′′ and define ζ = fprA

′′
i

M [a] and η = fprA
′′
i+1

M [a]; we show that ζ = η. We may
assume that a ∈ Di and Di has no superior clique, for otherwise there is nothing to show.
Since tA

′′
i+1 ⊆ tA

′′
i , ζ+(π) ≥ η+(π) and ζ−(π) ≤ η−(π).
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To show the reverse comparisons, consider first ζ+ and η+, and fix a fluted 1-type π. If
the element a lies in a stable clique Q, then, by the construction of A′′, Q is trivially stable,
whence π is not sensitive for Q. In other words we can find ζ+(π) elements b ∈ (A′′ \Di)∪Q
such that ftpA′′

i [b] = π and A′′
i |= t[Q, b]. But for each such b, A′′

i+1 |= t[a, b], by construction
of A′′

i+1. On the other hand, if a lies in an unstable clique Q, by Lemma 6, there is a
stable clique Q′ ⊆ Di such that A′′

i |= t[Q,Q′], whence the same reasoning applies. Hence
η+(π) ≥ ζ+(π).

Turning now to ζ− and η−, suppose ζ−(π) < M (for otherwise ζ−(π) ≥ η−(π) trivially).
Then, since Di by assumption contains no superior clique, it follows by Lemma 5 that there
is no b ∈ Di such that A′′

i |= t[a, b] and ftpA′′
i [b] = π. That is: although a is unrelated

to more elements in A′′
i+1 than in A′′

i , none of them has fluted 1-type π. This implies
η−(π) ≤ ζ−(π) < M , since t is unchanged on pairs of elements at least one of which is not in
Di. This establishes that ζ = η. Hence, the same M -bounded fluted 1-star-types are realized
in A′′

i and A′′
i+1, and therefore A′′

i+1 |= φ.
Using the same reasoning as in Stage 1, we may speak about the limit structure B

obtained by running the above process to infinity; evidently, tB is transitive, and B |= φ.
Finally, in the model B, no cluster contains any clique path of length greater than 1. Since,
in any clique path Q1, . . . , Qs, fprB[Qi] ⪯ fprB[Qi+1] for all i (1 ≤ i < s), and each fprB[Qi]
consists of 2|Σ| integers in the range [0,M ], the depth of B is at most 2(M + 1)2|Σ|. ◀

▶ Lemma 8. Let φ be a formula of FLU2
u+1Tr of the form (4) with k = 2, featuring the

constant M . If φ has a model of depth D, then it has a model of depth D in which all cliques
contain at most M elements having any given fluted 1-type π.

Proof. Let A be a model of depth D. For every clique Q in A and fluted 1-type π, select M
elements (all if there are fewer) in Q having fluted 1-type π, and let B be the restriction of
A to the selected elements. It is obvious that fstAM [b] = fstBM [b] for all b ∈ B and indeed that
A and B realize the same M -bounded, fluted 1-star-types. ◀

▶ Lemma 9. Let φ be a formula of FLU2
u+1Tr of the form (4) with k = 2. If φ is satisfiable,

then it has a model of size bounded by 22O(#(φ)) .

Proof. Let Σ be the signature of φ. We may assume that the constant M featured in φ as
given by (4) is at least 1. Write L = 2|Σ|−1 for the number of fluted 1-types over Σ. By
Lemmas 7 and 8, let A |= φ with A of depth at most D = (M + 1) · 2|Σ|+1, and in which all
cliques contain at most M elements having any given fluted 1-type π. Define the level of any
clique Q of A to be the length of the longest clique path in A ending in Q plus 1. Thus, the
minimum possible level is 1, and the maximum, D. For each i in this range, let Ai be the
union of those cliques at level i.

We select cliques from Ai as follows. At each level i (1 ≤ i ≤ D), select, for each fluted
1-type π, up to (M + 1) distinct cliques containing elements whose fluted 1-type is π (if there
are fewer than (M + 1), then select all of them). The total number of cliques thus selected
for each level i is therefore at most (M + 1)L ≤ 2ML. Next, considering successive levels i
in the range [2, D] (starting with i = 2), for each already selected clique Q ⊆ A1 ∪ · · · ∪Ai−1,
and for each fluted 1-type π, select up to M distinct cliques Q′ ⊆ Ai ∪ · · · ∪AD containing
elements whose fluted 1-type is π such that A |= t[Q,Q′], and select at least M distinct
cliques Q′ ⊆ Ai∪· · ·∪AD containing elements whose fluted 1-type is π such that A ̸|= t[Q,Q′]
(in both cases, if there are fewer than M , then select all of them). The number of selected
cliques on level i is thus at most

(2ML) + (2ML)2 + · · ·+ (2ML)i ≤ (2ML)i+1.
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Let the sub-structure consisting of the selected cliques be B. It is easy to see that every
element of B realizes the same M -bounded fluted 1-star-type that it realizes in A. By
Lemma 3, B |= φ. It remains to establish the size of B. Summing over all levels i from 1 to
D, the total number of selected cliques is at most

(2ML)2 + (2ML)3 + · · ·+ (2ML)D+1 ≤ (2ML)D+2.

Bearing in mind that each clique contains at most M < 2M elements of each of the L fluted
1-types, we obtain |B| < (2ML)D+3 =

(
M · 2|Σ|)(M+1)·2|Σ|+1+3. ◀

6 Unrestricted signatures and any number of variables

We begin this section by showing that FLU2+1Tr has the finite model property, and that
Sat(FLU2+1Tr) is in 3-NExpTime. We proceed to show that the entire logic FLU+1Tr
has the finite model property, and that Sat(FLUk+1Tr) is in (k+1)-NExpTime for all k ≥ 2.

▶ Lemma 10. Given an FLU2+1Tr-formula φ, there exists an FLU2
u+1Tr-formula ψ such

that ψ and φ are satisfiable over the same domains, and #(ψ) ≤ 2#(φ).

Proof. Let φ, over a signature Σ, be given by
m∧

h=1
∀(αh → Q(1,Σ,M,Θh)),

where m is a positive integer, the αh quantifier-free FLC1-formulas over Σ, M a non-negative
integer and the Θh existential Presburger formulas with free variables v̄ indexed by the fluted
2-types over Σ. Let Σ− be the result of removing from Σ all binary predicates other than the
distinguished predicate t, and let ū be the set of variables uρ indexed by the fluted 2-types
over Σ−. For any index set H ⊆ [1,m], define the Presburger formula ΘH(ū) to be

∃(v̄ ≤M)

 ∧
h∈H

Θh(v̄) ∧
∧

ρ∈FtpΣ−
2

(
uρ ≥

∑
{vτ : τ ∈ FtpΣ

2 s.t. |= τ → ρ}
)
∧

∧
ρ∈FtpΣ−

2

(∧
{vτ < M : τ ∈ FtpΣ

2 s.t. |= τ → ρ} →

uρ ≤
∑
{vτ : τ ∈ FtpΣ

2 s.t. |= τ → ρ}
) .

(We adopt the usual convention that
∧
∅ = ⊤.) Intuitively, ΘH(ū) is intended to characterize

those fluted 1-profiles over Σ− which can be consistently extended to a fluted 1-profile over
Σ satisfying all of the existential Presburger formulas Θh, for h ∈ H. By renaming bound
variables, any existential quantifiers in ΘH can be moved to the front. Thus we may regard
ΘH as an existential Presburger formula. Now let L = 2(|Σ|−|Σ−|), and let ψ be

∧
H⊆[1,m]

∀

(( ∧
h∈H

αh

)
→ Q(1,Σ−, LM,ΘH)

)
.

It is immediate that #(ψ) = |Σ−|+log(LM)+2m ≤ |Σ−|+
(
|Σ|−|Σ−|+logM

)
+2m ≤ 2#(φ).

Note that the signature of ψ is Σ−; in other words, ψ is an FLU2
u+1Tr-formula. We show

that φ and ψ are satisfiable over the same domains.
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Suppose A |= φ and let A− be the reduct of A to Σ−. We show that A− |= ψ. Fix
a ∈ A, and suppose H ⊆ {h ∈ [1,m] : A |= αh[a]}. It suffices to show that the LM -bounded,
fluted profile of a in A− satisfies ΘH(ū). Let us therefore assign values to the various uρ (for
ρ ∈ FtpΣ−

2 ) accordingly: uρ ← min
(
|{b ∈ A : A− |= ρ[a, b]}|, LM

)
. To show satisfaction of

ΘH , we must find values for the existentially quantified variables. For each τ ∈ FtpΣ
2 , we

let the variable vτ be assigned the value given by the M -bounded, fluted profile of a in A,
namely: vτ ← min

(
|{b ∈ A : A |= τ [a, b]}|,M

)
. We consider the three groups of conjuncts in

the body of ΘH in turn. Since A |= φ, we certainly have (under this valuation) Θh(v̄) for all
h ∈ H. For the second group of conjuncts, fix ρ ∈ FtpΣ−

2 , and suppose first that uρ < LM .
Then

uρ = |{b ∈ A : A− |= ρ[a, b]}| =
∑
{|{b ∈ A : A |= τ [a, b]}| : τ ∈ FtpΣ

2 s.t. |= τ → ρ}

≥
∑
{vτ : τ ∈ FtpΣ

2 s.t. |= ρ→ τ},

as required. And of course, if uρ ≥ LM , then the conjunct follows from the fact that v̄ ≤M
and |{τ ∈ FtpΣ

2 : |= τ → ρ}| = L. For the final group of conjuncts, again fix ρ ∈ FtpΣ−

2 , and
suppose that vτ < M for all vτ such that τ ∈ FtpΣ

2 and |= ρ→ τ . Then, applying essentially
similar reasoning,

uρ ≤ |{b ∈ A : A− |= ρ[a, b]}| =
∑
{|{b ∈ A : A |= τ [a, b]}| : τ ∈ FtpΣ

2 s.t. |= τ → ρ}

=
∑
{vτ : τ ∈ FtpΣ

2 s.t. |= ρ→ τ}.

Thus, a satisfies the formula Q(1,Σ−, LM,ΘH) in A−, and hence A− |= ψ.
Finally, suppose B |= ψ, with B interpreting Σ−. We expand to a model B+ |= φ by

interpreting the predicates in Σ \ Σ−. All such predicates are of course binary. Consider any
a ∈ B, and let H = {h ∈ [1,m] : B |= αh[a]}. Thus, the LM -bounded, fluted profile of a
in B satisfies ΘH(ū). To avoid notational clutter, we write the names of the variables in
ū to denote their values under this assignment, so that uρ denotes the value

(
fprBLM [a]

)
(ρ).

Similarly, we write the names of the variables in v̄ to denote some collection of values
witnessing the existentially quantified statement in ΘH . Now fix some ρ ∈ FtpΣ−

2 and let
Bρ = {b ∈ B : ftpB[a, b] = ρ}. Thus, uρ = min(LM, |Bρ|). We have two cases to consider.
If vτ < M for all τ ∈ FtpΣ

2 such that |= τ → ρ, then, by the second and third conjunct
groups of ΘH , uρ =

∑
{vτ : τ ∈ FtpΣ

2 s.t. |= τ → ρ}, whence we may partition Bρ into sets
Bτ of cardinality vτ , with τ varying over the fluted 2-types over Σ extending ρ. If, on the
other hand, vτ = M for some τ ∈ FtpΣ

2 such that |= τ → ρ, pick any such τ , say τ0. By the
second conjunct group of ΘH , uρ ≥

∑
{vτ : τ ∈ FtpΣ

2 s.t. |= τ → ρ}, so we may partition
Bρ into sets Bτ , such that Bτ has cardinality vτ for all τ except τ0, with Bτ0 mopping up
any remaining elements. Observe that |Bτ0 | ≥M . Having constructed the various sets Bτ ,
we partially define B+ by interpreting the predicates of Σ \ Σ− (all binary) in such a way
that B |= τ [a, b] for every b ∈ Bτ , and every τ ∈ FtpΣ

2 such that |= τ → ρ. However B+ is
completed, we are assured that ftpB+

[a] = v̄, and thus, by ΘH , satisfies Θh for every h ∈ H.
Now repeat this process for every a ∈ B. Because only fluted 2-types are being defined here,
no pair of elements is re-assigned, and once all elements have been considered, B+ will be
fully defined, and will satisfy B+ |= φ. ◀

It remains to show that FLU+1Tr has the finite model property, and that Sat(FLUk+1Tr)
is in (k+1)-NExpTime for all k ≥ 2. We proceed by reducing the problem Sat(FLUk+1+1Tr)
(with exponential blow-up) to the problem Sat(FLUk+1Tr). Modulo some technical sim-
plifications, this work repeats [27, Section 4], where a similar reduction was carried out

CSL 2023



32:18 Adding Transitivity and Counting to the Fluted Fragment

in the absence of a distinguished predicate interpreted as a transitive relation. Since this
distinguished predicate is binary, it is not affected by the reduction in question. Due to space
limits, the proof of the following Lemma is therefore omitted.

▶ Lemma 11. Given an FLUk+1+1Tr-formula φ (k ≥ 2), there exists an FLUk+1Tr-
formula ψ such that ψ and φ are satisfiable over the same domains, and #(ψ) is 2O(#(φ)).

▶ Theorem 12. Let φ be a FLUk+1Tr-formula (k ≥ 2). If φ is satisfiable, then it has a
model of cardinality bounded by some fixed (k+1)-tuply exponential function of #(φ).

Proof. Induction on k: the base case (k = 2) follows from Lemmas 9 and 10; the inductive
case is Lemma 11. ◀

▶ Corollary 13. FLC+1Tr has the finite model property, and Sat(FLCk+1Tr) is in (k+1)-
NExpTime for all k ≥ 2.

Proof. Let a formula φ ∈ FLCk+1Tr be given. By Lemma 1, we may assume that φ is in
normal form. Now re-write φ as a logically equivalent FLUk+1Tr-formula ψ with #(ψ) ≤ ||φ||.
By Theorem 12, ψ – and hence φ – has a model of size bounded by a (k+1)-tuply exponential
function of #(ψ). The result then follows by standard model-checking techniques. ◀

7 FLC and two transitive relations

In this section we show that the satisfiability and finite satisfiability problems for FLC2+2Tr
are both undecidable. The result holds when the signature features – besides the two
distinguished transitive relations – only unary predicates. Thus, we strengthen the undecid-
ability result for SHQ [18] where three roles were used. The proof proceeds by reduction
from undecidable tiling problems that are typical for two-variable logics. For instance, this
technique was used in [30] to show undecidability of the (finite) satisfiability problems for
FL2 in the presence of three transitive relations.

A tiling system is a tuple C = (C, H, V ), where C is a finite set of tiles, and H, V ⊆ C × C
are the horizontal and vertical constraints. A tiling of N2 for C is a function f : N2 → C,
such that for all i, j ∈ N, (f(i, j), f(i+ 1, j)) ∈ H and (f(i, j), f(i, j + 1)) ∈ V . A tiling is
periodic if there exist m, n such that, for all i and j, f(i+m, j) = f(i, j + n) = f(i, j). The
infinite (periodic) tiling problem is the following: given a tiling system C, does there exist a
(periodic) tiling of N2 for C? Our proof relies on the following result (see e.g. [4, p. 90]).

▶ Proposition 14. The periodic tiling problem and the complement of the infinite tiling
problem are recursively inseparable.

To achieve the goal of this section, given a tiling system C, we construct an FLC2+2Tr-
formula ηC such that: (i) if N2 has a periodic tiling for C, then ηC is finitely satisfiable; and
(ii) if ηC is satisfiable, then N2 has a tiling for C. The result then follows from Prop. 14.

The formula ηC features a conjunct φgrid whose canonical model, shown in Fig. 2, has
the domain N ∪ {−1} × N. The signature of φgrid consists of the two distinguished binary
predicates b (blue) and r (red), together with the unary predicates: ai,j (0 ≤ i, j ≤ 3) and
ci (0 ≤ i ≤ 3). The formula φgrid is a conjunction enforcing the following properties: (a)
there exists an initial element satisfying c0, and the unary predicates enforce a partition of
the universe; (b) witness requirements for elements forming the leftmost column; (c) witness
requirements for elements not on the leftmost column; (d) confluence. Properties (a)-(c)
are typical formulas of FL2. The only conjuncts where counting is used are the confluence
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conjuncts presented in Fig. 2. These conjuncts ensure that certain witnesses connected
by the b and r relations must be identical. In this way we get a grid-like structure with
short transitive paths that connect elements corresponding to both horizontal and vertical
neighbours in a standard grid. One can also obtain finite models of φgrid over a nearly
toroidal grid structure ({−1} ∪ Z4m)× Z4m (m > 0) by identifying elements from columns 0
and 4m and from rows 0 and 4m of the canonical model.
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a03
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a02

a10

a11

a12

a13

a10

a11

a12

a20

a21

a22

a23

a20

a21

a22

a30

a31
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a33

a30

a31

a32

c0

c1

c2

c3

c0

c1

c2

Confluence conjuncts of φgrid:∧
i∈{1,3}

∀ (ci → ∃[=1]((b ∨ r) ∧ a0,i+1))

∧
i∈{0,2}

∀ (ci → ∃[=1]((b ∨ r) ∧ a0,i))

∧
i∈{0,1,2,3}

j∈{1,3}

∀
(
ai,j → ∃[=1]((b ∨ r) ∧ ai+1,j+1) ∧

∃[=1]((b ∨ r) ∧ ai+1,j−1)
)
.

Figure 2 Intended model of φgrid (left) and the confluence conjuncts (right). The transitive
relations b and r are depicted by blue and red arrows. Nodes with the coordinates (−1, Y ) satisfy the
predicates cY mod 4; nodes with coordinates (X, Y ) (X ≥ 0) satisfy the predicates aX mod 4,Y mod 4.
Addition and subtraction in indices of the confluence formulas are understood modulo 4.

The rest of the reduction is done in a standard fashion: using unary predicates representing
tiles from C one adds to ηC conjuncts assigning tiles to elements of a model in such a way
that the horizontal and vertical constraints are preserved. As a result one shows that: (i)
from a periodic tiling of N2 a finite model of ηC can be built, and, (ii) from any model of ηC
a tiling of N2 for C can be constructed. Hence we have

▶ Theorem 15. The satisfiability problem and the finite satisfiability problem for FLC2+2Tr
are both undecidable.

We note that our proof of Theorem 15 is also valid when the two distinguished transitive
relations are required to be partial orders. The same proof strategy does not work, however,
if they are required to be equivalence relations. Nevertheless, it was shown in [26] that
the satisfiability and finite satisfiability problems for the logic C2 with two equivalence
relations are undecidable; and the formulas securing undecidability can easily be written as
fluted formulas. The undecidability of the (finite) satisfiability problem for FLC2 with two
equivalence relations then follows.
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