Modeling Resources in Permissionless
Longest-Chain Total-Order Broadcast

Sarah Azouvi &
Protocol Labs

Christian Cachin &

University of Bern, Switzerland

Duc V. Le =

University of Bern, Switzerland

Marko Vukolié¢é &
Protocol Labs

Luca Zanolini &
University of Bern, Switzerland

—— Abstract

Blockchain protocols implement total-order broadcast in a permissionless setting, where processes
can freely join and leave. In such a setting, to safeguard against Sybil attacks, correct processes
rely on cryptographic proofs tied to a particular type of resource to make them eligible to order
transactions. For example, in the case of Proof-of-Work (PoW), this resource is computation, and
the proof is a solution to a computationally hard puzzle. Conversely, in Proof-of-Stake (PoS), the
resource corresponds to the number of coins that every process in the system owns, and a secure
lottery selects a process for participation proportionally to its coin holdings.

Although many resource-based blockchain protocols are formally proven secure in the literature,
the existing security proofs fail to demonstrate why particular types of resources cause the blockchain
protocols to be vulnerable to distinct classes of attacks. For instance, PoS systems are more
vulnerable to long-range attacks, where an adversary corrupts past processes to re-write the history,
than PoW and Proof-of-Storage systems. Proof-of-Storage-based and PoS-based protocols are both
more susceptible to private double-spending attacks than PoW-based protocols; in this case, an
adversary mines its chain in secret without sharing its blocks with the rest of the processes until the
end of the attack.

In this paper, we formally characterize the properties of resources through an abstraction called
resource allocator and give a framework for understanding longest-chain consensus protocols based
on different underlying resources. In addition, we use this resource allocator to demonstrate security
trade-offs between various resources focusing on well-known attacks (e.g., the long-range attack and
nothing-at-stake attacks).

2012 ACM Subject Classification Theory of computation — Cryptographic protocols; Software and
its engineering — Distributed systems organizing principles

Keywords and phrases blockchain, consensus, resource, broadcast
Digital Object Identifier 10.4230/LIPIcs.OPODIS.2022.19
Related Version Full Version: https://arxiv.org/abs/2211.12050

Funding DVL has been supported by a grant from Protocol Labs to the University of Bern. LZ
has been supported by the Swiss National Science Foundation (SNSF) under grant agreement
Nr. 200021_ 188443 (Advanced Consensus Protocols).

Acknowledgements The authors thank anonymous reviewers for helpful feedback.

© Sarah Azouvi, Christian Cachin, Duc V. Le, Marko Vukolié¢, and Luca Zanolini;
37 licensed under Creative Commons License CC-BY 4.0

26th International Conference on Principles of Distributed Systems (OPODIS 2022).

Editors: Eshcar Hillel, Roberto Palmieri, and Etienne Riviére; Article No. 19; pp.19:1-19:23

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

mailto:sarah.azouvi@protocol.ai
mailto:christian.cachin@unibe.ch
https://orcid.org/0000-0001-8967-9213
mailto:duc.leviet@unibe.ch
https://orcid.org/0000-0002-8123-2713
mailto:marko@protocol.ai
mailto:luca.zanolini@unibe.ch
https://orcid.org/0000-0003-4655-3172
https://doi.org/10.4230/LIPIcs.OPODIS.2022.19
https://arxiv.org/abs/2211.12050
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

19:2

Modeling Resources

1 Introduction

Permissionless consensus protocols are open for everyone to participate and often rely on a
resource to protect against Sybil attacks. In the case of Proof-of~-Work (PoW), this resource
is computation: A computational puzzle must be solved in order to gain writing rights in the
system. In contrast, in a Proof-of-Stake (PoS) system, writing access is granted using a form
of lottery where participants are elected proportionally to the number of coins they own.
Other resource-based systems, such as Proof-of-Storage, have also appeared. Participants
are elected proportionally to the number of resources they commit to the system, and hence
this commitment must be publicly verifiable. Different resources present different trade-offs.
For example, PoS is much more energy-efficient than PoW but presents many additional
vulnerabilities [5]. Comparing the security of protocols based on multiple resource types is a
non-trivial task, as they use different assumptions and frameworks.

In this paper, we provide a common framework to formally compare consensus protocols
based on different underlying resources. We only consider longest-chain protocols [11] that
rely on an underlying resource, as we want to highlight the properties affected by varying
the resource for the same consensus method. In future work, our framework could be used
to model further approaches to ensure consensus, such as well-known BFT protocols [7],
for instance. In longest-chain protocols, one participant is elected at each time step, on
expectation, proportionally to their amount of resource and that participant gets to write to
the append-only database by adding a block containing all the necessary data to the longest
chain of blocks.

We also explore known attacks in this work. The first one is the long-range attack. In a
long-range attack, an adversary corrupts processes that used to participate in the system
but that no longer hold any resources. Moreover, we investigate nothing-at-stake attacks,
where processes mine on multiple chains at the same time, and private attacks, where an
adversary mines on its own chain without contributing to the honest chain. We are interested
in quantifying gain or loss of security with different resources. It has already been shown
that, when considering longest-chain protocols, PoS is less secure than PoW. We furthermore
show that Proof-of-Storage stands in the middle, as storage is not virtual (like stake), but is
reusable (unlike the computation of PoW).

We start the paper by providing a formal framework in which protocols based on different
resources can meaningfully be compared. We differentiate between virtual and external
resources to highlight which properties make longest-chain PoS and Proof-of-Storage less
secure than PoW, although they both present trade-offs when it comes to their efficiency.

Contributions. Our contributions can be summarized as follows.
We formally characterize the properties of resources through an abstraction called resource
allocator and formally define properties for a secure resource allocator.
We concretely define different resource allocator abstractions, each one for every type of
resource used in popular blockchain protocols, namely, computation, stake, and storage.
We present an algorithm that, when instantiated with different resource allocators, leads to
a generalization of existing protocols such as Nakamoto consensus, Ouroboros Praos, and
Filecoin’s consensus protocol. We also show formally that this generalization implements
total-ordered broadcast under a fixed total resource in a permissionless setting.
We demonstrate how different resources lead to different security trade-offs by leveraging
our model to explain long-range attacks against virtual resources and attacks related to
the nothing-at-stake nature of reusable resources.

S. Azouvi, C. Cachin, D. V. Le, M. Vukoli¢, and L. Zanolini

Related Work. Since the emergence of Bitcoin in 2008, the academic community has
developed a number of frameworks [16, 22, 18, 11] for studying the safety and liveness
properties of its Nakamoto consensus protocol. These studies also established a strong
foundation for the development of blockchain protocols based on more eco-friendly types
of resources, such as stake and storage. However, despite the fact that all resource-based
blockchains have been formally proven to be secure, these results have failed to explain why
certain properties of resources make some blockchain protocols more susceptible to particular
types of attacks than others. To the best of our knowledge, no prior work has attempted to
formally study the properties of underlying resources, and our work aims to fill this gap.
Lewis-Pye and Roughgarden [21] present the concept of a resource pool that reflects
the resource balance of processes in the system at any time, and they use a permitter
together with the resource pool to abstract away the leader selection procedure. Using
this formalization, they demonstrate two crucial impossibility results for permissionless
systems. Two main results of their work are: (%) no permissionless, deterministic, and
decentralized protocol solves the Byzantine Agreement problem in a synchronous setting, and
(#) no permissionless and probabilistic protocols solve the Byzantine Agreement problem
in the unsized setting (in which the total number of resources is unknown) with partially
synchronous communication. However, their work could not capture several aspects of
underlying resources used in blockchain protocols; therefore, their work did not demonstrate
long-range attacks against virtual resources such as stake, and the cost of several other
attacks on reusable resources. Our work takes a similar approach of abstracting away the
leader selection process with a resource allocator (c.f., Section 3), and we further formalize

the properties of resources through the interactions between the process and this allocator.

With this formalization, we prove how permissionless and probabilistic blockchain protocols
guarantee properties of a total-order broadcast in a synchronous setting and demonstrate
various attacks against wvirtual or reusable resources.

Terner [25] also investigates how to abstract resources used in permissionless blockchains.

While this work outlines several essential properties of resources and studies how the resource
generation rate affects the standard properties (i.e., consistency and liveness) of robust
transaction ledger, the study does not characterize the properties of the underlying resources
used in permissionless blockchain protocols. Consequently, this model fails to explain why
distinct types of resources render some protocols vulnerable to certain attacks (e.g., long-range
attacks and private attacks).

2 Model and Definitions

2.1 System Model

Time. We assume that the protocol proceeds in time steps and define a time step to be a
value in N. Moreover, we consider 0 as starting time step of protocol execution.

Processes. We consider a system consisting of a set of processes, P = {p1, p2, . ..}. Processes
interact with each other through exchanging messages. A protocol for P consists of a collection
of programs with instructions for all processes. Moreover, to capture the permissionless
nature of various blockchain protocols, processes can join the system at any time. we denote,

P<:, the set of all processes that have participated in the protocol before the time step t.

Hence, Py C Py for all t < ¢/. At the beginning of each time step, a process becomes
activated, and it starts to follow a deterministic protocol. This includes processing any

messages that may have arrived from other processes. Once done, it becomes deactivated.

We assume that the activation period of a process p; starts at the time step ¢ and ends before
time step ¢ + 1.

19:3

OPODIS 2022

19:4

Modeling Resources

Communication. We assume there is a low-level primitive for sending messages over point-
to-point links between each pair of processes that know of each other, as well as a probabilistic
broadcast primitive [7]. Point-to-point messages are authenticated and delivered reliably
among correct processes. In probabilistic broadcast, correct processes gossip-deliver and
gossip-broadcast messages with an overwhelming probability, no message is delivered more
than once, and no message is created or corrupted by the network.

Network Delay. We denote by A € N with A > 1 the maximum network delay [14]. Namely,
if a correct process gossip-broadcasts a message m at a time step ¢, then other processes will
have gossip-delivered or received over the message by the beginning of a time step ¢ + A with
an overwhelming probability.

Idealized Digital Signature. A digital signature scheme, 3, consists of two operations,
Sign(-,-) and Verify(-,-,-). The operation Sign(p;,-) invoked by p; takes m € {0,1}* as
input and returns a signature o € {0,1}*. Only p; can invoke Sign(p;,-). The operation
Verify(p;, -, -) takes as input a signature, o, and a message m; Verify(p;, -,-) returns TRUE for
any p; € P and m € {0,1}* if and only if p; has invoked Sign(p;, m) and obtained o before.
Any process can invoke Verify(,-,-).

Random Oracle. All hash functions are modeled as a random oracle, H, that can be queried
by any process. H takes as input a bit string = € {0, 1}* and returns a uniformly random
string from {0, 1}* where \ is the security parameter. Also, upon repeated queries, H always
outputs the same answer.

2.2 Modeling Blockchain Data Structures

Blocks. We use tx to denote a transaction. We write tx = [txq, ..., tXx] to denote a list of
transactions. A block is B = (h,tx, 7, 0;), where h is a hash value, tx is a list of transactions,
7 is a resource commitment proof (cf. Section 3) and o; is a signature on (h,tx, 7). In this
work, we assume that blocks are signed. In this way, we can abstract away the notion of
coinbase transactions, i.e., the first transaction in a block, created by a miner, and used to
collect the block reward. Finally, we denote with By = (L, tx, L, L) the genesis block.

Blockchain. A blockchain C = [By, By, .. .| with respect to the genesis block By is a chain
of blocks forming a hash chain such that h; = H(B,;_1) for h; € B; for j = 1,2,... with
B; = (hj,tx;,m;,0;). For a blockchain C, we use C[—k] to denote the last k-th block in C,
let C[k] to denote block By (i.e., block at height k), and write C[: —k] to denote the first
|C| — k blocks. |C| denotes the length of C. We write C < C’ when C is a prefix C’. We use C*
to denote the blockchain at time step t. For two time steps, t; and ta, C®2/C" is a set of
blocks that is in C®2 but not in C?:.

State. The blockchain state st specifies different information of the underlying blockchain
protocol, e.g., the stake distribution of each process, the block information, such as timestamps,
as well as contract local states. The blockchain state st can be reconstructed by executing
transactions included in a blockchain C. Without loss of generality, we define the state to be
the blockchain, st = C. Also, we write st = (C, B) to indicate that a block B is potentially
appended to C.

S. Azouvi, C. Cachin, D. V. Le, M. Vukoli¢, and L. Zanolini

Validity. We introduce the notion of validity for transactions and blockchains to capture
the fact that only “valid” transactions are delivered. More importantly, for all blockchain
protocols, the decision on the validity is determined locally by all processes. Because of this,
we define the validity as follows. A transaction x is valid with respect to C if tx satisfies a
validation predicate P(C,-) locally known to all processes (i.e., P(C, [tx]) = TRUE). We also
use P(C,tx) = TRUE to indicate that the sequence of transactions in tx is valid (i.e., does
not consume the same output in Bitcoin or the same nonce in Ethereum), and we define
P(C,[]) to be TRUE. Depending on the blockchain protocol, a wvalid block B issued by p;
should consist of a valid signature issued by p;, a valid “proof” 7 for a so-called resource
commitment that we introduce in Section 3 and valid transactions with respect to C such
that C[—1] = B, (i.e., P(C,tx) = TRUE for tx € B). Finally, valid blockchains are chains that
consist of only valid blocks and start from the genesis block By.

2.3 Total-order Broadcast

We will show that the blockchain protocols considered here guarantee the following properties
of total-order broadcast in a permissionless setting. In particular, total-order broadcast
ensures that all processes deliver the same set of transactions in a common global order. In
total-order broadcast, every process broadcasts a transaction by invoking a-broadcasts(tx).
The broadcast primitive outputs a transaction tx through an a-deliver(tx) event. In this
model, we do not distinguish between a process and a client. A client can be considered as a
process that only broadcast transactions and does not participate in mining.

» Definition 2.1 (Total-order Broadcast). A protocol for total-order broadcast satisfies the

following properties.

Validity If a correct process, p; a-broadcasts a valid transaction tx according to P(-,-) (i.e.,
the validation predicate defined in Section 2), then p; eventually a-delivers tx with an
overwhelming probability.

No duplication No correct process a-delivers the same transaction tx more than once.

Agreement If a transaction tx is a-delivered by some correct process, then with an over-
whelming probability tx is eventually a-delivered by every correct process.

Total order Let tx; and txa be any two transactions, and suppose p; and p; are any two
correct processes that a-deliver tx; and txe. If p; a-delivers txy before txo, then with an
overwhelming probability, p; a-delivers tx; before txs.

3 Modeling Resources in Blockchain

In this section, we model resources, formalize their properties through the abstraction of a
resource allocator, and state our threat assumptions. The definition of a resource allocator in
this section is only syntactic; security and liveness properties of the resource allocator are
defined in Section 4.

» Definition 3.1 (Resource Budget). A resource budget r is a value in N. At any given
time, each process p; has a resource budget ;. In particular, there exists a function
Alloc: P x N — N that takes as input a process p; and a time step t, outputs the resource
budget of a process at time step t. We define R to be the fixed resource budget existing in
the system.

The definition of a fixed resource budget and the resource allocation function can be
viewed as the sized setting and the resource pool definition in Lewis-Pye and Roughgarden
framework [21].

19:5

OPODIS 2022

19:6

Modeling Resources

We note that the specification of the resource budget varies depending on protocols; e.g.,
for PoW, we define the budget to be a number of hash function evaluations per time step.
We now define resource allocator, an abstraction that will allow us to reason about different
resources.

» Definition 3.2 (Resource Allocator). A resource allocator, RA, interacts with the pro-
cesses through input events (RA-commit, RA-validate) and output events (RA-assign, RA-is-
committed):

RA-commit(p;, st,r): At time step t, every process p; may request a resource commitment
m from the resource allocator by invoking RA-commit on inputs a state st and a resource
budget 0 < r < Alloc(p;, t), i.e., p; does not RA-commit more resources than it possesses.
At the end of the activation period of p;, the resource allocator either assigns a resource
commitment w and a resource budget r to process p; through an RA-assign(p;, st,r,) event
or assigns an empty value L and possibly a resource r to p; through RA-assign(p;, st,r, L).

RA-validate(p;, st,w): Every process p; may validate a resource commitment m by invoking

RA-validate on input a state, st, and a resource commitment w. The resource allocator

validates the resource commitment m, through an event RA-is-committed(p;, st,b) event,

with b = TRUE if the commitment w is a valid resource commitment for the state st or

b = FALSE otherwise.
A process triggers RA-commit to pledge its resources to a system, and it can be assigned a
resource commitment as a result to extend the blockchain. If the resource commitment 7 is
included on-chain, then it must be valid (i.e., RA-validate returns TRUE) for the block to be
accepted. Moreover, we assume that all the events to and from the resource allocator happen
within the same time step. In particular, if a process p; RA-commits some resource budget
r at time step ¢, at the end of the activation period for p; process p; will receive either a
resource commitment 7 and r or an empty resource commitment value 1 and 7.

Resources can be classified into various types. In our model, these types can be described
as the interactions between processes and the resource allocator. The following definition
classifies different types of resources used in existing blockchain protocols.

» Definition 3.3 (Types of resource). A resource can be classified as follows.

Virtual A resource is virtual when the resource allocator determines the resource budget of
all processes from the given blockchain state st. For a virtual resource, we assume that
there exists a function StateAlloc : P x C — N that takes as input a process p; and a
blockchain C and outputs the resource budget of p;, and p; can invoke RA-commit(-, -, 1)
on an empty resource, v = 1.

External A resource is external when a process must allocate the resource externally with a
budget r > 0 to invoke RA-commit(). For an external resource, this commitment step is
equivalent to giving RA access to the external resource with the budget r. Moreover, we
assume that processes cannot lie about the resource budget r and commit more than .

Burnable A resource is burnable when a process p can trigger multiple RA-commit(-,-,r)
at a time step t, and it retrieves v through RA-assign(-,-,r,-) at the end of the activation
period for p;. For all committing events RA-commit(p;,-,r;) from the same process p;
that occur within a time step t , we require Zm>o r; < Alloc(p;,t).

Reusable A resource is reusable when a process p; can use the same resource budget r <
Alloc(p;, t) to trigger infinitely many RA-commit(-,-,r) at each time step t, and p; does
not need to retrieve r from the output event RA-assign. Hence, for reusable resources, we
denote the value of v in the output event RA-assign(-,-,r,-) to be L.

S. Azouvi, C. Cachin, D. V. Le, M. Vukoli¢, and L. Zanolini

» Remark 3.4. The assumption on external resources is natural because an external resource
is inherently unforgeable; for instance, in PoW, processes cannot fake this budget as it is the
physical limit of the mining hardware. For resources like storage, the resource is the physical
hard drive, and r can be thought of as the capacity of the hard drive.

Failures. A process that follows its protocol during an execution is called correct. On the
other hand, a faulty process may crash or deviate arbitrarily from its specification, such
processes are also called Byzantine. We consider only Byzantine faults in this work. All
Byzantine processes are controlled by a probabilistic polynomial-time adversary, A; we write
p; € A to denote that a Byzantine process is controlled by A. In this model, we require
the adversary to go through the same process of committing resources and getting assigned
resource commitments from the allocator. Since the allocator assigns the commitment at the
end of the time step, we require a minimum delay between Byzantine processes to be one. We
also note that this requirement is only for definitional reasons and can be relaxed by assuming
the network delay to be zero for Byzantine processes. However, the concrete parameters on
the probability of getting assigned resource commitments for Byzantine processes will need
to be adjusted to reflect this assumption, and we leave this to future work.

» Definition 3.5 (Adversarial Resource Budget). R4 is the mazimum adversarial resource
budget. For any time step t, it holds that: qu‘,eA Alloc(pi,t) < R4.

» Definition 3.6 (Corruption). At any time step t, an adversary A can allocate a resource
budget of Alloc(p;,t) from R4 to corrupt a process p; € P<y.

4 Resource-based Total-order Broadcast

In this section, we define an algorithm for the resource-based longest-chain total-order
broadcast using a (probabilistic) resource allocator RA,es. We define various properties needed
for a secure resource allocator so that the generic algorithm correctly guarantees properties
of total-order broadcast. Then, we concretely define three different resource allocators based
on three types of resource: computation, stake, and storage to inherently capture three
popular (probabilistic) blockchain protocols, namely, Nakamoto consensus, Ouroboros Praos,
and Filecoin’s consensus protocol. However, due to space constraints, the description of the
Proof-of-Storage allocator can be found in the full version of the paper.

unordered: set of transaction tx that has been received for execution and ordering
delivered : set of transaction tx that has been executed and ordered

k: common prefix parameter

B: set of received blocks, B = (h,tx, 7, o), initially containing By = (L,tx, L, L)
C: set of valid blockchains derived from B, initially contains one chain C = [By]
Clocal: local selected blockchain

Beom: a RA-committed block for p;

At time step t, r; = Alloc(p;, t) if r; is external, r; < L if r; is virtual

Figure 1 Initial state of a correct process.

19:7

OPODIS 2022

19:8

Modeling Resources

4.1 Generic Resource-based Longest-chain Total-order Broadcast

A protocol for resource-based longest-chain total-order broadcast using RAes allows any
process p; to broadcast transactions by invoking a-broadcast(tx) and to deliver those that
are valid (according to a validation predicate P(-,-) and the local chain, Ciocal) through an
a-deliver(tx) event. Delivered transactions are totally ordered and stored in a list, delivered,
by every process.

In particular, when a process p; a-broadcasts a transaction, this is gossiped to every
process, and eventually every correct process gossip-delivers it and stores it in a set unordered.
Every stored transaction is then considered by p;.

At any given time, a process may receive new blocks from other processes. Any process
p; can validate the block by invoking RA-validate and RA-assigned resource commitment
to a process p; by RArs. Once the resource commitment is validated, the process verifies
other components of the block such as signature and transactions and store new blocks in B.
Also, if a block B received by other processes does not have a parent (L22), the process can
trigger a request message to pull the blockchain C with B as the tip from other processes.
Upon receiving this request message, other processes re-broadcast every blocks in C with B
as the tip (L13-L16). This step is an oversimplified and inefficient version of how blockchain
nodes synchronize the chain with others. The goal is to demonstrate that it is feasible to
obtain old blocks from other processes.

At any given time, a correct process adopts the longest chain to its knowledge as its
local chain Cigcal, and extends with a block Beom it wishes to order at the last block of its
local chain Cjoea). Observe that the Extend function in Algorithm 1 captures the operation
of creating new blocks, usually called mining, in blockchain protocols and we refer to the
processes in charge of creating blocks as miners or validators, interchangeably.

In our model, we abstract this extending operation as the interaction between the processes
and the resource allocator RAs. Namely, to start extending, process p; needs to allocate a
resource 7 along with the proposed state (Ciocal, Beom) t0 the resource allocator RAes through
RA-commit(). Once RAes assigns a resource commitment 7, p; attaches 7 to the block and
gossips the block to other processes. The details of this interaction differ depending on the
type of resource and are left for the next subsections. Figure 1 specifies all data structures
maintained by a process, and the code for a process is presented in Algorithm 1.

For Algorithm 1 to satisfy the properties of total-order broadcast, the generic resource
allocator needs to satisfy various properties, and we define those properties as follows.

» Definition 4.1 (Secure Resource Allocator). A resource allocator R is secure if it satisfies

the following properties:

Liveness At a time step t, if a process p; invokes RA-commit(p;, st,r) with a state st and
a resource budget r then R issues either RA-assign(p;, st,r,) or RA-assign(p;, st,r, L)
during time step t.

Validity If resource commitment 7 is a valid resource commitment (i.e.,m # 1) con-
tained in an output event RA-assign(p;,st,r,m), then any process pj can invoke
RA-validate(p;, st,). The resource allocator R outputs RA-is-committed(p;, st,b) with
b = TRUE.

Use-Once At any time step t, for any states st, sti, sta, any resource budget r, r1,r9 € N such
that r1 + 1o = r, the probability that RA responds with RA-assign(p;, st,r,7) with m # L
after RA-commit(p;, st,r) is greater or equal to the probability that RA responds at least
one RA-assign(p;, st;,ri,m) for i € {1,2} with m # L after two RA-commit(p;, sty,r1)
and RA-commit(p;, sta, r2).

S. Azouvi, C. Cachin, D. V. Le, M. Vukoli¢, and L. Zanolini 19:9

Algorithm 1 Resource-based longest-chain total-order broadcast (process p;).

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:
31:
32:
33:
34:
35:
36:
37:
38:
39:
40:
41:
42:
43:
44:
45:
46:
47:
48:
49:

© 0w

uses
Resource allocator: RAes
Probabilistic reliable broadcast: gossip
Validation predicate: P(-,-)
Random oracle: H : {0,1}* — {0,1}*
Signature scheme: 3 = (Sign, Verify)

: init

Extend(C = [By))

: upon a-broadcast(tx) do
invoke gossip-broadcast([OP, tx])

upon gossip-deliver ([OP,tx]) do
unordered < unordered U {tx}

if 3C € Cs.t. C[-1] = B then
forall B’ € C do
invoke gossip-broadcast ([BLK, B'])
upon gossip-deliver ([BLK, B]) s.t. B = (h,tx, 7, 0;) do

st«+ (C, B)

invoke RA-validate(p;, st,)
else

invoke gossip-broadcast([REQUEST, B])

upon RA-is-committed(p;, st, TRUE) s.t. st = (C, B) do

B+ BU{B}
if |C| > |C|Oca|| then

Clocal +—C

Extend(Cocal)

o1 Sign(p:, hl[X]m)
B + (h,tx,m,04)
if r; is burnable then
ri&—ri+r
invoke gossip-broadcast ([BLK, B])
upon RA-assign(p;, st,r,7) s.t. m= L do
if r is burnable then
Ty < T
Extend(Ciocal)
upon a-deliver ([oP, tx]) do
delivered < delivered U {tx}
function Extend(Ciocal)
forall tx € Ciocal[: —k] A tx ¢ delivered do

unordered < unordered \ {tx}
h + H(C|oca|[—1])

Beom + (h,tx, L, 1)
invoke RA-commit(p;, (Ciocal, Beom), Ti)
if 7 is burnable then

ri <0

upon gossip-deliver ([REQUEST, B]) do > Receive a request for parents of B

> Re-send all parents of B

if Verify(p;, h||tx||7||slj,05) A3 C € C s.t. H(C[-1]) = h A P(C,tx) then

> Request for parents of B

> Update the local blockchain

upon RA-assign(p;, st,r,m) s.t. st=(C,B = (h,tx,m, L)), 7 # L do

output a-deliver([OP, tx]) > Deliver all transactions in the common prefix

select a list of transactions tx from wunordered such that P(C,tx) = TRUE

OPODIS 2022

19:10

Modeling Resources

For a reusable resource, at any time step t, a resource budget r, a state st and upon
potentially multiple repeated RA-commit(p;, st,r) from the same process p;, if RA responds
with RA-assigns(p;, st,r,m), then 7 is the same for every RA-commit events output by
RA.

Unforgeability No adversary can produce a resource commitment m such that m has not
been previously RA-assigned by RA and, upon RA-validate(p;, st,m), RA triggers RA-is-
committed(p;, st, TRUE), for some state st and some process p;.

Honest-Majority Assignment At each time step, we denote with oy and o4 the probabilities
that at least one correct process and one Byzantine process, respectively, obtain a valid
resource commitment for each RA-commit. More formally, for every time step t, we

define:

o4 = Pr[ARA-assign(p;, st,7, 7) such that ™ # 1L A p; € A],
o = Pr[3RA-assign(p;, st,r,7) such that m # L Ap; & A.

Then we require that:

1

A—1+1/on (1)

oa <

The liveness property aims to capture the mining process in permissionless PoW
blockchains and ensure that if processes keep committing resources, eventually one pro-
cess will get assigned the resource commitment to extend the blockchain.

The wvalidity property guarantees that a resource commitment can always be verified
by any process p; by triggering at any point RA-validate. This property captures the fact
that any participant can efficiently verify, for example, the validity of the solution to the
computational puzzle in PoW protocols or the evaluation of the verifiable random function
in PoS protocols.

The use-once property prevents processes from increasing the probability of getting
assigned the resource commitment either by committing several times, splitting the resource
budget and then committing all the split amounts at different states or by committing a
smaller resource budget. Intuitively, the use-once property also implies that the property
holds for any integer partition of r (i.e., r = > _ ;7). Moreover, the use-once property
also implies that our model mainly focuses on probabilistic protocols as we do not aim to
bypass the lower bound established in [21], namely, there is no deterministic protocol in
permissionless setting that solves consensus. On the other hand, we believe that applying
our model to permissioned blockchains with PoS, e.g., Tendermint [6], can be interesting
future work.

The unforgeability property ensures that no process p; can produce a valid resource
commitment 7 that has not been previously RA-assigned by the resource allocator.

Finally, the honest-majority assignment implies that despite the network delay, correct
processes will have a higher probability of getting assigned the resource commitment at each
time step. Equation (1) was established by Gazi et al. [18], and it takes into account that
honest blocks may get discarded due to the network delay A.

Security Analysis. With the defined properties of a secure allocator, our model is equivalent
to the idealized model introduced by Gazi et al. [18]. Therefore, their result also holds for
our protocol, and we present them in our model as follows.

S. Azouvi, C. Cachin, D. V. Le, M. Vukoli¢, and L. Zanolini

» Lemma 4.2 ([18]). Algorithm 1 implemented with a secure resource allocator RAes

satisfies the following properties:

Safety For any time steps t1 and to with t1 < ta, a common prefiz parameter k and any
local chain maintained by a correct process Ciocal, it holds that Cltolcal[: —k] = Clto2ca| with an
overwhelming probability.

Liveness For a parameter u and any time step t, let Ciocal be the local chain maintained
by a correct process, then there is at least one new honest block in C**/Ct with an
overwhelming probability.

Intuitively, safety implies that correct processes do not deliver different blocks at the same
height, while liveness implies that every transaction is eventually delivered by all correct
processes. Using Lemma 4.2 and properties of a secure resource allocator, we conclude the
following.

» Theorem 4.3. If RA, is a secure resource allocator, then Algorithm 1 implements
total-order broadcast.

Proof. Observe that, since RA,e is a secure resource allocator, it satisfies use-once property.
Therefore, Byzantine processes cannot amplify the probability o4 by repeatedly triggering
RA-commit() on reusable resources at the same time step.

For the wvalidity property, if a correct process p; a-broadcasts a transaction tx (L9), tx is
gossip-broadcast (1.10) and, after A, every correct process gossip-delivers tx (L11) and adds
it to unordered (L12). Eventually, transaction tx is selected by a correct process p; as part
of a block B (L45). Block B is then gossip-broadcast by p; (L33) and eventually, after A,
every correct process gossip-delivers B (L17), validates = (L18), and validates the resource
commitment (I1.20). Observe that, because of the unforgeability property of RAs, a valid
resource commitment cannot be produced except by the resource allocator. Observe that
this last step is possible through the validity property of RA,es. The proof then follows from
Lemma 4.2.

No duplication property follows from the algorithm; if a correct process p; a-delivers a
transaction tx, p; adds tx to delivered and condition at line 1.41 cannot be satisfied again.

For the agreement property, let us assume that a correct process p; a-delivered a trans-
action tx buried at least k& blocks deep in its adopted chain C. Process p; a-delivers a
transaction tx when it updates the local blockchain with the longest chain C (L26), tx has
not been a-delivered yet and tx is part of the common prefix C[: —k| (L41). The property
then follows from Lemma 4.2; eventually every correct process a-delivers transaction x, with
an overwhelming probability.

Finally, for the total order property, from the safety property of Lemma 4.2, we know
that correct processes do not deliver different blocks at the same height. This means that at
a given height, if two correct processes p; and p; a-delivered a block, then this block is the
same for p; and p; with an overwhelming probability. Moreover, since a block is identified by
its hash, due to the collision-resistance property of H(-), it also implies that the set and order
of transactions included in the block are the same for every correct process. So, if process p;
a-delivers transaction tx; before txs, then either tx; and txs are in the same block B with
tx; appearing before txs or they are in different blocks By and By such that By appears in
the chain after B;. The total-order property follows. <

4.2 Proof-of-Work Resource Allocator

In this part, we present the PoW allocator as a concrete instantiation of the resource allocator
for burnable and external resources.

19:11

OPODIS 2022

19:12

Modeling Resources

Proof-of-Work Resource Allocator. The PoW resource allocator RAp,, is parameterized
by o which is the default probability of getting assigned resource commitment for r = 1.
RApow works as follows. Upon RA-commit(p;, st,r) by process p; with a valid chain C with
respect to By, RApow starts r concurrent threads of Pow() function which acts as a biased coin
with probability o of assigning the resource commitment. Observe that, because computation
is a burnable and external resource, processes cannot lie on about the committed resource
budget r. In particular, Pow uniformly sample a value nonce in {0,1}* and either returns
nonce € {0,1}* or L. If nonce is the returned value in {0, 1}*, then RA,, assigns it as the
resource commitment to p;, otherwise it RA-assigns 1 to p;. If the committed chain C is not
valid, then RApow RA-assigns L to p;. Validation of the resource commitment can be done
by any process p; through RA-validate; the resource allocator RA,q, returns either TRUE or
FALSE, depending on the validity of the resource commitment. We implement the resource
allocator RAyo, in Algorithm 2 and obtain the following lemma and theorem.

Algorithm 2 Tmplementing PoW resource allocator, RApow.

50: state
51: By: Genesis block
52: o: Default probability of getting assigned resource commitment on one resource
53: uses
54: Random oracle: H : {0,1}* — {0,1}*
55: upon RA-commit(p;, st,r) s.t. st=(C,B),B = (h,tx, L, 1) do
56: if C is valid A H(C[—1]) = h then
57: start r concurrent threads with nonce; = Pow(p;, st) for j € {0,...,r — 1}
58: wait for all r threads with Pow(p;, st) for j € {0,...,r — 1} to finish
59: if 3 nonce; # L then
60: output RA-assign(p;, st,r, nonce;)
61: else
62: output RA-assign(p;, st,r, L)
63: else
64: output RA-assign(p;, st,r, L)
65: upon RA-validate(p;, st,7) s.t. st=(C,B),B = (h,tx,m,0), 7 = nonce do
2
66: b« H(h||T||nonce) < o-2* A C is valid A H(C[-1]) = h
67: output RA-is-committed(p;, st, b)
68: function Pow(p;, st) > With st = (C,B) and B = (h, T, L)
69: nonce < {0,1}*
70: if H(h||Z||nonce) < ¢-2* then
71: return nonce
72: return |

» Lemma 4.4. Given the random oracle H(-), the default probability o of getting assigned
resource commitment on r = 1, and the network delay A, there exists a value R4 such that
the resource allocator RApe, implemented in Algorithm 2 is a secure resource allocator.

Proof. Liveness property follows from Algorithm 2: upon RA-commit(p;, st,r) from pro-
cess p;, the resource allocator RAp,, cither (4) has L56 satisfied and, eventually, outputs
RA-assign(p;, st,r,m) with a resource commitment 7 to p; or outputs RA-assign(p;, st,r, L)
to p; (L61) or (i) if the chain is invalid (L63), and then the allocator outputs
RA-assign(p;, st,r, L) to p;.

S. Azouvi, C. Cachin, D. V. Le, M. Vukoli¢, and L. Zanolini

For the wvalidity property, observe that m = nonce is valid if and only if there is a valid
chain C with respect to the genesis block By such that the last block B = C[—1] contains
7. Hence, m can be validated by any process p; through RA-validate(p;, (C, B*), 7); RApow
then checks if H(B*) = h and H(h|[Z||nonce) < o - 2* outputting the same result at any
process p;.

The use-once property immediately follows because of the burnable property of the
underlying resource (i.e., computation). Since RApqy triggers RA-assigns at the end of the
the activation period for p;, we claim that for multiple RA-commit(p;, -, 7;) committed by
p; at t, it is equivalent to trigger RA-commit(p;,-,r) once for r = Alloc(p;,t). In particular,
at the time step t, let Bad be the event of not getting any resource commitment on all
RA-commit(p;, -, ;) for r; € {r1,r2} such that r = ry 4+ rq, then the probability of getting the

resource commitment is 1 —Pr[Bad] =1—-(1—-1+(1—0)")(1-14+(1—-0))=1—-(1-p)".

Since the resource allocator RApqy uses the random oracle H (i.e., idealized hash function
with no exploitable weaknesses), the unforgeability property follows from the observation that,
in order to produce a valid resource commitment, p; has no better way to find the solution
than trying many different queries to H. This implies that p; has the same probability of
obtaining a valid local resource commitment as it would have by RA-committing to the
resource allocator.

For the honest-majority assignment we recall that oy and p 4 are the probabilities that at
least one correct process and one Byzantine process get the resource commitment after one
RA-commit, respectively. In our model, it is not difficult to see that o = 1 — (1 — o)~ 1t4
and o4 = 1 — (1 — g)f*4. Therefore, one can easily derive the amount of resource R4 such

» Theorem 4.5. Algorithm 1 with the secure resource allocator RAyqw implements total-order
broadcast.

Proof. From Theorem 4.3 and Lemma 4.4, it follows that, since RApqy is a secure resource
allocator, then Algorithm 1 with RAy., implements total-order broadcast. |

4.3 Proof-of-Stake Resource Allocator

The resource in PoS protocols is the stake of each process, and stake is a virtual and reusable
resource. In those protocols, the probability of a process p; being assigned a resource
commitment is proportional to its stake in the system. In this part, we focus on Ouroboros
Praos [9] for our formalization. Before presenting the PoS resource allocator as a concrete
instance of a resource allocator for reusable and virtual resources, we need to introduce
additional considerations and definitions.

Reusable Resources. By definition, a reusable resource allows processes to repeatedly
trigger RA-commit in the same time step using the same resource. Hence, if RA does not
satisfy use-once property and assigns a resource commitment randomly, then every time
a process p; triggers RA-commit, process p; might end up with a different result. For this
reason, a naive implementation of the resource allocator for reusable resources would allow an
adversary to amplify the probability of getting assigned a resource commitment (i.e., 0.4) by
repeatedly invoking RA-commit using the same resource, i.e., in a grinding attack [3] at the
same time step. Hence, for probabilistic blockchain protocols, to cope with this problem, one
needs to ensure that the allocator satisfies use-once property. In particular, from designs of
PoS protocols like Snow White [8] and Ouroboros Praos [9], three commonly used approaches
to enforce use-once property are:

19:13

OPODIS 2022

19:14

Modeling Resources

(R1) Explicit Time Slots The first mechanism to enforcing use-once property is to index
the resource by time slots. Protocols like Ouroboros Praos [9] and Snow White [8] require
processes to have synchronized clocks to explicitly track time slots and epochs to ensure
that each process derives a deterministic leader selection result from the same state.

(R2) Leader Selection from the Common Prefix This mechanism requires correct pro-
cesses to extract the set of potential leaders from the common prefix. In particular,
the common prefix is a shortened local longest chain that is with overwhelming probabil-
ity the same for all correct processes. This approach allows them to share the same view
of potential leaders.

(R3) Deterministic and Trustworthy Source of Randomness The source of randomness
has to be trustworthy to ensure a fair leader election and to defend against an adaptive
adversary that might corrupt processes predicted to be leaders for the upcoming time
slots. In addition, the source of randomness has to be deterministic for each time slot and
chain state in order to prevent the previously mentioned grinding attack. Hence, popular
Proof-of-Stake blockchain protocols often rely on sophisticated protocols to produce
randomness securely.

Slot and Epoch. An epoch e is a set of ¢ adjacent time slot S = {s, ..., sl;—1}. In practice,
slot sl consists of a sufficient number of time steps so that discrepancies between processes’
clocks are insignificant, and processes advance the slot at the same speed. In our model, we

simplify this bookkeeping by requiring the allocator to maintain the slot and epoch.

Stake Distribution. The stake distribution at a time step t is S, = {(p1,71), ...} with
r; > 0, specifies the amount of stake owned by each process p; € P<;. We denote Sg,,. the

stake distribution at the beginning of epoch e. The stake distribution Sg_,, can be obtained
from StateAlloc(C[0 : sl], p;) for sl < e - ¢ for each p; € P<.

» Definition 4.6 (Leader Selection Process). A leader selection process (D, F') with respect
to a stake distribution Sgake = {(P1,71), .-} s a pair consisting of a distribution D and a

deterministic function F. When p s D, for all sl € N, F(Sgake, sl; p) outputs process p;
with probability 1 — (1 —)" where o is the probability of assigning resource commitment for
r =1 for a given slot.

Proof-of-Stake Resource Allocator. The Proof-of-Stake resource allocator RAyqs with the
leader selection process (D, F') works as follows. First, we require that RApqs keeps track of
the current epoch and time slot to correctly assign the resource commitment to process p; for
the current slot. RA,os keeps track of the slot through Timeout triggered by the starttimer()
event. This approach is to enforce the first requirement of explicit time slots (R1). Secondly,
upon RA-commit(p;, st,r) by process p; with a valid state st in slot sl, RApos first checks if
a random value p € D for (p;,st,sl) has been previously sampled; if so, then RA,qs picks it;
otherwise, a fresh random value is sampled. This requirement ensures a deterministic and
trustworthy source of randomness (R3). Then, RAyqs obtains the stake distribution of two

epochs before, S~ 2 from st. This ensures a leader selection from the common prefix (R2).

stake

The resource allocator RAyqs uses S:t_aie
the leader selection function F' to check if p; is selected for the slot sl. If this is the case,
then RAqs assigns the resource commitment to p;, otherwise it assigns L. If the committed
chain C is not valid, then RA,qs assigns L to p;. A validation of the resource commitment

can be done by any process p; through RA-validate; the resource allocator RApes returns

together with the sampled randomness as input to

S. Azouvi, C. Cachin, D. V. Le, M. Vukoli¢, and L. Zanolini

Algorithm 3 Implementing PoS Resource Allocator, RApos.

73: state
75:

76:

7T

78:

79:

80:

81:

82:

83: uses
84:

86:
87:
88:
89:
90:
91:
92:

93:
94:
95:
96:
97:
98:
99:
100:
101:
102:
103:

B():
D:
F
sl
e:
k :
q:
T :

Genesis block

Distribution

Leader selection function
Current slot, initially sl =0
Current epoch, initially e = 0
common prefix parameter

number of slots in an epoch, initially ¢ = 16 - k

set of assigned resource commitments, initially empty

Random oracle: H : {0,1}* — {0,1}*
85: upon RA-commit(p;, st,r;) s.t. st=(C,B), B= (h,tx, 1, 1) do
if C is valid A H(C[—1]) = h then
obtain Cprefix by pruning all blocks with slot > (e — 2) - ¢, from C

if Corefix = 0 do
Cprefix — [BO]
if 3(pi, Corefix, p*, sl) € T then
pp
else
p Ep
T+ TU {(piv CP"efixv P, SZ)}
obtain the stake distribution S:t;kge from Cprefix
pj F(Siger sk p)
if DPi = Dy then
7 (pi, pr 50
output RA-assign(p;, st, L,)
else
output RA-assign(p;,st, L, 1)

else

output RA-assign(p;, st, L, L)

> Queried before

> Sample a fresh randomness
> Update T
> Evaluate StateAlloc(-, -)

104: upon RA-validate(p;, st,7) s.t. st= (C,B),B = (h,tx,7,0), 7 = (p;, p, sl) do
obtain Cyefix by pruning all blocks with slot > (e — 2) - ¢, from C
if Cprefix = @ do

105:
106:
107:
108:
109:
110:

111:
112:
113:
114:

Cprefix — [BO]

if a(pu CprefiX7 P Sl) € T then

obtain the stake distribution S,2 from Cprefix
p; = F(Siae: st p)

b pi = pt A Cis valid A H(C[-1]) = h
output RA-is-committed(p;, st, b)

else

output RA-is-committed(p;, st, FALSE)

115: upon Timeout do
sl sl+1
if sl mod ¢ = 0 then

116:
117:
118:
119:

e+—e+1

starttimer()

> Queried before

> Increment slot

> Increment epoch

19:15

OPODIS 2022

19:16

Modeling Resources

either TRUE or FALSE, depending on the validity of the resource commitment. Finally, the
PoS resource allocator is presented in Algorithm 3, and we conclude the following lemma
and theorem.

» Remark 4.7. In practice, the randomness generation can be instantiated using verifiable
random function [12], multiparty coin-tossing [20] protocol, or a random beacon [13]. However,
Algorithm 3 aims to show the distinction between ezternal and virtual resources.

» Lemma 4.8. Given the random oracle H(-), the leader selection process (D, F) parame-
terized by the default probability o, and the network delay A, there exists a value R4 such
that the resource allocator RApos implemented in Algorithm 3 is a secure resource allocator.

Proof. Liveness property follows from the algorithm: upon RA-commit(p;, st,r) from pro-
cess p;, the resource allocator RAqs either (4) has L86 satisfied and, eventually, outputs
RA-assign(p;, st, L, 7) with a resource commitment 7 to p;, or outputs RA-assign(p;, st, L, 1)
to p; (L100) or (7) if the chain is invalid (L102), the allocator outputs RA-assign(p;, st, L, 1)
to p;.

For the validity property, observe that @ = (p;, p, sl) is valid if and only if p; is a leader for
sl. If p; is a leader for sl then in T" there must be the random value p previously sampled for
p; (1L94). This means that F' evaluated on p will output again p;. Hence, 7 can be validated
by any process p; through RA-validate(p;, st, m); RApos checks if m € T' outputting the same
result to p;.

The Use-once property follows because, in our model, RApos keeps track of previous
RA-commit from p, along with the time slots and states. Moreover, the choice of prob; is
stake-invariant, and it ensures that an adversary cannot increase its probability of being
elected leader by dividing its stake into multiple identities. The proof for this is identical to
the proof in Lemma 4.4. In practice, this property is enforced by the deterministic outputs
of VRF and Hash function along with slot number and the common chain prefix as input.

The unforgeability property follows from the fact that any resource commitment produced
by RAps is stored by the resource allocator in a set 1" of assigned resource commitments
(L94). Hence, it is not possible for any process p; to produce a valid resource commitment
that is not in 7. In practice, this property is guaranteed by the uniqueness property of
verifiable random functions or the collision-resistant property of hash functions.

For the honest-majority assignment property, it is not difficult to see that we can derive
om and g4 from R and Ry4. In particular, o = 1 — (1 —)84 and g4 ~ 1 — (1 — o)B4.
Here we note that the adversary can slightly increase o4 by committing to shorter chains.
However, it also means that the adversary will fall behind as it has to extend a much shorter
chain than the current local chain maintained by correct processes, and we assume the
)R

adversary has no reason to do so. Hence, we consider p4 = 1 — (1 — g)**4. Thus, we can

derive RA so that oa < m |

» Theorem 4.9. Algorithm 1 with the secure resource allocator RAyqs implements total-order
broadcast.

Proof. From Theorem 4.3 and Lemma 4.8, it follows that, since RA,.s is a secure resource
allocator, then Algorithm 1 with RA,.s implements total-order broadcast. |

5 Trade-offs Between Different Resources

In this section, we describe various attacks against the resource-based total-order broadcast.
In particular, we demonstrate long-range attacks against virtual resources, and we discuss
the incentive consideration that describes the cost of launching attacks against burnable and
reusable resources.

S. Azouvi, C. Cachin, D. V. Le, M. Vukoli¢, and L. Zanolini

5.1 Virtual Resource vs External Resource: Long-Range Attacks

Long-range Attacks on Virtual Resources. Long-range attacks [10] (LRAs), also sometimes
called posterior-corruption attacks, can be mounted on any blockchain based on a virtual
resource (such as PoS) if the majority of the set of active processes from an earlier slot
becomes inactive in a later slot, as they no longer have any stake left in the system. Formally,
they can be defined as follows:

» Definition 5.1 (Virtual-Resource-Shifting Event). A Virtual-Resource-Shifting Event
happens when there exist two values ho, hi, and a set of processes Pmaj such that:

Active at hg: At height ho, processes in Pmaj control the majority of the total virtual
resource (i.e., R), namely: 3, p (StateAlloc(p;,C[0 : hol)) > R — Ra
Inactive at hy: At height hi > hg, processes in Pma control less wirtual re-
sources than the total number of resources controlled by the adversary (i.e., Ra):

Do piepny (StateAlloc(p;, C[0 : hu])) < Ra

If Definition 5.1 is satisfied, then most processes in Pmaj have released all or part of
their resources by height hq, and the adversary has enough budget to corrupt all the active
processes in Prgj since they are all inactive in the present. The adversary could then use
these processes to re-write the chain from C[hg] since with a virtual resource as no external
resource is needed to call the resource allocator. Furthermore, the release of resource from
processes in Pmaj also happens on-chain, e.g., in the case of PoS for a process to move from
active to inactive, it will spend its coins on-chain. An adversary re-writing the history of the
chain could simply omit these transactions such that all processes satisfying definition 5.1
stay active in the alternative chain that the adversary is writing. The attack proceeds as
follows:

1. When a virtual-resource-shifting event happens at the current height h;, A corrupts all
processes in Praj. Since the total of resources controlled by these processes is less than
R4, A has enough budget to do so;

2. A starts a new chain C* at C[hg]. At this height, A controls the majority of the virtual
resource, and because the resource allocator takes no further input apart from the state
of C[0 : hgl, it assigns the resource commitment to A with high probability;

3. A now controls all processes in Pmaj and can alter the state of the chain such that the
processes in Pmy; never release their resource;

4. The adversarial chain will grow at a faster rate and will eventually become longer than
the honest chain because there is no network delay between corrupted processes.

Long-range Attacks on External Resources. The strategy above does not work with
external resources. Even if Definition 5.1 holds, the adversary cannot call the resource
allocator by simply corrupting the processes p; as an external resources would be needed as
input to the resource allocator (step 2 in the strategy above).

We formalize the implication of the long-range attack in the following lemma and theorem.

» Lemma 5.2 (Long-range Attack). In a virtual-resource-based total-order broadcast (Algo-
rithm 1), let Ciocal be the longest chain maintained by a correct process, if a virtual-resource-
shifting event occurs, then an adversary can eventually form a valid chain C* that is longer
than Clocal'

Proof. If a virtual-resource-shifting event (Definition 5.1) occurs, an adversary A can corrupt
all p; € Pmaj at height hq. Notice that A can do this because according to the threat model
defined in definition 3.6, A has enough resource budget to corrupt all p; € Ppa;.

19:17

OPODIS 2022

19:18

Modeling Resources

Adversary A can start a new chain C* at height hg by requiring all the corrupted processes
Di € Pmaj to commit old states to RApqs. Since the Byzantine processes control the majority
of the resources, the probability of Byzantine processes getting assigned commitment is
strictly higher than the probability of correct processes getting assigned commitment; hence,
the growth rate of C* is strictly higher than the growth rate of the honest chain Ciycal;
therefore, C* will eventually catch up and outgrow Cioca in terms of the length.

More concretely, to simplify our analysis, we also assume the network delay to be 1 (i.e.,
A = 1) between correct processes. We recall that gy is the probability that at least one
correct process gets selected on the honest chain Ciyca at each time step. For any interval
[to, to + t] and arbitrary tg,t € N, we denote with Xo, ..., X;_; independent Poisson trails
such that Pr[X; = 1] = gy, and we let Xy = Zf;é X;. Using the Chernoff bound, one
can show that for any e € (0,1) it holds that Pr[Xy < (1 —¢€) - oy - t] < exp(—opy - t - €2/2).
Intuitively, the Chernoff bound implies that the value of Xy cannot deviate too much from
the mean; hence, for sufficiently large ¢ and sufficiently small €, the upper bound on the
honest chain growth is approximately gy - t, with an overwhelming probability.

Using the same argument for the growth of the malicious chain, one can show that for a
sufficiently large time interval (i.e., t) and a sufficiently small ¢, the lower bound of chain
growth is approximately o4 -t (i.e., (1 +€) - 04 -t) with an overwhelming probability (i.e.,
exp(—ou - t-€2/3)), where g4 is the probability that at least one Byzantine processes get
selected on the honest chain C* at each time step.

So, if o4 > og, we can claim that C* grows at a faster rate than Cjoca. This is the case
for Algorithm 1 that uses RAgos allocator. Due to Definition 5.1, the probability of getting
assigned the resource commitment with C*, is o4 > 1 — (1 — 9)F~f4 = o, where op is
the probability that at least one correct processes get assigned a resource commitment with
Clocal- <

» Remark 5.3. Also, if we assume a A > 1 network delay between correct processes, there will
a non-zero probability that a fork can happen, and honest blocks can get discarded due to
the network delay. On the other hand, we also assume a perfect synchrony (A = 1) between
Byzantine processes; therefore, there is no loss in the malicious growth rate. Therefore, even
when correct processes and Byzantine processes control the same amount of resources on
both chains, due to network delay, the chain growth rate of C* can still be higher than the
chain growth rate of the honest chain Cioca).

» Theorem 5.4. If a virtual-resource-shifting event occurs, a total-order broadcast based on
virtual resources (Algorithm 1) does not implement total-order broadcast.

Proof. Let C be the honest chain adopted by every correct process and let us assume that
all the transactions buried at least k blocks deep in C have been a-delivered (Algorithm 1,
L42) by every correct process. If a virtual-resource-shifting event occurs then, by Lemma 5.2,
an adversary can eventually form a valid chain C* that is longer than C.

For existing processes, the adversary can send this C* to a subset of correct processes.
This implies that some correct processes will adopt C* as a valid chain; they will a-deliver
all the transactions buried at least k£ blocks deep in C*. This implies that, eventually, the
total-order property is violated. Also, due to the permissionless nature of our model, correct
processes might join the system at any time. Hence, new processes will adopt the malicious
chain as the local chain; therefore, delivered will be different among correct processes. Hence,
the total-order property is violated <

S. Azouvi, C. Cachin, D. V. Le, M. Vukoli¢, and L. Zanolini

5.2 Incentives in Burnable and Reusable Resources

One of the vulnerabilities induced by reusable resources is that extending the blockchain is
costless with respect to the resource considered. This is different from burnable resources,
where creating a block consumes the resource; this consumption is captured in our model as
the interaction between processes and the resource allocator. The use of reusable resources
can result in two different types of adversarial behaviors. The first one consists in creating
multiple blocks at the same time slots on different chains. The second one consists in keeping
blocks created private from the rest of the processes. In both cases, we discuss how this
costless property associated with block creation for longest-chain consensus protocols based
on a reusable resource impacts their security compared to those based on burnable resource.
In this section, we assume, as is traditional with any blockchain system, that some financial
reward is associated with block creation, and we assume the cost of acquiring resources is the
same for both reusable and burnable resources. With these assumptions and the use-once
property of resource allocator, we define the chain extension cost as follows.

» Definition 5.5 (Chain Extension Cost). The cost of extending a valid chain for a process
pi between two time steps t1 and ty such that t1 < to is defined to be the resource budgets
committed and assigned back during this time interval. In particular, we have:

For burnable resources: Costpyn(pi,t1,t2) = iitl Alloc(p;, t)

For reusable resources: Costreuse(pist1,t2) < maxeey, .. 4,1 Alloc(pi, t)}

» Proposition 5.6. For all time step to > t1 and a process p;, the cost of extending a valid
chain with a burnable resource is strictly more expensive than with a reusable resource, i.e.,
C'OStburn (pza tla t2) > COStreuse (pz, t17 t2) .

Proposition 5.6 indicates that it is inherently more expensive to extend the blockchain for
burnable resources; hence, it is more difficult to launch different types of attacks on blockchain
based on burnable resources. In the following, we explain different types of attacks.

Private Attack. The private attack [11], sometimes called double-spending attack, is the
most simple attack in longest-chain blockchains. The adversary creates a private chain,
i.e., it mines on its own without broadcasting its blocks to the other processes and without
accepting the blocks from other processes. In particular, the adversary runs Algorithm 1,
except that it does not broadcast its blocks until the end of the attack. This means that
two chains grow in parallel: the adversarial one, that only the adversary is aware of, and
the honest one. The adversary is aware of the honest chain but chooses not to contribute to
it and it wins the attack if it creates a chain longer than the honest chain. In the case of
a burnable resource, this attack has a cost as every block created consumes a resource. If
the adversary wins the attack, then the cost is recovered as the adversary wins the reward
associated with block creation. Otherwise, it loses the cost associated with all the resources
consumed. In the case of a reusable resource, the only cost of the attack is the opportunity
cost, i.e., the adversary takes the risk of potentially not earning the rewards associated with
block creation if the attack fails but does not lose any resources. The attack in this case is
then much cheaper than in the case of a burnable resource. The cost of a private attack is
higher if the resource allocator is based on a burnable resource than if it is on a reusable
resource, thus creating a stronger disincentivisation for an adversary. The results follow
from the fact that for a reusable resource, the resource allocator can be invoked on the same
resource several times. From Proposition 5.6, it is not difficult to see that the expected
return on performing a private attack is higher for a reusable resources as the probability of
winning the attack (i.e. producing a longer chain) is the same in both cases, but the cost is
higher for a burnable resource.

19:19

OPODIS 2022

19:20

Modeling Resources

Resource-bleeding Attack. Stake-bleeding attacks [17] were proposed in the context of
PoS blockchains and work, informally, as follows. An adversary starts creating a private
chain (i.e., it does not broadcast its blocks to the rest of the network) but, differently from
the private attack described previously, the adversary may continue creating blocks on the
honest chain. In its private chain, the adversary includes all of the transactions it is aware
of, harvesting the associated transaction fees. Furthermore, the adversary also receives the
coinbase reward usually associated with block production. After a sufficient amount of time,
the adversary will have bloated its amount of resources and will eventually be able to create
a chain that becomes as long as the honest chain. This attack could be extended to the
general-resource case, which we call this attack resource-bleeding attack, and note that in the
case of an external resource, this attack is much easier to detect than in the Proof-of-Stake
case. In order to understand this attack, we must extend the model from Section 4 to
take into account total resource adjustments in the case of inactive processes. In Section 6,
we describe the general case of resource-bleeding attacks and discuss how they are more
detectable on an external resource and the most mitigated for burnable resources.

Nothing-at-Stake Attack. In a Nothing-at-Stake attack, instead of deciding to extend the
longest chain (Algorithm 1, L.25), a process decides to mine simultaneously on all of the
chains it is aware of. In the case of a burnable resource, an adversary cannot reuse the same
resource to mine on multiple chains (due to L49), hence in order to mount this attack, the
adversary must decide how to commit its resources to multiple chains. In contrast, with a
reusable resource, each resource can be fully committed to each chain. If there exists multiple
forks of the same length, there is a risk that a process will mine on a chain that ends up
being abandoned and thus will miss out on the associated reward. It thus becomes rational
for a process to deviate from the protocol and mine on every chain since this reduces chance
of losing reward because network may select different chain. If every process adopts this
strategy, the protocol cannot achieve the common prefix property as every chain will keep on
growing at the same pace.

6 Discussion

Resource-bleeding Attack in the Flexible Resource Setting. The resource-bleeding attack
stems from this observation: in order to deal with inactive processes, if the protocol wants to
maintain its block production rate, it needs to adjust its leader selection processes such that
inactive processes are not selected anymore. In practice, this means increasing o such that
every active process has a higher chance of being selected and removing the inactive processes
from the list of eligible block producers and hence maintaining a steady block rate. If an
adversary starts a private attack, since no resource commitment from the other processes is
included in the adversarial chain, after a sufficient time, ¢ will be updated to ensure that
the adversarial chain block rate is maintained. On the other hand, with a reusable resource,
the adversary could keep maintaining its resources on the honest chain to ensure that the
leader selection probability is not adjusted on the honest chain. After enough time, all the
honest processes will be removed from the power table in the adversarial chain. This means
that when electing a leader on the adversarial chain, the adversary now represents the full
power table and is guaranteed to be elected at each epoch. On the other hand, since the
adversary maintain its resource on the honest chain, without contributing as many blocks as
it could. This means that, after some time, the honest chain will grow at a slower rate than
the adversarial chain and the adversary will be able to create a chain as long as the honest
chain, breaking the safety of the protocol.

S. Azouvi, C. Cachin, D. V. Le, M. Vukoli¢, and L. Zanolini

In practice in Bitcoin, the target value [26] is updated every two weeks (roughly) to
ensure that blocks are created, on average, at the same pace. An adversary could fork the
chain, wait for the difficulty adjustment to adjust and then be able to create a chain at the
same pace as the honest chain. This is, however, easily detectable. In the PoW case, one can
simply see that the difficulty has been adjusted and that one chain has much fewer resources
than the other. Moreover, since the resource is burnable, it is not possible for an adversary
to continue mining on the honest chain as the same burnable resource cannot be used twice,
hence the adversary cannot maintain its full resource on the honest chain and the honest
chain difficulty must be adapted accordingly.

For an external, but reusable, resource such as storage, the adversary could maintain its
power in both chain, however, it is easy to detect the adversarial chain as it will have fewer
resources committed to it and hence is distinguishable from the honest chain.

Mitigations against Different Attacks. In the following, we discuss various mitigations
against attacks described in Section 5.

Long-range Attacks. In practice, many PoS systems deal with long-range attacks by using
some form of checkpointing [1, 24, 23], requiring key-evolving cryptography [9, 19], or using
multiple types of resources [15]. Others use more refined chain selection rules [9, 2] (i.e.,
chain density analysis or selecting the longest chain that fork less than & blocks) instead of
the longest chain selection.

Resource-bleeding Attacks. In the case of PoS, mitigation has been proposed in Ouroboros
Genesis [2] and it works as follows. When a process is presented with two forks, it differentiates
between two cases. In the first case, the fork is smaller than the common prefix parameter
k, i.e., the two chains differ for a number of slots smaller than k, in which case the usual
longest-chain rule is applied. If on the other hand, the forks differ from more than k slots,
then the processes look at the first & slots after the fork (i.e., the first k slots where the two
chains diverge) and choose the chain with the most blocks in that period. Intuitively, this
is because during the beginning of the fork, an adversary has not had the time to bloat its
stake and hence the rate at which its chain grows will be smaller than that of the correct
processes. In the case of an external resource, it suffices to look at the total power (which
can be explicit in the case of a reusable resource, or implicit for a burnable resource, e.g.,
target value) at the tip (end) of the chains and pick the one with the most resource.

Nothing-at-stake Attacks. A process that performs a nothing-at-stake attack with a
reusable resource is easily detectable as anyone can see that the same resource was used on
different chains. One typical mitigation adopted by PoS systems is to slash, i.e., financially
punish, processes who use their resource on concurrent chains. This is usually done by having
processes deposit some money before gaining participation rights, and then burning some of
this deposit if a proof of misbehavior is sent to the blockchain. The details of this mechanism
are out of scope for this paper.

7 Conclusion

Resources are essential in ensuring the safety property of total-order broadcast protocols
in a permissionless setting as it protects the protocol from Sybil attacks. However, there
exist several attacks on protocols based on reusable and virtual resources that a formal
specification would help understand and address.

In this work, we formalize properties of resources through a resource allocator abstraction,
and identify crucial properties on how to make this resource allocator secure for blockchain
protocols. Using a secure resource allocator, we demonstrate how to construct a generic

19:21

OPODIS 2022

19:22

Modeling Resources

longest-chain total-order broadcast algorithm. Furthermore, we also illustrate how certain
types of resources tend to make blockchain protocols more vulnerable to different types of
attacks. We believe that this formalization will help blockchain protocol designers to select
suitable types of resources for their protocols and understand and analyze the potential
security trade-offs on those resources.

Outlook. For future work, we find the following research directions worth investigating:

Relaxed Assumptions. Our analysis works with a setting where the total amount of
active resources is known and fixed. Hence, it is natural to extend this model to a setting
where the total amount of resources is unknown and potentially fluctuates.
Different Network Setting and Participation Models. Our model focuses on
probabilistic longest-chain protocols in a A-synchrony setting. However, we believe that
our model can be applied to analyze properties of resource-based deterministic protocols in
a permissioned and partially synchrony setting such as Tendermint [6] and HotStuff [27].
Different Types of Resources. Finally, there are other resource-based protocols such
as the Proof-of-Elapsed-Time (PoET) protocol [4] or multi-resources-based protocol [15]
that have not been considered in this work. Hence, one can extend this model to analyze
those protocols.

—— References

1 Sarah Azouvi, George Danezis, and Valeria Nikolaenko. Winkle: Foiling long-range attacks in
proof-of-stake systems. In AFT, pages 189-201. ACM, 2020.

2 Christian Badertscher, Peter Gazi, Aggelos Kiayias, Alexander Russell, and Vassilis Zikas.
Ouroboros genesis: Composable proof-of-stake blockchains with dynamic availability. In CCS,
pages 913-930. ACM, 2018.

3 Joseph Bonneau, Jeremy Clark, and Steven Goldfeder. On bitcoin as a public randomness
source. TACR Cryptol. ePrint Arch., page 1015, 2015.

4 Mic Bowman, Debajyoti Das, Avradip Mandal, and Hart Montgomery. On elapsed time
consensus protocols. In INDOCRYPT, volume 13143 of Lecture Notes in Computer Science,
pages 559-583. Springer, 2021.

5 Jonah Brown-Cohen, Arvind Narayanan, Alexandros Psomas, and S. Matthew Weinberg.
Formal barriers to longest-chain proof-of-stake protocols. In EC, pages 459-473. ACM, 2019.

6 Ethan Buchman, Jae Kwon, and Zarko Milosevic. The latest gossip on BFT consensus. CoRR,
abs/1807.04938, 2018. arXiv:1807.04938.

7 Christian Cachin, Rachid Guerraoui, and Luis E. T. Rodrigues. Introduction to Reliable and
Secure Distributed Programming (2. ed.). Springer, 2011.

8 Phil Daian, Rafael Pass, and Elaine Shi. Snow white: Robustly reconfigurable consensus and
applications to provably secure proof of stake. In Financial Cryptography, volume 11598 of
Lecture Notes in Computer Science, pages 23—41. Springer, 2019.

9 Bernardo David, Peter Gazi, Aggelos Kiayias, and Alexander Russell. Ouroboros praos: An
adaptively-secure, semi-synchronous proof-of-stake blockchain. In EUROCRYPT (2), volume
10821 of Lecture Notes in Computer Science, pages 66-98. Springer, 2018.

10 Evangelos Deirmentzoglou, Georgios Papakyriakopoulos, and Constantinos Patsakis. A survey
on long-range attacks for proof of stake protocols. IEEE Access, 7:28712-28725, 2019.

11 Amir Dembo, Sreeram Kannan, Ertem Nusret Tas, David Tse, Pramod Viswanath, Xuechao
Wang, and Ofer Zeitouni. Everything is a race and nakamoto always wins. In CCS, pages
859-878. ACM, 2020.

12 Yevgeniy Dodis and Aleksandr Yampolskiy. A verifiable random function with short proofs
and keys. In Public Key Cryptography, volume 3386 of Lecture Notes in Computer Science,
pages 416-431. Springer, 2005.

http://arxiv.org/abs/1807.04938

S. Azouvi, C. Cachin, D. V. Le, M. Vukoli¢, and L. Zanolini

13
14

15

16

17

18

19

20

21

22

23

24

25

26
27

drand: Distributed randomness beacon. URL: https://drand.love/.

Cynthia Dwork, Nancy A. Lynch, and Larry J. Stockmeyer. Consensus in the presence of
partial synchrony. J. ACM, 35(2):288-323, 1988.

Matthias Fitzi, Xuechao Wang, Sreeram Kannan, Aggelos Kiayias, Nikos Leonardos, Pramod
Viswanath, and Gerui Wang. Minotaur: Multi-resource blockchain consensus. In CCS, pages
1095-1108. ACM, 2022.

Juan A. Garay, Aggelos Kiayias, and Nikos Leonardos. The bitcoin backbone protocol: Analysis
and applications. In EUROCRYPT (2), volume 9057 of Lecture Notes in Computer Science,
pages 281-310. Springer, 2015.

Peter Gazi, Aggelos Kiayias, and Alexander Russell. Stake-bleeding attacks on proof-of-stake
blockchains. In CVCBT, pages 85-92. IEEE, 2018.

Peter Gazi, Aggelos Kiayias, and Alexander Russell. Tight consistency bounds for bitcoin. In
CCS, pages 819-838. ACM, 2020.

Yossi Gilad, Rotem Hemo, Silvio Micali, Georgios Vlachos, and Nickolai Zeldovich. Algorand:
Scaling byzantine agreements for cryptocurrencies. In SOSP, pages 51-68. ACM, 2017.
Aggelos Kiayias, Alexander Russell, Bernardo David, and Roman Oliynykov. Ouroboros: A
provably secure proof-of-stake blockchain protocol. In CRYPTO (1), volume 10401 of Lecture
Notes in Computer Science, pages 357-388. Springer, 2017.

Andrew Lewis-Pye. Byzantine generals in the permissionless setting. CoRR, abs/2101.07095,
2021. arXiv:2101.07095.

Ling Ren. Analysis of nakamoto consensus. TACR Cryptol. ePrint Arch., page 943, 2019.
Selma Steinhoff, Chrysoula Stathakopoulou, Matej Pavlovic, and Marko Vukolic. BMS: secure

decentralized reconfiguration for blockchain and BFT systems. CoRR, abs/2109.03913, 2021.

arXiv:2109.03913.

Ertem Nusret Tas, David Tse, Fangyu Gai, Sreeram Kannan, Mohammad Ali Maddah-Ali, and
Fisher Yu. Bitcoin-enhanced proof-of-stake security: Possibilities and impossibilities. JACR
Cryptol. ePrint Arch., page 932, 2022.

Benjamin Terner. Permissionless consensus in the resource model. In Financial Cryptography,
volume 13411 of Lecture Notes in Computer Science, pages 577-593. Springer, 2022.

Bitcoin Wiki. Target. URL: https://en.bitcoin.it/wiki/Target.

Maofan Yin, Dahlia Malkhi, Michael K. Reiter, Guy Golan-Gueta, and Ittai Abraham. Hotstuff:
BFT consensus with linearity and responsiveness. In PODC, pages 347-356. ACM, 2019.

19:23

OPODIS 2022

https://drand.love/
http://arxiv.org/abs/2101.07095
http://arxiv.org/abs/2109.03913
https://en.bitcoin.it/wiki/Target

	1 Introduction
	2 Model and Definitions
	2.1 System Model
	2.2 Modeling Blockchain Data Structures
	2.3 Total-order Broadcast

	3 Modeling Resources in Blockchain
	4 Resource-based Total-order Broadcast
	4.1 Generic Resource-based Longest-chain Total-order Broadcast
	4.2 Proof-of-Work Resource Allocator
	4.3 Proof-of-Stake Resource Allocator

	5 Trade-offs Between Different Resources
	5.1 Virtual Resource vs External Resource: Long-Range Attacks
	5.2 Incentives in Burnable and Reusable Resources

	6 Discussion
	7 Conclusion

