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Abstract
Avalanche is a blockchain consensus protocol with exceptionally low latency and high throughput.
This has swiftly established the corresponding token as a top-tier cryptocurrency. Avalanche achieves
such remarkable metrics by substituting proof of work with a random sampling mechanism. The
protocol also differs from Bitcoin, Ethereum, and many others by forming a directed acyclic graph
(DAG) instead of a chain. It does not totally order all transactions, establishes a partial order
among them, and accepts transactions in the DAG that satisfy specific properties. Such parallelism
is widely regarded as a technique that increases the efficiency of consensus.

Despite its success, Avalanche consensus lacks a complete abstract specification and a matching
formal analysis. To address this drawback, this work provides first a detailed formulation of Avalanche
through pseudocode. This includes features that are omitted from the original whitepaper or are
only vaguely explained in the documentation. Second, the paper gives an analysis of the formal
properties fulfilled by Avalanche in the sense of a generic broadcast protocol that only orders related
transactions. Last but not least, the analysis reveals a vulnerability that affects the liveness of the
protocol. A possible solution that addresses the problem is also proposed.
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1 Introduction

The Avalanche blockchain with its fast and scalable consensus protocol is one of the most
prominent alternatives to first-generation networks like Bitcoin and Ethereum that consume
huge amounts of energy. Its AVAX token is ranked 14th according to market capitalization
in August 2022 [9]. Avalanche offers a protocol with high throughput, low latency, excellent
scalability, and a lightweight client. In contrast to many well-established distributed ledgers,
Avalanche is not backed by proof of work. Instead, Avalanche bases its security on a
deliberately metastable mechanism that operates by repeatedly sampling the network, guiding
the honest parties to a common output. This allows Avalanche to reach a peak throughput
of up to 20’000 transactions per second with a latency of less than half a second [29].

This novel mechanism imposes stricter security constraints on Avalanche compared to
other networks. Traditional Byzantine fault-tolerant consensus tolerates up to a third of
the parties to be corrupted [24] and proof-of-work protocols make similar assumptions in
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terms of mining power [13, 12]. Avalanche, however, can tolerate only up to O(
√

n) malicious
parties. Furthermore, the transactions in the “exchange chain” of Avalanche (see below) are
not totally ordered, in contrast to most other cryptocurrencies, which implement a form of
atomic broadcast [6]. As the protocol is structured around a directed acyclic graph (DAG)
instead of a chain, it permits some parallelism. Thus, the parties may output the same
transactions in a different order, unless these transactions causally depend on each other.
Only the latter must be ordered in the same way.

The consensus protocol of a blockchain is of crucial importance for its security and
for the stability of the corresponding digital assets. Analyzing such protocols has become
an important topic in current research. Although Bitcoin appeared first without formal
arguments, its security has been widely understood and analyzed meanwhile. The importance
of proving the properties of blockchain protocols has been recognized for a long time [8].

However, there are still protocols released today without the backing of formal security
arguments. The Avalanche whitepaper [29] introduces a family of consensus protocols and
offers rigorous security proofs for some of them. Yet the Avalanche protocol itself and the
related Snowman protocol, which power the platform, are not analyzed. Besides, several key
features of this protocol are either omitted or described only vaguely.

In this paper, we explain the Avalanche consensus protocol in detail. We describe
it abstractly through pseudocode and highlight features that may be overlooked in the
whitepaper (Sections 3–4). Furthermore, we use our insights to formally establish safety
properties of Avalanche. Per contra, we also identify a weakness that affects its liveness. In
particular, Avalanche suffers from a vulnerability in how it accepts transactions that allows
an adversary to delay targeted transactions by several orders of magnitude (Section 5), which
may render the protocol useless in practice. The problem results from dependencies that
exist among the votes on different transactions issued by honest parties; the whitepaper does
not address them. The attack may be mounted by a single malicious party with some insight
into the network topology. Finally, we suggest a modification to the Avalanche protocol
that would prevent our attacks from succeeding and reinstantiate liveness of the protocol
(Section 6). This version, which we call Glacier, restricts the sampling choices in order to
break the dependencies, but also eliminates the parallelism featured by Avalanche.

The vulnerability has been acknowledged by the Avalanche developers. However, the
deployed version of the protocol implements another measure that prevents the problem.

2 Related work

Despite Avalanche’s tremendous success, there is no independent research on its security.
Recall that Avalanche introduces the “snow family” of consensus protocols based on sam-
pling [29, 4]: Slush, Snowflake, and Snowball. Detailed proofs about liveness and safety for
the snow-family of algorithms are given. The Avalanche protocol for asset exchange, however,
lacks such a meticulous analysis. The dissertation of Yin [32] describes Avalanche as well,
but does not analyze its security in more detail either.

Recall that Nakamoto introduced Bitcoin [23] without any formal analysis. This has been
corrected by a long line of research, which established the conditions under which it is secure
(e.g., by Garay, Kiayias, and Leonardos [13, 14] and by Eyal and Sirer [12]).

The consensus mechanisms that stand behind the best-known cryptocurrencies are mean-
while properly understood. Some of them, like the proof-of-stake protocols of Algorand [15]
and the Ouroboros family that powers the Cardano blockchain [17, 10], did apply sound
design principles by first introducing and analyzing the protocols and only later implementing
them.
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Many others, however, have still followed the heuristic approach: they released code first
and were confronted with concerns about their security later. This includes Ripple [3, 1]
and NEO [31], in which several vulnerabilities have been found, or Solana, which halted
multiple times in 2021–2022. Stellar comes with a formal model [21], but it has also been
criticized [18].

Protocols based on DAGs have potentially higher throughput than those based on chains.
Notable examples include PHANTOM and GHOSTDAG [27], the Tangle of IOTA (www.
iota.org), Conflux [20], and others [16]. However, they are also more complex to understand
and susceptible to a wider range of attacks than those that use a chain. Relevant examples
of this kind are the IOTA protocol [22], which has also failed repeatedly in practice [30] and
PHANTOM [27], for which a vulnerability has been shown [19] in an early version of the
protocol.

3 Model

3.1 Avalanche platform
We briefly review the architecture of the Avalanche platform [4]. It consists of three separate
built-in blockchains, the exchange or X-Chain, the platform or P-Chain, and the contract or
C-Chain. Additionally there are a number of subnets. In order to participate in the protocols
and validate transactions, a party needs to stake at least 2’000 AVAX (about 50’000 USD in
August 2022 [9]).

The exchange chain or X-Chain secures and stores transactions that trade digital assets,
such as the native AVAX token. This chain implements a variant of the Avalanche consensus
protocol that only partially orders the transactions and that is the focus of this work. All
information given here refers to the original specification of Avalanche [29].

The platform chain or P-Chain secures platform primitives; it manages all other chains,
allows parties to join the network, designates parties to become validators or removes them
again from the validator list, and creates or deletes wallets. The P-Chain implements the
Snowman consensus protocol: this is a special case of Avalanche consensus that always
provides total order, like traditional blockchains. It is not explained in the whitepaper and
we do not describe it further here.

The C-Chain hosts smart contracts and runs transactions on an Ethereum Virtual Machine
(EVM). It also implements the Snowman consensus protocol of Avalanche and totally orders
all transactions and blocks.

3.2 Communication and adversary
We now abstract the Avalanche consensus protocol and consider a static network of n parties
N = {p, q, . . . } that communicate with each other by sending messages. An adversary
may corrupt up to f of these parties and cause them to behave maliciously and diverge
arbitrarily from the protocol. Non-corrupted parties are known as honest, messages and
transactions sent by them are referred to as honest. Analogously, corrupted parties send
malicious transactions and messages. The parties may access a low-level functionality for
sending messages over authenticated point-to-point links between each pair of parties. In the
protocol, this functionality is accessed by two events send and receive. Parties may also access
a second low-level functionality for broadcasting messages through the network by gossiping,
accessed by the two events gossip and hear in the protocol. Both primitives are subject to
network and timing assumptions. We assume the same network model as in the original
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Avalanche whitepaper [29]. Messages are delivered according to an exponential distribution,
that is, the amount of time between the sending and the receiving of a message follows an
exponential distribution with unknown parameter to the parties. However, messages from
corrupted parties are not affected by this delay and will be delivered as fast as the adversary
decides. This model differs from traditional assumptions like partial synchrony [11], because
the adversary does not possess the ability to delay honest messages as it pleases.

3.3 Abstractions
The payload transactions of Avalanche are submitted by users and built according to the
unspent transaction output (UTXO) model of Bitcoin [23]. A payload transaction tx contains
a set of inputs, a set of outputs, and a number of digital signatures. Every input refers to
a position in the output of a transaction executed earlier; this output is thereby spent (or
consumed) and distributed among the outputs of tx. The balance of a user is given by the set
of unspent outputs of all transactions (UTXOs) executed by the user (i.e., assigned to public
keys controlled by that user). A payload transaction is valid if it is properly authenticated
and none of the inputs that it consumes has been consumed yet (according to the view of
the party executing the validation).

Blockchain protocols are generally formalized as atomic broadcast, since every party
running the protocol outputs the same ordered list of transactions. However, the transaction
sequences output by two different parties running Avalanche may not be exactly the same
because Avalanche allows more flexibility and does not require a total order. Avalanche only
orders transactions that causally depend on each other. Thus, we abstract Avalanche as a
generic broadcast according to Pedone and Schiper [25], in which the total-order property
holds only for related transactions as follows.

▶ Definition 3.1. Two payloads tx and tx′ are said to be related, denoted by tx ∼ tx′, if tx
consumes an output of tx′ or vice versa.

Our generic broadcast primitive is accessed through the two events broadcast(tx) and
deliver(tx). Similar to other blockchain consensus protocols, it defines an “external” validity
property and introduces a predicate V that determines whether a transaction is valid [7].

▶ Definition 3.2. A payload tx satisfies the validity predicate of Avalanche if all the crypto-
graphic requirements are fulfilled and there is no other delivered payload with any input in
common with tx.

For the remainder of this work, we fix the external validation predicate V to check the
validity of payloads according to the logic of UTXO mentioned before.

Since Avalanche is a randomized protocol, the properties of our broadcast abstraction
need to be fulfilled only with all but negligible probability.

▶ Definition 3.3. A protocol solves validated generic broadcast with validity predicate V and
relation ∼ if it satisfies the following conditions, except with negligible probability:
Validity. If a honest party broadcasts a payload transaction tx, then it eventually delivers tx.
Agreement. If a honest party delivers a payload transaction tx, then all honest parties

eventually deliver tx.
Integrity. For any payload transaction tx, every honest party delivers tx at most once, and

only if tx was previously broadcast by some party.
Partial order. If honest parties p and q both deliver payload transactions tx and tx′ such that

tx ∼ tx′, then p delivers tx before tx′ if and only if q delivers tx before tx′.
External validity. If a honest party delivers a payload transaction tx, then V (tx) = true.
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Note that different instantiations of the relation ∼ transform the generic broadcast
primitive into well-known primitives. For instance, when no pair of transactions are related,
generic broadcast degenerates to reliable broadcast. Whereas when every two transactions
are related, generic broadcast transforms into atomic broadcast. In our context, broadcast-
ing corresponds to submitting a payload transaction to the network, whereas delivering
corresponds to accepting a payload and appending it to the ledger.

The Avalanche protocol augments payload transactions to protocol transactions. A
protocol transaction additionally contains a set of references to previously executed protocol
transactions, together with further attributes regarding the execution. A protocol transaction
in the implementation contains a batch of payload transactions, but this feature of Avalanche
is ignored here, since it affects only efficiency. Throughout this paper, transaction refers to a
protocol transaction, unless the opposite is indicated, and payload means simply a payload
transaction.

A transaction references one or multiple previous transactions, unlike longest-chain
protocols, in which each transaction has a unique parent [23]. An execution of the Avalanche
protocol will therefore create a directed acyclic graph (DAG) that forms its ledger data
structure.

Given a protocol transaction T , all transactions that it references are called the parents of
T and denoted by parents(T ). The parents of T together with the parents of those, recursively,
are called the ancestors of T , denoted by ancestors(T ). Analogously, the transactions that
have T as parent are called the children of T and are denoted by children(T ). Finally, the
children of T together with their recursive set of children are called the descendants of T ,
denoted by descendants(T ).

Note that two payload transactions tx1 and tx2 in Avalanche that consume the same input
are not related, unless the condition of Definition 3.1 is fulfilled. However, two Avalanche
payloads consuming the same output conflict. For each transaction T , Avalanche maintains
a set conflictSet[T ] of transactions that conflict with T .

4 A description of the Avalanche protocol

Avalanche’s best-known quality is its efficiency. Permissionless consensus protocols, such
as those of Bitcoin and Ethereum, are traditionally slow, suffer from low throughput and
high latency, and consume large amounts of energy, due to their use of proof-of-work (PoW).
Avalanche substitutes PoW with a random sampling mechanism that runs at network speed
and that has every party adjust its preference to that of a (perceived) majority in the system.
Avalanche also differs from more traditional blockchains by forming a DAG of transactions
instead of a chain.

4.1 Overview

Avalanche is structured around its polling mechanism. In a nutshell, party u repeatedly selects
a transaction T and sends a query about it to k randomly selected parties in the network.
If a majority of them send a positive reply, the query is successful and the transaction
contributes to the security of other transactions. Otherwise, the transaction is still processed
but does not contribute to the security of any other transactions. Then the party selects a
new transaction and repeats the procedure. A bounded number of such polls may execute
concurrently. Throughout this work the terms “poll” and “query” are interchangeable.

OPODIS 2022
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Figure 1 The UTXO model, conflicting transactions, and related transactions in Avalanche. The
eight transactions are labeled T1, ..., T8. Each transaction is divided into three parts: the left part
is a tag Ti to identify the transaction, the middle part is its set of inputs, and the right part is
its set of outputs. The solid arrows indicate the references added by the protocol, showing the
parents of each transaction. For instance, T5 references T2 and T3 and has them as parents. The
dashed double-arrows indicate related transactions. For example, T5 and T2 are related because
u3 is created by T2 and consumed by T5. The conflict sets are denoted by the shaded (red)
rectangles. As illustrated, conflict sets can be symmetric, as for T4 and T5, where the conflict
sets are identical (conflictSet[T4] = conflictSet[T5]) or asymmetric, as for T6, T7, and T8 where
conflictSet[T6] ∪ conflictSet[T7] = conflictSet[T8].

In more detail, the protocol operates like this. Through the gossip functionality, every
party is aware of the network membership N . A party locally stores all those transactions
processed by the network that it knows. The transactions form a DAG through their
references as described in the previous section.

Whenever a user submits a payload transaction tx to the network, the user actually
submits it through a party u. Then, u randomly selects a number of leaf nodes from a part
of the DAG known as the virtuous frontier ; these are the leaf nodes that are not part of any
conflicting set. Party u then extends tx with references to the selected nodes and thereby
creates a transaction T from the payload transaction tx. Next, u sends a Query message
with T to k randomly, according to stake, chosen parties in the network and waits for their
replies in the form of Vote messages. When a party receives a query for T and if T and
its ancestors are preferred, then the party replies with a positive vote. The answer to this
query depends exclusively on the status of T and its ancestors according to the local view
of the party that replies. Moreover, the definition of preferred is non-trivial and will be
explained further below. If the polling party receives more than α > k

2 positive votes, the
poll is defined to be successful.

Every party u running the Avalanche protocol sorts transactions of its DAG into conflict
sets.

▶ Definition 4.1. The conflict set conflictSet[T ] of a given transaction T is the set of
transactions that have an input in common with T (including T itself).

Note that even if two transaction T and T ′ consume one common transaction output and
thus conflict, their conflict sets conflictSet[T ] and conflictSet[T ′] can differ, since T may
consume outputs of further transactions. (In Figure 1, for example, T8 conflicts with T6 and
T7, although T7 conflicts with T8 but not with T6.)
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Decisions on accepting transactions are made as follows. For each of its conflict sets, a
party selects one transaction and designates it as preferred. This designation is parametrized
by a confidence value d[T ] of T , which is updated after each transaction query. If the
confidence value of some conflicting transaction T ∗ surpasses d[T ], then T ∗ becomes the
preferred transaction in the conflict set.

It has been shown [28, 29] that regardless of the initial distribution of such confidence
values and preferences of transactions, this mechanism converges. For the transactions of
one conflict set considered in isolation, this implies that all honest parties eventually prefer
the same transaction from their local conflict sets. (The actual protocol has to respect also
dependencies among the transactions; we return to this later.)

To illustrate this phenomenon, assume that there exist only two transactions T and T ′

and that half of the parties prefer T , whereas the other half prefers T ′. This is the worst-case
scenario. Randomness in sampling breaks the tie. Without loss of generality, assume that
parties with preferred transaction T are queried more often. Hence, more parties consider T

as preferred as a consequence. Furthermore, the next time when a party samples again, the
probability of hitting a party that prefers T is higher than hitting one that prefers T ′. This is
the “snowball” effect that leads to ever more parties preferring T until every party prefers T .

This preferred transaction is the candidate for acceptance and incorporation into the
ledger. The procedure is parametrized by a confidence counter for each conflict set, which
reflects the probability that T is the preferred transaction in the local view of the party. The
party increments the confidence counter whenever it receives a positive vote to a query on a
descendant of T ; the counter is reset to zero whenever such a query obtains a negative vote.
When this counter overcomes a given threshold, T is accepted and its payload is added to the
ledger. We now present a detailed description of the protocol and refer to the pseudocode in
Algorithm 1–4.

4.2 Data structures
The information presented here has been taken from the whitepaper [29], the source code [5],
or the official documentation [4].

Notation. We introduce the notation used in the remaining sections including the pseu-
docode. For a variable a and a set S, the notation a

R← S denotes sampling a uniformly at
random from S. We frequently use hashmap data structures: A hashmap associates keys
in a set K with values in V and is denoted by HashMap[K → V]. For a hashmap F , the
notation F [K] returns the entry stored under key K ∈ K; referencing an unassigned key
gives a special value ⊥.

We make use of timers throughout the protocol description. Timers are created in a
stopped state. When a timer has been started, it produces a timeout event once after a given
duration has expired and then stops. A timer can be (re)started arbitrarily many times.
Stopping a timer is idempotent.

Global parameters. We recall that we model Avalanche as run by an immutable set of
parties N of size n. There are more three global parameters: the number k of parties queried
in every poll, the majority threshold α > k

2 for each poll, the acceptance parameters β1 and
β2, and the maximum number maxPoll of concurrent polls.

Local variables. Queried transactions are stored in a set Q, the subset R ⊂ Q is defined to
be the set of repollable transactions, a feature that is not explained in the original paper [29].
The number of active polls is tracked in a variable conPoll. The parents of a transaction are

OPODIS 2022
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selected from the virtuous frontier, VF , defined as the set of all non-conflicting transactions
that have no known descendant and whose ancestors are preferred in their respective conflict
sets. A transaction is non-conflicting if there is no transaction in the local DAG spending
any of its inputs. For completeness, we recall that conflicting transactions are sorted in
conflictSet[T] formed by transactions that conflict with T , i.e., transactions which have some
input in common with T .

Transactions bear several attributes related to queries and transaction preference. A
confidence value d[T ] is defined to be the number of positive queries of T and its descendants.
Given a conflict set conflictSet[T ], the variable pref[conflictSet[T ]], called preferred transac-
tion, stores the transaction with the highest confidence value in conflictSet[T ]. The variable
last[conflictSet[T ]] denotes which transaction was the preferred one in conflictSet[T ] after
the most recent update of the preferences. The preferred transaction is the candidate for
acceptance in each conflict set, the acceptance is modeled by a counter cnt[conflictSet[T ]].
Once accepted, a transaction remains the preferred one in its conflict set forever.

4.3 Detailed description

Each transaction goes through three phases during the consensus protocol: query of transac-
tions, reply to queries, and update of preferences. All of the previous phases call the same
set of functions.

Functions. The function updateDAG(T ) sorts the transactions in the corresponding conflict
sets. The function preferred(T ) (L 98) outputs true if T is the preferred transaction in its
conflict set and false otherwise. The function stronglyPreferred(T ) (L 100) outputs true
if and only if T , and everyone of its ancestors is the preferred transaction in its respective
conflict set.

The function acceptable(T ) (L 102) determines whether T can be accepted and its
payload added to the ledger or not. Transaction T is considered accepted when one of the
two following conditions is fulfilled:

T is the unique transaction in its conflict set, all the transactions referenced by T are
considered accepted, and cnt[conflictSet[T ]] is greater or equal than β1.
cnt[conflictSet[T ]] is greater or equal than β2.

Finally, the function updateRepollable() (L 106) updates the set of repollable transactions. A
transaction T is repollable if T has already been accepted; or all its ancestors are preferred, a
transaction in its conflict set has not already been accepted, and no parent has been rejected

Transaction query. A party in Avalanche progresses only by querying transactions. In
each of these queries, party u selects a random transaction T (L 38), from the set of
transactions that u has not previously queried by u. Then, it samples a random subset
S[T ] ⊂ N of k parties from the set of parties running the Avalanche protocol and sends
each a [query, T ] message. In the implementation of the protocol, party u performs up
to maxPoll simultaneous queries. The repoll functionality (L 33–48) consists of performing
several simultaneous transactions. When u does not know of any transaction that has not
been queried, u queries a transaction that has not been accepted yet. The main idea behind
this functionality is to utilize the network when this is not saturated. The repoll functionality
(L 33–48) constitutes one of the most notable changes from Avalanche’s whitepaper [29].
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Query reply. Whenever u receives a query message with transaction T , it replies with
a message [vote, u, T, stronglyPreferred(T )] containing the output of the binary function
stronglyPreferred(T ) according to its local view (L 100).

Update of preferences. Party u collects the replies [vote, v, T, stronglyPreferred(T )], and
counts the number of positive votes. On the one hand, if the number of positive votes
overcomes the threshold α (L 53), the query is considered successful. In this case party u

loops over T and all its ancestors T ′, increasing the confidence level d[T ′] by one. If T ′ is the
preferred transaction in its conflict set, then party u increases the counter for transaction
cnt[conflictSet[T ′]] by one. Subsequently, u checks whether T ′ has also previously been
the preferred transaction in its conflict set. And when T ′ is not the preferred transaction
according to the most recent query, party u will set the counter to one (L 53–67), in order to
ensure that cnt[conflictSet[T ′]] correctly reflects the number of consecutive successful queries
of descendants of T ′.

On the other hand, if u receives more than k − α negative votes, party u loops also over
T and its ancestors, and sets their counters cnt[conflictSet[T ′]] to zero as if to indicate that
T ′ and the other transactions should not be accepted yet. (L 68–73). Party u only waits
until α positive votes or k − α votes in total are received, since u can then determine the
outcome of the query.

Acceptance of transactions. Party u accepts T when its counter cnt[conflictSet[T ]] reaches
a certain threshold β1 or β2. If T is the only transaction in its conflicting set and all its
parents have already been accepted, then u accepts T if cnt[conflictSet[T ]] ≥ β1, otherwise u

waits until the counter overcomes a higher value β2.

No-op transactions. The local DAG is modified whenever a poll is finalized. In particular,
only the queried transaction and its ancestors are modified. Avalanche makes use of no-op
transactions to modify all the transactions in the DAG. After finalizing a poll, party u

queries the network with all the transactions in the virtuous frontier whose state has not
been modified, in a sequential manner.

4.4 Life of a transaction
We follow an honest transaction T through the protocol. The user submits the payload
transaction tx to some party u, then u adds references refs to the payload transaction,
creating a transaction T = (tx, refs). These references point to transactions in the virtuous
frontier VF . Transaction T is then gossiped through the network and added to the set of
known transactions T (L 22–28). Party u may also hear about new transactions through this
gossip functionality. Whenever this is the case, u add the transaction to its set of known
transactions T (L 29–32).

Party u eventually selects T to be processed. When this happens, u samples k random
parties from the network and stores them in S[T ]. Party u queries parties in S[T ] with T

and starts a timer timeout[T ]. T is added to Q (L 33–48).
Parties queried with T reply with the value of the function stronglyPreferred(T ) (L 100).

This function answers positively (true) if T is strongly preferred, i.e., if T and all of its
ancestors are the preferred transaction inside each respective conflict set. A negative answer
(false) is returned if either T or any of its ancestors fail to satisfy these conditions.

Party u then stores the answer from party v to the query in the variable votes[T ][v] and
proceeds according to them.

OPODIS 2022
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Algorithm 1 Avalanche (party u), state.

Global parameters and state
1: N // set of parties
2: maxPoll ∈ N // maximum number of concurrent polls, default value 4
3: k ∈ N // number of parties queried in each poll, default value 20
4: α ∈ {⌈k+1

2 ⌉, ..., k} // majority threshold for queries, default value 15
5: β1 ∈ N // threshold for early acceptance, default value 15
6: β2 ∈ N // threshold for acceptance, default value 150
7: T ← ∅ // set of known transactions
8: Q ⊂ T ← ∅ // set of queried transactions
9: R ⊂ Q ← ∅ // set of repollable transactions

10: D ⊂ T ← ∅ // set of no-op transactions to be queried
11: VF ⊂ Q ← ∅ // set of transactions in the virtuous frontier
12: conPoll ∈ N← 0 // number of concurrent polls performed
13: conflictSet : HashMap[T → 2T ] // conflict set
14: S : HashMap[T → N ] // set of sampled parties to be queried with a transaction
15: votes : HashMap[T × N → {false, true}] // variable to store the replies of queries
16: d : HashMap[T → N] // confidence value of a transaction
17: pref : HashMap[2T → T ] // preferred transaction in the conflict set
18: last : HashMap[2T → T ] // preferred transaction in the last query
19: cnt : HashMap[2T → N] // counter for acceptance of the conflict set
20: accepted : HashMap[T → {false, true}] // indicator that a transaction is accepted
21: timer : HashMap[T → {timers}] // timer for the query of transactions

If u receives more than α positive votes, u runs over all the ancestors of T . If the ancestor
T ′ was the most recent (or “last”) preferred transaction in its conflict set, its counter is
increased by one. Otherwise, T ′ becomes the most recent preferred transaction and its
counter is reset to one (L 53–67).

If u receives at least k − α false votes, u resets the counter for acceptance of all its
ancestors cnt[T ′]← 0 (L 68–73).

If timer timeout[T ] is triggered before the query is completed, the query is aborted instead.
The votes are reset and every party is removed from the set S[T ], so no later reply can
be considered (L 80–83).

In parallel to the previous procedure, party u may perform up to conPoll concurrent queries
of different transactions.

Once T has been queried, it awaits in the local view of party u to be accepted. Since by
assumption T is honest, conflictSet[T ] = {T}. Hence T is accepted when cnt

[
conflictSet[T ]

]
reaches β1, if its ancestors are already accepted, or β2 otherwise (L 102–104). We recall that
cnt[conflictSet[T ]] is incremented whenever a query involving a descendant of T is successful.
However, when a non-descendant of T is queried, it may trigger a no-op transaction (L 35)
that is a descendant of T .

If there is no new transaction waiting to be queried, i.e., T \ Q is empty, the party
proceeds with a repollable transaction (L 40–42). A repollable transaction is one that has not
been previously accepted but it is a candidate to be accepted (L 106–110).
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Algorithm 2 Avalanche (party u), part 1.

22: upon broadcast(tx) do
23: if V (tx) then
24: T ← (tx,VF) // up to a maximum number of parents
25: T ← T ∪ {T}
26: accepted[T ]← false
27: updateDAG(T )
28: gossip message [broadcast, T ]

29: upon hearing message [broadcast, T ] do
30: if T ̸∈ T do
31: T ← T ∪ {T}
32: accepted[T ]← false

33: upon conPoll < maxPoll do
34: conPoll← conPoll + 1
35: if D ≠ ∅ then // prefer no-op transactions
36: T ← least recent transaction in D
37: else if T \ Q ̸= ∅ then // take any not yet queried transaction
38: T

R← T \ Q
39: d[T ]← 0
40: else // all transaction queried already, take one of them
41: updateRepollable()
42: T

R← R
43: S[T ]← sample(N \ {u}, k) // sample k parties randomly according to stake
44: send message [Query, T ] to all parties v ∈ S[T ]
45: D ← D ∪ {(⊥,VF \ {T})} // create a no-op transaction
46: start timer[T ] // duration ∆query
47: Q ← Q∪ {T}
48: updateDAG(T )

49: upon receiving message [Query, T ] from party v do
50: send message [Vote, u, T, stronglyPreferred(T )] to party v

51: upon receiving message [Vote, v, T, w] such that v ∈ S[T ] do // w is the vote
52: votes[T, v]← w // w ∈ {false, true}

5 Security analysis

Avalanche deviates from the established PoW protocols and uses a different structure. Its
security guarantees must be assessed differently. The bedrock of security for Avalanche is
random sampling.

5.1 From Snowball to Avalanche
The Avalanche protocol family includes Slush, Snowflake, and Snowball [29] that implement
single-decision Byzantine consensus. Every party proposes a value and every party must
eventually decide the same value for an instance. The Avalanche protocol itself provides a
“payment system” [29, Sec. V]; we model it here as generic broadcast.
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Algorithm 3 Avalanche (party u), part 2.

53: upon ∃T ∈ T such that
∣∣{v ∈ S[T ] | votes[T, v] = true}

∣∣ ≥ α do // query successful
54: stop timer[T ]
55: votes[T, ∗]← ⊥ // remove all entries in votes for T

56: S[T ]← [ ] // reset S for T

57: d[T ]← d[T ] + 1
58: for T ′ ∈ ancestors(T ) do // all ancestors of T

59: d[T ′]← d[T ′] + 1
60: if d[T ′] > d[pref[conflictSet[T ′]]] then
61: pref[conflictSet[T ′]]← T ′

62: if T ′ ̸= last[conflictSet[T ′]] then
63: last[conflictSet[T ′]]← T ′

64: cnt[conflictSet[T ′]]← 1
65: else
66: cnt[conflictSet[T ′]]← cnt[conflictSet[T ′]] + 1
67: conPoll← conPoll− 1

68: upon ∃T ∈ T such that
∣∣{v ∈ S[T ] | votes[T, v] = false}

∣∣ > k − α do// query failed
69: stop timer[T ]
70: votes[T, ∗]← ⊥ // remove all entries in votes for T

71: S[T ]← [ ] // reset S for T

72: for T ′ ∈ ancestors(T ) do // all ancestors of T

73: cnt[conflictSet[T ′]]← 0

74: upon ∃T ∈ T such that acceptable(T) ∧ ¬accepted[T ] do // T can be accepted
75: (tx, parents)← T

76: if V (tx) then
77: accepted[T ]← true
78: deliver tx

80: upon timeout from timer[T ] do // not enough votes on T received
81: Q ← Q \ {T}
82: votes[T, ∗]← ⊥ // remove all entries in votes for T

83: S[T ]← [ ] // do not consider more votes from this query

The whitepaper [29] meticulously analyzes the three consensus protocols. It shows that
as long as f = O(

√
n), the consensus protocols are live and safe [29] based on the analysis

of random sampling [26]. On the other hand, an adversary controlling more than Θ(
√

n)
parties may have the ability to keep the network in a bivalent state. For the remainder of
this section we assume f = O(

√
n).

However, the Avalanche protocol itself is introduced without a rigorous analysis. The
most precise statement about its is that “it is easy to see that, at worst, Avalanche will
degenerate into separate instances of Snowball, and thus provide the same liveness guarantee
for virtuous transactions” [29, p. 9]. In fact, it is easy to see that this is wrong because every
vote on a transaction in Avalanche is linked to the vote on its ancestors. The vote on a
descendant T ′ of T depends on the state of T .



I. Amores-Sesar, C. Cachin, and E. Tedeschi 10:13

Algorithm 4 Avalanche, auxiliary functions.

84: function updateDAG(T )
85: VF ← set of non-conflicting leaves in the DAG
86: conflictSet[T ]← ∅
87: for T ′ ∈ T such that T ′ ̸= T and T ′ has a common input with T do
88: conflictSet[T ]← conflictSet[T ] ∪ {T ′}
89: conflictSet[T ′]← conflictSet[T ′] ∪ {T}
90: if conflictSet[T ] = ∅ then // T is non-conflicting
91: pref[conflictSet[T ]]← T

92: last[conflictSet[T ]]← T

93: cnt[conflictSet[T ]]← 0
94: conflictSet[T ]← conflictSet[T ] ∪ {T}

95: function getParents(T )
96: (tx, parents)← T

97: return parents // set of parents stored in T

98: function preferred(T )
99: return T

?= pref[conflictSet[T ]]

100: function stronglyPreferred(T )
101: return

∧
T ′∈ancestors(T )

preferred(T ′)

102: function acceptable(T )
103: return

(∣∣conflictSet[T ]
∣∣ = 1 ∧ cnt

[
conflictSet[T ]

]
≥ β1

)
∧

∧
T ′∈ parents(T )

acceptable(T ′)

104: ∨ cnt
[
conflictSet[T ]

]
≥ β2

105: function isRejected(T )
return ∃T ′ ∈ T such that ∀T ′ ∈ conflictSet[T ] \ {T} : acceptable(T ′)

106: function updateRepollable()
107: R ← ∅
108: for T ∈ T do
109: if acceptable(T ) ∨

∧
T ′∈ parents(T )

stronglyPreferred(T ′) ∧ ¬isRejected(T ′) then

110: R ← R∪ {T}

However, we can isolate single executions of Snowball that occur inside Avalanche. For an
execution of Avalanche and a transaction T , we define an equivalent execution of Snowball
consensus as the execution in which a party u proposes 1 if it locally prefers T in the
Avalanche execution, proposes 0 if u prefers some other transaction, and does not propose
otherwise. Every party also selects the same parties in each round of snowball and for a
query with T , for a query with a transaction that conflicts with T , or for any query with a
descendant of these two. A formal description of Snowball is provided in the full version [2].

▶ Lemma 5.1. If party u delivers an honest transaction in Avalanche, then u decided 1 in
the equivalent execution of Snowball with threshold β1. Furthermore, u delivers a conflicting
transaction in Avalanche, then u decides 1 in Snowball with threshold β2.

Proof. By construction of the Avalanche and Snowball protocols [29], the counter for ac-
ceptance of value 1 in Snowball is always greater or equal than the counter for acceptance
in Avalanche. Since a successful query in Avalanche implies a successful query in Snowball,
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if an honest transaction in Avalanche is delivered, the counter in the equivalent Snowball
instance is at least β1. Analogously, if a conflicting transaction in Avalanche is delivered,
then the counter in Snowball is at least β2. Hence, a party in Snowball would decide 1 with
the respective thresholds. ◀

Looking ahead, we will introduce a modification of Avalanche that ensures the complete
equivalence between Snowball and Avalanche. We first assert some safety properties of the
Avalanche protocol.

▶ Theorem 5.2. Avalanche satisfies integrity, partial order, and external validity of a generic
broadcast for payload transactions under relation ∼ and UTXO-validity.

Proof. The proof is structured by property:
Integrity. We show that every payload is delivered at most once. A payload tx may
potentially be delivered multiple times in two ways: different protocol transactions that
both carry tx may be accepted or tx is delivered multiple times as payload of the same
protocol transaction.
First, we consider the possibility of accepting two different transactions T1 and T2
carrying tx. Assume that party u accepts transaction T1 and party v accepts transaction
T2. By definition, T1 and T2 are conflicting because they spend the same inputs. Using
Lemma 5.1, party u and v decide differently in the equivalent execution in Snowball,
which contradicts agreement property of the Snowball consensus [29].
The second option is that one protocol transaction T that contains tx is accepted
multiple times. However, this is not possible either because tx is delivered only if
accepted[T ] = false; variable accepted[T ] is set to true when transaction T is accepted
(L 74–78).
Partial order. Avalanches satisfies partial order because no payload is valid unless all
payloads creating its inputs have been delivered (L 74–78). Transactions T and T ′ are
related according to Definition 3.1 if and only if T has as input (i.e., spends) at least one
output of T ′, or vice versa. This implies that related transactions are delivered in the
same order for any party.
External validity. The external validity property follows from L 74, as a payload
transaction can only be delivered if it is valid, i.e., its inputs have not been previously
spent and the cryptographic requirements are satisfied. ◀

Theorem 5.2 shows that Avalanche satisfies the safety properties of a generic broadcast in
the presence of an adversary controlling O(

√
n) parties. A hypothetical adversary controlling

substantially more parties could violate safety. It is not completely obvious how an adversary
could achieve that. Such an adversary would broadcast two conflicting transactions T1 and
T2. As we already discussed, and also explained in the whitepaper of Avalanche [29], such
an adversary can keep the network in a bivalent state, so the adversary keeps the network
divided into two parts: parties in part P1 consider T1 preferred, and parties in part P2 prefer
T2. The adversary behaves as preferring T1 when communicating with parties is P1 and as
preferring T2 when communicating with parties in P2. Eventually, a party u ∈ P1 will query
only parties in P1 or queries the adversary β2 times in a row. Thus, u will accept transaction
T1. Similarly, a party v ∈ P2 will eventually accept transaction T2. Party u will deliver the
payload contained in T1 and v the payload contained in T2, hence violating agreement. An
adversary controlling at most O(

√
n) can also violate agreement, but the required behavior

is more sophisticated, as we explain next.
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5.2 Delaying transaction acceptance
An adversary aims to prevent that a party u accepts an honest transaction T . A necessary pre-
condition for this is cnt[conflictSet[T ]] ≥ β1. Note that whenever a descendant of T is queried,
cnt[conflictSet[T ]] is modified. If the query is successful (L 53), then cnt[conflictSet[T ]] is
incremented by one. If the query is unsuccessful, cnt[conflictSet[T ]] is reset to zero. Remark,
however, cnt[conflictSet[T ]] cannot be reset to one as a result of another transaction becom-
ing the preferred in conflictSet[T ] (L 62) because T is honest, as there exist no transaction
conflicting with T .

Furthermore, a naive adversary that aims to delay transactions by not answering the query
of a transaction T ′ would not succeed because the timers timeout[T ′] would be triggered and
the query would be aborted. Thus, the honest party would select new k parties to query and
proceed in the protocol.

Our adversary proceeds by sending to u a series of cleverly generated transactions that
reference T . We describe the steps that will delay the acceptance of T (see also Algorithm 5):
1. Preparation phase. The adversary submits conflicting transactions T1 and T2. For

simplicity, we assume that she submits first T1 and then T2, so the preferred transaction
in both conflict sets will be T1. The adversary then waits until the target transaction T

is submitted.
2. Main phase. The adversary repeatedly sends malicious transactions referencing the

target T and T2 to u. These transactions are valid but they reference a particular set of
transactions.

3. Searching phase. Concurrently to the main phase, the adversary looks for transactions
containing the same payload as T . If some are found, she references them as well from
the newly generated transactions.

Algorithm 5 Liveness attack: Delaying transaction T .

Initialization
111: create two conflicting transactions T1 and T2
112: gossip two messages [broadcast, T1] and [broadcast, T2]
113: A ← ∅

114: upon hearing message [broadcast, T ] do // target transaction
115: A ← {T}

116: upon cnt[conflictSet[T ]] = ⌊β1
2 ⌋ in the local view of u do

117: create T̂ such that T2 ∈ ancestors(T̂ ) and for all T ′ ∈ A, also T ′ ∈ ancestors(T̂ )
118: send message [broadcast, T̂ ] to party u // pretend to gossip the message

119: upon hearing message [broadcast, T̃ ] such T̃ and T contain the same payload do
120: A ← A∪ {T̃}

For simplicity, we assume that the adversary knows the acceptance counter of T at u,
so she can send a malicious transaction whenever T is close to being accepted. In practice,
she can guess this only with a certain probability, which will degrade the success rate of the
attack. We also assume that the query of an honest transaction is always successful, which is
the worst case for the adversary.
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After u submits T , the adversary starts the main phase of the attack. If u queries an
honest transaction T̂ , and if T̂ references a descendant of T , then cnt[conflictSet[T ]] increases
by one. If it does not, then T̂ may cause u to submit a no-op transaction referencing a
descendant of T . Hence, honest transactions always increase cnt[conflictSet[T ]] by one, this
is the worst case for an adversary aiming to delay the acceptance of T .

If u queries a malicious transaction T̂ , then honest parties compute stronglyPreferred(T̂ )
and reply with this value. Since T2 is an ancestor of T̂ and not the preferred transaction
in its conflict set (as we have assumed that T1 is preferred), all queried parties return
false. Thus, u sets acceptance counter of every ancestor of T̂ to zero (L 68), in particular,
cnt[conflictSet[T ]]← 0. However, since T̂ does not reference the virtuous frontier, u submits
a no-op transaction that references a descendant of T , thus increasing cnt[conflictSet[T ]] to
one.

We show that when the number of transactions is low, in particular when |T \ Q| ≤ 1 for
every party, then Avalanche may lose liveness.

▶ Theorem 5.3. Avalanche does not satisfy validity nor agreement of generic broadcast with
relation ∼ with one single malicious party if |T \ Q| ≤ 1 for every party.

Proof. We consider again the adversary described above that targets T and u.
Validity. Whenever cnt[conflictSet[T ]] in the local view of u reaches ⌊β1

2 ⌋, the adversary
sends a malicious transaction to party u, who immediately queries it (since |T \ Q| ≤ 1).
It follows that u sets cnt[conflictSet[T ]] to zero and increases it intermediately afterwards,
due to a no-op transaction. This process repeats indefinitely over time and prevents u

from delivering the payload in T .
Agreement. Assume that an honest party broadcasts the payload contained in T . The
adversary forces a violation of agreement by finding honest parties u and v such that
cnt[conflictSet[T ]] = β1 − 1 at v and cnt[conflictSet[T ]] < β1 − 1 at u (such parties exist
because in the absence of an adversary, as cnt[conflictSet[T ]] increases monotonically over
time). The adversary then sends an honest transaction Th that references T to v and a
malicious transaction Tm, as described before, to u. On the one hand, party v queries Th,
increments cnt[conflictSet[T ]] to β1, accepts transaction T , and delivers the payload. On
the other hand, party u queries Tm and sets cnt[conflictSet[T ]] to one. After that, the
adversary behaves as discussed before. Notice that v has delivered the payload within T

but u will never do so. ◀
An adversary may thus cause Avalanche to violate validity and agreement. For this attack,
however, the number of transactions in the network must be low, in particular, |T \ Q| ≤ 1.
In July 2022, the Avalanche network processed an average of 647238 transactions per
day (https://subnets.avax.network/stats/network). Assuming two seconds per query,
four times the value observed in our local implementation, the recommended values of 30
transactions per batch, and four concurrent polls, the condition |T \Q| ≤ 1 is satisfied 88% of
the time. However, the adversary still needs to know the value of the counter for acceptance
of the different parties.

5.3 A more general attack
We may relax the assumption of knowing the acceptance counters and also send the malicious
transaction to more parties through gossip. After selecting a target transaction, the adversary
continuously gossips malicious transactions to the network instead of sending them only to
one party as in Algorithm 5. For analyzing the performance of this attack, our figure of
merit will be the number of transactions to be queried by an honest party (not counting

https://subnets.avax.network/stats/network
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no-ops) for confirming the target transaction T . The larger this number becomes, the longer
it will take the party until it may accept T . We assume that T \Q ̸= ∅ and that a fraction γ

of those transactions are malicious at any point in time1. A non-obvious implication is that
the repoll function never queries the same transaction twice.

▶ Lemma 5.4. Avalanche requires every party to query at least β1 transactions before
accepting transaction T in the absence of an adversary.

Proof. The absence of an adversary carries several simplifications. Firstly, there are no
conflicting transactions, thus every transaction is the preferred one in its respecting conflict
set and every query is successful. Secondly, due to the no-op transactions, the counter for
acceptance of every transaction in the DAG is incremented by one after each query. Finally,
a transaction T is accepted when its counter for acceptance reaches β1, since the counter of
the parent of any transaction reaches β1 strictly before T (L 102). ◀

▶ Lemma 5.5. The average number of queried transactions before accepting transaction T

in the presence of the adversary, as described in the text, is at least

β1 + 1 + (2 + β1γ)(1− γ)β1 − (1− γ)2β1(1 + β1γ)
γ(1− γ)β1(1− (1− γ)β1) .

Proof. We recall that in the worst-case scenario for the adversary, the query of an honest
transaction increments the counter for acceptance of the target transaction T by one, while
the query of a malicious transaction, effectively, resets the counter for acceptance to one, as
a result of a no-op transaction.

Let a random variable W denote the number of transactions queried by u until T is
accepted, and let X ∈ {0, 1} model the outcome of the following experiment. Party u samples
transactions until it picks a malicious transaction or until it has sampled β1 − 1 honest
transactions. In the first case, X takes the value zero, and otherwise, X takes the value
one. By definition, X is a Bernoulli variable with parameter p = (1− γ)(β1−1). Thus, the
number of attempts until X returns one is a random variable Y with geometric distribution,
Y ∼ G(p), with the same parameter p. We let Wa be the random variable denoting the
number of queried transactions per attempt of this experiment. The expected number of
failed attempts is E[Y ] = 1

(1−γ)β1 . Furthermore, the probability that an attempt fails after
sampling exactly k transactions, for k ≤ β1, is

P[Wa = k|X = 0] = γ(1− γ)k−1

1− (1− γ)β1
.

Thus, the expected number of transactions per failed attempt can be expressed as

E[W |X = 0] = 1− (1− γ)β
1 (1 + β1γ)

γ(1− (1− γ)β1) . (1)

The expected number of transaction queried during a successful attempt is at least β1 by
Lemma 5.4. Finally, the total expected number of queried transactions can be written as the
expected number of transaction per failed attempt multiplied by the expected number of
failed attempts plus the expected number of transactions in the successful attempt,

E[W ] = E[Wa|X = 0] · (E[Y ]− 1) + E[Wa|X = 1] · 1. (2)

1 Avalanche may impose a transaction fee for processing transactions. However, since the malicious
transactions cannot be delivered, this mechanism does not prevent the adversary from submitting a
large number of transactions.

OPODIS 2022



10:18 When Is Spring Coming? A Security Analysis of Avalanche Consensus

From equations (1) and (2) and basic algebra, we obtain

E[W ] = β1 + 1 + (2 + β1γ)(1− γ)β1 − (1− γ)2β1(1 + β1γ)
γ(1− γ)β1(1− (1− γ)β1) . ◀

This expression is complex to analyze. Hence, a graphical representation of this bound is
given in Figure 2. It shows the expected smallest number of transactions to be queried by
an honest party (not counting no-ops) until it can confirm the target transaction T . The
larger this gets, the more the protocol loses liveness. It is relevant that this bound grows
proportional to 1

(1−γ)β1 , i.e., exponential in acceptance threshold β1 since (1− γ) < 1.

Figure 2 Expected delay in number of transactions needed to confirm a given transaction with
acceptance threshold β1 = 15, the recommended value [4], and assuming that the queries of honest
transactions are successful. The (green) horizontal line shows β1, the expected delay without attacker.
The (blue) dotted line represents the expected confirmation delay in Avalanche depending on the
fraction of malicious transactions. The (orange) squared line denotes the delay in Glacier (Section 6).

The Avalanche team has acknowledged our findings and the vulnerability. The protocol
deployed in the actual network, however, differs from our formalization in a way that should
prevent the problem.

6 Fixing liveness with Glacier

The adversary is able to delay the acceptance of an honest transaction T because T is directly
influenced by the queries of its descendants. Note the issuer of T has no control over its
descendants according to the protocol. A unsuccessful query of a descendant of T carries a
negative consequence for the acceptance of T , regardless of the status of T inside its conflict
set. This influence is the root of the problem described earlier. An immediate, but inefficient
remedy might be to run one Snowball consensus instance for each transaction. However,
this would greatly degrade the throughput and increase the latency of the protocol, as many
more messages would be exchanged.

We propose here a modification, called Glacier, in which an unsuccessful query of a
transaction T carries negative consequences only for those of its ancestors that led to negative
votes and caused the query to be unsuccessful. Our protocol is shown in Algorithm 6. It
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specifically modifies the voting protocol and adds to each vote message for T a list L with
all ancestors of T that are not preferred in their respective conflict sets (L 123–127). When
party u receives a negative vote like [Vote, v, T, false, L], it performs the same actions as
before. Additionally, it increments a counter for each ancestor T ∗ of T to denote how many
parties have reported T ∗ as not preferred while accepting T (L 135). If u receives a positive
vote, the protocol remains unchanged.

If the query is successful because u receives at least α positive votes on T , then it
proceeds as before (Algorithm 3, L 53). But before u declares the query to be unsuccessful,
it furthermore waits until having received a vote on T from all k parties sampled in the
query (L 137). When this is the case, u only resets the counter for acceptance of those
ancestors T ∗ of T that have been reported as non-preferred by more than k − α queried
parties (L 141–143). If T ∗ is preferred by at least α parties, however, then u increments its
confidence level as before (L 145).

Algorithm 6 Modifications to Avalanche (Algorithm 1–4) for Glacier (party u).

State
121: nonpref : HashMap[T × T → N] // votes on T saying T ′ is not preferred

122: upon receiving message [Query, T ] from party v do // replaces L 49
123: L← [ ] // contains the non-preferred ancestors of T

124: for T ′ ∈ ancestors(T ) do
125: if ¬preferred(T ′) then
126: append T ′ to L

127: send message [Vote, v, T, stronglyPreferred(T ), L] to party v

128: // replaces code at L 51
129: upon receiving message [Vote, v, T, w, L] from a party v ∈ S[T ] do // w is the vote
130: votes[T, v]← w

131: for T ′ ∈ L do
132: if nonpref[T, T ′] =⊥ then
133: nonpref[T, T ′]← 1
134: else
135: nonpref[T, T ′]← nonpref[T, T ′] + 1

136: // replaces code at L 68
137: upon ∃T ∈ T such that

∣∣votes[T, v]
∣∣ = k ∧

∣∣∣{v ∈ S[T ] | votes[T, v] = false
}∣∣∣ > k − α do

138: stop timer[T ]
139: votes[T, ∗]← ⊥ // remove all entries in votes for T

140: S[T ]← [ ] // reset the HashMap S

141: for T ′ such that nonpref[T, T ′] ̸= ⊥ do // all ancestors of T

142: if nonpref[T, T ′] > k − α then
143: cnt[conflictSet[T ′]]← 0
144: else // nonpref[T, T ′] ≤ α

145: cnt[conflictSet[T ′]]← cnt[conflictSet[T ′]] + 1
146: nonpref[T, ∗]← ⊥

Considering the adversary introduced in Section 5.3, a negative reply to the query of
a descendant of the target transaction T does not carry any negative consequence for the
acceptance of T here. In particular, the counter for acceptance of transaction T is never
reset, even when a query is unsuccessful, because T is the only transaction in its conflicting
set, then always preferred. Thus, transaction T will be accepted after β1 successful queries,
if all its parents are accepted, or β2 successful queries if they are not accepted. Assuming
that queries of honest transactions are successful, on average β

1−p transactions are required
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to accept T for β ∈ [β1, β2] depending on the state of the parents of T . For simplicity we
assume that the parents are accepted, thus, the counter needs to achieve the value β1. If this
were not the case, then it is sufficient to substitute β1 with β in the upcoming expression.
Avalanche requires on average β1 + 1+(2+β1γ)(1−γ)β1 −(1−γ)2β1 (1+β1γ)

γ(1−γ)β1 (1−(1−γ)β1 ) transactions to accept
T by Lemma 5.5. The assumption that the query of honest transactions is always successful
is more beneficial to Avalanche than to Glacier, since in Avalanche such a query resets the
counter for acceptance of T . But in Glacier, the query simply leaves the counter as it is. The
value of the acceptance threshold β1 is also more beneficial for Avalanche since the number of
required transactions increases linearly in Glacier and exponentially in Avalanche. Figure 2
shows a comparison of both expressions.

In Glacier, the vote for a transaction is independent of the vote of its descendant and
ancestors, even if a query of a transaction carries an implicit query of all its ancestors. Thus,
Lemma 5.1 can be extended.

▶ Lemma 6.1. Party u delivers a transaction T with counter for acceptance with value
cnt[conflictSet[T ]] ≥ β1 in Glacier if and only if u decides 1 in the equivalent execution of
Snowball with threshold cnt[conflictSet[T ]].

Proof. Consider a transaction T in the equivalent execution of Snowball. The counter for
acceptance of the value 1 in Snowball is always the same as the counter for acceptance of
transaction T in Glacier because of the modifications introduced by Glacier. Thus, following
the same argument as in Lemma 5.1, transaction T is accepted in Glacier with counter
cnt[conflictSet[T ]] if and only if 1 is decided with counter cnt[conflictSet[T ]] in the equivalent
execution of Snowball. ◀

▶ Theorem 6.2. The Glacier algorithm satisfies the properties of generic broadcast in the
presence of an adversary that controls up to O(

√
n) parties.

Proof. Lemma 5.1 is a a special case of Lemma 6.1. Theorem 5.2 shows that Lemma 5.1
and the properties of Snowball [2] guarantee that Avalanche satisfies integrity, partial order,
and external validity. In the same way, Lemma 6.1 guarantees that Glacier satisfies these
same properties. Thus, it is sufficient to prove that Glacier satisfies validity and agreement.

Validity. Assume that an honest party broadcasts a payload tx. Because the party is
honest, the transaction T containing tx is valid and non-conflicting. In the equivalent
execution of Snowball, every honest party that proposes a value proposes 1. Hence, using
the validity and termination properties of Snowball, every honest party eventually decides
1. Using Lemma 6.1, every honest party eventually delivers tx.
Agreement. Assume that an honest party delivers a payload transaction tx contained in
transaction T . Using Lemma 6.1, an honest party decides 1 in the equivalent execution
of Snowball. Because of the termination and agreement properties of Snowball, every
honest party decides 1. Using Lemma 6.1 again, every honest party eventually delivers
payload tx

We conclude that Glacier satisfies the properties of generic broadcast. ◀

With the modification to Glacier, Avalanche can be safely used as the basis for a payment
system. Notice that the sample mechanism is not modified, thus remains the same as
in the original protocol. The only possible concern with Glacier could be a decrease in
performance compared to Avalanche. However, Glacier does not reduce the performance but
rather improves it. Glacier only modifies the update in the local state of party u after a
query has been unsuccessful. The counter of acceptance of a given transaction T in Glacier
implementation is always greater or equal than its counterpart in Avalanche. This follows
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because a reset of cnt[conflictSet[T ]] in Glacier implies the same reset in Avalanche. Such
a reset in Glacier occurs if the query of a descendant of T fails and T was reported as
non-preferred by more than k − α parties, whereas in Avalanche it is enough if the query
of the descendant failed. In Avalanche, cnt[conflictSet[T ]] is incremented if the query of
a descendant of T succeeds, and the same occurs in Glacier. Thus, cnt[conflictSet[T ]] in
Glacier is at least as large as in Avalanche. We recall that a transaction is accepted when
cnt[conflictSet[T ]] reaches a threshold depending on some conditions of the local view of the
DAG, but these are identical for Glacier and Avalanche. Hence, every transaction that is
accepted in Avalanche is accepted in Glacier with equal or smaller latency. This implies not
only that the latency of Glacier is smaller than the latency of Avalanche, but also that the
throughput of Glacier is at least as good as the throughput of Avalanche.

7 Conclusion

Avalanche is well-known for its remarkable throughput and latency that are achieved through
a metastable sampling technique. Our pseudocode captures in a compact and relatively simple
manner the intricacies of the protocol. We show that Avalanche, as originally introduced,
possesses a vulnerability allowing an adversary to delay transactions arbitrarily. We also
address such vulnerability with a modification of the protocol, Glacier, that allows Avalanche
to satisfy both safety and liveness.

The developers of Avalanche have acknowledged the vulnerability, and the actual imple-
mentation does not suffer from it due to an alternative fix. Understanding this variant of
Avalanche remains open and is subject of future work.
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