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Abstract
Strategy iteration is a technique frequently used for two-player games in order to determine the
winner or compute payoffs, but to the best of our knowledge no general framework for strategy
iteration has been considered. Inspired by previous work on simple stochastic games, we propose a
general formalisation of strategy iteration for solving least fixpoint equations over a suitable class of
complete lattices, based on MV-chains. We devise algorithms that can be used for non-expansive
fixpoint functions represented as so-called min- respectively max-decompositions. Correspondingly,
we develop two different techniques: strategy iteration from above, which has to solve the problem
that iteration might reach a fixpoint that is not the least, and from below, which is algorithmically
simpler, but requires a more involved correctness argument. We apply our method to solve energy
games and compute behavioural metrics for probabilistic automata.
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1 Introduction

Strategy iteration (or policy iteration) is a well known technique in computer science. It
has been widely adopted for the solution of two-player games where the players, say Max
and Min, aim at maximising and minimising, respectively, some payoff. In many cases there
exists an optimal strategy for each player where no deviation is advisable as long as the
other player plays optimally. We here assume a scenario where memoryless (or positional)
strategies are sufficient. The general idea of strategy iteration is to iteratively fix a strategy
for one player, compute the optimal answering strategy for the other player and then improve
the strategy of the first player. As long as there are only finitely many strategies, an optimal
strategy is bound to be found at some point. Such strategy iteration methods exist for
Markov decision processes [21] and for a variety of games, such as simple stochastic games
[13, 23, 1], (discounted) mean-payoff games [32, 10] and parity games [31, 28].

Similar ideas apply also to a wide range of different problems. For instance, the compu-
tation of behavioural distances for systems embodying quantitative information, e.g., time,
probability or cost, is often based on some form of lifting of distances on states [2, 4, 8]. In
turn the lifting relies on couplings which play the role of strategies and algorithms based on
a progressive improvement of couplings have been devised [2, 3].

© Paolo Baldan, Richard Eggert, Barbara König, and Tommaso Padoan;
licensed under Creative Commons License CC-BY 4.0

31st EACSL Annual Conference on Computer Science Logic (CSL 2023).
Editors: Bartek Klin and Elaine Pimentel; Article No. 7; pp. 7:1–7:19

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:baldan@math.unipd.it
https://orcid.org/0000-0001-9357-5599
mailto:richard.eggert@uni-due.de
https://orcid.org/0000-0002-9901-7392
mailto:barbara_koenig@uni-due.de
https://orcid.org/0000-0002-4193-2889
mailto:padoan@math.unipd.it
https://orcid.org/0000-0001-7814-1485
https://doi.org/10.4230/LIPIcs.CSL.2023.7
https://arxiv.org/abs/2207.09872
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


7:2 A Lattice-Theoretical View of Strategy Iteration

Motivating example. To help the intuition, we review simple stochastic games (SSGs) [13]
and strategy iteration in that setting as discussed in [5, 6]. An SSG consists of a set of states
V , partitioned in four subsets MIN , MAX , AV and SINK . States in SINK (sink states)
have no successor and yield a payoff in r0, 1s. For states in AV (average states) the successor
is determined by a probability distribution over V , i.e., intuitively, the environment makes a
probabilistic choice. In a state in MIN , player Min chooses a successor trying to minimise
the expected payoff, while in a state in MAX , it is the player Max that chooses, with the
aim of maximising the expected payoff. An example of an SSG is in Fig. 1 on page 7.

When Min and Max play optimally, the expected payoff at each state is given by the least
fixpoint of the function V : r0, 1sV Ñ r0, 1sV , defined for a : V Ñ r0, 1s and v P V by

Vpaqpvq “
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’

’

’

’

&

’

’

’

’

%

maxvÑv1 apv1q v P MAX
minvÑv1 apv1q v P MIN
ř

v1PV ppvqpv1q ¨ apv1q v P AV
cpvq v P SINK

with ppvqpv1q the probability of state v reaching v1 and cpvq P r0, 1s the payoff of sink state v.
The idea of strategy iteration from below, instantiated to this context, is to compute the

least fixpoint µV via an iteration of the following kind:
1. Guess a strategy σ : MAX Ñ V for player Max, i.e., fix a successor for states in MAX .
2. Compute the least fixpoint of Vσ : r0, 1sV Ñ r0, 1sV , which is defined as V in all cases

apart from v P MAX , where we set Vpaqpvq “ apσpvqq. This fixpoint computation is
simpler than the original one and it can be done efficiently via linear programming.

3. Based on µVσ, try to improve the strategy for Max. If the strategy does not change, we
have computed a fixpoint of V and, since iteration is from below, this is necessarily the
least fixpoint. If the strategy changes, continue with step 2.

A similar approach can be used for converging to the least fixpoint from above. In
this case, it is now player Min who fixes a strategy which is progressively improved. This
procedure is well-known to work for stopping games [13], i.e., SSGs where each combination
of strategies ensures termination, since for these games V has a unique fixpoint. However, in
general, when iterating from above the procedure may get stuck at some fixpoint which is
not the least fixpoint of V, a problem which is solved by the theory developed in [5] which
can be used to “skip” this fixpoint and continue the iteration from there.

While, as explained above, the general idea of strategy iteration is used in many different
settings, to the best of our knowledge a general definition of strategy iteration is still missing.
The goal of the present paper is to provide a general and abstract formulation of an algorithm
for strategy iteration, proved correct once and for all, which instantiates to a variety of
problems. The key observation is that optimal strategies very often arise from some form of
extremal (least or greatest) fixpoint of a suitable non-expansive function f over a complete
MV-chain [27], the paradigmatic example being the real interval r0, 1s with the usual order.
We propose a framework where the operation of fixing a strategy for one of the players is
captured abstractly, in terms of so-called min- or max-decompositions of the function of
interest. Then, we devise strategy iteration approaches which converge to the fixpoint of
interest by successively improving the strategy for the chosen player. We will assume that
the interest is in least fixpoints, but the theory can be dualised. We propose two strategy
iteration algorithms that converge to the least fixpoint “from below” and “from above”,
respectively. As it happens for SSGs, in the latter case the iteration can reach a fixpoint
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which is not the least. Clearly, whenever the function f of interest has a unique fixpoint this
problem disappears. Moreover, in some cases, even though f has multiple fixpoints, it can be
“patched” in a way that the modified function has the fixpoint of interest as its only fixpoint.
Otherwise, we can rely on the results in [5] to check whether the reached fixpoint is the least
one and whenever it is not, to get closer to the desired fixpoint and continue the iteration.

Strategy iteration approaches can be slow if compared to other algorithms, such as value
iteration. However, the benefit of strategy iteration algorithms is that they allow an exact
computation of the desired fixpoint, while other algorithms may never reach the sought-after
extreme fixpoint but only converge towards it. This is the case, e.g., for simple stochastic
games, where strategy iteration algorithms are the standard methods to obtain exact results.
Additionally, strategy iteration, besides determining the fixpoint also singles out a strategy
which allows one to obtain it, an information which is often of interest.

In summary, we propose the first, to the best of our knowledge, general definition of
strategy iteration providing a lattice-theoretic formalisation of this technique. This requires
to single out and solve in this general setting the fundamental challenges of these approaches,
which already show up in earlier work on SSGs (see, e.g., [5, 10]). In the iteration from above,
we may converge to a fixpoint that is not the least, while from below it is not straightforward
to show that improving the strategy of Max leads to a larger fixpoint.

Known algorithms are rediscovered for SSGs and probabilistic automata [3]. Moreover
new ones are obtained for energy games [9, 12] where movements in the game graph have an
energy cost and the goal of one of the players is to avoid that the energy drops below zero.
Given the number of different application domains where strategy iteration is or can be used,
we feel that a general framework can unveil unexplored potentials. The two case studies
(energy games and behavioural metrics) that we treat can be encoded into SSGs [3], but the
obtained strategies have to be translated back to the original setting, which is not always
trivial in general, and encodings usually come with a loss of efficiency. For instance, in order
to solve SSGs a solver for linear programming is usually required, which is in general not
needed for other applications.

The rest of the paper is structured as follows. In §2 we review some order-theoretic
notions and recap some results from [5] for identifying least and greatest fixpoints. In §3 we
devise two generalized strategy iteration algorithms, from above and from below, using SSGs
(already treated in [6]) as a running example. In §4, we show how our technique applies to
energy games, while in §5 we discuss an application to the computation of the behavioural
distance for probabilistic automata.

Proofs and further material can be found in the full version of the paper [7].

2 Preliminaries on ordered structures and fixpoints

This section reviews some background used throughout the paper. This includes the basics
of lattices and MV-algebras, where the functions of interest take values. We also recap some
results from [5] useful for detecting if a fixpoint of a given function is the least (or greatest).

For X, Y sets, we denote by PpXq the powerset of X and PfinpXq the set of finite subsets
of X. Moreover, the set of functions from X to Y is denoted by either Y X or X Ñ Y .

A partially ordered set pP, Ďq is often denoted simply as P , omitting the order relation.
For a function f : X Ñ P , we will write arg minxPX fpxq to denote the set of elements where
f reaches the minimum, i.e., tx P X | @y P X. fpxq Ď fpyqu and, abusing the notation, we
will write z “ arg minxPX fpxq instead of z P arg minxPX fpxq.

The join and the meet of a subset X Ď P (if they exist) are denoted
Ů

X and
Ű

X.

CSL 2023



7:4 A Lattice-Theoretical View of Strategy Iteration

A complete lattice is a partially ordered set pL, Ďq such that each subset X Ď L admits a
join

Ů

X and a meet
Ű

X. A complete lattice pL, Ďq always has a least element K “
Ű

L
and a greatest element J “

Ů

L.
A function f : L Ñ L is monotone if for all l, l1 P L, if l Ď l1 then fplq Ď fpl1q. By

Knaster-Tarski’s theorem [29, Theorem 1], any monotone function on a complete lattice has
a least fixpoint µf , characterised as the meet of all pre-fixpoints µf “

Ű

tl | fplq Ď lu and,
dually, a greatest fixpoint νf “

Ů

tl | l Ď fplqu, characterised as the join of all post-fixpoints.
We denote by Fixpfq the set of all fixpoints of f .

Given a set Y and a complete lattice L, the set of functions LY “ tf | f : Y Ñ Lu,
endowed with pointwise order, i.e., for a, b P LY , a Ď b if apyq Ď bpyq for all y P Y , is a
complete lattice. We write a Ă b when a Ď b and a ‰ b, i.e., for all y P Y we have apyq Ď bpyq

and apyq Ă bpyq for some y P Y .
We are also interested in the set of probability distributions DpY q Ď r0, 1sY , i.e., functions

β : Y Ñ r0, 1s such that
ř

yPY βpyq “ 1.

An MV-algebra [27] is a tuple M “ pM, ‘, 0, p¨qq where pM, ‘, 0q is a commutative monoid
and p¨q : M Ñ M maps each element to its complement, such that for all x, y P M

1. x “ x

2. x ‘ 0 “ 0
3. px ‘ yq ‘ y “ py ‘ xq ‘ x.
We denote 1 “ 0 and subtraction x a y “ x ‘ y.

MV-algebras are endowed with a partial order, the so-called natural order, defined for
x, y P M , by x Ď y if x ‘ z “ y for some z P M . When Ď is total, M is called an MV-chain.
We will write M instead of M .

The natural order gives an MV-algebra a lattice structure where K “ 0, J “ 1, x \ y “

px a yq ‘ y and x [ y “ x \ y “ x a px a yq. We call the MV-algebra complete if it is a
complete lattice, which is not true in general, e.g., pr0, 1s X Q, ďq.

▶ Example 2.1. A prototypical example of an MV-algebra is pr0, 1s, ‘, 0, p¨qq where x ‘ y “

mintx ` y, 1u, x “ 1 ´ x and x a y “ maxt0, x ´ yu for x, y P r0, 1s. The natural order
is ď (less or equal) on the reals. Another example is K “ pt0, . . . , ku, ‘, 0, p¨qq where
n ‘ m “ mintn ` m, ku, n “ k ´ n and n a m “ maxtn ´ m, 0u for n, m P t0, . . . , ku. Both
MV-algebras are complete and MV-chains.

We next briefly recap the theory from [5] which will be helpful in the paper for checking
whether a fixpoint is the least or the greatest fixpoint of some underlying endo-function.
▶ Remark 2.2. Hereafter, unless stated otherwise, Y, Z will be assumed to be finite sets and
M will be a complete MV-chain.

Given a P MY we define its norm as ||a|| “ maxtapyq | y P Y u. A function f : MY Ñ MZ

is non-expansive if for all a, b P MY it holds ||fpbq a fpaq|| Ď ||b a a||. It can be seen that
non-expansive functions are monotone. A number of standard operators are non-expansive
(e.g., constants, reindexing, max and min over a relation, average), and non-expansiveness is
preserved by composition and disjoint union (see [5]). Given Y 1 Ď Y and δ P M, we write
δY 1 for the function defined by δY 1 pyq “ δ if y P Y 1 and δY 1 pyq “ 0, otherwise.

For a non-expansive endo-function f : MY Ñ MY and a P MY , the theory in [5] provides
a so-called a-approximation fa

# of f , which is an endo-function over a suitable subset of
Y . More precisely, define rY sa “ ty P Y | apyq ‰ 0u and δa “ mintapyq | y P rY sau. For
0 Ă δ P M consider the functions αa,δ : PprY saq Ñ ra a δ, as and γa,δ : ra a δ, as Ñ PprY saq,
defined, for Y 1 P PprY saq and b P ra a δ, as, by

αa,δpY 1q “ a a δY 1 γa,δpbq “ ty P rY sa | apyq a bpyq Ě δu.



P. Baldan, R. Eggert, B. König, and T. Padoan 7:5

For a non-expansive function f : MY Ñ MZ and δ P M, define fa,δ
# : PprY saq Ñ

PprZsfpaqq as fa,δ
# “ γfpaq,δ ˝ f ˝ αa,δ. The function fa,δ

# is antitone in the parameter δ

and there exists a suitable value ιa
f Ą 0, such that all functions fa,δ

# for 0 Ă δ Ď ιa
f are

equal. The function fa
# :“ f

a,ιa
f

# is called the a-approximation of f . When δ Ď δa, the pair
xαa,δ, γa,δy is a Galois connection, a notion at the heart of abstract interpretation [14, 15],
and fa,δ

# “ γfpaq,δ ˝ f ˝ αa,δ is the best correct approximation of f .
Intuitively, given some Y 1, the set fa

#pY 1q contains the points where a decrease of the
values of a on the points in Y 1 “propagates” through the function f . The greatest fixpoint of
fa

# gives us the subset of Y where such a decrease is propagated in a cycle (so-called “vicious
cycle”). Whenever νfa

# is non-empty, one can argue that a cannot be the least fixpoint of
f since we can decrease the value in all elements of νfa

#, obtaining a smaller prefixpoint.
Interestingly, for non-expansive functions, it is shown in [5] that also the converse holds, i.e.,
emptiness of the greatest fixpoint of fa

# implies that a is the least fixpoint.

▶ Theorem 2.3 (soundness and completeness for fixpoints). Let M be a complete MV-chain,
Y a finite set and f : MY Ñ MY be a non-expansive function. Let a P MY be a fixpoint of f .
Then νfa

# “ H if and only if a “ µf .

Using the above theorem we can check whether some fixpoint a of f is the least fixpoint.
Whenever a is a fixpoint, but not yet the least fixpoint of f , it can be decreased by a fixed
value in M (see [5] for the details) on the points in νfa

# to obtain a smaller pre-fixpoint.

▶ Lemma 2.4. Let M be a complete MV-chain, f : MY Ñ MY a non-expansive function,
a P MY a fixpoint of f , and let fa

# be the corresponding a-approximation. If a is not the least
fixpoint and thus νfa

# ‰ H then there is 0 Ă δ P M such that a a δνfa
#

is a pre-fixpoint of f .

In the following we will use this result as a “black box”: we assume that given f and a
fixpoint a of f we can determine whether a “ µf and, if not, obtain a1 Ă a such fpa1q Ď a1.

The above theory can easily be dualised (see [5] for the details of the dual view).

3 Generalized strategy iteration

In this section we develop two strategy iteration techniques for determining least fixpoints.
The first technique requires a so-called min-decomposition and approaches the least fixpoint
from above, while the second uses a max-decomposition to ascend to the least fixpoint from
below.

Hence fixpoint iteration from above is seen strictly from the point of view of the Min
player, while fixpoint iteration from below is from the view of the Max player, who want to
minimize respectively maximize the payoff. The player starts by guessing a strategy, which
in the case of the Min (Max) player over-approximates (under-approximates) the true payoff.
This strategy is then locally improved at each iteration based on the payoff produced by the
player following such a strategy. That is, we compute fixpoints for a fixed strategy, which in
a two-player game means that the opponent plays optimally. When the set of strategies is
finite (or, at least, the search can be restricted to a finite set), an optimal strategy will be
found at some point.

3.1 Function decomposition
We next introduce the setting where the generalisations of strategy iteration will be developed.
We assume that the game we are interested in is played on a finite set of positions Y and
the payoff at each position is an element of a suitable complete MV-chain M. This payoff

CSL 2023



7:6 A Lattice-Theoretical View of Strategy Iteration

is given by a function in MY that can be characterised as the least fixpoint of a monotone
function f : MY Ñ MY . If we concentrate on the Min player, each position y P Y is assigned
a set of functions Hminpyq Ď pMY Ñ Mq where each function h P Hminpyq is one possible
option that can be chosen by Min. Given a : Y Ñ M as the current estimate of the payoff,
hpaq is the resulting payoff at y. If the player does not have a choice, this set is a singleton.
Since it is the aim of Min to minimise she will choose an h such that hpaq is minimal.

▶ Definition 3.1 (min-decomposition). Let Y be a finite set and M be a complete MV-chain.
Given a function f : MY Ñ MY , a min-decomposition of f is a function Hmin : Y Ñ

PfinpMY Ñ Mq such that for all y P Y the set Hminpyq consists only of monotone functions
and for all a P MY it holds fpaqpyq “ minhPHminpyq hpaq.

Observe that any monotone function f : MY Ñ MY admits a trivial min-decomposition
I defined by Ipyq “ thyu where hypaq “ fpaqpyq for all a P MY .

Whenever all h P Hminpyq are not only monotone, but also non-expansive, it can be
shown easily that f is also non-expansive and we can obtain an approximation as discussed
in §2. Max-decompositions, with analogous properties, are defined dually, i.e. Hmax : Y Ñ

PfinpMY Ñ Mq and fpaqpyq “ maxhPHmaxpyq hpaq.
Fixing a strategy can be seen as fixing, for all y P Y , some element in Hminpyq.

▶ Definition 3.2 (strategy). Let Y be a finite set, M be a complete MV-chain, f : MY Ñ MY

and let Hmin : Y Ñ PfinpMY Ñ Mq be a min-decomposition of f . A strategy in Hmin is a
function C : Y Ñ pMY Ñ Mq such that for all y P Y it holds that Cpyq P Hminpyq. For a
fixed C we define fC : MY Ñ MY as fCpaqpyq “ Cpyqpaq for all a P MY and y P Y .

Strategies in a max-decomposition are defined dually.

The letter C stands for “choice” and typically µfC is easier to compute than µf .

▶ Example 3.3. As a running example for illustrating our theory and the resulting algorithms
we will use simple stochastic games (SSGs). We first show that they fall into the framework.
Fix an SSG with a finite set V of states, partitioned into MIN , MAX , AV (average) and SINK .
Successors of MIN and MAX states are given by a relation Ñ Ď pMIN Y MAXq ˆ V , while
p : AV Ñ r0, 1sV maps each v P AV to a distribution ppvq P DpV q. Finally, c : SINK Ñ r0, 1s

provides the payoff of sink states.
The fixpoint function V : r0, 1sV Ñ r0, 1sV , as defined in the introduction, admits a

min-decomposition Hmin : V Ñ PfinpMV Ñ Mq defined for all a P MY as follows:
for v P MIN , Hminpvq “ thv1 | v Ñ v1u with hv1 paq “ apv1q;
for v P MAX , Hminpvq “ thu with hpaq “ maxvÑv1 apv1q;
for v P AV , Hminpvq “ thu with hpaq “

ř

v1PV ppvqpv1q ¨ apv1q;
for v P SINK , Hminpvq “ thu with hpaq “ cpvq.

A max-decomposition can be defined dually.
For instance, consider the SSG in Fig. 1 where V “ t1, ε, av, max, minu with the

obvious partitioning. The fixpoint function is V : r0, 1sV Ñ r0, 1sV defined, for a P r0, 1sV , by

Vpaqp1q “ 1 Vpaqpεq “ ε Vpaqpavq “
1
2apminq `

1
2apmaxq

Vpaqpmaxq “ maxtapεq, apavqu Vpaqpminq “ mintap1q, apavqu.

The min-decomposition defined in general above, in this case is Hmin : V Ñ PfinpMV Ñ Mq

defined for all a P MY as follows: for v P V ztminu, we let Hminpvq “ thu with hpaq “ Vpaqpvq,
while Hminpminq “ th1, havu with h1paq “ ap1q and havpaq “ apavq. All strategies in
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1 min av max ε

1
2

1
2

Figure 1 An example of a simple stochastic game. States 1, ε have payoff 1, ε ą 0 respectively.

Hmin assign to every state v P V ztminu the only element in Hminpvq. Hence they are
determined by the value on state min: thus there are two strategies Cmin

1 , Cmin
2 in Hmin

with Cmin
1 pminq “ h1 and Cmin

2 pminq “ hav.
Dually, a max-decomposition Hmax : V Ñ PfinpMV Ñ Mq is defined for all a P MY

as follows: Hmaxpvq “ thu with hpaq “ Vpaqpvq for all v P V ztmaxu and Hmaxpmaxq “

thε, havu with hεpaq “ apεq and havpaq “ apavq. Again, there are two strategies Cmax
1

and Cmax
2 in Hmax that differ for the value assigned to max: Cmax

1 pmaxq “ hε and
Cmax

2 pmaxq “ hav.

3.2 Strategy iteration from above
In this section we propose a generalized strategy iteration algorithm from above. It is based
on a min-decomposition of the function and, intuitively, at each iteration the player Min
improves her strategy. An issue here is that this iteration may get stuck at a fixpoint strictly
larger than the least one. Recognising and overcoming this problem, thus continuing the
iteration until the least fixpoint is reached, requires the theory described in §2.

The basic result that motivates strategy iteration from above is a characterisation of the
least fixpoint of a function in terms of a min-decomposition.

▶ Proposition 3.4 (least fixpoint from min-decompositions). Let Y be a finite set, M a complete
MV-chain, f : MY Ñ MY a monotone function and let Hmin : Y Ñ PfinpMY Ñ Mq be a
min-decomposition of f . Then µf “ mintµfC | C is a strategy in Hminu.

Although we do not focus on complexity issues, we observe that – under suitable assump-
tions – we can show that given a function f as a min-decomposition, the problem of checking
whether µf Ď b for some bound b P MY is in NP. For each y P Y we can nondeterministically
guess Cpyq P Hminpyq thus defining a strategy. Assuming that the computation of µfC is
polynomial, we can thus determine in non-deterministic polynomial time (in the size of the
representation of f) whether µf Ď µfC Ď b.

Now in order to compute the least fixpoint, the idea is to start from some (arbitrary)
strategy, say C0, in Hmin. At each iteration, if the current strategy is Ci one tries to
construct, on the basis of µfCi

, a new strategy Ci`1 which improves Ci, in the sense that
µfCi`1 becomes smaller. This motivates the notion of improvement.

▶ Definition 3.5 (min-improvement). Let f : MY Ñ MY be a monotone function, where Y

is a finite set and M a complete MV-chain, and let Hmin be a min-decomposition. Given
strategies C, C 1 in Hmin, we say that C 1 is a min-improvement of C if fC1 pµfCq Ă µfC .
It is called a stable min-improvement if in addition C 1pyq “ Cpyq for all y P Y such that
fC1 pµfCqpyq “ µfCpyq. We denote by impminpCq (respectively imps

minpCq) the set of (stable)
min-improvements of C.

The notion of stability will turn out to be useful later, for performing strategy iteration
from below (as explained in the next section). In a stable min-improvement, the player is only
allowed to switch the strategy in a state if this yields a strictly better payoff. Interestingly,

CSL 2023



7:8 A Lattice-Theoretical View of Strategy Iteration

instances of this notion are adopted, more or less implicitly, in other strategy improvement
algorithms in the literature (cf. [1, Definition 13] and the way in which improvements are
computed in [10]). Clearly imps

minpCq Ď impminpCq. In addition, it can be easily seen that
there exists a stable min-improvement as long as there is any improvement.
▶ Remark 3.6 (obtaining min-improvements). For a strategy C, if impminpCq ‰ H, one can
obtain a min-improvement of C by taking C 1 ‰ C defined as C 1pyq “ arg minhPHminpyq hpµfCq

and a stable min-improvement as:

C 1pyq “

"

Cpyq if fpµfCqpyq “ µfCpyq

arg minhPHminpyq hpµfCq otherwise

There could be several h P Hminpyq where hpµfCq is minimal. Any such choice is valid.
We next show that, as suggested by the terminology, a min-improvement leads to a

smaller least fixpoint.

▶ Lemma 3.7 (min-improvements reduce fixpoints). Let Y be a finite set, M a complete
MV-chain, f : MY Ñ MY a monotone function and Hmin a min-decomposition of f . Given
a strategy C in Hmin and a min-improvement C 1 P impminpCq it holds µfC1 Ă µfC .

Thus, once the strategy can be improved, we will get closer to the least fixpoint of f .
We next show that an improvement of the current strategy exists as long as we have not
encountered a fixpoint of f .

▶ Lemma 3.8 (min-improvements exist for non-fixpoints). Let Y be a finite set, M a complete
MV-chain, f : MY Ñ MY a monotone function and Hmin a min-decomposition. Given a
strategy C in Hmin, the following are equivalent:
1. µfC R Fixpfq

2. impminpCq ‰ H

3. fpµfCq Ă µfC

The above result suggests an algorithm for computing a fixpoint of a function f : MY Ñ

MY on the basis of some min-decomposition. The idea is to guess some strategy C, determine
µfC and check impminpCq. If this set is empty we have reached some fixpoint, otherwise
choose C 1 P impminpCq for the next iteration. Note that for this algorithm it is irrelevant
whether we use min-improvements or restrict to stable min-improvements. We also note
that this procedure and the developed theory to this point work for monotone functions
f : LY Ñ LY where L is a complete lattice.

When we are interested in the least fixpoint and the function admits many fixpoints, the
sketched algorithm determines a fixpoint which might not be the desired one. Exploiting the
theory from [5], summarised in §2, we can refine the algorithm to ensure that it computes
µf . For this, we have to work with non-expansive functions f : MY Ñ MY with M being
a complete MV-chain and Y a finite set. In fact, in this setting, given a fixpoint of f , say
a P MY , relying on Theorem 2.3, we can check whether it is the least fixpoint of f . In case
it is not, we can “improve” it obtaining a smaller pre-fixpoint of f in a way that we can
continue the iteration from there. The resulting algorithm is reported in Fig. 2. Observe that
in step 2b we clearly do not need to compute all improvements. Rather, a min-improvement,
whenever it exists, can be determined, on the basis of Definition 3.5, using µfCi

computed in
step 2a. Moreover step 2c relies on Theorem 2.3 and Lemma 2.4.

▶ Theorem 3.9 (least fixpoint, from above). Let Y be a finite set, M a complete MV-chain,
f : MY Ñ MY be a non-expansive function and let Hmin be a min-decomposition of f . The
algorithm in Fig. 2 terminates and computes µf .
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1. Initialize: guess a strategy C0, i :“ 0
2. iterate

a. determine µfCi

b. if impminpCiq ‰ H, let Ci`1 P impminpCiq; i :“ i ` 1; goto (a)
c. else if µfCi

‰ µf let a Ă µfCi
be a pre-fixpoint of f and determine Ci`1 via

Ci`1pyq “ arg min
hPHminpyq

hpaq

i :“ i ` 1; goto 2.(a)
d. else stop

Figure 2 Computing the least fixpoint, from above.

Termination easily follows from the fact that the number of strategies is finite (since Y is
finite and Hminpyq is finite for all y P Y ). Given that at any iteration the fixpoint decreases,
no strategy can be considered twice, and thus the number of iterations is bounded by the
number of strategies.

▶ Example 3.10. Let us revisit Example 3.3 and the fixpoint function V defined there. Its
least fixpoint satisfies µVp1q “ 1 and µVpvq “ ε for any v P V zt1u.

The optimal strategy for Min is to choose av as its successor since this forces Max to
exit the cycle formed by min, av, max to ε, yielding a payoff of ε for these states. If Max
would behave in a way that the play keeps cycling he would obtain a payoff of 0, which is
suboptimal.

We now apply our algorithm. We start by guessing a strategy for Min, so we assume
C0pminq “ h1, i.e. C0 “ Cmin

1 (for the naming of the strategies we refer to Example 3.3).
The least fixpoint µVC0 can be found by solving the following linear program:

min
ÿ

vPV

apvq ap1q “ 1 apεq “ ε apavq “
1
2apminq `

1
2apmaxq

apmaxq ě apεq apmaxq ě apavq apminq “ ap1q

with 0 ď apvq ď 1 for v P V , which yields µVC0 pεq “ ε and µVC0 pvq “ 1 for all v P V ztεu.
Now µVC0 is a fixpoint of V – but not the least – and thus we find the vicious cycle formed
by min, av, max, i.e. νVµVC0

# “ tmin, av, maxu and decrease the values of those states
in a by δ, i.e. we obtain a “ µVC0 a δtmin,av,maxu. This results in ap1q “ 1, apεq “ ε and
apvq “ 1 ´ δ for all v P V zt1, εu. Any δ P p0, 1 ´ εs is a valid choice.

Computing C1pyq “ arg minhPHminpyq hpaq yields the strategy C1 “ Cmin
2 , i.e. C1pminq “

hav. By linear programming (replace apminq “ ap1q by apminq “ apavq) we obtain
νVµfC1

# “ H, thus µVC1 “ µV and the algorithm terminates.

3.3 Strategy iteration from below
Here we present a different generalized strategy iteration algorithm approaching the least
fixpoint from below. Intuitively, now it is player Max who improves his strategy step by
step, creating an ascending chain of least fixpoints which reaches the least fixpoint of the
underlying function f . Despite the fact that in this case we cannot get stuck at a fixpoint
which is not the least, the correctness argument is more involved.
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1 max1 max2

Figure 3 An example of a simple stochastic game where state 1 has payoff 1.

We will deal with max-decompositions of a function and we will need a notion of (stable)
max-improvement which is naturally defined as a dualisation of the notion of (stable)
min-improvement (Definition 3.5).

▶ Definition 3.11 (max-improvement). Let Y be a finite set, M a complete MV-chain,
f : MY Ñ MY a monotone function and Hmax a max-decomposition. Given C, C 1 strategies
in Hmax, we say that C 1 is a max-improvement of C if µfC Ă fC1 pµfCq. It is called a stable
max-improvement if in addition C 1pyq “ Cpyq for all y P Y such that fC1 pµfCqpyq “ µfCpyq.
We denote by impmaxpCq (respectively imps

maxpCq) the set of (stable) max-improvements
of C.

When iterating from above it was rather easy to show that given a strategy C and a
min-improvement C 1, the latter yields a smaller least fixpoint µfC1 Ă µfC (Lemma 3.7).
Observing that µfC is a pre-fixpoint of fC1 was enough to prove this.

Here, however, we cannot simply dualise the argument. If C 1 is a max-improvement
of C, we obtain that µfC is a post-fixpoint of fC1 which, in general, does not guarantee
µfC1 Ą µfC . We have to resort to stable max-improvements and, in order to show that such
improvements in fact yield greater least fixpoints, we need, again, to use the theory reviewed
in §2. Hence, we have to work with non-expansive functions f : MY Ñ MY where M is a
complete MV-chain.

▶ Lemma 3.12 (max-improvements increase fixpoints). Let Y be a finite set, M a complete
MV-chain, f : MY Ñ MY a non-expansive function and Hmax a max-decomposition. Given
a strategy C in Hmax and a stable max-improvement C 1 P imps

maxpCq, then µfC Ă µfC1 .

▶ Example 3.13. We note that working with max-improvements which are stable is es-
sential for the validity of Lemma 3.12 above. In fact, consider the SSG in Figure 3 where
max1, max2 P MAX and 1 P SINK , with reward 1. Let C be the strategy for Max where
max1 and max2 have as successors 1 and max2, respectively. It is easy to see that
µVCp1q “ µVCpmax1q “ 1 and µVCpmax2q “ 0. Now, an improvement in impmaxpCq can
be the strategy C 1 which chooses max1 as a successor for both max1 and max2. Then we
have µVC1 pmax1q “ µVC1 pmax2q “ 0, hence µVC Ą µVC1 . The reason why this happens is
that C 1 is not a stable improvement of C since it uselessly changes the successor of max1
from 1 to max1, both mapped to 1 by µVC . A stable improvement of C is C2 where
max1 and max2 have as successors 1 and max1, respectively. Then it can be seen that
µVC2 pvq “ 1 for all states.

Relying on Lemma 3.12, we can easily prove the dual of Lemma 3.8, showing that a
strategy admits a stable max-improvement as long as we have not reached a fixpoint of f .

▶ Lemma 3.14 (max-improvements exist for non-fixpoints). Let Y be a finite set, M a complete
MV-chain, f : MY Ñ MY a monotone function and Hmax a max-decomposition. Given a
strategy C in Hmax, the following are equivalent:
1. µfC R Fixpfq

2. imps
maxpCq ‰ H

3. µfC Ă fpµfCq
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1. Initialize: guess a strategy C0, i :“ 0
2. iterate

a. determine µfCi

b. if imps
maxpCiq ‰ H, let Ci`1 P imps

maxpCiq; i :“ i ` 1; goto (a)
c. else stop

Figure 4 Computing the least fixpoint, from below.

To summarise, given a strategy C with µfC R Fixpfq we can construct a strategy C 1

with µfC Ă µfC1 . This creates an ascending chain of least fixpoints and since there are only
finitely many strategies we will at some point find an optimal strategy C˚ with µfC˚ “ µf .

▶ Proposition 3.15 (least fixpoint from max-decomposition). Let Y be a finite set, M a complete
MV-chain, f : MY Ñ MY a non-expansive function and let Hmax : Y Ñ PfinpMY Ñ Mq be
a max-decomposition of f . Then µf “ maxtµfC | C is a strategy in Hmaxu.

The above results lead us to a generalised strategy iteration algorithm which approaches
the least fixpoint from below.

▶ Theorem 3.16 (least fixpoint, from below). Let Y be a finite set, M a complete MV-chain,
f : MY Ñ MY be a non-expansive function and let Hmax be a max-decomposition of f . The
algorithm in Fig. 4 terminates and computes µf .

The iteration from below may seem more appealing since it cannot get stuck at any
fixpoint of f . However, it has to be noted that the computation of µfC – for a chosen strategy
C – may be more difficult than before, which is illustrated by the following example.

▶ Example 3.17. Let us apply the above algorithm to the SSG in Example 3.3. Recall that
the least fixpoint is given by µVp1q “ 1 and µVpvq “ ε for all v P V zt1u.

We start by guessing a strategy for Max, so we assume C0pmaxq “ hav, i.e. C0 “ Cmax
2 .

With this choice of strategy, Min is able to keep the game going infinitely in the cycle
formed by min, av, max and thus payoff 0 is obtained. Now µVC0 is given by µVC0 pεq “ ε,
µVC0 p1q “ 1 and µVC0 pvq “ 0 for all v P V ztε, 1u. We note that µVC0 cannot immediately
be computed via linear programming, but there is a way to modify the fixpoint equation to
have a unique fixpoint and hence linear programming can be used again [5]. This is done by
precomputing states from which Min can force a non-terminating play and assigning payoff
value 0 to them. Next, Max updates his strategy and we obtain C1 “ Cmax

1 . As above we
can compute µVC1 – which, this time, equals µV – via linear programming.

▶ Remark 3.18. Given µf (without the corresponding strategy) an interesting question is
how one can derive optimal strategies for Min or Max. Note that each presented strategy
iteration algorithm only produces an optimal strategy for one player, but not for the other.

It is rather easy to find an optimal strategy with respect to Hmin. We can simply compute
C˚pyq “ arg minhPHminpyq hpµfq which yields some optimal strategy C˚, i.e. µfC˚ “ µf . It is
enough to choose some minimum, even if this is ambiguous and there are several choices, each
of which produces an optimal strategy. The strategy C˚ is optimal since µf is a pre-fixpoint
of fC˚ and µf “ µfC˚ follows from Proposition 3.4.

On the other hand, given µf , we cannot easily obtain an optimal strategy in Hmax.
We will discuss in §4.1 (Example 4.1) that defining C˚pyq “ arg maxhPHmaxpyq hpµfq for an
arbitrary h where the value is maximal does not work in general.
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4 Application: energy games

In this section we examine energy games [16] and show how both strategy iterations in §3
can be applied to solve energy games and have the advantage of providing us not only with
the value vector, but also with a strategy, which is interesting, in particular, for Player 1
(Max).

Energy games are two-player games on finite graphs where Player 0 (Min) wants to keep
the game going forever, while Player 1 (Max) wants it to stop eventually. Each state belongs
to one player where he chooses the successor and each traversed edge reduces or increases
the energy level by some integer. The game stops when an edge is taken which reduces the
energy level below 0. The main question is how much initial energy is needed, such that
Player 0 can keep the game going forever. It is possible to require an initial energy level of
infinity.

4.1 Introduction to energy games
A game graph is a tuple Γ “ pV0, V1, E, wq where V “ V0 Y V1, with V0 X V1 “ H, is the set
of states, E Ď V ˆ V is the set of edges and w : E Ñ Z is a weight function. We assume that
each state has at least one outgoing edge. We define postpvq “ tv1 P V | pv, v1q P Eu ‰ H for
v P V . States in V0 and V1 are owned by Player 0 and Player 1 respectively. Moving from
state v to state v1 will change the energy level by adding the value wpv, v1q. If this value is
positive, some energy is gained, otherwise energy decreases. It is the aim of Player 0 to keep
the energy level from getting negative. An energy game is an infinite play on a game graph
Γ and we note that optimal positional strategies exist for both players [16].

The solution of Γ is a function gΓ : V Ñ N8 (where N8 “ N Y t8u) that assigns to
each state the least energy level which is sufficient for Player 0 to keep the game going,
independently of the chosen strategy of Player 1. It is known that the solution is the least
fixpoint of the following function Ē : pN8qV Ñ pN8qV , defined as

Ēpaqpvq “

$

’

&

’

%

min
v1Ppostpvq

maxtapv1q ´ wpv, v1q, 0u if v P V0

max
v1Ppostpvq

maxtapv1q ´ wpv, v1q, 0u if v P V1

▶ Example 4.1. Consider the following energy game, where it is intended that circular and
rectangular states belong to Player 0 and Player 1, respectively.

x

u

y

v

´12 16

´80 ´2

´1

1

´98

The optimal strategy for Player 0 is to choose u as the successor to u and v. Thus v

requires an initial energy of 8 to keep going forever. For u an initial energy of 0 is sufficient.
On the other hand, the optimal strategy for Player 1 is to choose y as successor to x and v

as successor to y. This results in a required initial energy of 17 for y and 18 for x.
Thus, we obtain as least fixpoint gΓpxq “ 18, gΓpyq “ 17, gΓpuq “ 0, gΓpvq “ 8. Note

that, if from u Player 0 would choose x, Player 1 could keep the game in a negative cycle.
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Given only the least fixpoint gΓ, the strategy of Player 1 is not deducible with a local
reasoning, since from y the choices x, v are indistinguishable (in fact gΓpyq “ 17 “ gΓpxq´1 “

gΓpvq ´ p´9q). However, if x is chosen as successor to y (and still y as successor to x), we
end up in a value vector where Min needs 0 initial energy in y to keep going.

4.2 Strategy iteration for energy games
In order to solve energy games in our framework, we have to consider non-expansive functions
over MV-algebras, however N8 is unfortunately not an MV-algebra. For this, we use the
results of [16], where it is shown that any energy game Γ “ pV0, V1, E, wq can be transformed
into an energy game Γ1 “ pV 1

0 , V 1
1 , E1, w1q with finite values only. Concretely, this is done by

adding an “emergency exit” for each state in V0 guaranteeing a finite amount of required
energy to keep the game going forever. The solution gΓ1 of Γ1 satisfies gΓ1 pvq ă 8 for all
v P V and the solution gΓ of Γ can be easily reconstructed from gΓ1 . This allows us to restrict
to energy games with finite values, where the solution is bounded by a suitable k. In this
setting, letting K “ t0, . . . , ku and aZ : K ˆZ Ñ K given by xaZ y “ mintmaxtx´y, 0u, ku,
we can define E : KV Ñ KV for a : V Ñ K and v P V as

Epaqpvq “

$

’

&

’

%

min
pv,v1qPE

apv1q aZ wpv, v1q if v P V0

max
pv,v1qPE

apv1q aZ wpv, v1q if v P V1

▶ Lemma 4.2 (solution is least fixpoint of E). Let Γ be an energy game with finite values,
bounded by k. Then µE “ gΓ, i.e. the least fixpoint of E coincides with the solution of Γ.

Recall from Example 2.1 that K is an MV-chain. Moreover E : KV Ñ KV can be proved
to be non-expansive by showing that it can be expressed in terms of basic functions which are
known or easily shown to be non-expansive and exploiting the fact that non-expansiveness
is preserved by composition (see the full version [7]) and thus both generalised strategy
iteration approaches in §3, from below and from above, can be applied for determining µE ,
i.e., the solution of Γ.

Observe that the algorithms do not only compute µE , but also provide an optimal strategy,
for Player 0 when approaching from above and for Player 1 when approaching from below.
The second case is of particular interest as it derives an optimal strategy for Player 1, which
is often not treated in the literature (we are only aware of [10]).

We also remark that, when performing iteration from above or below, at each iteration,
once a strategy C for Player 0 is fixed, we need to compute µEC . This can be done via
linear programming, however it turns out that it is more efficient to use some form of value
iteration, due to finiteness of the MV-algebra t0, . . . , ku.

The full version [7] spells out the approximation Ea
# of the function E which – according

to the theory in §2 – can be used for checking whether its least fixpoint has already been
reached in strategy iteration from above. It also analyses known algorithms for solving
energy games and compares their runtime to both kinds of strategy iteration. While other
algorithms might in some cases have better runtimes, strategy iteration has the advantage of
providing the optimal strategy.

5 Application: behavioural metrics for probabilistic automata

In this section we show how our technique can be used to compute behavioural distances
over probabilistic automata. After introducing the necessary notions, we provide a min-
decomposition of the corresponding function. The algorithm that we obtain by instantiating
our generalised strategy iteration from above using such min-decomposition can be seen to
be essentially the same as the one presented in [3].
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▶ Definition 5.1 (probabilistic automaton). A probabilistic automaton (PA) is a tuple
A “ pS, L, δ, ℓq consisting of a nonempty finite set S of states, a finite set of labels L, a
successor function δ : S Ñ PfinpDpSqq and a labeling function ℓ : S Ñ L.

The idea is that from a state s, one can non-deterministically move to one of the probability
distributions in δpsq.

The behavioural distance function is defined by combining Hausdorff and Kantorovich
liftings for the nondeterministic and probabilistic parts, respectively. Recall that the Kan-
torovich lifting [30] K : r0, 1sY ˆY Ñ r0, 1sDpY qˆDpY q transforming a pseudometric d on Y to
a pseudometric on DpY q is defined, for β, β1 P DpY q, by

Kpdqpβ, β1q “ min
ωPΩpβ,β1q

ÿ

y,y1PY

dpy, y1q ¨ ωpy, y1q,

where Ωpβ, β1q is the set of probabilistic couplings of β, β1:

Ωpβ, β1q “ tω P DpY ˆ Y q | @y, y1 P Y :
ÿ

x1PY

ωpy, x1q “ βpyq ^
ÿ

xPY

ωpx, y1q “ β1py1qu

Actually, the minimum is reached in one of the finitely many vertices of the polytope Ωpβ, β1q,
a set which we denote by ΩV pβ, β1q. The Hausdorff lifting H : r0, 1sY ˆY Ñ r0, 1sPpY qˆPpY q

(in the variant of [26]) is defined, for X, X 1 P PpY q, by

HpdqpX, X 1q “ min
RPRpX,X1q

max
px,x1qPR

dpx, x1q,

with RpX, X 1q “ tR P PpY ˆ Y q | π1pRq “ X ^ π2pRq “ X 1u the set-couplings of X, X 1 [26].
The rough idea is the following. If two states s and t have different labels they are

at distance 1. Otherwise, in order to compute their distance one has find a “best match”
between the outgoing transitions of such states, i.e., a set coupling as those considered in the
Hausdorff lifting H. In turn, since, transitions are probabilistic, matching transitions means
finding an optimal probabilistic coupling, as done by the Kantorovich lifting K, which is
intuitively the best transport plan balancing the “supply” β and the “demand” β1. In this
way the distance of s and t is expressed in terms of the distance of the states they can reach,
hence, formally, behavioural distance is characterised as a least fixpoint.

▶ Definition 5.2 (behavioural distance). Let A “ pS, L, δ, ℓq be a PA. The behavioural distance
on A is the least fixpoint of M : r0, 1sSˆS Ñ r0, 1sSˆS defined, for d P r0, 1sSˆS and s, t P S,
by Mpdqps, tq “ HpKpdqqpδpsq, δptqq if ℓpsq “ ℓptq and Mpdqps, tq “ 1, otherwise.

▶ Example 5.3. Consider the probabilistic automaton in Fig. 5 with state space Y “ ts, t, uu,
labels ℓpsq “ ℓptq “ a and ℓpuq “ b and probability distributions β1, β2, β1

1, β1
2, β2 as indicated.

For instance, from state s, there are two possible transitions β1 which with probability 1{2

goes to u and with probability 1{2 stays in s, and β2 which goes to t with probability 1.
In order to explain how function M, resulting from the combination of Hausdorff and

Kantorovich lifting, works, let us consider the pseudometric dps, tq “ 1{2, dps, uq “ dpt, uq “ 1.
This is not the least fixpoint, since the distance of states s, t is clearly 0 as the two states
exihibit the same behaviour.

We now illustrate how to compute Mpdqps, tq. We obtain Mpdqps, uq “ Mpdqpt, uq “ 1
and, since ℓpsq “ ℓptq “ a, we have

Mpdqps, tq “ HpKpdqqpδpsq, δptqq.

where δpsq “ tβ1, β2u and δptq “ tβ1
1, β1

2u.
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s : a t : a

u : b

β2

β1

β1
2

β1
1

β2

1

1

1

1{2

1{2

1{2

1{2

Figure 5 A probabilistic automaton.

It is relatively straightforward to see that the vertices of the coupling polytope Ωpβ1, β1
1q

are ΩV pβ1, β1
1q “ tω1, ω2u with

ω1ps, tq “ 1{2, ω1pu, uq “ 1{2 and ω2ps, uq “ 1{2, ω2pu, tq “ 1{2

and ωipx, yq “ 0, i P t1, 2u, for every other pair px, yq P Y ˆ Y . Then the Kantorovich lifting
is determined as follows:

Kpdqpβ1, β1
1q “ mint

ÿ

x,yPS

dpx, yq ¨ ω1px, yq,
ÿ

x,yPS

dpx, yq ¨ ω2px, yqu “ mint1{4, 1u “ 1{4.

Similarly we can obtain Kpdqpβ1, β1
2q “ 1{2, Kpdqpβ2, β1

1q “ 1{2, Kpdqpβ2, β1
2q “ 1{4.

In order to conclude the computation via the Hausdorff lifting, note that the minimal
set-couplings of δpsq “ tβ1, β2u and δptq “ tβ1

1, β1
2u are

R1 “ tpβ1, β1
1q, pβ2, β1

2qu R2 “ tpβ1, β1
2q, pβ2, β1

1qu

and any other set-coupling includes R1 or R2. Then we obtain

Mpdqps, tq “ HpKpdqqpδpsq, δptqq

“ mint max
px,x1qPR1

Kpdqpx, x1q, max
px,x1qPR2

Kpdqpx, x1qu

“ mintmaxtKpdqpβ1, β1
1q, Kpdqpβ2, β1

2qu, maxtKpdqpβ1, β1
2q, Kpdqpβ2, β1

1quu

“ mintmaxt1{4, 1{4u, maxt1{2, 1{2uu “ mint1{4, 1{2u “ 1{4.

In order to cast this problem in our framework, we identify a suitable min-decomposition
of M. Observe that, for d P r0, 1sSˆS and s, t P S such that ℓpsq “ ℓptq, expanding the
definitions of the liftings and taking advantage of complete distributivity, we have

Mpdqps, tq “ min
RPRpδpsq,δptqq

max
pβ,β1qPR

min
ωPΩV pβ,β1q

ÿ

u,vPS

dpu, vq ¨ ωpu, vq

“ min
RPRpδpsq,δptqq

min
fPFR

max
pβ,β1qPR

ÿ

u,vPS

dpu, vq ¨ fpβ, β1qpu, vq

where FR “ tf : R Ñ DpS ˆ Sq | fpβ, β1q P ΩV pβ, β1q for pβ, β1q P Ru, which is a finite set.
We can thus define a min-decomposition Hmin for M (see Definition 3.1) such that

Mpdqps, tq “ minhPHminps,tq hpdq for all s, t P S.
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▶ Definition 5.4 (min-decomposition of M). Let A “ pS, L, δ, ℓq be a PA. We denote by Hmin
the min-decomposition of M defined as follows. For s, t P S such that ℓpsq “ ℓptq, we let
Hminps, tq “ thR,f | R P Rpδpsq, δptqq, f P FRu, with hR,f : r0, 1sSˆS Ñ r0, 1s defined as

hR,f pdq “ max
pβ,β1qPR

ÿ

u,vPS

dpu, vq ¨ fpβ, β1qpu, vq.

If instead ℓpsq ‰ ℓptq, we let Hminps, tq “ th1u where h1pdq “ 1 for all d.

A strategy C in Hmin maps each pair of states s, t P S to a function in Hminps, tq, that is
if ℓpsq ‰ ℓptq, to the unique element h1 P Hminps, tq;
if ℓpsq “ ℓptq to some hR,f P Hminps, tq, with R P Rpδpsq, δptqq set-coupling and f P FR.

The decomposition above can be used to deduce that M is non-expansive and thus we
can safely instantiate the algorithm in Fig. 2 to compute the least fixpoint from above.
The resulting algorithm is quite similar to the one specifically developed for PAs in [3]. In
particular, it can be seen that, apart from the different presentation, a strategy C corresponds
to what [3] refers to as a coupling structure. In addition, the step in item (2c) of the algorithm
(see Fig. 2) is analogous to that in [3]. In fact, in order to check whether the fixpoint obtained
with the current strategy Ci, i.e. µMCi , is the least fixpoint of M, one considers the
approximation MµMCi

# and checks whether its greatest fixpoint is empty. Recalling that the
post-fixpoints of MµMCi

# have been shown in [5] to be the self-closed relations of [3], one
derives that verifying the emptiness of the greatest fixpoint of MµMCi

# corresponds exactly
to checking whether the largest self-closed relation is empty (see [7] for more details).

6 Conclusion

We developed abstract algorithms for strategy iterations which allow to compute least
fixpoints (or, dually, greatest fixpoints) of non-expansive functions over MV-algebras. The
idea consists in expressing the function of interest as a minimum (or a maximum), and
view the process of computing the function as a game between players Min and Max trying
to minimise and maximise, respectively, the outcome. Then the algorithms proceed via a
sequence of steps which converge to the least fixpoint from above, progressively improving the
strategy of player Min, or from below, progressively improving the strategy of the player Max.
The two procedures have similar worst-case complexity. The number of iterations is bounded
by the number of strategies of the corresponding player p P tmin, maxu, which is exponential
in the input size (the number of strategies is

ś

yPY |Hppyq|). This suggests that, depending on
the setting, the fastest algorithm is the one using the smaller decomposition Hmin respectively
Hmax. However, a deeper analysis is still needed, as a smaller decomposition usually leads to
a higher cost for computing µfC .

The algorithms generalise an approach which has been recently proposed for simple
stochastic games in [5, 6]. We showed how our technique instantiates to energy games,
thus giving a method for determining the optimal strategies of both players, and to the
computation of the behavioural distance for probabilistic automata, resulting in an algorithm
similar to the non-trivial procedure in [3], which was also a source of inspiration.

Strategy iteration is used in many different application domains with fairly similar
underlying ideas and we believe that it is fruitful to provide a general definition of the
technique, clarifying and solving several issues on this level, such as the need for stable
improvements or ways to deal with non-unique fixpoints.
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There is an extremely wide literature on strategy iteration, often also referred to as
policy iteration or strategy improvement (for an overview see [19]). As mentioned in the
introduction, after its use on nonterminating stochastic games [23], it has been applied to
solve many kinds of games, including discounted mean-payoff games [32], parity games [31, 28]
and simple stochastic games [13]. Several quasi-polynomial algorithms have been recently
devised for parity games [11, 22, 24], while the existence of a polynomial algorithm is still an
important open problem. This has been generalized to finite lattices by [20].

Various papers on strategy iteration focus on lower bounds [18, 17]. Our paper, rather
than concentrating on complexity issues, provides a general framework capturing strategy
iteration in a general lattice theoretical setting. A work similar in spirit is [1] which proposes
a meta-algorithm GSIA such that a number of strategy improvement algorithms for SSGs
arise as instances, along with a general complexity bound. Differently from ours, this paper
focuses on SSGs and iteration from below. However, it allows for the parametrisation of the
algorithm on a subset of edges of interest in the game graph, which is not possible in our
approach, and so it can provide interesting suggestions for further generalisations.

Another interesting setting of application is the lower-weak-upper-bound problem in
mean-payoff games [9], reminiscent of energy games. For this problem, differently from the
usual definition, the aim for one player is to maximise, never going negative, some resource
which cannot exceed a given bound, while the other player has to minimise it. Also in this
case, the solution can be computed as a least fixpoint. Due to the upper bound imposed to
the resource, the function is not non-expansive, thus it is not captured by our theory. Still, the
algorithm KASI proposed in [10], which computes the solution via strategy iteration, shares
many similarities with our approach from below: at each iteration the algorithm computes a
stable max-improvement of the current strategy. Indeed, when applying KASI to the special
case where there is no upper bound to the accumulated resource, called lower-bound problem
in [9] (also studied under different names in [12, 25]), the algorithm comes out as an exact
instantiation of our general strategy iteration from below.

Given their generality, we believe that the algorithms proposed in the present paper have
the potential to be applicable to a variety of other settings. In particular, some preliminary
investigations show their applicability to computing behavioural metrics in an abstract
coalgebraic setting [4]. Here the behavioural distance is naturally characterised as a least
fixpoint of an operator based on the Wasserstein lifting of the behavioural functor. Then the
idea is to view couplings used in the computation of the Wasserstein lifting as strategies and
use strategy iteration for converging to the coalgebraic metric.

Our abstract strategy iteration algorithms rely on the assumption that, once a strategy
for one of the players is fixed, the optimal “answering” strategy for the opponent can be
computed efficiently. Identifying abstract settings where a min- or max-decompositions of a
function ensures that the answering strategy can be indeed computed efficiently (e.g., via
linear programming as it happens for simple stochastic games), is an interesting direction of
future research.
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