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Abstract
Consider search on an infinite line involving an autonomous robot starting at the origin of the line
and an oblivious moving target at initial distance d ≥ 1 from it. The robot can change direction
and move anywhere on the line with constant maximum speed 1 while the target is also moving on
the line with constant speed v > 0 but is unable to change its speed or direction. The goal is for the
robot to catch up to the target in as little time as possible.

The classic case where v = 0 and the target’s initial distance d is unknown to the robot is the
well-studied “cow-path problem”. Alpert and Gal [2] gave an optimal algorithm for the case where a
target with unknown initial distance d is moving away from the robot with a known speed v < 1. In
this paper we design and analyze search algorithms for the remaining possible knowledge situations,
namely, when d and v are known, when v is known but d is unknown, when d is known but v is
unknown, and when both v and d are unknown. Furthermore, for each of these knowledge models
we consider separately the case where the target is moving away from the origin and the case where
it is moving toward the origin. We design algorithms and analyze competitive ratios for all eight
cases above. The resulting competitive ratios are shown to be optimal when the target is moving
towards the origin as well as when v is known and the target is moving away from the origin.

2012 ACM Subject Classification Theory of computation → Online algorithms; Theory of computa-
tion → Adversary models

Keywords and phrases Infinite Line, Knowledge, Oblivious, Robot, Search, Search-Time, Speed,
Target

Digital Object Identifier 10.4230/LIPIcs.OPODIS.2022.12

Related Version arXiv Version: https://doi.org/10.48550/arXiv.2211.03686 [7]

Funding Evangelos Kranakis: Research supported in part by NSERC Discovery grant.

1 Introduction

Search is important to many areas of computer science and mathematics and has received
the attention of numerous studies. In the simplest search scenario, one is interested in the
optimal trajectory of a single autonomous mobile agent (also referred to simply as a robot)
tasked with finding a target placed at an unknown location on the infinite line. The line
search problem is to give an algorithm for the agent so as to minimize the competitive ratio
defined as the supremum over all possible target locations of the ratio of the time the agent
takes to find the target and the time it would take if the target’s initial position was known
to the robot ahead of time. This classic problem has led to many variations (see [2] for more
on its history).
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12:2 Line Search for an Oblivious Moving Target

In this paper we consider an extension of the line search problem involving an autonomous
robot and an oblivious moving target. The search is again performed on an infinite line
and concerns an autonomous robot starting at the origin of the line but differs from the
previously studied case in that the search is for a moving target whose speed and direction
are not necessarily known to the searching robot. The robot starts at the origin and the
target at an arbitrary distance d from the origin. The target is moving with constant speed
and is oblivious in that it cannot change its speed and/or direction of movement. We consider
and analyze several alternative knowledge-based scenarios in which the target’s speed and
initial distance from the origin may be known or unknown to the searching robot. The case
where a target with unknown initial distance from the origin is moving away from the origin
was solved by Alpern and Gal [2]. As far as we are aware, these are the first results for the
remaining cases.

1.1 Notation and terminology

On the infinite real line, consider an autonomous robot which is initially placed at the origin
whose maximum speed is 1 and an oblivious robot (also referred to as the moving target)
initially placed at a distance d to the right or left of the origin and moving with constant
speed v > 0. As is usually done in linear search and in order to avoid trivial considerations on
the competitive ratio by adversarially placing the target very close to the robot, we assume
that d is not smaller than the unit distance, i.e., d ≥ 1.

The target may be moving away from or toward the origin. If it is moving away, we
assume its speed is strictly less than 1 as otherwise the problem can not be solved. Further,
we assume that the autonomous robot knows the direction the target is moving (away from
or toward the origin). The search is completed as soon as the robot and target are co-located.

The movement of the autonomous robot is determined by a trajectory which is defined
as a continuous function t → f(t), with f(t) denoting the location of the robot at time t.
Moreover, it is true that |f(t) − f(t′)| ≤ u|t − t′|, for all t, t′, where u is the speed of the
agent (be that the searching robot or the oblivious target). The autonomous robot can move
with its own constant speed and during the traversal of its trajectory it may stop and/or
change direction instantaneously and at any time as specified by the search algorithm.

A search strategy is a sequence of movements followed by the robot. The competitive
ratio of a search strategy X, denoted CRX , is defined as the supremum over all possible
initial target locations and speeds of the ratio of the time the agent takes to find the target
and the time it would take if the target’s initial position was known to the robot ahead of
time. The competitive ratio of a certain type of search problem is the infimum of CRX taken
over all possible strategies X for this problem. By abuse of notation we may drop mention
of X when this is easily implied from the context.

Our goal in this paper is to prove bounds on the competitive ratios of algorithms under
four different knowledge models:
1. FullKnowledge: The robot knows both the target’s speed v and its initial distance d.
2. NoDistance: The robot knows the target’s speed v but not its initial distance d.
3. NoSpeed: The robot knows the target’s initial distance d, but not its speed v.
4. NoKnowledge: The robot knows neither the target’s speed v nor its initial distance d.
For all knowledge models, the robot does not know the target’s initial position. We study
each of the above knowledge models for the case where the target is moving toward the origin
(Toward) and where it is moving away (Away) from the origin. In each case, we assume the
robot knows the direction of travel of the target.
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1.2 Related Work
Several research papers have considered the search problem for a robot searching for a static
(fixed) target placed at an unknown location on the real line, see [3, 14]. The problem was
first independently considered in a stochastic setting by Bellman and Beck in the 1960’s
(cf. [4, 5] as well as [3, 14]). In a deterministic setting it is now well known that the optimal
trajectory for this single agent search uses a doubling strategy whose trajectory attains a
competitive ratio of 9. Linear search has attracted much attention and been the focus of
books including [1, 2, 15].

The case of a moving target appears to have been first considered by McCabe [13]. In
that paper, the problem of searching for an oblivious target that follows a Bernoulli random
walk on the integers is considered. For the case of a deterministic oblivious searcher, the only
result we are aware of us is found in Alpern and Gal [2]. There they consider the case where
the target is moving away from the origin at a constant speed v < 1 which is known to the
searching robot. Only the initial distance of the target is unknown. They give an algorithm
with optimal competitive ratio for this case.

Our problem is reminiscent of the problem of catching a fugitive in a given domain which
is generally referred to as the cops and robbers problem [6]. The main difference is that in
those problems, the target (robber) is itself an autonomous agent. As a result, the techniques
considered there do not apply to our case.

Our problem is also related to rendezvous (of two robots) on an infinite line but it differs
because in our case only one of the robots is autonomous while the other is oblivious. Related
studies on the infinite line include rendezvous with asymmetric clocks [9] and asynchrnous
deterministic rendezvous [12]. More recent work on linear search concerns searching for
a static target by a group of cooperating robots, some of which may have suffered either
crash [10] or Byzantine [8] faults.

1.3 Results of the paper
In all situations considered it is unknown to the robot whether the target is initially to
the left or to the right of the origin. We analyze the competitive ratio in four situations
which reflect what knowledge the robot has about the target. We present results on the
FullKnowledge model (the robot knows v and d) in Section 2, the NoDistance model (the
robot knows v but not d) in Section 3, the NoSpeed model (the robot knows d but not v)
in Section 4, and the NoKnowledge model (the robot knows neither v nor d) in Section 5.
For each of these models we study separately the case when the target is moving away or
toward the origin (this knowledge being available to the robot). The results are summarized
in Table 1. We conclude with a summary and additional open problems.

2 The FullKnowledge Model

We first study the model where the robot knows the target’s speed v and its initial distance
from the origin d.

2.1 The FullKnowledge/Away Model
For the case when the target is moving away from the origin, clearly if v ≥ 1 then the robot
can never catch the target. Thus, for this model (and all other Away models), we assume
v < 1. In this section, we will analyze an algorithm where the robot chooses a direction and
moves for time d

1−v . If the robot does not find the target after moving for time d
1−v in one

direction, then it changes direction and continues moving until it does.

OPODIS 2022
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Table 1 Table of competitive ratio bounds proven for each knowledge model for cases with the
target moving away from or towards the origin with speed v and initial distance d from the robot
which is moving with speed 1. Equalities indicate that tight upper and lower bounds are proven.

Knowledge Movement Competitive Ratio Section

v, d
Away CR = 1 + 2

1−v
2.1

Toward
CR = 1 + 2

1+v
if v < 1

CR = 1 + 1
v

otherwise 2.2

v
Away CR = 1 + 8 1+v

(1−v)2 3.1 [2]

Toward
CR = 1 + 1

v
if v ≥ 1

3
CR = 1 + 8 1−v

(1+v)2 otherwise 3.2

d
Away

CR ≤ 5 if v ≤ 1
2

CR ≤ 1 + 16(log 1
1−v )2

(1−v)4 otherwise
4.1

Toward CR = 3 4.2

∅
Away

CR ≤ 1 + 16
d

[
log log

(
max

(
d, 1

1−v

))
+ 3
]

· max
(
d, 1

1−v

)8 · log2 [max
(
d, 1

1−v

)] 5.1

Toward CR = 1 + 1
v

5.2

Algorithm 1 Online Algorithm for FullKnowledge/Away Model.

1: input: target speed v and initial distance d

2: choose any direction and go for time d
1−v

3: if target not found then
4: change direction and go until target is found

▶ Theorem 1. For the FullKnowledge/Away model, Algorithm 1 has an optimal competitive
ratio of

1 + 2
1− v

. (1)

Proof. By Algorithm 1, the robot goes in one direction for a time d
1−v . Observe that if the

robot does not encounter the target after this amount of time, it must be on the opposite side
of the origin (in the other direction). At the time the robot changes direction, its distance to
the target will be equal to d

1−v + d + dv
1−v = 2d

1−v . Thus, the total time required until the
robot catches up to the target is at most

d

1− v
+ 2d

(1− v)2 .

Clearly then, the competitive ratio is at most
d

1−v + 2d
(1−v)2

d
1−v

= 1 + 2
1− v

which is as claimed in Equation (1) above.
Optimality follows from the fact that regardless of which direction the robot chooses

to travel, the adversary can place the target in the opposite direction. Moreover, for the
robot to catch up to the target it must visit one of the points ± d

1−v . If the robot visits
location d

1−v to the right (resp. left) the adversary places the target on the left (resp. right).
Therefore the completion time will be at least d

1−v + 2d
(1−v)2 . This shows the upper bound is

tight and completes the proof of Theorem 1. ◀
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2.2 The FullKnowledge/Toward Model
Consider the following algorithm which is similar to Algorithm 1.

Algorithm 2 Online Algorithm for the FullKnowledge/Toward Model.

1: input: target speed v and initial distance d

2: choose any direction and go for time d
1+v

3: if target not found then
4: change direction and go until target is found

▶ Theorem 2. For the FullKnowledge/Toward model, Algorithm 2 has competitive ratio at
most

1 + 2
1 + v

. (2)

Proof. The robot goes in one direction for a time d
1+v . If the robot finds the target in this

time, the algorithm is clearly optimal. If, however, the robot does not find the target, then it
must be on the opposite side of the origin (in the other direction). If this is the case, then
by time d

1+v the target has moved a distance dv
1+v and is at distance d − dv

1+v = d
1+v from

the origin. Therefore at the time the robot changes direction, the distance between robot
and target is 2d

1+v . Thus, the robot will encounter the target in additional time 2d
(1+v)2 . It

follows that the total time required for the robot to meet the target is d
1+v + 2d

(1+v)2 and the
resulting competitive ratio satisfies

CR ≤
d

1+v + 2d
(1+v)2

d
v+1

= 1 + 2
1 + v

.

This completes the proof of Theorem 2. ◀

▶ Theorem 3. For the FullKnowledge/Toward model, the competitive ratio of any online
algorithm is at least 1 + 2

1+v , provided that v < 1. In particular, Algorithm 2 is optimal for
v < 1.

Proof. Consider any algorithm for a robot starting at the origin to meet a target initially
placed at an unknown location distance d from the origin. For any point at distance a from
the origin, the target takes exactly d−a

v time to reach a. Then, let t denote the time the robot
first passes through a point at distance a from the origin. If t < d−a

v , then the robot cannot
know whether the target is on the same or opposite side of the origin. On the other hand,
if t ≥ d−a

v and it has not encountered the target, then the target must be on the opposite
side of the origin. Thus, given a trajectory, let ±a be the first point such that the robot
is at position ±a at time exactly d−a

v . Clearly such a point must exist for any trajectory
since the target is moving toward the origin. Then whichever side of the origin the robot is
on, consider the instance where the target started on the opposite side. Clearly then, the
robot takes an additional time at least 2a

1+v to reach the target. Thus, the competitive ratio
is given by:

d−a
v + 2a

1+v
d

1+v

= (d− a)(1 + v) + 2av

vd
= 1 + 1

v
+ a(v − 1)

dv
. (3)

Observe that whenever v < 1, the right-hand side of Equation (3) satisfies

1 + 1
v

+ a(v − 1)
dv

≥ 1 + 1
v

+
d

1+v (v − 1)
dv

= 1 + 2
1 + v

which completes the proof of Theorem 3. ◀

OPODIS 2022
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With Theorem 3 proved, we know Algorithm 2 is optimal for any value of v between
0 and 1, but what about when v > 1? In this case, we’ll prove the following algorithm is
optimal: the robot waits at the origin forever. We call this algorithm “the waiting algorithm”.

▶ Theorem 4. Whenever the target is moving toward the origin with speed v ≥ 1, the waiting
algorithm has an optimal competitive ratio of 1 + 1

v .

Proof. Clearly the algorithm takes exactly time d/v to complete and so the upper bound
follows trivially. For the lower bound, we build upon the proof of Theorem 3. It simply
remains to consider Equation (3) for v > 1. In this case, the right-hand side of Equation (3)
is increasing with respect to a ≥ 0, so

1 + 1
v

+ a(v − 1)
dv

≥ 1 + 1
v

.

This completes the proof of Theorem 4. ◀

▶ Remark 5. Observe that the waiting algorithm makes no use of the target’s speed or initial
distance and therefore, as long as the target is moving toward the origin, applies directly to
the other knowledge models.

3 The NoDistance Model

In this section we assume that the robot knows v but not d. Consider the following zig-zag
algorithm with “expansion ratio” a > 0 (with the value of a to be determined).

Algorithm 3 Online Algorithm for NoDistance/Away and NoDistance/Toward Models.

1: input: target speed v and expansion ratio a

2: i← 0
3: while target not found do
4: if at origin then
5: d← (−a)i

6: i← i + 1
7: else if at d then
8: d← 0
9: move toward d

3.1 The NoDistance/Away Model
The following result was shown by Alpern and Gal [2].

▶ Theorem 6. For the NoDistance/Away model, Algorithm 3 with a = 2 1+v
1−v has an optimal

competitive ratio of

1 + 8 1 + v

(1− v)2 .

3.2 The NoDistance/Toward Model

Recall first the statement made in Remark 5, that the optimality of the waiting algorithm
(which makes no use of any knowledge of d) holds for any d as long as v ≥ 1. Thus, we need
only consider scenarios where 0 ≤ v < 1. As we will see, however, when the target is moving
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toward the origin, the waiting algorithm is optimal for far slower targets! In general, since
the target is moving toward the origin, the robot need not search ever-increasing distances
away from the origin (i.e. execute Algorithm 3 with an expansion ratio a > 1). We call any
algorithm which involves the robot never traveling further than some finite distance from
the origin (in one or both directions) a contracting algorithm. Note that Algorithm 3 for
0 < a ≤ 1 is a contracting algorithm and a = 0 is exactly the waiting algorithm. We’ll start
by showing that any contracting algorithm cannot have a better competitive ratio than the
waiting algorithm:

▶ Theorem 7. The competitive ratio of Algorithm 3 for any 0 ≤ a ≤ 1 is 1 + 1
v .

Proof. Let d′ be the finite distance further than which the robot will never travel in at
least one direction. Then consider the scenario where the target is initially a distance
d = c · d′ >> d′ from the origin in the same direction. Then the competitive ratio is at least

sup
c

cd′−d′

v
cd′

v+1
= sup

c

c− 1
c

1 + v

v
= lim

c→∞

c− 1
c

(
1 + 1

v

)
= 1 + 1

v

which proves Theorem 7. ◀

By Theorem 7, any algorithm which hopes to out-perform the waiting algorithm must be
expanding. Now we show that the following hybrid algorithm, Algorithm 4, is optimal.

Algorithm 4 Wait or Zig-Zag Search Algorithm for NoDistance/Toward model.

1: input: target speed v

2: if v ≥ 1
3 then

3: execute waiting algorithm
4: else
5: execute Algorithm 3 with a = 2 1−v

1+v

▶ Theorem 8. For the NoDistance/Toward model, the competitive ratio of Algorithm 4 is
at most{

1 + 1
v if v ≥ 1

3

1 + 8 1−v
(1+v)2 if v < 1

3
(4)

Proof. The first case is trivial: the competitive ratio of the waiting algorithm is exactly
1 + 1

v by Theorem 4. The second case, however, is a bit more complicated. First, observe
that if v < 1

3 then a must be less than 3. Indeed, consider the scenario where the robot “just
misses” the target on the very first round of the algorithm (after traveling a distance 1 in
some direction and then turning around). Then the competitive ratio of the algorithm is

1 + 2a + 2
1 + v

which is greater than 1 + 8 1−v
(1+v)2 for any a > 3 and v > 0:

1 + 2a + 2
1 + v

> 1 + 8
1 + v

> 1 + 8
1 + v

· 1− v

1 + v

since 1−v
1+v < 1.

OPODIS 2022
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Now, consider the round k when the robot catches up to the target and observe that

ak−2 < d−

(
2

k−3∑
i=0

ai + ak−2

)
v = d−

(
2ak−2 − 1

a− 1 + ak−2
)

v

since otherwise, the robot would have caught up to the target in round k − 2. This yields
the following inequality which will prove useful in analyzing the competitive ratio below:

ak−2 < d−
(

2 ak−2

a− 1 + ak−2
)

v

≤ d
a− 1

a− 1 + v(a + 1) + v

a− 1 + v(a + 1)

≤ d
a− 1

a− 1 + v(a + 1) + 1
4a− 2 (5)

Observe the worst competitive ratio, then, is given by the situation where the robot “just
misses” the target on the (k − 2)th round and catches up to it only on round k. It follows
the competitive ratio of Algorithm 4 is

2
∑k−3

i=0 ai + ak−2 + 2(ak−2+ak−1)
1+v

d
1−v

≤
2 ak−2−1

a−1 + ak−2 + 2(ak−2+ak−1)
1+v

d
1−v

which, by Inequality (5) (and by substituting each ak−2 with the right-hand side of Inequal-
ity (5)), is less than or equal to

CR ≤ 1 + 1
2

[
1
d

(
a− 3
a− 1 ·

v(5− 7a)
1− 3a + 2a2

)
+ 4a2

(a− 1) + v(a + 1)

]
(6)

≤ lim
d→∞

1 + 1
2

[
1
d

(
a− 3
a− 1 ·

v(5− 7a)
1− 3a + 2a2

)
+ 4a2

(a− 1) + v(a + 1)

]
= 1 + 2a2

(a− 1) + v(a + 1) (7)

which follows since the right-hand side of Inequality (6) is increasing with respect to d on
1 < a ≤ 3. Finally, the right-hand side of Inequality (7) is minimized at a = 2v−1

v+1 with a
value of 1 + 8 1−v

(1+v)2 , which proves Theorem 8. ◀

Now we show that Algorithm 4 is optimal by proving a tight lower bound on the
competitive ratio for any online algorithm. Our proof is based on techniques developed
in [11]. Let X(t) denote be the robot’s position at time t according to a given strategy.

▶ Theorem 9. For the NoDistance/Toward model, any strategy X has a competitive ratio
of at least{

1 + 1
v if v ≥ 1

3

1 + 8 1−v
(1+v)2 otherwise

Proof. Let βt = inft′>t
t′

|X(t′)| . Clearly, then, if t1 ≤ t2 then βt1 ≤ βt2 . Furthermore, βt ≥ 1
for all t since the maximum speed of the robot is 1. Now let β = limt→∞ βt. By definition
of the limit infimum, there must exist a finite time t such that β ≤ t′

|X(t′)| for all t′ ≥ t and
thus there must exist a time t1 > β(β+1)

β−1 t such that the robot reaches a point (without loss
of generality, on the right side of the origin) X(t1) = t1

β+ϵ1
for any arbitrarily small ϵ1 > 0.
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(X(t1), t1)

t = −βx t = βx

0p

(x0, t0)

earliest meeting point

t = 1
v (x− p)

time

x

t

Figure 1 The cone-bounded trajectory of the robot and worst-case placement p of the target.
The small gray triangle is to remind the reader that, by the definition of β, the robot trajectory is
only guaranteed to be contained by the cone after some finite time t. Thus, in order to maximize
the competitive ratio, we (as the adversary) should place the target so that its trajectory does not
intersect (x0, t0) or the gray triangle.

Consider such a time and observe that, by construction, the robot could not have reached any
point to the left of x0 = − t1−X(t1)

1+β after time t0 = β(t1−X(t1))
1+β since x0 ≤ −t and t0 > t (see

Figure 1). Now, consider a target starting at initial positon p (to be determined) moving at
speed v > 0 toward a robot which starts at the origin and has a speed of 1. Thus, by placing
the target at a starting location so that the farthest right the robot could have reached is
x0 − ϵ0 for any arbitrarily small ϵ0, the robot can not have reached the target by time t1.
Such a target has an initial position of

p = − (1 + βv)(t1 −X(t1))
1 + β

− ϵ0

and follows the trajectory

Xtarget(t) = vt + p (8)

where Xtarget(t) denotes the robot’s position at time t. Observe also, if the robot moves
directly toward the target after t1, then its trajectory after time t1 is given by

X(t) = X(t1) + t1 − t (9)

Thus, the earliest time the robot could possibly encounter the target can be computed
by finding the intersection between the robot trajectory (Equation (9)) and the target’s
trajectory (Equation (8)) and solving for t:

vt + p = X(t1) + t1 − t

t = X(t1) + t1 − p

1 + v
. (10)

OPODIS 2022
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Then the competitive ratio (Equation (10) divided by −p/(1 + v), the optimal search
time) is

CR ≥ sup
ϵ0,ϵ1

(X(t1) + t1 − p)/(1 + v)
−p/(1 + v) = sup

ϵ0,ϵ1

X(t1) + t1 − p

−p
= sup

ϵ0,ϵ1

[
1− X(t1) + t1

p

]
= sup

ϵ1

[
1 + (1 + β)(t1 + X(t1))

(1 + βv)(t1 −X(t1))

]
(11)

= 1 + (1 + β)2

(1 + βv)(β − 1) (12)

where Inequality (11) follows since p = − (1+βv)(t1−X(t1))
1+β − ϵ0 for arbitrarily small ϵ0 > 0

and Inequality (12) follows since X(t1) = t1
β+ϵ1

for arbitrarily small ϵ1 > 0. Finally, observe
that if v < 1

3 , then the right-hand side of Equality (12) has a single minimum of 1 + 8 1−v
(1+v)2

at β = v−3
3v−1 . On the other hand, if v ≥ 1

3 , then the right-hand side of Equality (12) is
decreasing with respect to β and thus the competitive ratio satisfies

CR ≥ lim
β→∞

[
1 + (1 + β)2

(1 + βv)(β − 1)

]
= 1 + 1

v
. ◀

4 The NoSpeed Model

In this section we assume that the robot knows d but not v.

4.1 The NoSpeed/Away

For this model, it is clear that the robot cannot execute an algorithm like Algorithm 1 since
no upper bound on the target’s speed is known. Note that, if any upper bound v̂ < 1 on
the target’s speed were known, the robot could execute Algorithm 1 by assuming the target
speed to be equal to v̂, resulting in a competitive ratio of at most 1 + 2

1−v̂ . Since the target
speed v is unknown (and potentially very close to 1), however, we propose another strategy.
Consider a monotone increasing non-negative integer sequence {fi : i ≥ 0} such that f0 = 1
and fi < fi+1, for all i ≥ 0. The idea of the algorithm is to search for the target by making a
guess about its speed in rounds as follows. We start from the origin and alternate searching
right and left. On the i-th round, we use the guess vi = 1− 2−fi and search the necessary
distance away from the origin such that, if the target’s speed is less than or equal to vi and
the target’s initial position is in the same direction from the origin that the robot moves in
round i, then the target will be found in round i. Otherwise, we can conclude that either
the target is moving with a speed greater than vi or else it is on the opposite side of the
origin. In this case the robot returns to the origin and repeats the algorithm in the opposite
direction.

Later in the analysis we will show how to select the integer sequence {fi : i ≥ 0} so as
to obtain bounds on the competitive ratio. The algorithm explained above is formalized as
Algorithm 5.
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Algorithm 5 Online Algorithm for NoSpeed/Away Model.

1: input: target initial distance d

2: integer sequence {fi : i ≥ 0} such that fi < fi+1, for i ≥ 0 and f0 = 1;
3: t← 0
4: for i← 0, 1, 2, . . . until target found do
5: vi ← 1− 2−fi

6: xi ← (−1)i · d+tvi

1−vi

7: move to xi and back to the origin
8: t← t + |xi|

To compensate for the fact that the starting speed of the robot in the algorithm is
v0 = 1− 2−1 = 1/2 we first need to consider the case v ≤ 1

2 .

▶ Lemma 10. For the NoSpeed/Away model, if the unknown speed v of the target is less
than or equal to 1

2 then the competitive ratio of Algorithm 5 is at most 5.

Proof. According to Algorithm 5 and since v < 1/2, the robot will find the target either on
its first trip away from the origin, after time at most 2d, or after the first time it changes
direction of movement. In the worst case it will spend time 2d in one direction and then
additional time 2d+d+2dv

1−v . It follows that the competitive ratio is at most

2d + 2d+d+2dv
1−v

d
1−v

= 5

which proves Lemma 10. ◀

Next we analyze the competitive ratio of the algorithm for v > 1
2 .

▶ Lemma 11. For the NoSpeed/Away model, if the unknown speed v of the target is greater
than 1

2 then the competitive ratio of Algorithm 5 is at most 1 + 21+
∑k

j=0
fj · 4k+1 where k is

the first k such that vk ≥ v.

Proof. Let di be the distance from the origin the target would be if its speed was equal to
vi, where vi = 1 − 2−fi at time

∑i−1
j=0

(
1− 2−fi

)
. In other words, if vi ≥ v, then di is the

maximum distance of the target from the origin (and thus, the robot) at the beginning of
round i of the algorithm. Thus, if the speed of the target is less than or equal to vi and the
robot moves toward it in round i, then it would take at most xi = di

1−vi
= 2fidi additional

time for the robot to catch up to the target, for i ≥ 0. Recall the algorithm involves the
robot moving a distance xi (in time xi, since the robot’s speed is 1) away from the origin
and back in round i. Observe then that d0 = d, v0 = 1/2, and

di = d + 2vi

i−1∑
j=0

xj . (13)

Therefore, it follows from the definition of xi that

xi = 2fi

d + 2vi

i−1∑
j=0

xj

 . (14)

OPODIS 2022
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As a consequence

i−1∑
j=0

xj = xi − 2fid

2fi · 2 · vi
(15)

Similarly, if we replace i with i + 1 we have that

i∑
j=0

xj = xi+1 − 2fi+1d

2fi+1 · 2 · vi+1
(16)

Subtracting Equation (15) from Equation (16), we derive the recurrence

xi = xi+1 − 2fi+1d

2fi+1 · 2 · vi+1
− xi − 2fid

2fi · 2 · vi
(17)

Collecting similar terms and simplifying Equation (17) yields

xi+1

2fi+1 · 2 · vi+1
=
(

1 + 1
2fi · 2 · vi

)
xi +

(
2fi+1

2fi+1 · 2 · vi+1
− 2fi

2fi · 2 · vi

)
d

= xi

(
1 + 1

2f
i · 2 · vi

)
+ d

2vi+1
− d

2vi
(18)

≤
(

1 + 1
2fi · 2 · vi

)
xi (19)

following from the fact the sum of the last two terms in Inequality 18 is less than or equal
to 0.

If we simplify the right-hand side of Equation (19), we derive the following recursive
inequalities

xi+1 ≤ 2fi+1 · 2 · vi+1

(
1 + 1

2fi · 2 · vi

)
xi

≤ 2fi+1 · 2 ·
(

1 + 1
2fi

)
xi

≤
(
2 · 2fi+1 + 2 · 2fi+1−fi

)
xi

≤ 2fi+1 · 4 · xi, (20)

which follows since 1
2 ≤ vi < 1 and fi < fi+1 for all i.

By repeated application of the last Recurrence (20) above and using the fact that by
definition x0 = 2f0d, it follows easily by induction that

xi+1 ≤ 2fi+1 · 4 · xi

≤ 2fi+1+fi · 42 · xi−1

...
≤ 2fi+1+fi+fi−1+···+f1 · 4i+1 · x0

≤ 2
∑i+1

j=0
fj · 4i+1 · d (21)

Consider the first i such that vi ≥ v. It follows that and vi−1 < v which yields
1 − v < 1 − vi−1 = 2−fi−1 and implies that 2fi−1 < 1

1−v . Note that although vi ≥ v, the
robot may not find the target in round i because it is located in the opposite direction. It is
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guaranteed, however, to find the target by round i + 1. Moreover the total time that has
elapsed from the start until round i is 2

∑i
j=0 xj at which time the target is at distance

d + v2
∑i

j=0 xj from the origin.
As a consequence the competitive ratio of Algorithm 5 is at most

2
∑i

j=0 xj +
d+2v

∑i

j=0
xj

1−v
d

1−v

= 1 + 2(v + 1− v)
d

i∑
j=0

xj

= 1 + xi+1 − 2fi+1d

d
· 2

2fi+1 · 2 · vi+1
(By (16))

≤ 1 + xi+1

d
· 2

2fi+1 · 2 · vi+1

≤ 1 + 1
vi+1

2
∑i

j=0
fj · 4i+1 (By (21))

Since vi+1 ≥ 1/2 we conclude with an upper bound on the competitive ratio of Algorithm 5
of

1 + 21+
∑i

j=0
fj · 4i+1 (22)

which proves Lemma 11. ◀

We are now ready to prove the main theorem about the competitive ratio of Algorithm 5.

▶ Theorem 12. For the NoSpeed/Away model, the competitive ratio of Algorithm 5 when
applied to the sequence fj = 2j, for all j ≥ 0, is at most5 if v ≤ 1

2

1 + 16(log 1
1−v )2

(1−v)4 otherwise

where log is the base-2 logarithm.

Proof. Consider the first index i such that vi ≥ v. It follows that and vi−1 < v, and so

1− 2−2i−1
< v ⇒ 22i−1

<
1

1− v
.

Then, by Lemma 11, the competitive ratio of is at most

1 + 21+
∑i

j=0
fj · 4i+1 = 1 + 21+

∑i

j=0
2j

· 4i+1

= 1 + 22i+1
· 4i+1 ≤ 1 +

(
1

1− v

)4
·
(

4 · log
(

1
1− v

))2

≤ 1 +
16
(

log 1
1−v

)2

(1− v)4

This proves Theorem 12. ◀

▶ Remark 13. By Theorem 1, 1 + 2
1−v is a lower bound on any algorithm when both v, d are

known. As a consequence it must also be a lower bound when d is known but v is not.

OPODIS 2022
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4.2 The NoSpeed/Toward Model
Now we consider the case where the target is moving toward the origin.

Algorithm 6 Online Algorithm for NoSpeed/Toward Model.

1: input: target initial distance d

2: choose any direction and go for time d

3: if target not found then
4: change direction and go until target is found

▶ Theorem 14. For the NoSpeed/Toward model, Algorithm 6 achieves an optimal competitive
ratio at most 3.

Proof. The robot chooses a direction (without loss of generality, say to the right) and goes
for a time d (this is where the robot makes use of its knowledge of the distance d). If it does
not find the target it changes direction. In the meantime the target has moved for a distance
dv and now must be at location −d + dv. Therefore at the time the robot changes direction
the distance between robot and target is equal to d− (−d + dv) = 2d− dv, and hence the
meeting will take place in additional time 2d−dv

1+v . It follows that the total time required for
the robot to meet the target must be equal to d + 2d−dv

1+v . The resulting competitive ratio
satisfies

CR ≤
d + 2d−dv

1+v
d

v+1
= 3.

This proves the upper bound.
To prove the lower bound we argue as follows. If the searcher never visits either of the

points ±d then the competitive ratio is arbitrarily large for very small values of v. Let ϵ > 0
be sufficiently small and let the speed of the target be v = ϵ/3. Consider the first time, say t,
that the robot reaches one of the points ±(d− ϵ). Without loss of generality let this point
be d − ϵ and suppose the target is adversarially placed at −d. Then at time t it will be
located at −d + tv. Therefore the distance between the robot and the target at time t will
be d− ϵ− (−d + tv) = 2d− tv − ϵ. The time it takes for robot to find the target, then, is at
least d− ϵ + 2d−tv−ϵ

1+v and the competitive ratio is at least

d− ϵ + 2d−tv−ϵ
1+v

d
1+v

≥ 3− 2ϵ + (t + ϵ)v
d

It follows easily that if t ≥ 3d − ϵ then CR ≥ t
d/(1+v) ≥ 3 − 3ϵ. However, if t ≤ 3d − ϵ

then 2ϵ+(t+ϵ)v
d ≤ 2ϵ + 3v ≤ 3ϵ, since by assumption v = ϵ/3. Therefore again CR ≥ 3− 3ϵ.

This completes the proof of Theorem 14. ◀

5 The NoKnowledge Model

In this section we assume that neither the initial distance d nor the speed v of the target is
known to the robot.

5.1 The NoKnowledge/Away Model
We now describe an approximation strategy resembling that described in Section 4.1. For
this strategy though, the robot will need to guess both the target’s speed and its initial
distance.
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Consider the situation where neither the distance d to the target nor its speed v < 1 is
known to the robot. Also consider two monotone increasing non-negative integer sequences
{fi, gi : i ≥ 0} such that f0 = 1 and g0 = 0 and fi < fi+1 and gi < gi+1, for all i ≥ 0. The
idea of the algorithm is to search for the target by making a guess for its speed and starting
distance in rounds as follows. The robot, starting from the origin, alternates searching to
the right and left. On the i-th round, it guesses that the target’s speed does not exceed
vi = 1− 2−fi and that it’s initial distance from the origin does not exceed 2gi . Using these
guesses, the robot searches exactly the distance required (which we will later denote di) to
catch the target, given its guesses are correct and that the target is in the direction the robot
searches in round i. If robot does not find the target after searching this distance, it returns
to the origin and begins the next round. Later in the analysis we will show how to select
the integer sequences {fi, gi : i ≥ 0} so as to obtain bounds on the competitive ratio. We
formalize the algorithm described above as Algorithm 7.

Algorithm 7 Online Algorithm for NoKnowledge/Away Model.

1: Inputs; Integer sequences {fi, gi : i ≥ 0} such that fi < fi+1 and gi < gi+1, for i ≥ 0
and f0 = 1 and g0 = 0;

2: t← 0
3: for i← 0, 1, 2, . . . until target found do
4: di ← 2gi

5: vi ← 1− 2−fi

6: xi ← (−1)i · di+tvi

1−vi

7: move to xi and back to the origin
8: t← t + |xi|

Since there is always an integer i ≥ 1 such that both vi = 1− 2−fi ≥ v and 2gi ≥ d, it
is clear that the robot will eventually succeed in catching the target. Next we analyze the
competitive ratio of the algorithm.

▶ Lemma 15. For the NoKnowledge/Away model, if Algorithm 7 terminates successfully in
round i + 1 then its competitive ratio must satisfy

CR ≤ 1 + 2(i + 2)
d

· 2gi+1 · 2
∑i

j=0
fj · 4i+1. (23)

Proof. We call each iteration of the loop in Algorithm 7 a round. For any round i, let
di be the distance from the origin to where the target would be if its speed was equal to
vi = 1 − 2−fi and its starting position 2gi . Recall that during the first i − 1 unsuccessful
rounds, the taret is moving further and further away from the origin. If the robot is at the
origin and the speed of the target is vi then it takes time at most xi = di

1−vi
= 2fidi for the

robot to catch up to the target, for i ≥ 0. Observe from the algorithm that d0 = 1 and
v0 = 1/2 and

di = 2gi + 2vi

i−1∑
j=0

xj . (24)

Therefore, it follows from the definition of xi that

xi = 2fi

2gi + 2vi

i−1∑
j=9

xj

 . (25)

OPODIS 2022
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As a consequence

i−1∑
j=0

xj = xi − 2fi+gi

2fi · 2 · vi
(26)

Similarly, if we replace i with i + 1 we have that

i∑
j=0

xj = xi+1 − 2fi+1+gi+1

2fi+1 · 2 · vi+1
. (27)

Subtracting Equation (26) from Equation (27) we derive the recurrence

xi = xi+1 − 2fi+1+gi+1

2fi+1 · 2 · vi+1
− xi − 2fi+gi

2fi · 2 · vi
(28)

Collecting similar terms and simplifying Equation (28) yields

xi+1

2fi+1 · 2 · vi+1
=
(

1 + 1
2fi · 2 · vi

)
xi +

(
2fi+1+gi+1

2fi+1 · 2 · vi+1
− 2fi+gi

2fi · 2 · vi

)
=
(

1 + 1
2fi · 2 · vi

)
xi + 2gi+1−1

(
1

vi+1
− 2gi

2gi+1 · vi

)
≤
(

1 + 1
2fi · 2 · vi

)
xi + 2gi+1−1 (29)

where Inequality (29) follows since 1
vi+1
− 2gi

2gi+1 ·vi
≤ 1.

If we multiply out with the denominator in the lefthand side of Inequality (29) and
simplify the righthand side we derive the following recursive inequalities

xi+1 ≤ 2fi+1 · 2 · vi+1

(
1 + 1

2fi · 2 · vi

)
xi + 2fi+1+gi+1vi+1

≤
(

2(2fi+1 − 1) + 2fi+1−fi · vi+1

vi

)
xi + 2fi+1+gi+1 (30)

≤ 2fi+1 · 4 · xi + 2fi+1+gi+1 , (31)

where in the derivation of Inequality (31) from the previous Inequality (30) we used the fact
that vi+1

vi
≤ 2.

By repeated application of the last Recurrence (31) above and using the fact that by
definition x0 = 2f0d, it follows easily by induction that

xi+1 ≤ 2fi+1 · 4 · xi + 2fi+1+gi+1

≤ 2fi+1+fi · 42 · xi−1 + 2fi+1+fi+gi · 41 + 2fi+1+gi+1

...

≤ 2g0+
∑i+1

j=0
fj · 4i+1 · x0 + 2g1+

∑i+1
j=1

fj · 4i + 2g2+
∑i+1

j=2
fj · 4i−1

+ · · ·+ 2fi+1+gi+1

=
i+1∑
k=0

2gk+
∑i+1

j=k
fj · 4i−k+1 (32)

since x0 = 1.
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The total time that has elapsed from the start until the beginning of last round i (when
the robot visits the origin for the last time before catching the target) will be

∑i
j=0 2xj at

which time the target is at distance d + v
∑i

j=0 2xj from the origin. As a consequence the
competitive ratio of Algorithm 7 must satisfy the inequality

CR ≤
2
∑i

j=0 xj +
d+2v

∑i

j=0
xj

1−v
d

1−v

. (33)

Simplifying the righthand side of Inequality (33) and using Identity (26) yields

CR ≤ 1 + 2
d

i∑
j=0

xj

≤ 1 + xi+1

d
· 1

2fi+1 · vi+1
(Use Equation (26))

≤ 1 + 1
vi+1d2fi+1

i+1∑
k=0

2gk+
∑i+1

j=k
fj · 4i−k+1 (Use Equation (32))

≤ 1 + 1
vi+1d

i+1∑
k=0

2gk+
∑i

j=k
fj · 4i−k+1.

Since vi+1 ≥ 1/2 we conclude with

CR ≤ 1 + 2
d

i+1∑
k=0

2gk+
∑i

j=k
fj · 4i−k+1

≤ 1 + 2
d

i+1∑
k=0

2gk+
∑i

j=k
fj · 4i−k+1

≤ 1 + 2(i + 2)
d

· 2gi+1 · 2
∑i

j=0
fj · 4i+1 (34)

This completes the proof of Lemma 15. ◀

We now prove the following theorem.

▶ Theorem 16. For the NoKnowledge/Away model, Algorithm 7 with the sequences gi =
fi = 2i has a competitive ratio of at most

1 + 16
d

[
log log max

(
d,

1
1− v

)
+ 3
]
·max

(
d,

1
1− v

)8
· log2 max

(
d,

1
1− v

)
where log is the base-2 logarithm.

Proof. Observe that if the robot finds the target in round i + 1, then by design, one or
both of the robot’s round i− 1 guesses for the target’s speed (1− 2−2i−1) or initial distance
(22i−1) must have been too low, otherwise the robot would have found the target in an
earlier round. In other words, either 1 − 2−2i−1

< v or 22i−1
< d. It follows, then that

i− 1 < log log max
(

d, 1
1−v

)
. Then by Lemma 15, an upper bound on the competitive ratio

is given by

OPODIS 2022
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CR ≤ 1 + 2(i + 2)
d

· 2gi+1 · 2
∑i

j=0
fj · 4i+1

= 1 + 2(i + 2)
d

· 22i+1
· 22i+1−1 · 4i+1

= 1 + (i− 1) + 3
d

·
(

22i−1
)8
· 16

(
2i−1)2

= 1 + 16
d

[
log log max

(
d,

1
1− v

)
+ 3
]
·max

(
d,

1
1− v

)8
· log2 max

(
d,

1
1− v

)
which proves Theorem 16. ◀

▶ Remark 17. Observe that a lower bound of 1 + 8 1+v
(1−v)2 follows directly from the

NoDistance/Away model.

5.2 The NoKnowledge/Toward Model
We can prove the following theorem.

▶ Theorem 18. The optimal competitive ratio is 1 + 1
v and is given by the waiting Algorithm.

Proof. The upper bound follows directly from Theorem 4. For the lower bound, consider an
algorithm where the robot does not wait forever and instead moves a distance d′ > 0 to the
right (without loss of generality – a symmetric argument for the case where the robot moves
to the left follows trivially) after waiting at the origin for time t ≥ 0. Then consider the
scenario where the target with speed v = d

t+d′ is initially at −d for any distance d ≥ 1. Thus,
the target reaches the origin at exactly the time the robot reaches d′ and so their earliest
possible meeting time is

t + d′ + d′

1 + v
= d

v
+ d′

1 + v
≥ d

v

Thus, the competitive ratio is at least

d/v

d/(1 + v) = 1 + 1
v

This proves Theorem 18. ◀

6 Conclusion

We considered linear search for an autonomous robot searching for an oblivious moving target
on an infinite line. Two scenarios were analyzed depending on whether the target is moving
towards or away from the origin (and this is known to the robot). In either of these two
scenarios we considered the knowledge the robot has about the speed and starting distance
of the target. For each scenario we gave search algorithms and analyzed their competitive
ratio for the four possible cases arising. Our bounds are tight in all cases when the target
is moving towards the origin. They are also shown to be tight when the target is moving
away from the origin and its speed 0 < v < 1 is known to the robot; for this scenario we also
obtain upper bounds when v is not known to the robot. It remains an open problem to prove
tight bounds for the case when v is unknown to the robot and the target is moving away
from the origin. It also remains open to find tight bounds for the case where the direction of
movement of the target is unknown.
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