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Abstract
We consider the fundamental problem of periodic clock synchronization in a synchronous multi-agent
system. Each agent holds a clock with an arbitrary initial value, and clocks must eventually be
congruent, modulo some positive integer P . Previous algorithms worked in static networks with
drastic connectivity properties and assumed that global informations are available at each node. In
this paper, we propose a finite-state algorithm for time-varying topologies that does not require any
global knowledge on the network. The only assumption is the existence of some integer D such that
any two nodes can communicate in each sequence of D consecutive rounds, which extends the notion
of strong connectivity in static network to dynamic communication patterns. The smallest such D

is called the dynamic diameter of the network. If an upper bound on the diameter is provided,
then our algorithm achieves synchronization within 3D rounds, whatever the value of the upper
bound. Otherwise, using an adaptive mechanism, synchronization is achieved with little performance
overhead. Our algorithm is parameterized by a function g, which can be tuned to favor either time
or space complexity. Then, we explore a further relaxation of the connectivity requirement: our
algorithm still works if there exists a positive integer R such that the network is rooted over each
sequence of R consecutive rounds, and if eventually the set of roots is stable. In particular, it works
in any rooted static network.
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1 Introduction

There is a considerable interest in distributed systems consisting of multiple, potentially
mobile, agents. This is mainly motivated by the emergence of large scale networks, character-
ized by the lack of centralized control, the access to limited information and a time-varying
connectivity. Control and optimization algorithms deployed in such networks should be
completely distributed, relying only on local observations and informations, and robust
against unexpected changes in topology.

A canonical problem in distributed control is the mod P -synchronization problem: In a
system where each agent is equipped with a local discrete clock, the objective is that all
clocks are eventually congruent modulo some integer P , despite arbitrary initializations. This
synchronization problem arises in a number of applications, both in engineering and natural
systems. It is a basic block in many engineering systems, e.g., in the universal self-stabilizing
algorithm developed by Boldi and Vigna [8], or for deploying distributed algorithms structured
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into synchronized phases (e.g., the Two-Phase and Three-Phase Commit algorithms [6], or
many consensus algorithms [5, 15, 22, 11]). Periodic clock synchronization also corresponds
to an ubiquitous phenomenon in the natural world and finds numerous applications in physics
and biology, e.g., the Kuramoto model for the synchronization of coupled oscillators [23],
synchronous flashing fireflies, collective synchronization of pancreatic beta cells [20].

Our goal is the design of distributed algorithms achieving mod P -synchronization in
a networked system of n agents that operate in synchronous rounds and communicate by
broadcast. The network is supposed to be uniform and anonymous, i.e., agents are identical
and have no identifiers. We consider the self-stabilization model where the initial state of
each agent is arbitrary. In particular, agents do not have a consistent numbering of the
rounds. Moreover, agents may use only local informations.

The communication pattern at each round is modeled by a directed graph that may
change continually from one round to the next. In other words, we allow for time-varying
communication graphs, which is important if we want to take into account link failure
and link creation, reconfigurable networks, or for dealing with probabilistic communication
models like the rumor spreading models. We impose weak assumptions on the communication
topology; in particular, we allow for non-bidirectional links and do not assume full connectivity.
Even the assumption of strong connectivity may be too restrictive in various settings: for
instance, asynchrony and benign failures in a fully connected network may be handled in the
model of this paper (i.e., synchronous and non-faulty networks) by dynamic graphs that are
permanently rooted, but not strongly connected [11].

Contribution. Our contribution in this paper is a finite state algorithm, called SAP (for
self-adaptive period), that synchronizes periodic clocks in a large class of dynamic networks.
As opposed to most of previous solutions, our algorithm does not assume any global knowledge
on the network, and tolerates time-varying topologies.

First, we show that the SAP algorithm solves the mod P -synchronization problem in
any dynamic network with a finite dynamic diameter, i.e., from any time onward and for
every pair of agents i and j, there is a temporal path of bounded length connecting i to j.1
If a bound on the diameter is given, its stabilization time is bounded above by three times
the diameter, whatever the value of the bound. However, the SAP algorithm fundamentally
works when no bound is available, with a limited increase of stabilization time.

Interestingly, the SAP algorithm unifies several seemingly different algorithms for the
synchronization of periodic clocks in static networks, including the algorithms in [3, 19, 9]
and the one deployed in the finite-state universal self-stabilizing protocol in [8], with useful
insights for improving their solvability powers. In particular, we show that the pioneer
algorithm proposed by Arora et al. [3] works for a period P ⩾ 6n while the authors proved
its correctness only when P ⩾ n2.

Then we study how to relax the assumption of a finite diameter and introduce the class
of strongly centered networks: Roughly speaking, a strongly centered network corresponds
to a dynamic graph containing at least one central node, that is, a node that can reach any
nodes through a temporal path of bounded length. Moreover, in such a network, non-central
nodes are not allowed to infinitely often communicate with central nodes. This class strictly
contains all the dynamic networks with a finite dynamic diameter and all the static rooted
networks. Thus the property of a strongly centered network allows for non-strong connectivity
while authorizing dynamic links. We prove that the SAP algorithm still works in this class

1 Observe that the diameter of a static strongly connected network is less than the number of agents,
while it may be arbitrarily large for a dynamic network. This is why the assumption of a bound on the
diameter available at each agent may be quite problematic in the dynamic setting.
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of dynamic networks. Once again, no global knowledge is assumed. In particular, neither the
bound on the length of the paths (for the central nodes to communicate with all nodes) nor
the set of central nodes are supposed to be known. Finally, we provide upper bounds on the
stabiliization time and the space complexity of each execution of the SAP algorithm.

Related work. Self-stabilizing clocks have been extensively studied in different commu-
nication models, under different assumptions, and with various problem specifications. In
particular, clocks may be unbounded, in which case they are required to be eventually equal,
instead of only congruent. The synchronization problem of unbounded clocks admits simple
solutions in strongly connected networks, namely the Min and Max algorithms [16, 18].

The point of periodic clocks is the use finite memory, as opposed to unbounded clocks which
inherently require infinite memory. This is why the use of a synchronization algorithm for
unbounded clocks with a modulo operation at each round is not appropriate for synchronizing
periodic clocks. In addition to strong connectivity and static networks, the pioneer papers
on periodic clock synchronization [3, 19, 9, 1] all assume that a bound on the diameter is
available. To the best of our knowledge, only the synchronization algorithm in [8] for a static
communication graph dispenses with the latter assumption.

More recently, periodic clock synchronization has been studied in the Beeping model [12] in
which agents have severely limited communication capabilities: given a connected bidirectional
communication graph, in each round, each agent can either send a “beep” to all its neighbors
or stay silent. A self-stabilizing algorithm has been proposed by Feldmann et al. [17], which
is optimal both in time and space, but which, unfortunately, requires that a bound on the
network size is available for each agent.2

There are also numerous results for mod P -synchronization with faulty agents. The fault-
tolerant solutions that have been proposed in various failure models, including the Byzantine
failure model, using algorithmic schemes initially developed for consensus (e.g., see [13, 14]).
They typically require a bidirectional connected (most of the time fully connected) network.

Clock synchronization has also been studied in the model of population protocols [2],
consisting of a set of agents, interacting in randomly chosen pairs. In this model, the
underlying network is assumed to be fully connected, and the pairwise interactions are
modeled by bidirectional links. Moreover, only stabilization with probability one or with
high probability is required. The same weakening of problem specification is considered
for another popular probabilistic communication model, namely the PULL model [21], in
which, at each round each agent interacts with one random incoming neighbor in a fixed
directed graph G. Unfortunately, in addition to a probabilistic weakening of the problem,
the self-stabilizing clock synchronization algorithms developed in this model [7, 4] highly rely
on the assumption that G is the fully connected graph.

2 Preliminaries

2.1 The computing model
We consider a networked system with a fixed and finite set V of agents. We assume a
round-based computational model in the spirit of the Heard-Of model [11]. Point-to-point
communications are organized into synchronized rounds: each node sends messages to all

2 In [17], Feldmann et al. also proposed an algorithm that does not use any bound on the network size,
but that only tolerates asynchronous starts.
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nodes and receives messages sent by some of the nodes. Rounds are communication closed in
the sense that no node receives messages in round t that are sent in a round different from t.
Communication at each round t is thus modeled by a directed graph (digraph) G(t) = (V, Et):
(i, j) ∈ Et iff communication from i to j is enabled at round t. There is a self-loop at each
node i in all the digraphs G(t) as i communicates with itself instantaneously. The sequence
of digraphs G = (G(t))t⩾1 is called a dynamic graph.

An algorithm A is given by a set Q of states, a set of messages M, a sending function
σ : Q → M, and a transition function δ : Q ×M⊕ → Q, where M⊕ is the set of finite
multisets over M.

We consider the self-stabilization model where all the nodes start to run the algorithm
at round one but their initial states are arbitrary in the set Q. An execution of A with
the dynamic graph G proceeds as follows: In round t (t = 1, 2 . . . ), every node applies the
sending function σ to its current state to generate the message to be broadcasted, then it
receives the messages sent by its incoming neighbors in G(t), and finally applies the transition
function δ to its current state and the list of messages it has just received to go to a next
state. Given an execution of A, the value of any variable xi at the end of round t is denoted
by xi(t), and xi(0) is the initial value of xi.

2.2 Dynamic graphs
The product of two digraphs G1 = (V, E1) and G2 = (V, E2), denoted G1 ◦ G2, is the
digraph with the set of nodes V and with an edge (i, j) if there exists k ∈ V such that
(i, k) ∈ E1 and (k, j) ∈ E2. For any dynamic graph G and any integers t′ ⩾ t ⩾ 1, we let
G(t : t′) def= G(t) ◦ · · · ◦G(t′). By convention, G(t : t) = G(t), and when 0 < t′ < t, G(t : t′)
is the digraph with only a self-loop at each node. The set of i’s in-neighbors in G(t : t′) is
denoted by Ini(t : t′), and simply by Ini(t) when t′ = t.

Every edge (i, j) in G(t : t′) corresponds to a path in the round interval [t, t′]: there exist
t′− t + 2 nodes i = k0, k1, . . . , kt′−t+1 = j such that (kr, kr+1) is an edge of G(t + r) for each
r = 0, . . . , t′ − t.

The eccentricity of a node i in a dynamic graph G, denoted eG(i), is defined as

eG(i) def= inf{d ∈ N+ | ∀t ∈ N+,∀j ∈ V : (i, j) is an edge in G(t : t + d− 1)}.

The dynamic diameter of G is then defined as:

diam(G) def= sup
i∈V

eG(i).

The notion of dynamic diameter generalizes the classical one of diameter of a digraph in the
sense that diam(G) = diam(G) if for each positive integer t, G(t) = G. As no confusion can
arise, diam(G) will simply be called the diameter of G.

3 The SAPg algorithm

3.1 Informal description and pseudo-code
Let A be an algorithm where each node i maintains an integer variable Ci, called the clock
of i. Given a positive integer P , an execution of A is said to achieve mod P -synchronization if

∃t0, c,∀t ⩾ t0,∀i ∈ V, Ci(t) ≡P t + c,
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where Ci(t) denotes the value of Ci at the end of round t in the execution. Even in the case
of a static strongly connected network, the naive algorithm in which, at each round, each
node sends its own Ci and applies the following update rule:

Ci ←
[

min
j∈S

Cj + 1
]

P
,

(where S is the set of i’s incoming neighbors, and [c]
P

denotes the remainder of the Euclidean
division of c by P ) does not work when the network diameter is too large compared to the
period P . Theorem 10 provides an execution in which such a system never achieves mod
P -synchronization. To overcome this problem, we present an algorithm, called SAP (for
self-adaptive period), inspired by the ideas developed by Boldi and Vigna for their finite-state
universal self-stabilizing algorithm [8]. The key point of the SAP algorithm lies in the fact
that for any positive integer M , we have

[ [ c ]
P M

]
P

= [ c ]
P

.

More precisely, each node i uses two integer variables Mi and Ci, and computes the clock
value Ci not modulo P , but rather modulo the time-varying period PMi. The variable Mi

is used as a guess to find a large enough multiple of P so to make the clocks eventually
stabilized. Until synchronization, the variables Mi increase so that there is “enough space”
between the largest clock value and the shortest period PMi in the network. The update
rule for Mi is parametrized by a non-decreasing function g : N → N. The corresponding
algorithm is denoted SAPg, and its code is given below. Line 5 in the pseudo-code implies
that Ci(t) < PMi(t), and for the sake of simplicity, we assume that this inequality also holds
initially, that is, Ci(0) < PMi(0).

Let g : N→ N be a non-decreasing function. If q is a positive integer, gq denotes the q-th
iterate of g, and g0 is the identity function. For every non-negative integer m, we let

g∗(m) def= inf{q ∈ N | gq(0) ⩾ m}.

Algorithm 1 The SAPg algorithm, pseudo-code of node i.
Variables:
1: Ci ∈ N;
2: Mi ∈ N+;

In each round do:
3: send ⟨Ci, Mi⟩ to all
4: receive ⟨Cj1 , Mj1⟩, ⟨Cj2 , Mj2⟩, . . . from the set S of incoming neighbours
5: Ci ←

[
min
j∈S

Cj + 1
]

P Mi

6: Mi ← max
j∈S

Mj

7: if Cj ̸≡P Cj′ for some j, j′ ∈ S then
8: Mi ← g(Mi)
9: end if

3.2 Notation and basic invariants
We fix an execution of SAPg with the dynamic graph G, and for any t ∈ N, we let

M̃(t) def= min
i∈V

Mi(t).

OPODIS 2022
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For each round t in this execution, let i
+

t
denote any one of i’s incoming neighbours in G(t)

that satisfies

Ci+
t

(t− 1) = min
j∈ Ini(t)

Cj(t− 1).

Given an integer P > 0, the system is said to be synchronized (for mod P -synchronized)
in round t if

∀i, j ∈ V, Ci(t) ≡P Cj(t).

We start with two preliminary lemmas.

▶ Lemma 1.
1. If the system is synchronized in round s, then it is synchronized in any round t ⩾ s.
2. If (i, j) is an edge in G(s : t), then Cj(t) ⩽ Ci(s− 1) + t− s + 1.
3. Each variable Mi is non-decreasing.

The second claim of Lemma 1 simply follows from the fact that Ci(t + 1) ⩽ Cj(t) + 1
for every round t and every pair of nodes i ∈ V and j ∈ Ini(t). The first and third claims
directly follow from the transition function.

▶ Lemma 2. For each round t ⩾ 1 and each i ∈ V , one of the following statements is true:
1. Ci(t) is positive and Ci(t) = 1 + Ci+

t

(t− 1)

2. Ci(t) = 0, Ci(t− 1) = PMi(t− 1)− 1, and i
+

t
= i.

Proof. The lemma just relies on the following series of inequalities:

Ci+
t

(t− 1) ⩽ Ci(t− 1) ⩽ PMi(t− 1)− 1.

The last inequality is clear for t = 1, and for t ⩾ 2, it is a consequence of Ci(t − 1) ⩽
PMi(t− 2)− 1 and of the fact that Mi is non-decreasing. If one of those inequalities is strict,
then assertion 1 in the lemma holds. Otherwise, assertion 2 holds. ◀

Given any node i and two rounds t and t′, we introduce the set

St
i (t′) def= {j ∈ V | Cj(t′) ≡P Ci(t) + t′ − t},

and the integer

M̃ t
i (t′) def= inf

j /∈St
i
(t′)

Mj(t′).

Intuitively, St
i (t′) is the set of nodes whose clocks in round t′ are “in accordance” with i’s

clock at round t. In each round t′, V may be partitioned into subsets of nodes whose clocks
are all congruent mod P , and each St

i (t′) is either empty, or is equal to one part of this
partition. Once the system is synchronized, this partition contains only one part. Clearly, i

belongs to St
i (t), but i may not belong to St

i (t′) when t′ ̸= t.

▶ Lemma 3.
1. If j ∈ St

i (t′ + 1), then j+
t′+1 ∈ St

i (t′).
2. If t ⩾ t′, then St

i (t′) ̸= ∅.
3. M̃ t

i (t′ + 1) ⩾ M̃ t
i (t′).

Proof. The first claim (1) is a direct consequence of the definition of j+
t′+1. Then, using (1),

we demonstrate the second claim by induction on t − t′ ⩾ 0. Finally, the pseudo-code of
SAPg implies Mi(t′ + 1) ⩾ Mi+

t′+1
(t′), and hence, M̃ t

i (t′ + 1) ⩾ M̃ t
i (t′). ◀
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3.3 Correctness proof with a finite diameter
We fix a dynamic graph G whose diameter is finite and an execution of SAPg with G, and
we let diam(G) = D.

▶ Lemma 4. Let ℓ be any round. Let i0 be a node whose clock value is minimum in some
round t, and let δ be any integer that is greater or equal to eG(i0). One of the following
statements is true:
1. there exist a round d ∈ {1, . . . , δ − 1} and a node i /∈ Sℓ

i0
(t + d) such that Ci(t + d) = 0;

2. the system is synchronized in round t + δ.

Proof. Let us assume that the first proposition does not hold. First, we prove by induction
on d ∈ {1, . . . , δ − 1}, that

∀i /∈ Sℓ
i0

(t + d), Ci(t + d) = d + min
j∈ Ini(t+1:t+d)

Cj(t). (1)

The base case d = 1 is an immediate consequence of Lemma 2. For the inductive step, assume
that Eq. (1) holds for some d ∈ {1, . . . , δ − 1}. For every node i /∈ Sℓ

i0
(t + d + 1), we have

Ci(t + d + 1) = 1 + min
j∈ Ini(t+d+1)

Cj(t + d)

= 1 + d + min
j∈ Ini(t+d+1)

(
min

k∈ Inj(t+1:t+d)
Ck(t)

)
= 1 + d + min

k∈ Ini(t+1:t+d+1)
Ck(t).

The first equality is a direct consequence of Lemma 2. The second one is by the inductive
hypothesis applied to i+

t+d+1. Notice that i+
t+d+1 /∈ Sℓ

i0
(t + d) since i /∈ Sℓ

i0
(t + d + 1). The

third one is because G(t + 1 : t + d + 1) = G(t + 1 : t + d) ◦G(t + d + 1). This completes the
proof of Eq. (1) for every integer d ∈ {1, . . . , δ − 1}.

Then for each node i /∈ Sℓ
i0

(t + δ), we get

Ci(t + δ) =
[
1 + min

j∈ Ini(t+δ)
Cj(t + δ − 1)

]
P Mi(t+δ−1)

=
[
δ + min

j∈ Ini(t+δ)

(
min

k∈ Inj(t+1:t+δ−1)
Ck(t)

)]
P Mi(t+δ−1)

=
[
δ + min

k∈ Ini(t+1:t+δ)
Ck(t)

]
P Mi(t+δ−1)

= [δ + Ci0(t)]P Mi(t+δ−1)

The first equality is by line 5. The second equality is due to Eq. (1) at round t + δ − 1
and the fact that if i /∈ Sℓ

i0
(t + δ) implies that i+

t+δ /∈ Sℓ
i0

(t + δ − 1). The fourth one is a
consequence of the definition of i0 and ei0(G) ⩽ δ. It follows that all the clocks Ci(t + δ) are
equal modulo P , i.e., the system is synchronized in round t + δ. ◀

Using the assumption of a finite diameter D, we then derive the following lemma.

▶ Lemma 5. Let t be a round in which Ci(t) + D ⩽ PMi(t) holds for each node i. Then the
system is synchronized in round t + D.

OPODIS 2022
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Proof. Let i be any node, and let d ∈ {1, . . . , D − 1}. We have

Ci(t + d− 1) ⩽ d− 1 + Ci(t)
< D − 1 + Ci(t)
⩽ PMi(t)− 1
⩽ PMi(t + d− 1)− 1.

The first and fourth inequalities are direct consequences of Lemma 1, and the third inequality
is the assumption of the lemma. By Lemma 2, it follows that Ci(t + d) ̸= 0. Since D is
greater of equal to each eG(i), Lemma 4 shows that the system is synchronized in round
t + D. ◀

The next lemma focuses on the self-adaptive period mechanism in the SAPg algorithm.
It intuitively states that, as long as all nodes hear of at least one node whose clock is “in
accordance” with i’s clock at round t, every node j not in accordance with Ci(t) increases its
Mj variable.

▶ Lemma 6. Let t, q and δ be three positive integers, and let i ∈ V . If it holds that

∀j ∈ V,∀ℓ ⩽ (q − 1)δ, Inj(ℓ + 1 : ℓ + δ) ∩ St
i (ℓ) ̸= ∅,

then M̃ t
i (qδ) ⩾ gq(0).

Proof. We proceed by induction on q. The base case is obvious since each Mj(0) is non-
negative. For the inductive step, assume that the lemma holds in round qδ and that some
node j does not belong to St

i ((q + 1)δ). By assumption, the node j has an in-neighbor
k ∈ St

i (qδ) in the digraph G(qδ + 1 : (q + 1)δ), i.e., there exist a node k ∈ St
i (qδ) and a path

k = j0, j1, · · · , jδ = j in the round interval [qδ + 1, (q + 1)δ]. We have

k ∈ St
i (qδ) and j /∈ St

i ((q + 1)δ).

Let d ∈ {1, . . . , δ} be the first index such that

jd−1 ∈ St
i (qδ + d− 1) and jd /∈ St

i (qδ + d).

By Lemma 3, (jd)
+

qδ+d
/∈ St

i (qδ + d− 1) since jd /∈ St
i (qδ + d). Then jd−1 and (jd)

+

qδ+d
are

two in-neighbors of jd whose clocks are not congruent modulo P in round qδ + d − 1. It
follows that:

Mj((q + 1)δ) ⩾ Mjd
(qδ + d) ⩾ g(M(jd)+

qδ+d

(qδ + d− 1)) ⩾ g(M̃ t
i (qδ + d− 1)) ⩾ gq+1(0).

The first two inequalities are due to the update rules for Mj and Mjd
. The third one is by

definition of M̃ t
i and the fact that g is non-decreasing. The last one is a consequence of the

inductive assumption and the third claim of Lemma 3. ◀

Using the assumption of a finite diameter D, we then derive the following lemma.

▶ Lemma 7. For all non-negative integer q ∈ N, one of the following statements is true:
1. the system is synchronized in round qD;
2. M̃(qD) ⩾ gq(0).
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Proof. Assume that two nodes i0 and i1 hold non-congruent clocks in round qD. For each
positive integer ℓ ⩽ qD, the second claim of Lemma 3 gives that SqD

i0
(ℓ) and SqD

i1
(ℓ) are both

non-empty. Since D is the diameter of G, for each node j ∈ V , we have

Inj(ℓ + 1 : ℓ + D) ∩ SqD
i0

(ℓ) ̸= ∅ and Inj(ℓ + 1 : ℓ + D) ∩ SqD
i1

(ℓ) ̸= ∅.

By Lemma 6, this implies

M̃qD
i0

(qD) ⩾ gq(0) and M̃qD
i1

(qD) ⩾ gq(0),

and hence, M̃(qD) ⩾ gq(0). ◀

▶ Theorem 8. In any execution with a dynamic graph whose diameter D is finite, the SAPg

algorithm achieves mod P -synchronization for any non-decreasing function g : N→ N such
that g∗ (⌈ 2D

P

⌉)
is finite. Moreover, the stabilization time is bounded by

(
g∗ (⌈ 2D

P

⌉)
+ 2

)
D.

Proof. We let q0 = g∗ (⌈ 2D
P

⌉)
; hence q0 ⩾ 1. Applying Lemma 4 with δ = D and t =

(q0 − 1)D, we obtain that either the system is synchronized in round q0 D, or there exist
a node j and an integer d ∈ {1, . . . , D − 1} such that Cj(q0 D + d−D) = 0. The digraph
G(q0 D + d −D + 1 : q0 D + d) is complete since D is the diameter of G, and the second
claim in Lemma 1 implies that Ci(q0 D + d) ⩽ D for any node i ∈ V . Hence,

PMi(q0D + d) ⩾ PMi(q0 D)
⩾ PM̃(q0 D)
⩾ Pgq0(0)
⩾ 2D

⩾ Ci(q0 D + d) + D

The third inequality is by Lemma 7 and the fourth one is due to the definition of q0. Finally,
Lemma 5 shows that the system is synchronized in round (q0 + 1)D + d. ◀

3.4 Specializations of the SAPg Algorithm
We consider the following two strategies:
1. The function g is constant and equal to M , in which case g∗(m) = 1 if m ⩽ M , and

g∗(m) =∞ otherwise.
2. The function g∗ takes only finite values. This is equivalent to the fact that g has no fixed

point, or g is strictly inflationary, i.e., m < g(m) for every non-negative integer m.

Theorem 8 leads to two corollaries corresponding to each of the strategies on g. Firstly,
when some bound B on the diameter of the dynamic graph is given, we may choose g to
be the constant function g = λx.M with M =

⌈ 2B
P

⌉
. Then we get g∗ ( 2D

P

)
= 1 and the

pseudo-code SAPg reduces to Algorithm 2.

▶ Corollary 9. The SAPλx.M algorithm solves the mod P -synchronization problem in any
dynamic graph with a diameter less than or equal to PM/2.

Let us observe that Theorem 8 provides an upper bound of three times the diameter D on
SAPλx.M ’s stabilization time, which is independent on the bound B. The limit of PM/2 in
Corollary 9 is tight, as proved by the following result.

OPODIS 2022
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Algorithm 2 The SAPλx.M algorithm.
Variables:
1: Ci ∈ N;

In each round do:
2: send ⟨Ci⟩ to all
3: receive ⟨Cj1⟩, ⟨Cj2⟩, . . . from the set S of in-neighbors
4: Ci ←

[
min
j∈S

Cj + 1
]

P M

▶ Theorem 10 (Theorem 4.13 in [1]). For any even integers P and D satisfying P < 2D,
there exists an execution of SAP λx.1 with a dynamic graph G whose diameter is D in which
mod P -synchronization is never achieved.

Interestingly, the self-stabilizing algorithm in [9], called SS-MinSU and developed for
clock synchronization in a static and strongly connected network when a bound B on the
diameter3 is available, is actually an optimization of the SAPλx.M algorithm.

As for the algorithm proposed in [3] for a static strongly connected digraph G, it
corresponds to the SAP λx.1 algorithm, combined with a round-robin strategy which consists,
for each node, to send one message per round according to this fixed cyclic order amongst the
outgoing neighbors in G. This strategy thus translates the fixed digraph G into a dynamic
graph G. Using Proposition 24 in [10], G’s diameter can be upper bounded by 3|V |. Via
Corollary 9, the interpretation of the algorithm in [3] for a fixed digraph G in terms of a run
of SAP λx.1 over the corresponding dynamic graph G shows that this algorithm works when
P ⩾ 6|V |, and its stabilization time is less than 9|V | (instead of the correctness condition
P ⩾ n2 and the stabilization bound of 3

2 n2, given both in [3]).

When the diameter of the dynamic graph is finite but no bound is available, we may use
the following corollary of Theorem 8:

▶ Corollary 11. For any non-decreasing and inflationary function g, SAPg solves the mod P -
synchronization in any dynamic graph whose diameter is finite.

The idea of a self-adaptive period is borrowed from the seminal paper by Boldi and
Vigna [8], and the SAPg algorithm is a variant of the algorithm they presented for static
strongly connected communication graphs. From the viewpoint of design, the main discrep-
ancy lies in the period lengths equal to PMi in SAPg, instead of PM2

i in Boldi and Vigna’s
algorithm. As a result, the two algorithms differ in space complexity: while the variables Ci

in SAPg are of the order of PM(q0 D), the algorithm in [8] uses variables of the order of
PM(q0 D)2, where q0 = g∗ (⌈ 2D

P

⌉)
; see Section 5.

4 The SAPg algorithm with infinite diameter

The aim of this section is to study how the assumption of a finite diameter can be relaxed so
that the SAPg algorithm still achieves mod P -synchronization.

3 The bound B is denoted α in the SS-MinSU algorithm.
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4.1 Extending the class of static rooted networks
A node i is said to be central in a dynamic graph G if its eccentricity is finite, and the center
of G, denoted by Z(G), is defined as the set of G’s central nodes.

Z(G) def= {i ∈ V | eG(i) <∞}.

If Z(G) is non-empty, then the following integer is well-defined and finite.

R
def= max

i∈Z(G)
eG(i). (2)

The kernel of G, denoted K(G), is defined as

K(G) def= {i ∈ V | ∀t ⩾ 1,∀j ∈ V,∃ t′ ⩾ t : (i, j) is an edge in G(t : t′)} .

Intuitively, a node belongs to K(G) if it can infinitely often reach all nodes in finite time.
Clearly, it holds that Z(G) ⊆ K(G). The inclusion is strict in general, as illustrated in
Section 4.2. Indeed, the construction guarantees that Z(G) = {i} and K(G) = V . A dynamic
graph G is said to be strongly centered if Z(G) ̸= ∅ and K(G) = Z(G).

▶ Lemma 12. The center of any strongly centered dynamic graph G has no incoming edge
from some index t0.

Proof. We denote G(∞) a digraph whose set of nodes is V that contains every edge that
appears infinitely often in G. By definition of K(G), each node i ∈ K(G) can infinitely
often reach each node j ∈ V in the dynamic graph G, whereas there are finitely many paths
between any two nodes. By the pigeonhole principle, each node in K(G) is the root of a
spanning tree in G(∞). Using the definitions of K(G) and G(∞), the converse can also be
proved. Then K(G), and hence Z(G) have no incoming edge in G(∞), since if i is the root
of some spanning tree in G(∞), then all i’s incoming neighbours are also roots of a spanning
tree. Then, from a certain round, Z(G) has no incoming edge in G. ◀

In the self-stabilizing paradigm, any predicate that holds from a certain round can be
assumed to hold from the beginning. We may then assume t0 = 0 in the rest of the paper.

4.2 The SAPg algorithm with a central node
We now study whether SAPg can achieve mod P -synchronization in networks with an infinite
diameter. For that, we first demonstrate that the sole assumption of a non-empty center
is not sufficient for SAPg to achieve mod P -synchronization. We construct an execution
of SAPg with a central node i. The underlying idea of our scenario is that sporadic incoming
neighbors disrupt the value of i’s clock and hence preclude any alignment of the other clocks
on Ci.4

Let G, Hj , Hk, I be the four digraphs defined in Figure 1 with three nodes i, j, k, and
let Φk be the following predicate on the rounds of a SAPg execution:(

Mi = Mj

)
∧

(
Mi ⩾ Mk

)
∧

(
Ci = Cj

)
∧

(
Ci ̸≡P 0

)
∧

(
Ci ⩽ PMi − 2

)
∧

(
Ck = 0

)
.

The predicate Φj is obtained by exchanging the roles of j and k. The proof of the following
lemma, which is omitted, follows from a step by step execution of the SAPg algorithm
between rounds t and t + PM − c.

4 We provide a Python script that may be helpful to verify the correctness of our construction: https:
//gitlab.com/bossuet/sap_execution.git.

OPODIS 2022
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i j

k

(a) digraph G.

i j

k

(b) digraph Hj .

i j

k

(c) digraph Hk.

i j

k

(d) digraph I.

Figure 1 Four digraphs with three nodes.

▶ Lemma 13. Let t be a round of a SAPg execution with a dynamic graph G, and let M and
c denote Mi(t) and C(t), respectively. Let G′ be any dynamic graph that coincides with G up
to t and such that:

G′(t+1) = · · · = G′(t+PM − c−2) = G, G′(t+PM − c−1) = Hk, G′(t+PM − c) = I.

If Φk holds at round t of the SAPg execution with G′, then Φj holds at round t + PM − c of
this execution.

We now fix two positive integers M0 and c0 such that c0 ∈ {1, · · · , PM0−2} and c0 ̸≡P 0,
and we consider the two sequences (Mr)r⩾0 and (cr)r⩾0 defined by:{

Mr+1 = gP Mr−cr−1(Mr)
cr+1 = PMr − cr.

We let M−1 = 0. The dynamic graph G defined as:

G(PMr−1 + 1) = · · · = G(PMr − cr − 2) = G,

G(PMr − cr − 1) = Hk or Hj ,

G(PMr − cr − 1) = I,

is rooted with delay two and i is its unique center. Lemma 13 shows that Φk holds infinitely
often in the SAPg execution with the dynamic graph G and starting with:

Mi(0) = Mj(0) = Mk(0) = M0, Ci(0) = Cj(0) = c0, and Ck(0) = 0.

Hence, the nodes are never synchronized.

4.3 The SAPg algorithm in strongly centered network
That leads us to consider the stronger assumption that the network is strongly centered,
without requiring any global knowledge on Z(G). However, the simple but typical scenario
below shows that the simplified version of SAPg with a fixed period, namely the SAPλx.M

algorithm, does not achieve mod P -synchronization in the execution with the initial values
Ci(0) = Cj(0) = 1 and Ck(0) = 0 and the static graph H defined in Figure 2, even for large
value of M . Indeed, at each round t, it holds that Ci(t) = [t + 1]

P M
, Ck(t) = [t]

P M
, and

Cj(t) =
{

1 if [t]
P M

= 0
[t]

P M
otherwise.
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i j k

Figure 2 The digraph H with three nodes.

The striking point of increasing periods is precisely to overcome the above-mentioned
limitation: we are going to prove that the SAPg algorithm achieves mod P -synchronization
in the case of a strongly centered network under the sole condition of a non-decreasing and
strictly inflationary function g. In other words, while Corollary 9 has no counterpart for
strongly centered dynamic graphs, we will show that Corollary 11 extends to this latter class
of dynamic graphs.

We fix a strongly centered dynamic graph G, and an execution σ of SAPg with G.
Lemma 12 shows that, from a certain round t0, the nodes in Z(G) (denoted Z, for short)
receive no message from the nodes in V \ Z. From round t0, from the viewpoint of every
node in Z, the execution σ is thus indistinguishable from an execution with the set of
nodes equal to Z and a dynamic graph whose diameter is finite. Theorem 8 shows that
mod P -synchronization is eventually achieved in Z. A closer look at the SAPg algorithm
yields the following more precise result: there exist two non-negative integers s and M such
that

∀t ⩾ s, ∀k, ℓ ∈ Z, Ck(t) ≡P Cℓ(t) and Mk(t) = M. (3)

The minimum integer s satisfying Eq. (3) is denoted by t1. This integer corresponds to the
round in which the subsystem composed of central nodes achieves mod P -synchronization.
Recalling that R is the integer defined in Eq.(2), we also define the following two constants.

q1
def= g∗

(⌈
M + R + 1

P

⌉)
and t2

def= max(t1, q1R). (4)

▶ Lemma 14. Let i0 be any central node. For any t > t2, and any nodes j /∈ St2
i0

(t), it holds
that Cj(t) ̸= 0.

Proof. Let j be any node that does not belong to St2
i0

(t). By definition of R, there exists
an edge (i0, j+

t ) in each digraph G(t − R : t − 1). The third claim of Lemma 1 and
Eq. (3) imply that Ci0(t−R− 1) < PM . Then the second claim in Lemma 1 implies that
Cj+

t
(t− 1) < PM + R. Moreover, using the second claim of Lemma 3, each integer t′ ⩽ t2

satisfies

Inj(t′ + 1 : t′ + R) ∩ St2
i0

(t′) ⊇ Z ∩ St2
i0

(t′) ̸= ∅.

Applying the third claim of Lemma 3, Lemma 6 and the definition of q1,

PM̃ t2
i0

(t2) ⩾ PM̃ t2
i0

(q1R) ⩾ Pgq1(0) ⩾ PM + R + 1. (5)

From j /∈ St2
i0

(t), we have j+
t /∈ St2

i0
(t− 1) by Lemma 3, and then

Cj+
t

(t− 1) < PM + R ⩽ PM̃ t2
i0

(t2)− 1 ⩽ PM̃ t2
i0

(t− 1)− 1 ⩽ PMj+
t

(t− 1)− 1.

The second inequality comes from Eq. (5), the third from Lemma 3, and the fourth is a
consequence of j+

t /∈ St2
i0

(t− 1). We obtain Cj(t) ̸= 0 by Lemma 2. ◀

OPODIS 2022
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▶ Theorem 15. In any execution with a strongly centered dynamic graph, the SAPg algorithm
achieves mod P -synchronization for any non-decreasing and inflationary function g. Moreover,
the stabilization time is bounded by t2 +PM +R, where R, M and t2 are defined by Eq.(2), (3)
and (4).

Proof. Each node i ∈ Z satisfies Ci(t) < PM in each round. Then we obtain that some node
i0 ∈ Z reaches Ci0(t3) = 0 in some round t3 ∈ {t2, . . . , t2 + PM − 1} (otherwise, an inductive
reasoning using Lemma 2 would contradict the above-mentioned fact). By Lemma 14, each
node j /∈ St2

i0
(t3 + d) satisfies Cj(t3 + d) ̸= 0 for each d > 0. By Lemma 4, the system is

synchronized in round t3 + R. ◀

5 Complexity analysis

In this section, we provide a complexity analysis of SAPg in the case of a network with finite
diameter, and then in the case of a strongly centered network. We discuss the choice of the g

function and its impact on both stabilization time and space complexity. We first state a
theorem that will be used to bound the memory usage, measured in bits, of each node in any
execution of SAPg that achieves mod P -synchronization.

▶ Theorem 16. In any execution of SAPg that achieves mod P -synchronization, if q is the
round in which the system synchronizes, then the memory usage of each node is less than

log2 P + 2 log2

(
gq

(
max
i∈V

Mi(0)
))

bits.

Proof. We define, for each round t,

M(t) def= max
i∈V

Mi(t).

From the pseudo-code of SAPg, we directly obtain, for each positive integer t,

M(t) ⩽ g
(
M(t− 1)

)
,

and thus,

M(t) ⩽ gt
(
M(0)

)
. (6)

As M(t) is non-decreasing as long as t ⩽ q and is stable afterwards, each Mi belongs to the
interval {1, . . . , M(q)}, and each Ci belongs to {0, . . . , PM(q)−1}. The number of reachable
states by any single node is at most equal to the cardinality of the product of these two sets,
that is, Pgq

(
M(0)

)2. Then at most log2 P + 2 log2
(
gq

(
M(0)

))
bits are needed to store the

state of one node. ◀

5.1 Networks with finite diameter
Theorem 16 implies the following corollary in the case of a network with finite diameter.

▶ Corollary 17. In any execution of SAPg, if the diameter D of the network is finite, then the

memory usage of each node is bounded by log2 P + 2 log2

(
g(g∗(2D/P +1)+2)D

(
max
i∈V

Mi(0)
))

.

Theorem 8 and Corollary 17 demonstrate some trade-off between stabilization time and
space complexity. The faster g grows, the lower the synchronization time is, and the higher
its space complexity is. To further illustrate this trade-off, Table 1 provides the time and
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space complexity in three cases. First, when a bound B on the diameter is given, choosing
g = λx.

⌈ 2B
P

⌉
provides the best stabilization time, namely 3D, which interestingly does not

depend on the bound B. When no bound on the diameter is available, the overhead of
SAPλx.2x over SAPλx.⌈2B/P ⌉ is only logarithmic while SAPλx.x+1 results in an additional
delay of O(D2) rounds for stabilization.

Regarding space complexity, SAPλx.⌈2B/P ⌉ and SAPλx.x+1 uses O(log B) and O(log D)
bits, respectively. This illustrates how SAPg may be more memory-efficient using its adaptive
mechanism and a judicious choice of g. By contrast, the space complexity of SAPλx.2x is
only linear in D, which might be problematic for memory-constrained devices.

Table 1 Complexity bounds of SAPg in networks with finite diameter D and B ⩾ D.

g synchronization time space complexity

g = λx.
⌈ 2B

P

⌉
3D log2 P + 2 log2

⌈ 2B
P

⌉
g = λx.x + 1

( 2D
P + 3

)
D log2 P + 2 log2

(
max
i∈V

Mi(0) + 2D2

P + 3D

)
g = λx.2x

(
log2

(
1 + 2D

P

)
+ 2

)
D log2 P + 2 log2

(
max
i∈V

Mi(0)
)

+ 2D log2
(
1 + 2D

P

)
+ 4D

5.2 Strongly centered networks
In the case of a strongly centered network, Theorem 15 bounds the stabilization time by
t2 + PM + R. Eq. (6) then provides the following upper bound for M , where t1 is the
minimum integer satisfying Eq.(3).

M ⩽ gt1(max
i∈V

Mi(0)),

and thus, we obtain:

t2 ⩽ max
(

t1, Rg∗
(⌈

gt1(max
i∈V

Mi(0)) + R + 1
P

⌉))
⩽ Rg∗

(
gt1(max

i∈V
Mi(0)) + R + 1

P
+ 1

)
.

Theorem 8 also provides the following upper bound for t1:

t1 ⩽

(
g∗

(⌈
2D

P

⌉)
+ 2

)
D,

where D is the diameter of the (dynamic) subgraph of G induced by Z. Theorem 16 then
implies the following corollary in the case of a strongly centered network.

▶ Corollary 18. In any execution of SAPg in which the network is strongly centered, the
memory usage of each node is bounded by

log2 P + 2 log2

(
gRg∗(M ′+ R+1

P +1)+P M ′+R

(
max
i∈V

Mi(0)
))

,

where M ′ = g(g∗(2D/P +1)+2)D(max
i∈V

Mi(0)).
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Table 2 Complexity bounds of SAPg in strongly centered networks. Here, R is the quantity
defined by Eq.(2), and D is the diameter of the dynamic subgraph induced by Z(G).

g synchronization time space complexity

g = λx.x+1
(

t1 + max
i∈V

Mi(0)
)

(P + R)

+R
(

2 + R+1
P

)
where t1 satisfies t1 ⩽

(
2D
P + 3

)
D

log2 P + 2 log2

((
t1 + max

i∈V
Mi(0)

)
(P + R)

+R
(

2 + R+1
P

)
+ max

i∈V
Mi(0)

)
g = λx.2x P

(
max
i∈V

Mi(0)
)

2t1 + R(1 + t1)

+R log2

((
max
i∈V

Mi(0)
)(

1 + R+1
P

))
where t1 ⩽ log2

(
1 + 2D

P

)
D + 2D

log2 P + 2 log2

(
max
i∈V

Mi(0)
)

+ 2P

(
max
i∈V

Mi(0)
)

2t1

+ 2R

(
1 + t1 + log2

((
max
i∈V

Mi(0)
)(

1 + R+1
P

)))

Table 2 provides a bound on synchronization time and space complexity in the cases
g = λx.x + 1 and g = λx.2x. It shows that the trade-off presented in the previous section no
longer applies. In the case g = λx.2x, both time and space complexity contain exponential
terms. A real-world device would quickly run out of memory. The SAPg algorithm remains
practical only if g is a slowly growing function. Comparing with Table 1, we observe that
SAPg achieves better performance in networks with finite diameter than in strongly centered

networks. Choosing g = λx.x + 1, the time complexity is in O

(
R

(
D2 + R + max

i∈V
Mi(0)

))
in the later case, compared to O(D2) in the earlier case. A similar overhead is added to
space complexity. Overall, choosing g = λx.x + 1 seems to provide the best performances, as
it is the “least inflationary” function.

6 Concluding remarks

We presented the SAPg algorithm that solves the mod P -synchronization problem in any
dynamic network that either has a finite diameter or is strongly centered. Both assumptions
correspond to connectivity properties that have to hold in bounded periods of time. These
results highlight the critical importance of timing bounds for the network to be connected
enough and demonstrate how time may act as a healer.

The correctness proofs also provide bounds on stabilization time and space complexity
of the SAPg algorithm. The time bound and the space bound depend respectively on the
functions g∗ and g, leading thus to a time-space trade-off for choosing g: the more inflationary
g is, the lower the time complexity is, and the higher its space complexity is. Moreover, these
results show how the initial knowledge on a bound on the diameter allows for more efficient
solutions in terms of both time and space.

The scenario in Section 4.2 shows that the SAPg algorithm does not work anymore when
relaxing the assumption of a strongly centered network into the one of a non-empty center.
A natural question then arises about the possibility of designing a finite-state self-stabilizing
algorithm that provides nodes with clocks modulo P which eventually synchronize in a
dynamic network with at least one central node.
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