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Abstract
Self-stabilization is an important concept in the realm of fault-tolerant distributed computing. In
this paper, we propose a new approach that relies on the properties of linear programming duality to
obtain self-stabilizing approximation algorithms for distributed graph optimization problems. The
power of this new approach is demonstrated by the following results:

A self-stabilizing 2(1 + ε)-approximation algorithm for minimum weight vertex cover that
converges in O(log ∆/(ε log log ∆)) synchronous rounds.
A self-stabilizing ∆-approximation algorithm for maximum weight independent set that converges
in O(∆ + log∗ n) synchronous rounds.
A self-stabilizing ((2ρ + 1)(1 + ε))-approximation algorithm for minimum weight dominating set
in ρ-arboricity graphs that converges in O((log ∆)/ε) synchronous rounds.

In all of the above, ∆ denotes the maximum degree. Our technique improves upon previous results
in terms of time complexity while incurring only an additive O(log n) overhead to the message size.
In addition, to the best of our knowledge, we provide the first self-stabilizing algorithms for the
weighted versions of minimum vertex cover and maximum independent set.
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1 Introduction

Distributed networks have become ubiquitous in modern engineering reality. One of the
major challenges that arise when dealing with large-scale systems is handling fault recovery.
The notion of self-stabilization was introduced by Dijkstra [10] to accommodate this challenge.
Self-stabilization is characterized by the ability of a distributed system that starts from an
arbitrary state to converge into a correct state within a finite time. The initial arbitrary
state of the system can capture any finite number of faults, thus making self-stabilization an
adaptable fault-tolerance approach.

In the realm of distributed computing, classic optimization problems continue to draw
much research attention, and new distributed approximation algorithms are always in demand.
While an abundance of recent studies have been dedicated to distributed approximation
algorithms [3, 4, 11, 14, 23], most of them operate in a fault-free environment, i.e., they are
assumed to start from some designated initial state.
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27:2 Design of Self-Stabilizing Approximation Algorithms via a Primal-Dual Approach

As a step toward bridging the gap between distributed optimization problems and self-
stabilization, in this paper we introduce a new general technique that facilitates the design of
self-stabilizing approximation algorithms. We consider distributed algorithms that work in the
synchronous message passing model. Our technique is based on the primal-dual methodology,
which is known to be highly useful in the context of approximation algorithms [32]. Given a
fault-free approximation algorithm, the technique converts it into a self-stabilizing algorithm
with the same approximation and runtime guarantees. Moreover, the conversion induces only
an additive O(log n) overhead to the message size, where n is the number of nodes in the
graph. Since the fault-free algorithms used in the context of this paper have a message size
of O(log n) (under common assumptions), we get that all of the self-stabilizing algorithms
developed in this paper also have a message size of O(log n).

In Section 4, we demonstrate the power of our new technique by applying it to three
recent fault-free algorithms. This leads to new self-stabilizing approximation algorithms
for minimum weight vertex cover, maximum weight independent set, and minimum weight
dominating set. To the best of our knowledge, these are the first self-stabilizing algorithms
for the weighted versions of minimum vertex cover and maximum independent set, and the
first sub-linear time algorithm for minimum weight dominated set.

1.1 Model

Consider an undirected graph G = (V, E) and denote n = |V | and m = |E|. For a node
v ∈ V , we stick to the convention that NG(v) denotes the set of v’s neighbors in G and
that degG(v) denotes v’s degree in G. When G is clear from context, we may omit it from
our notation and use N(v) and deg(v) instead of NG(v) and degG(v), respectively. Let
E(v) = {e ∈ E : v ∈ e} denote the set of edges in E incident on node v ∈ V .

Following a common convention in the realm of distributed graph algorithms, additional
input components such as node/edge weights and edge orientations, are passed to the nodes
of graph G by means of an input assignment ℓ : V → {0, 1}∗ which assigns to each node
v ∈ V an input label l(v). The input label ℓ(v) encodes graph attributes relating to v and its
incident edges. Moreover, we assume that ℓ(v) includes a port numbering, i.e., a bijection
between v’s incident edges and the set {1, . . . , deg(v)} of ports. Unless stated otherwise,
when we refer to an ordered list u1, . . . , udeg(v) of v’s neighbors, it is assumed that the list is
ordered by v’s port numbers. We refer to the pair Gℓ = ⟨G, ℓ⟩ as a labeled graph.

In this paper, we focus on algorithms that operate in a message passing framework in
which the nodes of a given labeled graph Gℓ are associated with identical state machines that
update their state concurrently in synchronous rounds. In each round, every node v ∈ V

carries out the following operations: (1) v performs local computation and updates its state
as a function of its current state, its input label ℓ(v), and possibly random coin tosses; (2) v

sends messages to its neighbors; and (3) v receives messages sent to it in the current round
by its neighbors. We define the global state of Gℓ to be the n-sized vector encoding the states
of all nodes in G.

The state of each node v ∈ V also includes a designated output register out(v) ∈
{0, 1}∗ ∪ {⊥} in which v maintains its output. If out(v) = ⊥ we say that v is undecided,
otherwise, we say that v is decided. For a labeled graph Gℓ, we define a configuration of Gℓ

as an n-sized vector c : V → {0, 1}∗ ∪ {⊥} assigning an output value c(v) to each node v ∈ V .
We refer to the 3-tuple Gℓ,c = ⟨G, ℓ, c⟩ consisting of a graph G = (V, E), an input assignment
ℓ : V → {0, 1}∗, and a configuration c : V → {0, 1}∗ ∪ {⊥} of Gℓ, as a configured graph.
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A distributed problem Π is a collection of configured graphs Gℓ,c . In the context of a
distributed problem Π, a labeled graph Gℓ is said to be valid if there exists a configuration
c such that Gℓ,c ∈ Π, in which case we say that c is feasible for Gℓ. Given a distributed
problem Π, we may slightly abuse notation and write Gℓ ∈ Π to denote that Gℓ is valid.

Consider a distributed problem Π. Given a valid labeled graph Gℓ ∈ Π, the goal of
an algorithm Alg for Π is to converge to a feasible configuration within a finite number of
rounds, in which case we say that Alg is correct. When considering an algorithm Alg that
operates in a fault-free environment, the initial state of each node v ∈ V is assumed to be
determined locally by Alg. More formally, for each valid labeled graph Gℓ ∈ Π, the initial
state of each node v ∈ V is defined to be the value initAlg(ℓ(v)) obtained by a function
initAlg : {0, 1}∗ → {0, 1}∗. In contrast, self-stabilizing algorithms do not determine the
initial state of the nodes. That is, we say that an algorithm Alg for Π is self-stabilizing if
for any valid labeled graph Gℓ ∈ Π, algorithm Alg is guaranteed to converge to a feasible
configuration starting from any initial global state. The runtime of an algorithm is defined
to be the number of rounds required until convergence.

For many distributed problems, the quality of a feasible configuration can be measured
by means of an objective function that one wishes to minimize/maximize. Formally, we
define a distributed minimization problem (resp., distributed maximization problem) Ψ as a
pair ⟨Π, f⟩, where Π is a distributed problem, and f : Π → R is an objective function that
assigns an objective value f(Gℓ,c) to any configured graph Gℓ,c ∈ Π. For an approximation
parameter α ≥ 1, we say that a configuration c is an α-approximation for a valid labeled
graph Gℓ ∈ Π if the following conditions hold: (1) Gℓ,c ∈ Π, i.e., c is feasible (with respect
to Π) for Gℓ; and (2) f(Gℓ,c) ≤ α · f(Gℓ,c′) (resp., f(Gℓ,c) ≥ f(Gℓ,c′)/α) for any feasible
configuration c′. We often use the general term distributed optimization problem to refer to
distributed minimization problems as well as distributed maximization problems. We say
that an algorithm Alg α-approximates a distributed optimization problem Ψ if it solves the
distributed problem ΠΨ,α = {Gℓ,c | c is an α-approximation for Gℓ}.

1.2 Related Work
The notion of self-stabilization was introduced in the seminal paper of Dijkstra [10] and is
studied extensively since then. Special interest is given to self-stabilizing graph algorithms,
which have natural applications in distributed systems. Awerbuch and Varghese [2] provided a
compiler that transforms deterministic synchronous distributed algorithms into self-stabilizing
algorithms with the same running time. Note, however, that this held only under the LOCAL
model and the size of the node states may be unbounded. See [26] for more details on this
compiler.

For the unweighted vertex cover problem, a 2-approximation can be achieved by finding
a maximal matching. Hsu and Huang [21] presented a self-stabilizing maximal matching
algorithm in the shared memory model with running time O(n3), where n is the number
of nodes in the graph. Later, this algorithm was reanalyzed to show that its running time
is up-bounded by O(n2) [29], and then an O(m + n) was shown by [20], where m is the
number of edges in the graph. The algorithm of Hsu and Haung assumes sequential adversary,
which means that exactly one node is scheduled for execution at each round. Gradinariu
and Tixeuil [17] provided a general scheme to transform an algorithm under a sequential
adversary into an algorithm that works under a distributed adversary, which selects a subset
of the nodes to be executed at each round. Combined with the algorithm of Hsu and Huang,
this scheme yields a time complexity of O(∆m), where ∆ is the maximum degree of the
graph. Chattopadhyay et al. [7] and Manne et al. [27] gave self-stabilizing algorithms for
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27:4 Design of Self-Stabilizing Approximation Algorithms via a Primal-Dual Approach

maximal matching with quadratic runtime in more general models. Cohen et al. [9] proposed
a randomized self-stabilizing algorithm for computing a maximal matching with a time
complexity of O(n2) rounds with high probability.

Kiniwa [24] devised a self-stabilizing vertex cover algorithm that achieves a (2 − 1/∆)-
approximation. This algorithm, which works in the shared memory model, is the first with
an approximation ratio less than 2. Turau and Hauck [31] presented a self-stabilizing vertex
cover algorithm that computes a (3 − 2/(∆ + 1))-approximation and stabilizes in O(n + m)
rounds.

For the minimal dominating set (MDS) problem, Hedetniemi et al. [19] presented a
self-stabilizing algorithm under a sequential adversary with a time complexity of O(n2). Xu
et al. [34] proposed a synchronous MDS self-stabilizing algorithm that converges in O(n)
rounds. Self-stabilizing MDS algorithms with a linear time complexity under a distributed
adversary are presented in [30, 15, 8]. For the minimum weight dominating set (MWDS)
problem, Wang et al. [33] were the first to propose a self-stabilizing algorithm that works for
general graphs. Their algorithm converges in O(n2) rounds under a sequential adversary.

For the unweighted MaxIS problem, one can obtain a ∆-approximation by finding a
maximal independent set (MIS). The first self-stabilizing algorithm for the MIS problem
was introduced by Shukla et al. [28]. Their algorithm converges in O(n) rounds under a
sequential adversary. Under a distributed adversary, Ikeda et al. [22] provided an algorithm
that converges in O(n2) rounds, and Goddard et al. [16] proposed a synchronous algorithm
that converges in O(n) rounds. Later, Turau [30] designed the first linear time asynchronous
MIS algorithm assuming a distributed adversary. Recently, an improved self-stabilizing
linear-time asynchronous MIS algorithm was suggested by Arapoglu and Dagdeviren [1],
assuming a distributed adversary as well. Blair and Manne [6] suggested a generic mapping
from sequential tree algorithms to self-stabilizing tree algorithms. Among other algorithms,
this mapping yields a MaxIS algorithm that requires O(n2) rounds under the read-write
atomicity assumption.

We refer the interested reader to [18, 12] for extensive surveys on self-stabilizing algorithms
and the different models.

2 Preliminaries

Linear Programming and Duality. A linear program (LP) consists of a linear objective
function to be optimized (i.e., minimized or maximized) subject to linear inequality constraints.
Formally, a minimization (resp., maximization) LP is min{cTx | Ax ≥ b ∧ x ≥ 0} (resp.,
max{cTx | Ax ≤ b ∧ x ≥ 0}), where x = {xj} ∈ Rs is a vector of variables and
A = {ai,j} ∈ Rr×s, b = {bi} ∈ Rr, and c = {cj} ∈ Rs are a matrix and vectors of
coefficients, respectively. An integer linear program (ILP) is an LP with integer variables.
An LP relaxation of an ILP is the LP obtained from the ILP by relaxing its integrality
constraints.

Every LP has a corresponding dual program, and in this context, we refer to the original
LP as the primal program. Specifically, for a minimization (resp., maximization) LP, its
dual program is a maximization (resp., minimization) LP, formulated as max{bTy | ATy ≤
c ∧ y ≥ 0} (resp., min{bTy | ATy ≥ c ∧ y ≥ 0}). The following properties of LP duality
make it a powerful tool. The weak duality theorem states that cTx ≥ bTy (resp., cTx ≤ bTy)
for every two feasible solutions x and y to the primal and dual programs, respectively. The
strong duality theorem states that cTx = bTy if and only if x and y are optimal primal and
dual solutions, respectively. The relaxed complementary slackness conditions are stated as
follows, for given parameters β, γ ≥ 1.
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Primal relaxed complementary slackness:
For every primal variable xj , if xj > 0, then cj/β ≤

r∑
i=1

aijyi ≤ cj (resp., cj ≤
r∑

i=1
aijyi ≤

β · cj).
Dual relaxed complementary slackness:
For every dual variable yi, if yi > 0, then bi ≤

s∑
j=1

aijxj ≤ γ · bi (resp., bi/γ ≤
s∑

j=1
aijxj ≤

bi).
If the (primal and dual) relaxed complementary slackness conditions hold, then it is guaranteed
that cTx ≤ β · γ · bTy (resp., cTx ≥ 1

β·γ · bTy). Combined with the weak duality theorem,
this means that x approximates an optimal primal solution by a multiplicative factor of β · γ.

3 Our Technique

In this section, we present a high-level description of our technique for designing self-stabilizing
approximation algorithms for a large family of distributed graph optimization problems
(henceforth, OptDGPs). We say that an OptDGP Ψ is a covering (resp., packing) problem if
it can be formulated as a minimization (resp., maximization) LP P with a dual LP D such
that the variables and constraints of P and D are associated with the nodes and/or edges of
the graph.1 We focus on covering/packing problems that are locally-constrained in the sense
that a primal/dual constraint associated with a node v ∈ V or an edge e ∈ E, only involves
variables associated with incident nodes and/or edges.

Consider a locally-constrained covering/packing problem Ψ. The technique augments a
fault-free distributed α-approximation algorithm Alg for Ψ with a local-checking procedure,
resulting in a self-stabilizing distributed α-approximation algorithm Algstab. We typically
consider a fault-free algorithm Alg that admits the following structure: (1) Alg maintains
a feasible dual solution y throughout its execution; (2) Alg constructs a primal solution x
such that no primal constraint is violated; and (3) throughout its execution, Alg maintains
the property that x and y are not ”too far” from each other (e.g., by maintaining relaxed
complementary slackness conditions).

We now describe the key ideas behind the transformation of Alg into a self-stabilizing
algorithm Algstab. At the heart of this transformation, we have the aforementioned local-
checking procedure that is invoked repeatedly at the beginning of each round. The local-
checking procedure starts from a detection step whose goal is to verify the primal and dual
feasibility as well as the approximation guarantees of Alg. To that end, during Algstab each
node v ∈ V keeps track of all the primal and dual variables that appear in the constraints
associated with v and its incident edges E(v). We emphasize that this allows each node to
perform the detection step locally without communication.

Following the detection step, Algstab branches into one of two possibilities: if the current
primal and dual assignments satisfy the detection conditions for a node v, then v proceeds
to perform local computation and send messages according to Alg; otherwise, v performs
a correction step. While the details of the correction step are often problem-specific, its
common idea is to change the primal and dual variables so that they meet the detection
conditions. To preserve consistency between two neighbors v and u regarding their mutual

1 For simplicity, we assume that each node v ∈ V knows all of the coefficients of P (and D) that are
associated with its neighbors and incident edges (this includes, e.g., node/edge weights, capacities,
etc.). We note that this assumption is w.l.o.g. since it can be implemented by means of sending this
information through messages at the cost of at most 1 round of communication.
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27:6 Design of Self-Stabilizing Approximation Algorithms via a Primal-Dual Approach

primal and dual variables (i.e., the variables maintained by both v and u), v and u inform
each other of the current values assigned to those variables at each round. Following that,
upon receiving each other’s messages, u and v consistently update their mutual variables
(the details of this update are also problem-specific).

Notice that once Algstab reaches primal and dual assignments that satisfy the detection
conditions for every node v ∈ V , it proceeds to construct the primal and dual solution strictly
according to Alg. By the correctness of Alg, reaching such assignments guarantees that
Algstab converges to an α-approximation for the OptDGP Ψ. Therefore, the main challenge
of Algstab is to recover from arbitrary primal and dual assignments to primal and dual
assignments that satisfy the detection conditions. As we show in Section 4, for some classical
covering/packing problems this recovery process can be obtained using only O(1) rounds.
Thus, for those problems, Algstab achieves the same (asymptotic) runtime guarantee as Alg.
Moreover, if we stick to the common assumption that all the primal and dual coefficients
of the problems mentioned in Section 4 can be represented using O(log n) bits, then we get
that sstab = sAlg + O(log n), where sstab and sAlg denote the message size of Algstab and Alg,
respectively.

4 Results

4.1 Minimum Weight Vertex Cover
Consider a graph G = (V, E) associated with a node-weight function w : V → R≥0. A vertex
cover is a set U ⊆ V of nodes such that each edge e ∈ E has at least one endpoint in U . A
minimum weight vertex cover (MWVC) is a vertex cover U that minimizes w(U) =

∑
u∈U w(u).

In a natural LP formulation of MWVC, each node v ∈ V is associated with a variable xv

and each edge (u, v) ∈ E is associated with a covering constraint xu + xv ≥ 1. In the dual
LP, each edge e ∈ E is associated with a variable ye and each node v ∈ V is associated with
a packing constraint

∑
e∈E(v) ye ≤ w(v).

In this section, we devise a self-stabilizing 2(1 + ε)-approximation algorithm for MWVC.
More concretely, we constructively prove the following theorem.

▶ Theorem 4.1. There exists a self-stabilizing algorithm that converges to a 2(1 + ε)-
approximation for MWVC in O(log ∆/ε log log ∆) rounds.

Our algorithm involves adapting the (fault-free) algorithm by Bar-Yehuda et al. [4] to an
algorithm that works in a primal-dual framework, i.e., an algorithm that constructs primal
and dual solutions. We then exploit the properties of valid primal and dual solutions to
construct a self-stabilizing algorithm, i.e., an algorithm that is guaranteed to converge to
a 2(1 + ε)-approximation for MWVC from an arbitrary global state (and in particular, an
arbitrary assignment to the primal and dual variables). Refer to Pseudocode 1 for the full
description of the algorithm. We now give a high-level overview of the algorithm.

Overview of the algorithm. Throughout the execution of Algorithm 1, each node v ∈ V

maintains a primal variable v.xv ∈ {0, 1, ⊥} associated with v, where v.xv = ⊥ reflects that
v is undecided; v.xv = 0 reflects that v is not in the cover; and v.xv = 1 reflects that v

is in the cover. Additionally, for each neighbor u ∈ N(v), v maintains a primal variable
v.xu ∈ {0, 1, ⊥} associated with u and a dual variable v.yu,v ∈ R≥0 associated with the edge
(u, v). Each node v ∈ V also maintains the set Nund(v) consisting of v’s currently undecided
neighbors (according to the v.xu values) and the value d(v) = |Nund(v)|. For each neighbor
u ∈ N(v), v also maintains a value v.d(u).
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Let us now describe how v operates during a round of Algorithm 1. First, v splits the
weight w(v) to threshold(v) = w(v)/(1 + ε) and slack(v) = w(v) − threshold(v). Then,
v performs detection, i.e., it checks whether the current assignment to its variables is faulty,
and performs correction if necessary. Specifically, v checks the following conditions in order:
(1) primal feasibility, i.e., if v.xv = 0, then v checks that v.xu = 1 for all u ∈ N(v); (2) dual
feasibility, i.e., v checks that

∑
e∈E(v) v.ye ≤ w(v); and (3) primal relaxed complementary

slackness, i.e., if v.xv = 1, then v checks that
∑

e∈E(v) v.ye ≥ threshold(v). If conditions (1)
or (3) fail, then v sets v.xv = ⊥; if condition (2) fails, then v sets v.ye = 0 for each e ∈ E(v).

After detection, v computes the message it sends each neighbor u ∈ N(v). Every message
from v to u ∈ N(v) first indicates whether v is decided or undecided. To preserve consistency
of shared values, each message from v to u ∈ N(v) contains the current values of v.xv,v.yu,v,
and d(v). Upon receiving values u.xu, u.yu,v, and d(u), node v updates its own values by
setting v.xu = u.xu, v.yu,v = min{v.yu,v, u.yu,v}, and v.d(u) = d(u).

If v is undecided, then for each undecided neighbor u ∈ Nund(v), in addition to the
values v.xv,v.yu,v, and d(v) node v sends v.d(u) and a real value budget(v, u). The value
budget(v, u) is determined based on an ordering u1, . . . ud(v) of Nund(v) as follows. For each
i ∈ [d(v)], v sets budget(v, ui) = min{slack(ui)/v.d(ui), bank(v) −

∑i−1
j=1 budget(v, uj)},

where bank(v) = threshold(v) −
∑

e∈E(v) v.ye. If v receives a message ⟨budget(u, v),
d(u), u.d(v), u.yu,v⟩ from a neighbor u ∈ Nund(v) that satisfies d(u) ≤ v.d(u) and d(v) ≤
u.d(v), then v increments the variable v.yu,v by budget(u, v) + budget(v, u).

Finally, if v is undecided, then it becomes decided at the beginning of the following
round in one of the following cases: if

∑
e∈E(v) v.ye ≥ threshold(v), then v sets v.xv = 1;

otherwise, if v.xu = 1 for every neighbor u ∈ N(v), then v sets v.xv = 0.

Analysis. We now analyze Algorithm 1. Recall that our goal is to establish that Algorithm
1 converges to a 2(1 + ε)-approximation for MWVC in O(log ∆/ε log log ∆) rounds starting
from any global state. To that end, let us first state the following straightforward observation
that holds trivially by the construction of Algorithm 1.

▶ Observation 4.2. At the end of each round of Algorithm 1, it holds that v.xv = u.xv and
v.yu,v = u.yu,v for every (u, v) ∈ E.

The goal of the following three claims is to show that Algorithm 1 recovers quickly from
any global state. As such, these claims play a major role in proving Theorem 4.1.

▷ Claim 4.3. At the end of each round of Algorithm 1, it holds that
∑

e∈E(v) v.ye ≤ w(v)
for each node v ∈ V .

Proof. Consider some node v ∈ V and fix some round i ≥ 1. Notice that the check
in line 8 of Pseudocode 1 guarantees that

∑
e∈E(v) v.ye ≤ w(v) right before v receives

messages. If v.xv ̸= ⊥ at the time v receives messages, then v will not increase its v.ye

variables, and thus the claim holds. Now, suppose that v.xv = ⊥. Let Y s and Y f denote
the sum of dual variables v.ye before and after v updates its dual variables in round i,
respectively. Let N ′(v) ⊆ Nund(v) be the set of neighbors u ∈ Nund(v) that send v a
message ⟨budget(u, v), d(u), u.d(v), u.yu,v⟩ in the current round such that d(u) ≤ v.d(u)
and d(v) ≤ u.d(v). Notice that Y f ≤ Y s +

∑
u∈N ′(v) budget(u, v) +

∑
u∈N ′(v) budget(v, u).

By definition, it holds that
∑

u∈N ′(v) budget(v, u) ≤ bank(v) = threshold(v) − Y s. In
addition, by the way budget(u, v) is assigned, and since u.d(v) ≥ d(v) for all u ∈ N ′(v), and
|N ′(v)| ≤ d(v), it follows that
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27:8 Design of Self-Stabilizing Approximation Algorithms via a Primal-Dual Approach

∑
u∈N ′(v)

budget(u, v) ≤
∑

u∈N ′(v)

slack(v)
u.d(v) ≤

∑
u∈N ′(v)

slack(v)
d(v) ≤ slack(v) .

Overall, we have Y f ≤ threshold(v) + slack(v) = w(v). ◁

▷ Claim 4.4. Let i ≥ 2. At the end of the i-th round of Algorithm 1 it holds that if v.xv = 1,
then

∑
e∈E(v) v.ye ≥ threshold(v) for each node v ∈ V .

Proof. Consider some node v ∈ V during the i-th round for some i ≥ 2. Notice that the
check in line 10 of Pseudocode 1 guarantees that v satisfies v.xv = 1 ⇒

∑
e∈E(v) v.ye ≥

threshold(v) right before v receives messages. If v.xv ̸= 1 at that time, then v.xv ̸= 1 at
the end of round i and the claim is trivial; so, suppose that v.xv = 1 right before receiving
messages. This means that by the end of round i, node v sets v.yu,v = min{v.yu,v, u.yu,v}
for each u ∈ N(v). Notice that by Claim 4.3, every neighbor u ∈ N(v) does not satisfy
the condition in line 8 of the i-th round. This means that the value u.yu,v sent to v from
neighbor u during round i does not change from the end of round i − 1. From Observation
4.2, it follows that v.yu,v does not change by the end of round i. Therefore, the inequality∑

e∈E(v) v.ye ≥ threshold(v) is still satisfied by the end round i. ◁

▷ Claim 4.5. Let i ≥ 3. At the end of the i-th round of Algorithm 1 it holds that for each
node v ∈ V , if v.xv = 0, then v.xu = 1 for every neighbor u ∈ N(v).

Proof. Consider some node v ∈ V during the i-th round for some i ≥ 3. Notice that the
check in line 6 of Pseudocode 1 guarantees that if v.xv = 0, then v.xu = 1 for every neighbor
u ∈ N(v) before v receives messages. By Observation 4.2, at the end of round i − 1 it holds
that u.xu = v.xu = 1 for all u ∈ N(v). By Claim 4.4, the value of u.xu remains 1 for every
node u ∈ N(v) during round i ≥ 3 (since the condition in line 10 is not satisfied). Therefore,
if v.xv = 0, then v receives the message ⟨“DECIDED”, d(u), u.xu = 1, u.yu,v⟩ from each
neighbor u ∈ N(v) in the i-th round, thus the claim holds at the end of round i. ◁

We are now prepared to prove Theorem 4.1.

Proof of Theorem 4.1. We start with the runtime analysis of Algorithm 1. We note that
the runtime analysis uses similar arguments as the analysis presented in [4]. Claims 4.4 and
4.5 imply that if node v is decided (i.e., v.xv ̸= ⊥) in round i > 3, then it will not change
its decision at any round i′ ≥ i. We now bound the number of rounds until a node v ∈ V

becomes decided.
Fix some i > 4 and node v ∈ V , and suppose that v.xv = ⊥ in the i-th round. Let di(v)

be the value of d(v) in round i (after the update in line 2) and let Yi(v) be the sum of dual
variables

∑
e∈E(v) v.ye at the end of round i. We denote by u.di(v) the value of u.d(v) at

the beginning of round i for each neighbor u ∈ N(v). Observe that u updates u.d(v) at the
end of round i − 1 according to a message from v, and thus u.di(v) = di−1(v). We also note
that nodes that are decided at the beginning of round i − 1 do not become undecided at any
time afterwards. Therefore, it follows that di(v) ≤ di−1(v) = u.di(v).

We now show that for every parameter z > 0, it holds that either (1) di+2(v) ≤ di−1(v)/z;
or (2) Yi(v) ≥ Yi−1(v) + slack(v)/z. First, observe that if during the i-th round it holds
that budget(u, u′) < slack(u′)/u.di(u′) for some undecided node u ∈ V and neighbor
u′ ∈ Nund(u), then u sets u.xu = 1 during round i + 1 and inform its neighbors. Hence,
if di+2(v) > di−1(v)/z, then v updates Yi(v) according to more than di−1(v)/z messages
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with budget(u, v) = slack(v)/u.di(v) = slack(v)/di−1(v) for every undecided neighbor
u ∈ Nund(v). It follows that Yi(v) ≥ Yi−1(v) + (di−1(v)/z) · (slack(v)/di−1(v)) = Yi−1(v) +
slack(v)/z. Recall that v becomes decided in round i′ if either di′(v) = 0; or Yi′(v) ≥
threshold(v). By the above, case (2) can occur in at most z · w(v)/slack(v) rounds until∑

e∈E(v) ye ≥ threshold(v). As case (1) can occur in at most log(deg(v))/ log z rounds, it
follows that after

z · w(v)
slack(v) + O

(
log(deg(v))

log z

)
= z

1 − 1/(1 + ε) + O

(
log(deg(v))

log z

)
= z(1 + ε)

ε
+ O

(
log(deg(v))

log z

)
rounds v must be decided. Taking z = log(deg(v))/ log log(deg(v)), we get the desired bound
of O(log(deg(v))/ε log log(deg(v))) rounds.

As for the correctness, first notice that by Observation 4.2, it holds at convergence that
v.xv = u.xv and v.yu,v = u.yu,v for each (u, v) ∈ E. Additionally, by the design of Algorithm
1 and by Claims 4.3, 4.4, and 4.5, the variables’ values do not change afterwards. Let
x = ⟨xv | v ∈ V ⟩ ∈ {0, 1}n and y = ⟨ye | e ∈ E⟩ ∈ Rm

≥0 be the primal and dual solutions
derived from the variables v.xv and v.ye, respectively. By relaxed complementary slackness,
it is sufficient to show that the following conditions are satisfied: (1) x is a feasible primal
solution; (2) y is a feasible dual solution; (3) xv > 0 ⇒

∑
e∈E(v) ye ≥ w(v)/(1 + ε); and (4)

yu,v > 0 ⇒ xu + xv ≤ 2. Conditions (1), (2), and (3) follow directly from Claims 4.5,4.3, and
4.4, respectively. Condition (4) holds trivially, since xu +xv ≤ 1+1 = 2 for all (u, v) ∈ E. ◀

Message size. Note that the size of messages sent during Algorithm 1 depends on the values
of budget(v, u) computed during its execution. Observe that this dependency is manifested in
the budget(v, u) values themselves as well as the dual values v.yu,v. As remarked in [4], each
budget(v, u) value can be modified to be represented using O(log n) bits without affecting
the correctness or the (asymptotic) runtime of the algorithm. The idea is to round each
budget(v, u) value and reduce the slack(v) values accordingly. We note that applying a
similar modification to Algorithm 1 is straightforward. Using this modification, we get
messages of size O(log n).

4.2 Maximum Weight Independent Set
Consider a graph G = (V, E) associated with a node-weight function w : V → R≥0. An
independent set is a set X ⊆ V of nodes such that each edge e ∈ E has at most one endpoint
in X. A maximum weight independent set (MWIS) is an independent set X ⊆ V that
maximizes w(X) =

∑
v∈X w(v). In a natural LP formulation of MWIS, each node v ∈ V is

associated with a variable xv and each edge (u, v) ∈ E is associated with a packing constraint
xu + xv ≤ 1. In the dual LP, each edge e ∈ E is associated with a variable ye and each node
v ∈ V is associated with a covering constraint

∑
e∈E(v) ye ≥ w(v).

In this section, we present a self-stabilizing algorithm that given a proper (∆+1)-coloring,
obtains a ∆-approximation for MWIS. More concretely, we constructively prove the following
lemma.

▶ Lemma 4.6. Given a proper (∆ + 1)-coloring c : V → {1, . . . , ∆ + 1}, there exists a
self-stabilizing algorithm that converges to a ∆-approximation for MWIS in O(∆) rounds.

OPODIS 2022
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Algorithm 1 A self-stabilizing 2(1+ε)-approximation algorithm for MWVC. Code for node v ∈ V

in a single round.

1: threshold(v) = w(v)/(1 + ε); slack(v) = w(v) − threshold(v)
2: Nund(v) = {u ∈ N(v) | v.xu = ⊥}; d(v) = |Nund(v)| ▷ v’s undecided neighbors
3: if v.xv == ⊥ then
4: if

∑
e∈E(v) v.ye ≥ threshold(v) then v.xv = 1

5: else if v.xu == 1 for every neighbor u ∈ N(v) then v.xv = 0
6: if (v.xv == 0) ∧ (∃u ∈ N(v) : v.xu ̸= 1) then ▷ checking primal feasibility
7: v.xv = ⊥
8: if

∑
e∈E(v) v.ye > w(v) then ▷ checking dual feasibility

9: v.ye = 0 for all e ∈ E(v)
10: if (v.xv == 1) ∧ (

∑
e∈E(v) v.ye < threshold(v)) then ▷ checking comp. slackness

11: v.xv = ⊥
12: if v.xv ∈ {0, 1} then
13: send ⟨“DECIDED”, d(v), v.xv, v.yu,v⟩ to each neighbor u ∈ N(v)
14: else
15: send ⟨“UNDECIDED”, d(v), v.yu,v⟩ to each neighbor u ∈ N(v) − Nund(v)
16: bank(v) = threshold(v) −

∑
e∈E(v) v.ye

17: let u1, . . . , ud(v) be an ordering of Nund(v) ▷ e.g., by port numbers
18: for i = 1, . . . , d(v) do
19: slack(ui) = (1 − 1/(1 + ε)) · w(ui)
20: budget(v, ui) = min{slack(ui)/v.d(ui), bank(v) −

∑i−1
j=1 budget(v, uj)}

21: send ⟨budget(v, ui), d(v), v.d(u), v.yui,v⟩ to ui

22: for each message µu received from neighbor u ∈ N(v) do
23: if µu == ⟨“DECIDED”, d(u), u.xu, u.yu,v⟩ then
24: v.d(u) = d(u); v.xu = u.xu; v.yu,v = min{v.yu,v, u.yu,v}
25: if µu == ⟨“UNDECIDED”, d(u), u.yu,v⟩ then
26: v.d(u) = d(u); v.xu = ⊥; v.yu,v = min{v.yu,v, u.yu,v}
27: if µu == ⟨budget(u, v), d(u), u.d(v), u.yu,v⟩ then
28: v.xu = ⊥; v.yu,v = min{v.yu,v, u.yu,v}
29: if (u ∈ Nund(v)) ∧ (v.xv == ⊥) ∧ (d(u) ≤ v.d(u)) ∧ (d(v) ≤ u.d(v)) then
30: v.yu,v = v.yu,v + budget(u, v) + budget(v, u)
31: v.d(u) = d(u)

Our algorithm involves adapting the (fault-free) algorithm by Bar-Yehuda et al. [3] to a
primal-dual algorithm, and then applying our technique to obtain a self-stabilizing algorithm.
Refer to Pseudocode 2 for a full description of the algorithm. For simplicity of presentation,
we assume that each node knows the colors of all its neighbors.

Combining Lemma 4.6 with the self-stabilizing (∆ + 1)-coloring algorithm by Barenboim
et al. [5] (henceforth referred to as the BEG algorithm), we establish the following theorem.2

2 We note that the BEG algorithm requires that the nodes’ labels include the values of ∆ and n, as well
as a unique ID.
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▶ Theorem 4.7. There exists a self-stabilizing algorithm that converges to a ∆-approximation
for MWIS in O(∆ + log∗ n) rounds.

We remark that incorporating the BEG algorithm into Algorithm 2 can be done in a
straightforward manner. This requires the nodes to repeatedly check that the current
coloring is proper, and correct it according to the BEG algorithm if necessary. As established
in [5], the BEG algorithm converges to a proper (∆ + 1)-coloring in O(∆ + log∗ n) rounds.
The execution of the BEG algorithm is performed in parallel to Algorithm 2 so that after
O(∆ + log∗ n) rounds, the incorporated algorithm performs its updates strictly based on
Algorithm 2.

Overview of Algorithm 2. Throughout the execution of Algorithm 2, each neighbor v ∈ V

maintains a primal variable v.xv ∈ {0, 1} and a dual variable v.yu,v ∈ R≥0 for each node
u ∈ N(v).3 Additionally, v maintains a primal variable v.xu for each neighbor u ∈ N(v).

Consider a node v ∈ V and let S(v) = {u ∈ N(v) | c(u) < c(v)} and L(v) = N(v) − S(v).
At each round, v updates its primal and dual variables as follows. If

∑
u∈S(v) v.yu,v ≥ w(v),

then v sets v.xv = 0 and v.yu,v = 0 for each u ∈ L(v). Otherwise, v sets v.yu,v =
w(v) −

∑
u′∈S(v) v.yu′,v for each u ∈ L(v). In the case that

∑
u∈S(v) v.yu,v < w(v), node v

sets v.xv = 0 if there exists a neighbor u ∈ L(v) such that v.xu = 1. Otherwise, node v sets
v.xv = 1.

At the end of each round, v sends the dual variable v.yu,v to each neighbor u ∈ L(v),
and the primal variable v.xv to each neighbor u ∈ S(v). Upon receiving a message u.yu,v

(resp., u.xu) from a neighbor u ∈ S(v) (resp., u ∈ L(v)), node v sets v.yu,v = u.yu,v (resp.,
v.xu = u.xu).

Analysis. We now turn to analyze Algorithm 2. To that end, let us first state the following
straightforward observation that holds trivially by the construction of Algorithm 2.

▶ Observation 4.8. Consider a node v ∈ V . At the end of each round of Algorithm 2, it
holds that v.xu = u.xu for each neighbor u ∈ L(v); and v.yu,v = u.yu,v for each neighbor
u ∈ S(v).

The following two claims are used to establish the convergence time of the primal and dual
solutions.

▷ Claim 4.9. Fix some node v ∈ V . During the execution of Algorithm 2, the dual variable
v.yu,v does not change at any time from the end of round c(v) for every u ∈ N(v).

Proof. We prove the claim by induction on c(v) = 1, . . . , ∆ + 1. For the base of the
induction, consider the case where c(v) = 1. This means that S(v) = ∅ and thus v sets
v.yu,v = w(v) −

∑
u′∈S(v) v.yu′,v = w(v) at round 1 for each u ∈ N(v). By the construction

of Algorithm 2, these values do not change afterwards.
Now, suppose that i = c(v) > 1. Notice that by Observation 4.8, it holds that v.yu,v =

u.yu,v for each u ∈ S(v) at the beginning of round i. By the induction hypothesis, these
variables do not change throughout the execution from round i onward. Notice that for
each neighbor u ∈ L(v), node v sets v.yu,v = 0 in the case that

∑
u∈S(v) v.yu,v ≥ w(v); and

v.yu,v = w(v) −
∑

u′∈S(v) v.yu′,v otherwise. Since the value v.yu′,v does not change for each

3 We note that unlike the other algorithms presented in this paper, the dual solution obtained by the dual
variables in Algorithm 2 is not necessarily feasible. We elaborate on that in the proof of Lemma 4.6.
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node u′ ∈ S(v), it follows that the value v.yu,v does not change for every u ∈ L(v). Overall,
we conclude that the value v.yu,v does not change from the end of round c(v) onward for
every u ∈ S(v) ∪ L(v) = N(v). ◁

▷ Claim 4.10. Fix some node v ∈ V . During the execution of Algorithm 2, the primal
variable v.xv does not change at any time from the end of round 2∆ + 3 − c(v).

Proof. We prove the claim by induction on c(v) = ∆ + 1, . . . , 1. For the base of the induction,
suppose that c(v) = ∆ + 1 and consider round ∆ + 2 = 2∆ + 3 − c(v). Since c(v) = ∆ + 1, it
follows that L(v) = ∅ and v sets v.xv = 0 if

∑
u∈S(v) v.yu,v ≥ w(v); and v.xv = 1 otherwise.

By Claim 4.9, the value v.yu,v for each neighbor u ∈ S(v) does not change throughout the
execution from the end of round ∆ + 1. Therefore, it follows that the value v.xv does not
change from the end of round ∆ + 2 onward.

Let v ∈ V such that c(v) < ∆ + 1, and consider round i = 2∆ + 3 − c(v). If at the
beginning of round i it holds that

∑
u∈S(v) v.yu,v ≥ w(v), then v sets v.xv = 0. By Claim 4.9,

the value of
∑

u∈S(v) v.yu,v does not change after round i and thus it follows that v.xv = 0
at all times from round i onward. Now, suppose that

∑
u∈S(v) v.yu,v < w(v). Notice that v

sets v.xv = 0 if there exists a neighbor u ∈ L(v) such that v.xu = 1; and v.xv = 1 otherwise.
By Observation 4.8, it holds that v.xu = u.xu for each u ∈ L(v) at the beginning of round i.
By the induction hypothesis, these variables do not change throughout the execution from
round i onward. Hence, the value v.xv does not change either. ◁

We are now prepared to prove Lemma 4.6.

Proof of Lemma 4.6. From Claims 4.9 and 4.10, we can deduce that Algorithm 2 converges
to a primal solution x = ⟨xv | v ∈ V ⟩ ∈ {0, 1}n derived from the variables v.xv and a dual
solution y = ⟨y(u,v) | (u, v) ∈ E⟩ ∈ Rm

≥0 derived from the variables v.yu,v after at most 2∆+2
rounds. Let λ(v) = max{0, w(v) −

∑
u∈S(v) yu,v} for each node v ∈ V . Notice that y is

constructed such that yu,v = λ(v) for each u ∈ L(v).
Recall the dual constraint

∑
u∈N(v) yu,v ≤ w(v) associated with each node v. Notice

that y is constructed such that if
∑

u∈S(v) yu,v < w(v) for node v ∈ V , then yu,v = λ(v) =
w(v) −

∑
u′∈S(v) yu′,v for each u ∈ L(v). Thus, the dual constraint is violated only for nodes

v ∈ V such that L(v) = ∅ and
∑

u∈S(v) yu,v < w(v). For the sake of the analysis, we fix the
dual feasibility by defining the dual solution y′ as follows. If a node v satisfies L(v) = ∅
and

∑
u∈S(v) yu,v < w(v), then we set the dual value y′

z,v = yz,v + λ(v) for a single neighbor
z ∈ S(v), and set y′

u,v = yu,v for every other neighbor u ∈ S(v) − {z}. Otherwise (if L(v) ̸= ∅
or

∑
u∈S(v) yu,v ≥ w(v)), we set the dual value y′

u,v = yu,v for every neighbor u ∈ S(v). It is
not hard to see that y′ is a feasible dual solution. In addition, notice that x is a feasible
primal solution since for each node v ∈ V , if xv = 1, then xu = 0 for each neighbor u ∈ L(v).

Let X = {v | xv = 1} be the independent set obtained by Algorithm 2 and consider a
node v ∈ X. Let µ(v) = {(u, u′) ∈ E | u ∈ S(v) ∧ u′ ∈ L(u) ∧ xu′ = 0} and notice that
ye = y′

e for every edge e ∈ µv. We argue that ∆ · w(v) ≥
∑

u∈N(v) y′
u,v +

∑
e∈µ(v) y′

e for each
v ∈ X. To establish that, first suppose that L(v) ̸= ∅. It holds that∑

u∈N(v)

y′
u,v +

∑
e∈µ(v)

y′
e =

∑
u∈N(v)

yu,v +
∑

e∈µ(v)

ye =
∑

u∈L(v)

yu,v +
∑

u∈S(v)

yu,v +
∑

e∈µ(v)

ye

≤
∑

u∈L(v)

yu,v +
∑

u∈S(v)

∑
u′∈L(u)

yu,u′

= |L(v)| · λ(v) +
∑

u∈S(v)

|L(u)| · λ(u)
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≤ ∆

λ(v) +
∑

u∈S(v)

λ(u)


= ∆

w(v) −
∑

u∈S(v)

yu,v +
∑

u∈S(v)

λ(u)


= ∆

w(v) −
∑

u∈S(v)

λ(u) +
∑

u∈S(v)

λ(u)

 = ∆ · w(v) .

Now, suppose that L(v) = ∅. Notice that since v ∈ X, it must hold that
∑

u∈S(v) yu,v < w(v).
By the definition of y′, it holds that y′

z,v = yz,v + λ(v) for a single neighbor z ∈ S(v) = N(v),
and y′

u,v = yu,v for every other neighbor u ∈ S(v) − {z}. It follows that∑
u∈N(v)

y′
u,v +

∑
e∈µ(v)

y′
e = λ(v) +

∑
u∈S(v)

yu,v +
∑

e∈µ(v)

ye = w(v) +
∑

e∈µ(v)

ye

≤ w(v) +
∑

u∈S(v)

∑
u′∈L(u)−{v}

yu,u′

≤ w(v) + (∆ − 1)
∑

u∈S(v)

λ(u)

< ∆ · w(v) ,

where the last transition holds because xv = 1 implies that
∑

u∈S(v) λ(u) < w(v).
Observe that for every node v /∈ X, if L(v) ∩ X = ∅, then it holds that

∑
u∈S(v) y′

u,v =∑
u∈S(v) yu,v ≥ w(v) and thus y′

u′,v = yu′,v = 0 for each u′ ∈ L(v). Therefore, it follows that

∑
e∈E

y′
e =

∑
v∈V

∑
u∈L(v)

y′
u,v =

∑
v∈X

 ∑
u∈N(v)

y′
u,v +

∑
e∈µ(v)

y′
e

 ≤
∑
v∈X

∆ · w(v) = ∆ · w(X)

From the weak duality theorem, we conclude that X is a ∆-approximation for MWIS. ◀

Algorithm 2 A self-stabilizing ∆-approximation algorithm for MWIS given a proper (∆ + 1)-
coloring c : V → [∆ + 1]. Code for node v ∈ V in a single round.

1: S(v) = {u ∈ N(v) | c(u) < c(v)} ▷ v’s neighbors with a smaller color
2: L(v) = N(v) − S(v) ▷ v’s neighbors with a larger color
3: if

∑
u∈S(v) v.yu,v ≥ w(v) then

4: v.xv = 0
5: v.yu,v = 0, ∀u ∈ L(v)
6: else
7: v.yu,v = w(v) −

∑
u′∈S(v) v.yu′,v, ∀u ∈ L(v) ▷ w(v) >

∑
u′∈S(v) v.yu′,v

8: if ∃u ∈ L(v) : v.xu == 1 then
9: v.xv = 0

10: else v.xv = 1
11: send v.yu,v to each neighbor u ∈ L(v)
12: send v.xv to each neighbor u ∈ S(v)
13: for each u.yu,v received from neighbor u ∈ S(v) do v.yu,v = u.yu,v

14: for each u.xu received from neighbor u ∈ L(v) do v.xu = u.xu
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4.3 Minimum Weight Dominating Set in Bounded Arboricity Graphs
Consider a graph G = (V, E) associated with a node-weight function w : V → R≥0. Let us
denote N+(v) = N(v) ∪ {v} for each node v. We naturally extend this notation to node
sets and denote N+(X) =

⋃
v∈X N+(v) for a node set X ⊆ V . A set X ⊆ V of nodes is

said to be a dominating set if N+(X) = V . A minimum weight dominating set (MWDS) is
a dominating set X that minimizes w(X). In a natural LP formulation for MWDS, each
node v ∈ V is associated with a variable xv and a covering constraint

∑
u∈N+(v) xu ≥ 1.

In the dual LP, each node v ∈ V is associated with a variable yv and a packing constraint∑
u∈N+(v) yu ≤ w(v).
In this section, we focus on graphs with bounded arboricity. The arboricity of graph G

is the minimal number ρ for which there exists a partition E = E1∪̇, . . . , ∪̇Eρ such that Ei

induces a forest for each i ∈ [ρ]. We obtain the following results for MWDS on graphs with
arboricity at most ρ.

▶ Theorem 4.11. There exists a self-stabilizing algorithm that converges to a ((2ρ+1)(1+ε))-
approximation for MWDS in graphs with arboricity at most ρ in O(log ∆/ε) rounds.

Our algorithm is based on the primal-dual algorithm by Dory et al. [11]. We assume w.l.o.g.
that every node v ∈ V knows the value wmin(u) = minu′∈N+(u){w(u′)} of each of its neighbors
u ∈ N(v). We further assume that for each u ∈ V , the neighbor arg minu′∈N+(u){w(u′)}
is unique (breaking ties, e.g., by port numbers) and that each node v knows if it is the
node that realizes arg minu′∈N+(u){w(u′)} for each neighbor u ∈ N(v). Finally, we assume
that the arboricity ρ and the maximum degree ∆ are encoded in the label of each node
v ∈ V . As remarked in [11], the latter assumption can be lifted by replacing ∆ with
maxu∈N+(v){deg(u)} without affecting the correctness and (asymptotic) runtime of the
algorithm. Refer to Pseudocode 3 for a full description of the algorithm.

Algorithm 3 A self-stabilizing ((2ρ + 1)(1 + ε))-approximation algorithm for MWDS in graphs
with arboricity at most ρ. Code for node v ∈ V in a single round.

1: λ = 1/((2ρ + 1)(1 + ε)); reset = FALSE

2: MWDS_update_variables ▷ may change the value of reset

3: MWDS_update_status
4: if reset == TRUE then
5: send ⟨“RESET”, status(v), v.xv, v.yv⟩ to each neighbor u ∈ N(v)
6: else
7: if status(v) == active then
8: v.yv = (1 + ε)v.yv

9: else if status(v) == waiting then
10: if ∀u ∈ N(v) : v.status(u) ̸= active then
11: v.yv = (1 + ε)v.yv

12: status(v) = done_waiting

13: send ⟨status(v), v.xv, v.yv⟩ to each u ∈ N(v)
14: MWDS_receive_messages

Overview of the algorithm. Let us first briefly describe the high-level idea of the (fault-free)
algorithm presented in [11]. Throughout the execution, the algorithm maintains a feasible
dual solution y and uses it to construct a dominating set X such that at termination, w(X)
is within a multiplicative ((2ρ + 1)(1 + ε)) factor from the objective value of y. This is done
in two stages. In the first stage, the algorithm constructs a set X1 which consists of nodes
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Algorithm 4 Procedure MWDS_update_variables. Node v updates its variables.

1: v.yv = max{v.yv, wmin(v)/(∆ + 1)} ▷ setting a lower bound for dual variables
2: if ∃u ∈ N+(v) : v.status(u) == done_waiting then
3: if v = arg minz∈N+(u){w(z)} then ▷ breaking ties by port numbers
4: v.xv = 1
5: else
6: if

∑
u∈N+(v) v.yu > w(v) then ▷ checking dual feasibility

7: v.yu = wmin(u)/(∆ + 1), v.xu = 0 for all u ∈ N+(v)
8: reset = TRUE

9: if v.yv ≤ λ · wmin(v) then
10: if

∑
u∈N+(v) v.yu < w(v)/(1 + ε) then ▷ maintaining primal comp. slackness

11: v.xv = 0
12: else
13: v.xv = 1
14: else if ∃u ∈ N(v) : v.status(u) == active then
15: v.yv = λ · wmin(v)

Algorithm 5 Procedure MWDS_update_status. Node v updates its status.

1: if v.yv ≤ wmin(v) · λ/(1 + ε) then
2: if

∑
u∈N+(v) v.xu == 0 then ▷ primal constraint is not satisfied

3: status(v) = active

4: else
5: status(v) = over

6: else if v.yv ≤ wmin(v) · λ then
7: if

∑
u∈N+(v) v.xu == 0 then

8: status(v) = waiting

9: else
10: status(v) = over

11: else status(v) = done_waiting

Algorithm 6 Procedure MWDS_receive_messages. Node v receives messages from its neighbors.

1: for each message µu received from neighbor u ∈ N(v) do
2: if µu == ⟨“RESET”, status(u), u.xu, u.yu⟩ then
3: v.yv = wmin(v)/(∆ + 1); v.yu = u.yu; v.xu = u.xu; v.status(u) = status(u)
4: else ▷ µu = ⟨status(u), u.xu, u.yu, u.yv⟩
5: v.yu = u.yu; v.xu = u.xu; v.status(u) = status(u)
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v ∈ V that satisfy the following two conditions by the end of the stage: (1) yu ≤ λwmin(u)
for every u ∈ N+(v), where λ = 1/((2ρ + 1)(1 + ε)); and (2)

∑
u∈N+(v) yu ≥ w(v)/(1 + ε).

In the second stage, a set X2 is constructed greedily by having each node u ∈ V − N+(X1)
which is not dominated by X1, add to X2 a node v ∈ N+(u) that satisfies w(v) = wmin(u).
As shown in [11], the set X = X1 ∪ X2 is a ((2ρ + 1)(1 + ε))-approximation of MWDS.

In Algorithm 3, we modify the algorithm of [11] to produce a self-stabilizing algorithm.
The challenge of such algorithm is to recover from an arbitrary primal and dual assignment.
To that end, each node v ∈ V maintains a primal variable v.xv ∈ {0, 1}, a dual variable
v.yv ∈ R≥0, and the primal and dual variables v.xu and v.yu of each neighbor u ∈ N(v). In
addition, v maintains a variable status(v) ∈ {active, over, waiting, done_waiting} and the
status v.status(u) of each neighbor u ∈ N(v).

The role of status(v) is to reflect the current stage of node v with respect to the variables
of its neighbors. For each node v ∈ V , status(v) = active reflects that yv ≤ λwmin(v)/(1+ε)
and v is currently not dominated; status(v) = waiting reflects that λwmin(v)/(1+ε) < yv ≤
λwmin(v) and v is currently not dominated; status(v) = over reflects that yv ≤ λwmin(v)
and v is dominated; and status(v) = done_waiting reflects that yv > λwmin(v).

At the beginning of each round, each node updates its variables using Procedure 4. This
procedure makes sure that dual feasibility is maintained, and also updates the primal variables
to achieve similar guarantees to those of [11]. In addition, to enable quick convergence
of Algorithm 3, the procedure bounds the dual variables from below by setting v.yv =
max{v.yv, w_min(v)/(∆ + 1)}.

Following the update of the variables, each node updates its status according to Proced-
ure 5. Then, if the dual constraint of node v was violated in Procedure 4, then v resets the
dual variables of its neighbors and informs them by sending a “RESET” message. Nodes
that receive a “RESET” message set v.yv to wmin(v)/(∆ + 1).

If the dual constraint was not violated, v increases its dual variable by setting v.yv =
(1 + ε)v.yv if one of the following cases holds: (1) status(v) = active; or (2) status(v) =
waiting and v.status(u) ̸= active for each u ∈ N(v). In the latter case, v also sets
status(v) = done_waiting. Finally, v informs its neighbors about its status and current
values of variables, and uses the messages received to update the values of variables v.xu,
v.yu, and v.status(u) of each neighbor u ∈ N(v) according to Procedure 6.

Analysis. We now turn to analyze Algorithm 3. To that end, let us first state the following
straightforward observation that holds trivially by the construction of Algorithm 3.

▶ Observation 4.12. At the end of each round of Algorithm 3, it holds that v.yv = u.yv,
v.xv = u.xv, and status(v) = u.status(v) for every (u, v) ∈ E.

We now establish an important property regarding the dual solution maintained by
Algorithm 3.

▷ Claim 4.13. Let i ≥ 2. At the end of the i-th round of Algorithm 3, it holds that∑
u∈N+(v) v.yu ≤ w(v) for every node v ∈ V .

Proof. Fix some node v ∈ V . First, suppose that
∑

u∈N+(v) v.yu ≤ w(v) at the beginning
of round i. By Observation 4.12, at the beginning of round i it holds that v.yu = u.yu

for every u ∈ N(v). Notice that v updates the dual variable v.yu at the end of the round
according to the message from neighbor u. Each update increases the dual variable v.yu by
a multiplicative factor of at most (1 + ε). We argue that this update does not violate the
inequality in the statement. Notice that if v.xv = 0, then by the construction of Procedure 4
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it follows that
∑

u∈N+(v) v.yu < w(v)/(1 + ε) at the beginning of the round. Therefore, an
increase of this sum by a multiplicative (1 + ε) does not exceed w(v). If v.xv = 1, then each
neighbor u ∈ N(v) sets its status to over and does not increase u.yu.

Now, suppose that
∑

u∈N+(v) v.yu > w(v) at the beginning of round i. This means that
v sets v.yu = wmin(u)/(∆ + 1) for each u ∈ N+(v). Therefore, at the end of round i it holds
that ∑

u∈N+(v)

v.yu =
∑

u∈N+(v)

wmin(u)
∆ + 1 ≤ (deg(v) + 1) · w(v)

deg(v) + 1 = w(v) ,

thus establishing the assertion. ◁

From Claim 4.13, we deduce the following corollary.

▶ Corollary 4.14. Consider a node v ∈ V . During the execution of Algorithm 3, the value
v.yu does not decrease from round 3 onward for each u ∈ N+(v).

We can now show the following claim.

▷ Claim 4.15. Let i ≥ 3 and consider a node v ∈ V . If v.xv = 1 at the end of round i, then
v.xv = 1 at each round i′ ≥ i.

Proof. Observe that v.xv = 1 at the end of round i in one of the following cases: (1) there
exists a node u ∈ N+(v) such that status(u) = done_waiting and wmin(u) = w(v); or (2)
node v satisfies the inequality

∑
u∈N+(v) v.yu ≥ w(v)/(1 + ε) at the beginning of the i-th

round. In case (1), we note that by Corollary 4.14 node u will not decrease its dual variable
throughout the execution of Algorithm 3. This means that status(u) = done_waiting

throughout the execution and thus it follows that v.xv = 1. For case (2), by Corollary 4.14
the value of v.yu does not decrease for all u ∈ N+(v) throughout the execution of Algorithm 3.
Therefore, the inequality

∑
u∈N+(v) v.yu ≥ w(v)/(1 + ε) remains satisfied. ◁

We conclude the analysis by proving Theorem 4.11.

Proof of Theorem 4.11. First, observe that by Claim 4.15 and the construction of Pro-
cedure 4, if v.xv = 1 for node v ∈ V at some round i ≥ 3, then v.xv = 1 from round i

onward. To see that Algorithm 3 converges to a dominating set, observe that for each node
v ∈ V , if status(v) ∈ {over, done_waiting} at some round i ≥ 1, then it follows that there
exists a node u ∈ N+(v) such that u.xu = v.xu = 1 by the end of round i. Notice that
v.yv ≥ wmin(u)/(∆ + 1) for each v ∈ V throughout the execution. It now follows from
Claim 4.14 and the design of Algorithm 3 that after O(log ∆/ε) rounds, each node v ∈ V

satisfies status(v) ∈ {over, done_waiting}.
We are now ready to establish the correctness of Algorithm 3. Observe that if status(v) ∈

{over, done_waiting} for each node v ∈ V , then all the primal and dual variables do not
change. Let x = ⟨xv | v ∈ V ⟩ ∈ {0, 1}n and y = ⟨yv | v ∈ V ⟩ ∈ Rn

≥0 be the primal and
dual solutions derived from the variables v.xv and v.yv after convergence, respectively. Let
X = {v | xv = 1} be the dominating set obtained by Algorithm 3. We divide the set X into
two subsets X1 = {v ∈ X | ∀u ∈ N+(v) : yu ≤ λwmin(u)}, and X2 = X − X1.

By the construction of Procedure 4, it follows that
∑

u∈N+(v) yu ≤ w(v)/(1 + ε) for
each node v ∈ X1. In addition, each node v ∈ X2 satisfies v = arg minz∈N+(u){w(z)}
for some node u ∈ V − N+(X1). As established in [11], these properties imply that
w(X1) ≤ (2ρ + 1)(1 + ε)

∑
v∈N+(X1) yv and that w(X2) ≤ (2ρ + 1)(1 + ε)

∑
v∈V −N+(X1) yv,

thus, w(X) ≤ (2ρ + 1)(1 + ε)
∑

v∈V yv.It follows from Claim 4.13 that y is feasible. The set
X is a (2ρ + 1)(1 + ε)-approximation for MWDS as a consequence of weak duality. ◀
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5 Discussion

In this paper, we presented a new approach for designing self-stabilizing approximation
algorithms that is based on the properties of primal and dual LPs. Our approach leaves
various open questions for future research. A particularly interesting subject in this context
is LP-based algorithms that rely on rounding a fractional solution. Due to their usefulness
in the fault-free setting (see, e.g., [13, 25]), we advocate for the study of rounding-based
approximation algorithms in the self-stabilizing setting.
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