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—— Abstract

Approximate agreement is a variant of consensus in which processes receive input values from a
domain and must output values in that domain that are sufficiently close to one another. We study
the problem when the input domain is the vertex set of a connected graph. In asynchronous systems
where processes communicate using shared registers, there are wait-free approximate agreement
algorithms when the graph is a path or a tree, but not when the graph is a cycle of length at least 4.
For many graphs, it is unknown whether a wait-free solution for approximate agreement exists.

We introduce a set of impossibility conditions and prove that approximate agreement on graphs
satisfying these conditions cannot be solved in a wait-free manner. In particular, the graphs of all
triangulated d-dimensional spheres that are not cliques, satisfy these conditions. The vertices and
edges of an octahedron is an example of such a graph. We also present a family of reductions from
approximate agreement on one graph to another graph. This allows us to extend known impossibility
results to even more graphs.
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1 Introduction

Agreement problems have been extensively studied in the field of distributed computing. In
particular, the consensus problem [19] requires that processes agree on a single input value.
When the system is asynchronous and processes may crash, Fischer, Lynch, and Paterson [12]
showed that consensus is unsolvable. Since then, many variants of consensus with milder
agreement requirements have been studied in asynchronous systems.

One such variant is approzrimate agreement, where instead of agreeing on a single value,
processes must output values that are sufficiently close to one another. This problem was
introduced by Dolev, Lynch, Pinter, Stark and Weihl [11] and is related to synchronizing
clocks in a distributed system. Attiya, Lynch, and Shavit [8] considered the approximate
agreement problem where the domain is R and processes are required to output values that
are within distance € of one another. They showed that this problem has step complexity
O(logn) using single-writer registers in the asynchronous shared-memory setting. Their
bound does not depend on € nor the size of the input domain. Using multi-writer registers,
Schenk [21] showed that this problem has step complexity O(log(M/e)), where M is the
largest magnitude of any input value. Here, the complexity does not depend on the number
of processes in the system. Mendes, Herlihy, Vaidya and Garg [17] considered approximate
agreement on R?. They showed that this problem has a solution that tolerates up to
f Byzantine failures in an asynchronous completely-connected message-passing system if
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and only if n > max{3f,(d + 1)f}. More recently, Attiya and Ellen [7] gave a wait-free
algorithm with O(logn(logn +log(S/¢))) step complexity solving approximate agreement on
R? using multi-writer registers, where S is the maximum distance between any two inputs.
They also proved two lower bounds for the this problem, Q(min{ log M y/logn }) and

loglog M’ loglogn
3 log, 5,1(5/¢).

Approzimate agreement on graphs is the natural discrete variant of approximate agreement.

Here the domain is the vertex set of some connected graph. Herlihy, Kozlov, and Rajsbaum [13]
viewed approximate agreement on graphs as robot convergence tasks.

Approximate agreement on a path is equivalent to approximate agreement on a closed
interval in R. For some other graphs, such as trees, there are wait-free algorithms to solve
approximate agreement using registers [1]. For other graphs, such as cycles of length at least
4, no wait-free algorithms using only registers exist [3, 10]. However, for many graphs it is
unknown whether a wait-free solution for approximate agreement exists using only registers.

Approximate agreement on graphs

On a connected undirected graph G = (V, E) (known to all processes), each process p;
begins the approximate agreement problem with an input value x; € V. At the end of the
computation, each process outputs a value y; € V' such that the following two conditions are
satisfied:

agreement: different output values are adjacent in G, and

(clique) validity: if the inputs form a clique in G, then the set of outputs is a subset of

the set of inputs.
Different validity conditions for approximate agreement on graphs have been considered. The
shortest path validity condition [3] requires each output value to lie on some shortest path
between two input values. It ensures that each output is a vertex in the smallest convex
subgraph containing all input vertices. A subgraph H C G is convez if, for any two vertices u
and v in H, all shortest paths (in G) between u and v are contained in H. The minimal path
validity condition [18] requires output values to lie on some chordless path between two input
values. Since every shortest path is also a chordless path, minimal path validity generalizes
shortest path validity. The clique validity condition [1] is also known as 1-gathering validity,
it is a generalization of both minimal path validity and shortest path validity. Thus, a proof
that there is no wait-free algorithm for approximate agreement on a graph with clique validity
implies that there is no wait-free algorithm for approximate agreement on that graph with
the other two validity conditions. Likewise, an algorithm solving approximate agreement on
a graph with shortest path validity also guarantees minimal path validity and clique validity.

Positive results

Alistarh, Ellen, and Rybicki [3] showed that approximate agreement with shortest path
validity has a wait-free solution on any graph of radius one or any nicely bridged graph in a
shared memory system where processes communicate using registers. The family of nicely
bridged graphs includes all chordal graphs. They also presented an approximate agreement
algorithm on any connected graph that tolerates at most one process crash failure in the
same model. This shows that approximate agreement has a wait-free solution among two
processes on any connected graph.

Nowak and Rybicki [18] gave an approximate agreement algorithm on chordal graphs in
an asynchronous message-passing model with at most f Byzantine processes, provided the
number of processes is greater than (w(G) + 1) f, where w(G) is the size of the largest clique
in G. However, their algorithm only guarantees minimal path validity.
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With clique validity, Alcdntara, Castafieda, Flores-Pefialoza, and Rajsbaum [1] showed
that approximate agreement has a wait-free solution using only registers when the graph G
is a tree or, more generally, when the clique graph of G is a tree. The clique graph of G is
the graph (V’/, E'), where vertices in V' are cliques in the graph G, and (v/,v’) € E’ if and
only if v/ Nu' # () in the graph G.

Negative results

Approximate agreement has no wait-free solution using only registers on a cycle of length at
least 4. Castaneda, Rajsbaum, and Roy [10] showed this by giving a reduction from 2-set
agreement. Later, Alistarh, Ellen, and Rybicki [3] gave a direct combinatorial proof using
Sperner’s lemma. They also used a reduction to show that approximate agreement has no
wait-free solution on a graph G, if the vertices of G can be labelled using the set {0, 1,2},
such that

G contains no triangle with three different labels, and

G contains a cycle C in which exactly one node has label 1 and its two neighbours in C

have labels 0 and 2.

We call such a labelling an AER impossibility labelling. In particular, any cycle of length
¢ > 4 has an AER impossiblity labelling.

Ledent [16] conjectured that approximate agreement is not solvable in a wait-free manner
on any graph whose complex of cliques is not contractible. This includes graphs consisting
of the nodes and edges of an octahedron and an icosahedron and, more generally, any
triangulated d-dimensional sphere, for d > 1, that is not a clique. Note that a triangulated
1-dimensional sphere is a cycle and a triangulated 2-dimensional sphere is a connected planar
graph in which every edge is shared by exactly two triangles.

Our contribution

In Section 4.1, we show that approximate agreement on the octahedron graph has no wait-free
solution using only registers, for n > 4 processes. In Section 4.2, we extend this result to
any graph that satisfies a new set of impossibility conditions provided there are sufficiently
many processes. Any cycle of length at least 4 satisfies these impossibility conditions. More
generally, these impossibility conditions are satisfied by any graph (except a clique) consisting
of the nodes and edges of a triangulated d-dimensional sphere, for d > 1. This includes the
octahedron graph, which we show does not have an AER impossibility labelling.

In Section 5, we describe a simple reduction from approximate agreement on one graph
to approximate agreement on another graph. As an application of this reduction, we show
that the impossibility of wait-free approximate agreement on the stellated octahedron graph
can be derived from the impossibility of wait-free approximate agreement on the octahedron
graph.

Alistarh, Ellen and Rybicki [4] showed that extension-based proofs cannot be used to
prove the impossibility of approximate agreement on a 4-cycle. In Section 6, we briefly
discuss our generalization showing that extension-based proofs cannot be used to prove the
impossibility of wait-free approximate agreement on any connected graph.

2 lterated immediate snapshot model

We focus our attention on computation in the full-information (non-uniform) iterated imme-
diate snapshot model [15].
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In this model, a set P of n processes communicate by accessing an infinite sequence of
shared single-writer atomic snapshot objects. Each single-writer atomic snapshot object
has n components and supports two atomic operations, update and scan. Initially, each
component of each snapshot object contains the value —. An update(z) performed by
process p; on a snapshot object changes the value of its i-th component to x, while a scan
returns the current value of each component.

At any given time, the state of a process p; consists of its process identifier, its current
view of the system, and a bit indicating whether it has just performed an update or a scan.
Initially, the view of process p; is just its input value and p; is poised to access the first
snapshot object. Fach process accesses each snapshot object in the sequence at most twice.
The first time process p; accesses a snapshot object, it performs an update. At its next
step, p; performs a scan on the same snapshot object and changes its state depending on
the result it received from the scan. In the full-information setting, whenever process p;
performs an update, it writes its entire computation history into the ¢-th component of the
snapshot object, and whenever it performs a scan, it changes its view to be the result of the
scan. After changing its state, process p; applies a decision map J to its current state. If
the state of p; is mapped to L, then p; is poised to access the next snapshot object in the
sequence. Otherwise, the state of p; is mapped to an output value y, which p; outputs, and
p; cannot take any more steps. A protocol is specified by the decision map J used by every
process. A protocol is wait-free if each process takes a finite number of its own steps before
its state is mapped to an output value by §.

A configuration consists of the state of each process. Note that, in the full-information
setting, we can determine the contents of the snapshot objects from the states of every
process. An initial configuration is a configuration where processes are in their initial states
(and the snapshot objects have their initial values). A process is active in a configuration if §
maps the state of that process to L. Likewise, a process is terminated in a configuration if ¢
maps the state of that process to an output value. A terminal configuration is a configuration
where all processes are terminated.

An ezecution from a configuration C' is defined by an alternating sequence Cy, @1, C1, Q2,
Cs, ... of configurations and subsets of processes, beginning with the configuration Cy = C,
such that, for each k£ > 0, Q11 is an non-empty subset of processes that are poised to
access the same snapshot object in configuration Cj. Configuration Cj1 is the result of the
processes in Q41 each performing an update, and then each performing a scan, starting
from configuration C%. Each execution from C' induces a schedule from C, which is the
sequence @1, Q2, ... of subsets of processes in the execution. Since each process only updates
its corresponding component of each snapshot object, an execution is completely specified
by its starting configuration and its schedule. If « is a finite schedule from configuration C,
we use C'a to denote the configuration at the end of the execution that induces a. In this
case, we say that C« is reachable from C via the schedule o. Note that if C' is a terminal
configuration, then the empty schedule is the only possible schedule from C.

An execution is Q-only if its schedule consists of subsets of processes in ). The schedule
of a Q-only execution is called a QQ-only schedule. If each active process in @ is poised to
perform update on the same snapshot object in C, then a 1-round Q-only schedule from C
is a @Q-only schedule where each active process in @) appears exactly once. When @ = P, we
simply call this schedule a 1-round schedule. From a configuration where all active processes
are poised to perform update on the same snapshot object, every 1-round Q-only schedule
can be extended to a 1-round schedule by appending a 1-round (P \ @)-only schedule. The
resulting schedule is called a I-round Q-first schedule (i.e. all occurrences of processes in @
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occur before any occurrence of a process in P\ Q). For k > 1, a k-round Q-first schedule
starting from C' is a sequence of 1-round Q-first schedules 31, ..., Bi, where (8 starts from C
and f; starts from CS;...6;_1, for 2 < i < k. Note that each terminal configuration reachable
from an initial configuration Cj is also reachable from Cj via a k-round schedule, for some
k > 0. (See Lemma 4.4 from [2].) Thus, it suffices to only consider such schedules.

Let C be a configuration reachable from some initial configuration via a k-round @Q-first
schedule, where () # Q C P. Then the partial configuration C' of C induced by Q consists of
the of states of the processes in . We use 7(C") to denote the set of processes Q whose
states appear in the partial configuration C’. The partial configuration C’ can be viewed as
a configuration in a system with a smaller set of processes: Suppose [ is a k-round Q-first
schedule starting from configuration C. Let 8’ be the restriction of 8 to the processes in
Q. Then ' is a schedule starting from the partial configuration C’ of C induced by @Q and
each process in @ has the same state in C’3’ and C5. Note that, for each process in @,
components corresponding to processes in P\ @ all have value — in both C’3" and Cp.

Two (partial) configurations C and C’ are indistinguishable to a set of processes Q if

Q C n(C)N7(C") and the state of each process in @ is the same in both configurations.

Consider any 1-round Q-first schedule 3 from both C and C’. If C and C’ are indistinguishable
to @, then Cf3 and C’f are indistinguishable to Q. Since we are restricting attention to

full-information protocols, the converse is also true. It follows that, if C3 = C3’, then 8 = /5’

If K is a collection of (partial) configurations (not necessarily induced by the same set of
processes), C € K is a (partial) configuration, and § C Q C w(C), then we say Q identifies
C in K if, for every other (partial) configuration C’ € K such that Q C 7(C"), at least one
process in ) has a different state in C and C’. When the collection K is clear from context,
we simply say @ identifies C'.

For any r > 0 and for any (partial) configuration C' reachable from some (partial) initial
configuration via some r-round 7 (C)-only schedule, let x(C,d) denote the set of all possible
(partial) configurations reachable via 1-round 7(C)-only schedules starting from C' and
let x*(C,d) denote the set of all possible (partial) configurations reachable via k-round
7 (C)-only schedules starting from C. For a collection K of (partial) configurations, define

X(Kv 6) = UC’E]K X(Cv 5) and Xk (Kv 5) = UCGK Xk (Cv 6)

3 A Computational Version of Sperner’s Lemma

Our main results in Section 4 rely on a variant of a classical combinatorial tool known
as Sperner’s lemma. The original topological proofs for the impossibility of wait-free set
agreement [14, 20, 9] all used Sperner’s lemma or equivalent formulations. Later, Attiya and
Castafieda [5] proved the impossibility of set agreement using purely combinatorial techniques,
without using topology. Their argument implicitly applied elements of Sperner’s lemma
directly on executions. More recently, Alistarh, Ellen, and Rybicki [3] gave a combinatorial
proof for the impossibility of approximate agreement on cycles (of length at least 4) using a
generalization of Sperner’s lemma to convex polygons.

In this section, we generalize Sperner’s lemma and rephrase it as a self-contained statement
about executions in the iterated immediate snapshot model. It makes no explicit mention of
topology. However, we note that it is equivalent to a formulation of Sperner’s lemma for
manifolds, phrased in terms of simplicial complexes and subdivisions, that appears in [13] as
Lemma 9.3.4.

Consider a protocol among n > 2 processes in the iterated immediate snapshot model. Let
2 <m < n and let H be a collection of (partial) initial configurations such that |7 (C)| =m
for each C' € H. For each C € H and each subset of processes @Q C 7(C), denote by I(C, Q)
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the set of input values of processes in Q) in the (partial) configuration C. The boundary of
H, denoted B(H), is the collection of all pairs (C,Q), where Q C w(C) is a subset of m — 1
processes and C' is identified by @ in H. In other words, for each pair (C, Q) € B(H), there
is no other (partial) configuration C’ € H such that Q C m(C’) and each process in @ has
the same state in C' and C”.

Throughout the remainder of this section, we let ¢t be the maximum number of non-empty
rounds taken by the protocol in executions starting from (partial) initial configurations in
H. Let T = x*(H, §) be the collection of all (partial) terminal configurations reachable from
(partial) initial configurations in H.

Definition 1 is a computational analogue of a Sperner labelling. Immediately afterwards,
we give an example with n = m = 3 to help explain the definition.

» Definition 1. A collection H of (partial) initial configurations, each of which consists
of the states of the same number of processes m > 2, satisfies the computational Sperner
conditions (CSC) for the protocol if:
CSC1: For each (C,Q) € B(H), the processes in Q have different input values in C. In
other words, |1(C,Q)| =m — 1.
CSC2: For each (C,Q) € B(H), there are an odd number of pairs (C',Q") € B(H) such
that I(C',Q") = I(C, Q).
CSC8: For each (C,Q) € B(H), for each subset S C Q, and for each S-first m(C)-only
t-round schedule (8 starting from C, each process in S has output a value in I(C,S) in
the (partial) configuration Cp.
CSCY: For any C € H and any subset Q C w(C) of m — 1 processes, there is at most
one other configuration C' € H such that Q C w(C") and the configurations C and C' are
indistinguishable to all processes in Q.

Let H be a collection consisting of two initial configurations C and C’, where 7 (C) =
7(C") = {po,p1,p2} and C and C’ are indistinguishable only to processes p; and py. Since
po has a different initial state in C' and C”, any subset of {pg, p1,p2} containing py identifies
C and C’ in H. Thus, B(H) = {(C, {po,p1}), (C,{po,p2}), (C",{po,p1}), (C',{po, p2})}. Let
x # o' be the input of process py in configurations C' and C’. Let vy and v be its initial
states in these two configurations. Let y and z be the inputs of processes p; and ps in both
configurations and let v; and vs be their initial states. This is illustrated in Figure 1la, where
the colors white, blue, and red represent the processes pg, p1, and ps, respectively. The
configurations C = {vg,v1,v2} and C' = {v},v1,v2} are the two triangles. Since C and
C' are indistinguishable to p; and ps, these triangles share the edge {vy,v2}. The edges
{vo,v1} and {vg,v2} in C and the edges {va, v} and {v1,v{} in C’ form the boundary of
this polygon.

CSC1 says that every edge on the boundary of the polygon has endpoints with different
inputs, so, in the example, z, ', y, and z are all different. CSC2 says that each pair of inputs
that labels an edge on the boundary labels an odd number of such edges. In the example,
each such pair labels exactly one edge on the boundary. CSC4 is a technical requirement
(analogous to the pseudomanifold property of a simplicial complex) that says each edge
occurs in at most two triangles.

The set of partial terminal configurations T reachable from C and C’ by a protocol
in the iterated immediate snapshot model can be represented by a subdivision of the two
triangles [15]. This is illustrated in Figure 1b, where each triangle in the subdivision
represents a reachable terminal configuration. The subdivision of a vertex v;, which is just a
vertex, corresponds to the {p;}-only execution from v;. The subdivision of an edge {v;,v,}
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(%) x) vy

vy (T Yy) vl

(a) Triangles representing configurations C' and C’. (b) A subdivision of the two triangles representing
terminal configurations reachable from C' and C’ by
a protocol.

corresponds to the {p;, p; }-only executions from the partial configuration {v;,v;}. Here, the
output of a process in a terminal configuration labels the vertex corresponding to its state in
this configuration. CSC3 requires this labelling to be a Sperner labelling: The subdivision
of each vertex is labelled by the input of the vertex and the vertices of the subdivision of a
boundary edge are each labelled by the input of an endpoint of the edge.

Informally, Theorem 2 says that if the collection H satisfies the computational Sperner
conditions, then in at least one (partial) terminal configuration in T, each process outputs a
different value.

» Theorem 2. Let H be a collection of (partial) initial configurations that satisfies the
computational Sperner conditions for some protocol and let m > 2 be the number of processes
represented by each (partial) configuration in H. For each (C,Q) € B(H), let T(C,Q) be
the set of all (partial) terminal configurations T reachable from configurations in H in the
iterated tmmediate snapshot model such that

m different values are output by the m processes in T and,

each value in I(C, Q) is output by some process in T.
Then |T(C, Q)| is odd and, hence, |T(C,Q)| > 1.

The proof of Theorem 2 is deferred to the appendix. In the next section, we demonstrate
how it could be easily applied to obtain impossibility results for wait-free computation in the
iterated immediate snapshot model.

4 New Impossibility Results from Sperner’'s Lemma

We first look at approximate agreement on the octahedron graph. We show that there is no
wait-free algorithm when the number of processes n is at least 4. We then extend our result
to a larger class of graphs.

To help with the presentation, we recall some standard notions in graph theory. A vertex
coloring is an assignment of colors (or labels) to each vertex of a graph such that no edge
has endpoints with the same color. A k-coloring is a vertex coloring that uses at most k
different colors. A graph is k-colorable if it has a k-coloring. The chromatic number of a
graph is the smallest number k such that the graph is k-colorable. The cligue number of a
graph G, denoted w(G), is the size of its largest clique. Note that the chromatic number of
G is always at least as large as w(G).
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Figure 2 A 3-coloring of the octahedron graph.

4.1 The impossibility of approximate agreement on the octahedron
graph

The octahedron graph (Figure 2) is obtained by taking the vertices and edges of an octahedron.
It consists of a set of six vertices, V = {a1,...,as}, and a set of 12 edges. It is 3-colorable
and its largest clique has size 3. To show that approximate agreement is unsolvable on the
octahedron graph, it is sufficient to show that any protocol has an execution in which four
processes output different values.

Consider a system with 4 processes pg, p1, p2, p3 and a 3-coloring of the octahedron graph,
where we use {p1,pa,p3} as colors. We use p(a;) to denote the color of vertex a;. For each
triangle {a;,a;,ax} in the octahedron graph, let CYi,j,ky be the initial configuration where
process p(a;) has input a;, p(a;) has input a;, p(ax) has input ax, and po has input a;. Let
H be the collection of all such configurations. (The choice of input vertex a; for process pg
is arbitrary, but it has to be the same for all configurations in H.)

The following two observations allow us to determine what pairs are in B(H).

» Observation 3. Fvery edge in the octahedron graph is shared by exactly two triangles. If
{ai,aj,ar} and {a;,a;,ap'} are both triangles in the octahedron graph, then configurations
Clijey and Cy j iy are indistinguishable to the processes in {p(a;),p(a;),po}. Since the
edge {a;,a;} is only shared by the two triangles {a;, a;,ar} and {a;, a;j,ar }, there is no other
configuration in H that is indistinguishable from configuration Cy; j .y to the set of processes
{p(ai),p(a;),po}-

» Observation 4. Each configuration Cy; j 1y € H is identified by the set {p1, p2,p3}. In other
words, in any other configuration Cyy jr 1y € H, there is at least one process in {p1, p2,p3}
that has a different input in Cyy jo xry and in Cy jry-

Observation 4 implies that (Cy; j xy, {p1,p2,p3}) € B(H) for all Cy; ;5 € H. Observa-
tion 3 implies that {p1, p2, p3} is the only set of 3 processes that identifies Cy; ; 13 in H. Thus,
B(H) contains only these pairs.

» Lemma 5. For any wait-free protocol that solves approximate agreement on the octahedron
graph, H satisfies the computational Sperner conditions.

Proof. We prove that H satisfies the four conditions:
CSC1: For any (Cy; j ky, {p1,p2,p3}) € B(H), processes p1,p2,ps received input values
a;, aj, a in some order in configuration Cy; ; xy. Hence, the three processes received three
different input values.
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CSC2: Consider any two distinct pairs (C; jk}, {p1,P2,03}), (Clir jr krys {01, D2, 03}) €
B(H). Then, by definition, processes p1,p2, ps in the two configurations received vertices
from two different triangles {a;,a;, ar} and {a;,a;, ar } as input values (in some order).
Hence, the set of input values I(C, Q) is different for each pair (C, Q) € B(H).

CSC3: For any (Cy; jky» {p1,p2,p3}) € B(H) and any subset S C {p1, p2,ps}, the input
values received by processes in S in configuration Cy; ;xy is a subset of the triangle
{ai,a;,ar}. Hence, in any protocol that solves approximate agreement on the octahedron
graph, the clique validity condition ensures that the outputs of processes in S in any
S-first execution starting from Cy; ;1) is a subset of the input values received by processes
in S in configuration Cy; j xy-

CSC4: Consider any Cy; ;5 € H and any 3 processes subset @ C {po,p1,p2,p3}. If
Q = {p1,p2,p3}, then @ identifies C; ;  in H by Observation 4. In other words, no
configuration in H is indistinguishable from C; ; x to the set of processes {p1,p2, ps}.
Otherwise, without loss of generality, suppose @ = {p(a;),p(a;),po}. By Observation 3,
the triangle {a;, a;, ar } shares the edge {a;, a;} with exactly one other triangle {a;, a;, ax }
in octahedron graph, and Cy; j &} is the only configuration in H that is indistinguishable
from Cy; ;) to the set of processes {p(a;),p(a;),po}- <

» Theorem 6. There is no wait-free protocol among 4 processes in the iterated immediate
snapshot model that solves the approxzimate agreement problem on the octahedron graph.

Proof. Consider a protocol that claims to solve approximate agreement on the octahedron
graph. By Lemma 5, H satisfies the computational Sperner conditions. Since B(H) is
nonempty, Theorem 2 implies that there exists a terminal configuration in which 4 different
vertices are output by pg, p1, P2, p3. Since the largest clique in the octahedron has size 3, this
contradicts the agreement condition. <

4.2 The impossibility of approximate agreement on a larger class of
graphs

In this section, we define a class of graphs on which it is impossible to solve wait-free
approximate agreement for sufficiently large number of processes. Given a point ¢ in R?, a
sphere centered at c is the set of all points equidistant from ¢ in R?. It can be viewed as a
subspace of dimension d—1 and, hence, is called a (d —1)-dimensional sphere. A triangulation
of a (d—1)-dimensional sphere is a subdivision of the sphere into (d —1)-dimensional simplices,
such that the intersection of any two simplices is either a common face of both simplices or

empty. Our class of graphs includes the graph of any triangulated sphere that is not a clique.

In particular, a cycle is the graph of a triangulated circle and the octahedron graph is the
graph of a triangulated 2-dimensional sphere. We also compare our class of graphs to graphs
that admit AER impossibility labellings and show that neither class contains the other.
Our class of graphs is defined by a set of clique containment conditions. The fact that
every edge in the octahedron graph is shared by exactly two triangles was used in the
previous section to show that a certain collection of initial configurations, H, satisfies the
computational Sperner conditions. We generalize this property to require that every clique
of size k — 1 in the graph is contained in exactly two cliques of size k, for some k > 2. In
the proof of Theorem 6, we used Theorem 2 to show the existence an execution in which 4
processes output 4 different values. Since the octahedron graph contains no clique of size 4,
this execution violates agreement. More generally, for any k-clique in the graph, we can use
Theorem 2 to show the existence of an execution where the k-clique is a strict subset of the
outputs. If this k-clique is a maximal clique in the graph, then agreement is violated.
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The clique containment conditions

We say a graph G satisfy the clique containment conditions if there is a subgraph A of G
and an integer k, where 2 < k, such that the following hold:

1. every clique of size k — 1 in A is contained in exactly two cliques of size k in A and

2. there is a clique of size k in A that is not contained in any clique of size £k + 1 in G.

The graph G of any triangulated d-dimensional sphere satisfies the first condition with
A =G and k = d+1 and, provided it is not a clique of size k + 2, G also satisfies the second
condition. In particular, the octahedron graph is the graph of a triangulated 2-dimensional
sphere. Since it contains no clique of size 4, none of its cliques of size 3 is contained in a
clique of size 4.

When k = 2, every graph G that satisfies our clique containment conditions also has an
AER impossibility labelling. In this case, our first impossibility condition implies that A is a
collection of disjoint cycles and our second impossibility condition implies that there exists
an edge {u,v} in A that is not contained in any triangle in G. Label u with value 1, v with
value 2, and all other vertices in G with value 0. This gives an AER impossibility labelling
of the graph G.

When k > 3, there are some graphs, in particular the octahedron graph, that satisfy
the clique containment conditions, but do not have an AER impossibility labelling. For
contradiction, suppose the octahedron graph has an AER impossibility labelling. Then it
contains a cycle C of length at least 4 with three consecutive vertices labelled 0, 1, and 2.
Since an AER impossibility labelling has no triangle with three different labels, these three
vertices do not form a triangle. To finish labelling the rest of the graph so that there is no
triangle with three different labels, observe that all other vertices can only receive the label
1. Hence, the cycle C contains at least two different vertices with the label 1, contradicting
the definition of AER impossibility labelling.

There are also examples of graphs that have AER impossibility labellings, but do not
satisfy the clique containment conditions. For example, consider the graph G’ with ten
vertices shown in Figure 3, where C is the cycle of length 5 in the middle of G’. Since
each edge of G’ is contained in some triangle, G’ does not satisfy our second impossibility
condition when k = 2. Since each edge of G’ is contained in exactly one triangle, G’ does
not satisfy our first impossibility condition when k = 3. Note that G’ has no clique of size
greater than 3, hence G’ does not satisfy our second impossibility condition when k > 3.

Clique containment conditions imply impossibility of approximate agreement

Consider a graph G that satisfies the clique containment conditions. We first construct a
collection H of (partial) initial configurations for any protocol that claims to solve approximate
agreement on G. Consider a subgraph A = (V, E) of G and an integer k such that the clique
containment conditions are satisfied. Let aq, ..., a; denote the vertices in V', where ¢ = |V|.
Counsider a system with n processes pg,p1, ..., Pn—1, where n is greater than the chromatic
number of A. Consider an n— 1 coloring of the graph A, where we use {p1, ..., pn—1} as colors.
We use p(a;) to denote the color of vertex a;. For each k-clique {a;,,...,a;, } in the graph
A, let Cy, ... i,y be the (partial) initial configuration consisting of the states of processes
p(as, ), -..,p(a;,) and pg, such that process py has input value a; and, for 1 < j < k, process
p(a;;) has input value a;,. Let H be the collection of all such (partial) configurations. As in
Section 4.1, the input value assigned to pg is not important, as long as it is the same in all
(partial) configurations in H.
The following two observations allow us to determine what pairs are in B(H).
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0 0

Figure 3 An AER impossibility labelling of a graph G’ with ten vertices. The edges of the cycle
C are colored in red.

» Observation 7. If {ai,,...,a;,_,,a;.} and {a;,...,a;,_,,a;} are both k-cliques of A,
then partial configurations Cy;, . ;.3 and C{il’m,i;} are indistinguishable to the processes in
{p(ai,), ..., plai,_,),po}. Moreover, Cliy,...,ity is the only other partial configuration in H
that is indistinguishable from C;, . ;.1 to the set of processes {p(as, ), ..., p(as,_,),Po}-

The second statement of Observation Observation 7 is true because, the first impossibility

condition says that the (k — 1)-clique {a;,,...,a; _, } is contained in no other k-cliques of A.

» Observation 8. Each partial configuration Cy;, .. ;. s identified by the set of processes
{p(ai,),...,p(a;,)}. In other words, in any other configuration Cliy,....iy» either {p(ai),
plai,)} # {p(ai), ...,p(ai;c)}, or there is at least one process in {p(ai, ), ...,p(a;, )} that has a
different input in Cy;, . ;.3 and in C{i’pm,i}c}'

Observation 8 implies that (C;, . .3, {p(as, ), ...,p(as,)}) € B(H) for all Cy;, . 4,y € H.
Observation 7 implies that {p(a;, ), ..., p(as, )} is the only set of size &k that identifies C';, ;.3
in H. Thus B(H) contains only these pairs.

The next lemma is a generalization of Lemma 5, and has a similar proof.

» Lemma 9. For any wait-free algorithm that solves approximate agreement on the graph G,
H satisfies the computational Sperner conditions.

Proof. We prove H satisfies the four conditions:
CSC1: Forany (Cy,,,....ip3,> {p(as, ), ..., p(as,)}) € B(H), processes p(as, ), ..., p(as, ) received
vertices of the k-clique {a;,, ..., a;, } as input values in some order. Hence, the k processes
received k different input values in Cy;, . 4,3
CSC2: Consider any two distinct pairs (Cy, ... 4,3, {P(as,), - D(as, ) })s (Cyi..., i3 {r(ai)
;- plair)}) € B(H). Then, by definition, processes p(a;, ), ...,p(a;,) in configuration
Cyi.,....ir,y and processes p(ay ), ...,p(ai;c) in configuration Cyy
two different k-cliques {a;,, ..., a;, } and {ai’l""’a%} as input values. Hence, the set of
input values I(C, Q) is different for each pair (C, Q) € B(H).
CSC3: For any (Cyy,,...in1» {P(as,), -, p(as,)}) € B(H) and any subset S C {p(a;,), ...,
p(ai, )}, the set of inputs received by processes in S'in Cy;, . ;.1 is a subset of the k-clique
{ai,,...,a;, }. Hence, in any protocol that solves approximate agreement on graph G,
the clique validity condition ensures that the outputs of processes in .S in any S-first

it} received vertices from

,,,,,

execution starting from Cy;, | . ;,} is a subset of input values received by processes in S
in C{ilxnwik}'
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CSC4: Consider any Cy;, .. ;) € Hand any (k — 1)-process subset Q C 7(Cyy, ... 4}) =
{p(ai,), ..., p(ai,),po}. If Q@ = {p(ai,), ..., p(a;,)}, then, by Observation 8, @ identifies
Cii,,....ipy in H. In other words, for any other partial configuration C{i’l iy € H such
that Q C 71'(0{1-/1 ii})’ at least one process in () has a different state in C;,

in C{i’l

.......... iK and
i} Otherwise, without loss of generality, suppose @ = {p(a;, ), -~-7p(aik,1]j7po}-
By Observation 7, the k-clique {aj,,...,a;, } shares the (k — 1)-clique {a;,,...,a;,_,}
with exactly one other k-clique {ai17...,aik71,ai;€}. Furthermore, C{il,...,i;} is the only
configuration in H such that Q ¢ W(C{il’m’i;}) and Cy;, iy is indistinguishable from

Cliy,....iny to the set of processes Q. |

ik

We are now ready to prove the impossibility of a wait-free solution to the approximate
agreement problem on graphs that satisfy the clique containment conditions.

» Theorem 10. Let G be a graph that satisfies the clique containment conditions with
subgraph A and integer k. Then there is no wait-free protocol among n processes in the
iterated immediate snapshot model that solves approximate agreement on G when n is greater
than the chromatic number of A.

Proof. Consider a protocol that claims to solve approximate agreement on the graph G.
Pick a k-clique {a;,,...,a;, } in A that is not contained in any (k + 1)-clique in G. By
Observation 8, (Ci, .. i, {p(ai,),....p(a;,)}) € B(H). Then, by Theorem 2, there exists a
partial terminal configuration T in which k£ + 1 different values are output, including each
value in {a;,, ..., a;, }. Since the clique {a;,,...,a; } is maximal, the k + 1 values output by
processes in T is not a clique in the graph G. This contradicts the agreement condition. <«

5 More Impossibility Results from Reductions

In this section, we describe a simple reduction from approximate agreement on one graph to
another graph. These reductions allow us to extend our impossibility result to even more
graphs.

Let G = (V,E) and G’ = (V', E’) be undirected graphs. We say that a vertex map
YV = V'is a cligue map if, for every clique « in G, ¢(k) is a clique in G’.

» Theorem 11. Let G = (V, E) and G' = (V', E’) be graphs for which there exists clique maps
YV =V and ' : V' =V, such that ¥'(¢¥(u)) = u for allu € V. Then, if approzimate
agreement on G' has a wait-free solution among n processes, so does approzimate agreement

on G.

Proof. Let A’ be a wait-free protocol solving approximate agreement on the graph G’. We
construct a wait-free protocol A solving approximate agreement on the graph G as follows:
each process with input x runs the approximate agreement algorithm A’ on G’ using 9 (x)
as its input. If 3’ is the output it obtained from this execution of A, then it outputs ¢'(y’).

By the agreement property of A’, the set of outputs in each execution of A’ is a clique /'
in G'. Since ¢’ is a clique map, the set of outputs in each execution of A, ¢’'(x’), is a clique
in G. Hence, A satisfies agreement.

To see that A satisfies validity, suppose the set of inputs in some execution of A is a
clique x in G. Since 9 is a clique map, it follows that (k) is a clique in G’. By validity of A,
the set of outputs in this execution of A is a subset s’ C ¢ (k). Thus, ¢'(x') C ¢¥'(¥(k)) = k.

Hence, A solves approximate agreement on G in a wait-free manner among n processes. <

We present two applications of Theorem 11. Let G = (V, E) be the 5-cycle, let G' =
(V’, E') be the graph in Figure 3, and let C be the cycle of length 5 in the middle of G'. Let
1 : V — V' be the clique map that maps G onto C. Let ¢’ : V! — V' be the clique map
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such that 9’(¢(u)) = u for each vertex v € V and ¢'(v) = w for each v € V' \ C, where w is
a vertex on the 5-cycle such that 1 (w) is adjacent to v in G’. Since approximate agreement
on the 5-cycle has no wait-free solution among n > 3 processes, Theorem 11 implies that
approximate agreement on G’ has no wait-free solution among n > 3 processes. Note that in
Section 4.2 we showed that G’ has an AER impossibility labelling, which gives another proof
of this result.

The stellated octahedron is obtained by attaching a tetrahedron to each face of the
octahedron. More formally, let H = (V, E) be the octahedron graph. We can obtain the
graph of the stellated octahedron graph H' = (V’, E’) from H as follows: V C V' E C FE’,
and, for each triangle {v;,vj, v} in H, there is a new vertex vy, jx} € V' and three new edges
{vgigry vit {vg ey vi b {vggey vy € E'. Then ¢ 0 V. — V', which maps each vertex
veVtove V' isa clique map. Likewise, let ¢’ : V' — V map each vertex v € V. C V'
to v and map each vertex v’ € V' \ V to a vertex u € V' C V' that is adjacent to v’ in the
stellated octahedron graph. Then v’ is a clique map such that ¢/ (¢ (v)) = v for all v € V.
Combining Theorem 6 and Theorem 11 gives the following result.

» Corollary 12. There is no wait-free protocol among 4 processes in the iterated immediate
snapshot model that solves the approximate agreement problem on the stellated octahedron
graph.

6 Extension-Based Proofs

The notion of extension-based proofs was introduced by Alistarh, Aspnes, Ellen, Gelashvili,
and Zhu [2]. Tt describes a class of impossibility proofs that includes valency arguments.
Extension-based proofs are defined as an interaction between a prover and any protocol
that claims to solve a task in a wait-free manner. The prover repeatedly queries the
protocol while it attempts to construct a faulty or infinite execution of the protocol. It is
known that extension-based proofs cannot be used to prove the impossibility of (n — 1)-set
agreement [2] and approximate agreement on 4-cycle [4]. In contrast, combinatorial proofs of
these impossibility results exist [14, 20, 9, 3]. In the full version of our paper, we show that
extension-based proofs cannot be used to prove the impossibility of approximate agreement
on any connected graph.

» Theorem 13. For any connected graph G, there is no extension-based proof of the impos-
sibility of a wait-free solution for approrimate agreement on G among n > 3 processes.

7 Futher work

We conclude by discussing a few open problems about approximate agreement on graphs.
Is there a wait-free protocol using registers for approximate agreement on the octahedron
graph for n = 3 processes? When n > 4, Theorem 6 implies that no wait-free algorithm
exists. The algorithm by Alistarh, Ellen, and Rybicki that tolerates one crash failure [3]
solves approximate agreement in a wait-free manner for n = 2 processes. We know that
extension-based proofs are not powerful enough to obtain any impossibility result for
wait-free approximate agreement on graphs. Thus, to prove that approximate agreement
on the octahedron graph for n = 3 processes is impossible, a reduction or a combinatorial
approach is required.

For any graph G that satisfies the clique containment conditions, what is the largest
number of processes for which there is a wait-free protocol using registers that solves
approximate agreement on G?
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A  Proof of Theorem 2

In this appendix, we give a complete proof of Theorem 2. We begin with a few lemmas
describing technical properties of the iterated immediate snapshot model.

» Lemma 14. Let C be a (partial) configuration and S C w(C) be a nonempty subset of
processes. Let f = By, ..., By, ..., B, be a 1-round S-first schedule from C, where By U---U By
is the set of active processes in S. Then for any 1-round schedule 5’ = B, ..., Bl such that
CpB and Cf' are indistinguishable to all processes in S, B, ..., By is a prefix of 5.

Proof. Consider the smallest k such that By # Bj,. Note that By U---UB, = B, U---UB;,.

Suppose B, ..., By is not a prefix of 8. Then k < ¢ and By C S.

If there exists some process ¢ € By, \ By, then every process in Bj, U --- U B}, will see the
update by process ¢ during 3’. However, processes in By C By U---U Bj, will not see the
update by process ¢ during 5. Hence, all processes in By C S distinguish between C'5 and
cp.

So suppose that B;, C By. Let g € By \ By,. Then every process in By, will see the update
by process ¢ during 3. However, processes in B, will not see the update by process ¢ during
f’. Hence, all processes in B), C S distinguish between C' and CA'. <

The next result is a restatement of Lemma 8.4 from [6]. Its proof is similar.

» Lemma 15. Let C be a (partial) configuration. For any (partial) configuration D € x(C, )
and any subset Q C w(C) of |m(C)| — 1 processes, there is at most one other (partial)
configuration D' € x(C,0) such that D and D' are indistinguishable to processes in Q.
Moreover, @ identifies D in x(C,9) if and only if D is reached from C via a 1-round Q-first
schedule.

Proof. Consider the the 1-round schedule 5 = B, Bs, ..., B, such that D = C. Let p be
the only process in (C) \ Q and let By, ..., By be the longest Q-only prefix of 8. Consider
an arbitrary 1-round schedule 8’ = Bj, ..., By, such that C8 and C§’ are indistinguishable
to processes in (). By Lemma 14, Bf, ..., B; = By, ..., B,.

Case 1: g is Q-first.

If p is not active, then £ = r = m and, hence, 5/ = 3. Otherwise, £ = r — 1 and B, = {p}.

Hence Bj,...,B._; = Bi,...,By_1 and B, = B, = {p}, so / = 3. In both cases, Q
identifies D = Cg.
Case 2: [ is not Q-first.

Then process p is active in C. By definition of ¢, B4 is the block containing process p.
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Case 2.1: Byy1 = {p}.
Then £41 < r because 3 is not Q-first. If there exists a process ¢ € By, \ (Bry2U{p}),
then every process in By, , U---U B}, will see the update by process ¢ during 3'.
However, processes in By C By, U---U B;, will not see the update by process
g during 5. Hence, all processes in Byio C S distinguish between Cf and Cf,
contradicting the definition of 3’. Therefore, By, C Byi2 U {p}.
Likewise, if there exists a process ¢ € (Bgy2 U {p}) \ Bj,, then every process in
By U---U B, will see the update by process ¢ during 3. However, processes in B 11
will not see the update by process ¢ during 5’ and, hence, are able to distinguish
between C3 and Cf’. Since no process in @ can distinguish between C8 and Cf’,
this implies that either Bj, ; = B2 U {p} or B, = {p}.

Case 2.2: By # {p}.
Then By, 1NS # . If there exists ¢ € By, \ Bey1, then every process in By, U---UB,,
will see the update by ¢ during 8’. However, processes in Byi1 NQ C Béﬂ u---uBl,
will not see the update by ¢ during 5. Hence, all processes in By N Q distinguish
between C8 and C’, contradicting the definition of 5. Therefore, B;, | C Byy1.
Likewise, if there exists ¢ € Byy1 \ By, then every process in By U---U B, will
see the update by ¢ during 3. However, processes in By, ; N Q will not see the update
by ¢ during ' and, hence, are able to distinguish C'8 from Cf’. Since no process
in @ can distinguish between C8 and C3’, this implies that either Bj , = By, or
B, NQ = 0. Note that B) , N Q = () implies that By, = {p}.

Thus process p has exactly two possible states in C3’. For each of these states of p,
applying Lemma 14 with S = 7(C) gives a unique schedule. <

We can apply Lemma 15 repeatedly to each round of an execution to show the following
result.

» Lemma 16. Let C be a (partial) initial configuration and let t be the maximum number of
non-trivial rounds taken by any w(C)-only execution starting from C. For any 0 <r <t and
any (partial) configuration T € x"(C,9), a set of |7(C)| — 1 processes Q C ©(C) identifies T
in x"(C,9) if and only if T is reachable via a Q-first schedule from C.

Proof. Let (1, ..., B be the r-round schedule such that T'= Cf;...5,. Consider any subset
Q C w(C) of |7 (C)| — 1 processes.

First suppose that 51, ..., 5, is not Q-first. Let k < r be the largest index such that 5 is
not Q-first. The remaining 1-round schedules Bgy1, ..., 8 are all Q-first. Let C' = CB;...0k_1
and let D = C'By € x(C’,6). Then, Lemma 15 says that there exists exactly one other
D’ € x(C',6) such that D and D’ are indistinguishable to processes in Q. Since Sx11, ..., Br
are Q-first, it follows that Dfy41...3; and D'Biy1...5; are indistinguishable to processes in
Q, for each k+ 1 < j <r. Hence, @ does not identify T'= C;...06, in x"(C, 9).

Now suppose that (i, ..., 8, is Q-first. We inductively show that @ identifies C'5;...5; in
X4(C, ) for all 0 < i < r. For the base case, since C is the only configuration in x°(C, ), Q
identifies C. For the inductive case, let i < r and assume that @ identifies D = C5;...5; in
X(C,6). Let E = Dp;;1 and let E' € x*T1(C, ) be such that E # E’. Then E’ € x(D’,6)
for some D’ € x*(C,d). If D # D', then by the inductive hypothesis, some process q € 7(C)
distinguishes between D and D’ and, hence, distinguishes between E and E’'. If D = D',
then, since B;41 is Q-first, Lemma 15 implies that @ identifies E in x(D,d). Hence, Q
identifies C'3...0;1+1 in x*T1(C, 6). <
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» Lemma 17. Let m > 2 and let K be a collection of (partial) configurations such that
|7 (C)| = m for all C € K. Suppose that, for any C € K and any subset Q C 7(C) of
m — 1 processes, there is at most one other C' € K such that Q C w(C’) and the (partial)
configurations C and C" are indistinguishable to all processes in Q. Then, for any D € x(K, J)
and any subset R C w(D) of m—1 processes, there is at most one other D' € x(K, ) such that
R C w(D’) and the (partial) configurations D and D’ are indistinguishable to all processes
in R.

Proof. Consider a (partial) configuration D € x(K,d) and a subset R C w(D) of m — 1
processes. By definition, D = Cf for some (partial) configuration C' € K and some 1-round
m(C)-only schedule .

First suppose that § is not R-first. Let p be the only process in 7(D) \ R. Then process p
and at least one process in R are active in C. Consider any D’ € x(K, ¢) such that R C w(D’)
and D’ is indistinguishable from D to all processes in R. Then D’ € x(C’, ) for some C’ € K.
Note that 7(C) = 7(D) and n(C") = w(D’). Suppose that C’ # C. Since 8 is not R-first,
the scan of some active process ¢ € R sees the update by every active process in 7(D) during
B. It w(D") # w(D), then p ¢ w(D’) since R C w(D’) # (D) = RU {p}. In this case, then ¢
distinguishes between D and D’, because ¢ sees the update by process p during 3. Hence,
w(D") = (D). If there is a process that is active in C' and has a different state in C" # C,
then ¢ distinguishes between D and D’. Hence, every process that is active in C has the
same state in C’. Since C’ # C, there is a process ¢’ that is terminated in C' and has a
different state in C’. Since p is active in C' and ¢’ is not, ¢’ # p and, hence, ¢’ € R. Thus, ¢’

is a process in R that distinguishes between D’ and D. This contradicts the definition of D’.

Therefore, C' = C. Then, by Lemma 15, either D’ = D or D’ # D is the unique (partial)
configuration in x(C,J) that is indistinguishable from D to processes in R.
Now suppose that § is R-first. By assumption, there is at most one other configuration

C’ € K, such that R C #n(C”) and C’ is indistinguishable from C to all processes in R.

It follows that C8 and C’S are indistinguishable to all processes in R. Since 3 is R-first,
R identifies C8 in x(C,¢) and R identifies C'S in x(C’,d). Hence for any other 1-round
schedule 8’ # 3, at least one process in R distinguishes between C3 and C'§’, and at least
one process in R distinguishes between C3 and C’f’. For any configuration C” € K such

that C" # C,C’, there is at least one process q € R that distinguishes between C"" and C.

Since ¢ also distinguishes between C8 and C”” for any 1-round schedule 3", it follows
that C’ is the only configuration in x(K, §) that is indistinguishable from C8 to processes
in R. <

The rest of this section is devoted to proving Theorem 2.

» Theorem 2. Let H be a collection of (partial) initial configurations that satisfies the
computational Sperner conditions for some protocol and let m > 2 be the number of processes
represented by each (partial) configuration in H. For each (C,Q) € B(H), let T(C,Q) be
the set of all (partial) terminal configurations T reachable from configurations in H in the
iterated immediate snapshot model such that

m different values are output by the m processes in T and,

each value in I(C, Q) is output by some process in T.
Then |T(C, Q)| is odd and, hence, |T(C,Q)| > 1.

The proof is by strong induction on m. Let m > 2 and assume that the claim is true
for all m’ such that 2 < m/ < m. Let ¢t be the maximum number of non-trivial rounds
taken by the protocol in executions starting from (partial) initial configurations in H and let

T = x*(H, §). If B(H) is empty, then there is nothing to prove. So assume B(H) is nonempty.

Fix an arbitrary (C, Q) € B(H). Define a graph G = (T U {w}, E) as follows:
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There is an edge in F between (partial) terminal configurations T and 7" if and only if
T and T’ are indistinguishable to a subset Q' C 7(T) N7 (T’) of m — 1 processes and
I(C, Q) is the set of values output in T (and hence in T") by the processes in Q’.

There is an edge in E between a (partial) terminal configuration T and vertex w if and
only if there is a subset Q" C 7(T) of m — 1 processes that identifies T in T and I1(C, Q)
is the set of values output in T by the processes in Q.

» Lemma 18. For each (partial) terminal configuration T € T adjacent to w in G, there
is some (C', Q") € B(H) such that I(C',Q") = I(C,Q), T is reachable from C" via a unique
schedule B, and 8 is Q'-first.

Proof. Let T be adjacent to w in G. Then there exists a subset Q" C (T of m — 1 processes
that identifies T in T and I(C, Q) is the set of values output in T' by the processes in @'
Since T = x*(H, ), it follows that T = C’j;...3; for some (partial) initial configuration
C’ € H and some t-round m(C’)-only schedule fy, ..., 8; starting from C’. Since we are
considering the full-information iterated immediate snapshot model, this schedule 31, ..., 3; is
unique. Since x*(C’,d8) C T, Q' also identifies T in x*(C’,d). Hence, by Lemma 16, 31, ..., B¢
is Q'-first. If some other (partial) initial configuration C”" € H is indistinguishable from C’
to all processes in @', then C”'(3;...3; is indistinguishable from C’f;...8; to all processes in
(QQ’. This contradicts the fact that Q' identifies C’'S3;...5; in T. Therefore, Q' identifies C’ in
H. Hence, (C',Q’") € B(H).

Since f1...0; is Q'-first, by CSC3, the outputs of processes in Q' in T is a subset of
I(C’,@"). Since T is adjacent to w, I(C, Q) is the set of values output by processes in Q’ in
T. Hence we know I(C, Q) C I(C’,Q"). However, by CSC1, |I(C,Q)| = |I(C',Q")| =m — 1.
Thus, I(C,Q) = I(C", Q). <

» Lemma 19. For each (C',Q’') € B(H) such that I1(C',Q") = I(C,Q), there are an odd
number of (partial) terminal configurations in T reachable from C’ that are adjacent to
w in G.

Proof. If m = 2, then |Q’'| = m — 1 = 1. Let ¢ be the only process in @’. Let S, ..., 3 be a
t-round {q}-first schedule starting from C’. By Lemma 16, C’f;...3; is identified by {¢} in
T. By CSC3, process q outputs its own input in C’f;...5;. Hence, C’'S3;...3; is adjacent to w
in G. Furthermore, by Lemma 18, if a (partial) terminal configuration T' adjacent to w is
reachable from C’ via a schedule 8, ..., 8}, then 1, ..., 5] is {q}-first. Since m = 2, there is
only one t-round {q¢}-first schedule starting from C. Hence, C’B;...5; is the only (partial)
terminal configuration in T reachable from C’ that is adjacent to w.

Now suppose m > 2. Consider the partial initial configuration D’ of C’ induced by the
set of processes )'. Let H’ be the collection consisting of the single partial configuration D’,
let TV = x*(D’,¢), and let m' = m — 1 = |x(D’)|. Note that, H" satisfies CSC4 and every
subset of w(D’) identifies D" in H'. Hence, B(H') consists of the pairs (D', R’) for all subsets
R C Q" of m’ — 1 processes.

Because (C’, Q') € B(H) and H satisfies CSC1, each process in @’ has a different input
value in C’. Therefore, for each pair (D', R') € B(H'), each process in R’ C @’ has a different
value in the partial configuration D’ and, hence, H' satisfies CSC1. Moreover, the set of
inputs I(D’, R') is different for each pair (D', R) € H', so H' satisfies CSC2.

Let o/ = af, ..., a; be any t-round Q’-only schedule starting from D’ and let p be the only
process in 7(C") that is not in 7(D’) = Q'. We inductively define ¢(a’) to be the t-round
w(C")-only @Q’-first schedule ay, ..., @ starting from C’, where a; = o{p} if p is active in
C'ay...a;—1, and o; = o otherwise. Each process in the set Q" has the same state in D’o/
and C'¢(a’) and, thus, outputs the same value in both (partial) configurations.
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Consider any (D', R’) € B(H') and any subset S C R’. If &' is a t-round S-first Q’-
only schedule starting from D', then ¢(a/) is a t-round S-first (and @Q’-first) 7(C’)-only
schedule starting from C’. Since H satisfies CSC3, each process in S outputs a value in
I(C',S) = I(D',S) in C'¢(a’). Each process in S outputs the same value in D'’/ and
C'¢(a’), so H' also satisfies CSC3. Therefore, H' satisfies all four computational Sperner
conditions.

Fix an arbitrary pair (D', R') € B(H'). Let T’ be the set of all partial terminal config-
uration in T’ such that m’ different values are output by the processes in Q’. Let 7" € T
and let 8 be the t-round @’-only schedule such that 7" = D’3. Since (C', Q") € B(H), ¢(3)
is Q'-first, and H satisfies CSC3, it follows that all values output by processes in Q' in the
(partial) configuration C'¢ () are elements of I(C’, Q). Each process in @' outputs the same
value in 7" and C’¢(3), so all values output by processes in @’ in partial configuration 7"
are elements of I(C", Q") = I(C,Q). By CSCL, |[I(C,Q)|=m—1=m/, so I(C,Q) is the
set of values output by the processes in @’ in partial configuration 7”. Hence each value
in I(D',R") C I(C,Q) is output by some process in T7”. By the inductive hypothesis of
Theorem 2 applied to H, it follows that |T’| is odd.

Since ¢(f) is @Q'-first, Lemma 16 says that Q' identifies C"¢(3) in x*(C’,d). Since
(C", Q") € B(H), we know that @’ also identifies C’ in H. Hence, for any other (partial)
configuration C” € H, some process ¢ € @' distinguishes between C” and C’. Since the
protocol is full-information, it follows that g also distinguishes between C”3 and C’/3. This
implies that @ identifies C'¢(S) in T. Hence, C'¢(3) is adjacent to w.

Consider any (partial) terminal configuration 7" € T reachable from C’ that is adjacent
to w. By Lemma 18, there is a 7(C")-only @'-first schedule « starting from C’ such that
T = C'a. Since « is Q'-first and Q' = w(C’) \ {p}, it follows that o = ¢(o’) for some Q’-only
schedule o’ starting from D’. Since D’'a’ is indistinguishable from T' to processes in Q' and
I1(C, Q) is the set of values output by processes in @’ in T, it follows that I(C, Q) is also the
set of values output by processes in ' in D'a’ and, thus, D'/ € T’. Hence |T’| is at least
the number of (partial) terminal configurations in T reachable from C’ that are adjacent to
win G.

Now consider any two different partial terminal configurations 77, 7" € T'. Then there
exists two different schedules 3’, 3" starting from D’ such that 77 = D’3’ and T" = D’S3".
Since the protocol is full-information, some process ¢ € 7(D’') = Q' distinguishes between
D'g" and D'B". Hence, g distinguishes between C’¢(8’) and C'¢(8"). Both C'¢(S’) and
C'¢(B") are (partial) terminal configurations adjacent to w. Thus |T’| is at most the number
of (partial) terminal configurations in T reachable from C’ that are adjacent to w in G.
Therefore, |T’| is number of (partial) terminal configurations in T reachable from C’ that are
adjacent to w in G. Since |T'| is odd, the statement of the lemma follows. <

The next lemma follows from Lemma 18, Lemma 19, and the fact that H satisfies CSC2.
» Lemma 20. Vertex w has odd degree in G.

Proof. By Lemma 18, each (partial) terminal configuration T' adjacent to w in G is reachable
from C’ for some (C’, Q") € B(H) such that I(C’, Q") = I(C, Q). By CSC2, there are an odd
number of pairs (C’, Q") € B(H) such that I(C’, Q") = I(C, Q). For each such pair (C’, Q"),
Lemma 19 tells us that there are an odd number of (partial) terminal configurations in T
reachable from C that are adjacent to w in G. Thus, w has odd degree in G. |

The collection H of initial configurations satisfies CSC4. Thus, applying Lemma 17 ¢
times shows that, for each (partial) terminal configuration T € T = x!(H, §) and each subset
Q' € 7(T) of m — 1 processes, there is at most one other (partial) terminal configuration
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T’ € T such that Q" C 7(T") and T and T” are indistinguishable to all processes in Q’. If
there is such a (partial) terminal configuration 7" and I(C, Q) is the set of values output in
T by the processes in @', then T is adjacent to 77 in G. If Q' identifies T in T and I(C, Q)
is the set of values output in 7" by the processes in @', then T is adjacent to w in G. Hence,
the degree of T in graph G is the number of (m — 1)-element subsets Q" C m(T") such that
I(C, Q) is the set of values output in T by the processes in @'.

Let T be the set of all (partial) terminal configurations in T with odd degree in G. By
the handshaking lemma, every graph must have an even number of odd degree vertices and,
by Lemma 20, w has odd degree. Thus, |T| is odd.

Let T € T. Recall that |7(T)| = m and, by CSC1, |I(C,Q)| =m — 1. If I(C, Q) is the
set of values output by 7(T") in T, then T has degree 2. If I(C, Q) is a proper subset of the
set of values output by 7 (7T') in T, then T has degree 1. Otherwise, T has degree 0.

Hence T is the set of all (partial) terminal configurations T’ € T such that m different values
are output and each value in I(C, Q) is output by some process. Therefore, T = T(C, Q).
This concludes the proof of Theorem 2.
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