
Efficient Wait-Free Queue Algorithms with
Multiple Enqueuers and Multiple Dequeuers
Colette Johnen !

Univ. Bordeaux, CNRS, Bordeaux INP, LaBRI, UMR 5800, Talence, France

Adnane Khattabi !

Univ. Bordeaux, CNRS, Bordeaux INP, LaBRI, UMR 5800, Talence, France

Alessia Milani !

Aix Marseille Univ, CNRS, LIS, UMR 7020, Marseille, France

Abstract
Despite the widespread usage of FIFO queues in distributed applications, designing efficient wait-free
implementations of queues remains a challenge. The majority of wait-free queue implementations
restrict either the number of dequeuers or the number of enqueuers that can operate on the queue,
even when they use strong synchronization primitives, like the Compare&Swap. If we do not
limit the number of processes that can perform enqueue and dequeue operations, the best-known
upper bound on the worst case step complexity for a wait-free queue is given by Khanchandani and
Wattenhofer [10]. In particular, they present an implementation of a multiple dequeuer multiple
enqueuer wait-free queue whose worst case step complexity is in O(

√
n), where n is the number of

processes. In this work, we investigate whether it is possible to improve this bound. In particular, we
present a wait-free FIFO queue implementation that supports n enqueuers and k dequeuers where
the worst case step complexity of an Enqueue operation is in O(log n) and of a Dequeue operation
is in O(k log n).

Then, we show that if the semantics of the queue can be relaxed, by allowing concurrent Dequeue
operations to retrieve the same element, then we can achieve O(log n) worst-case step complexity
for both the Enqueue and Dequeue operations.

2012 ACM Subject Classification Theory of computation → Distributed computing models; Theory
of computation → Distributed algorithms; Theory of computation → Proof complexity

Keywords and phrases Distributed computing, distributed algorithms, FIFO queue, shared memory,
fault tolerance, concurrent data structures, relaxed specifications, complexity

Digital Object Identifier 10.4230/LIPIcs.OPODIS.2022.4

Funding Adnane Khattabi: Adnane Khattabi is supported by UMI Relax.

1 Introduction

1.1 Context
Shared FIFO queues are an important building block for the design of many concurrent
applications. Many implementations of concurrent FIFO queues have been proposed using
shared objects provided by multiprocessor architectures, e.g. Compare&Swap, registers,
Fetch&Add, and so on. In this paper, we are interested in wait-free implementations of
shared queues where any operation by a correct process is guaranteed to terminate after a
finite number of steps.

The design of efficient wait-free and linearizable concurrent queues is a difficult task
even if the implementation is allowed to rely on strong synchronization primitives like
Compare&Swap. Most implementations limit either the number of enqueuers or the number
of dequeuers. In particular, David [3] presents a wait-free linearizable queue with a single
enqueuer and multiple dequeuers with constant step complexity. Jayanti and Petrovic [9]

© Colette Johnen, Adnane Khattabi, and Alessia Milani;
licensed under Creative Commons License CC-BY 4.0

26th International Conference on Principles of Distributed Systems (OPODIS 2022).
Editors: Eshcar Hillel, Roberto Palmieri, and Etienne Rivière; Article No. 4; pp. 4:1–4:19

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:colette.johnen@u-bordeaux.fr
mailto:adnane.khattabi-riffi@u-bordeaux.fr
mailto:alessia.milani@univ-amu.fr
https://doi.org/10.4230/LIPIcs.OPODIS.2022.4
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


4:2 Queue Algorithms with Multiple Enqueuers and Dequeuers

provide an implementation of a multiple enqueuer, single dequeuer queue with O(log n)
worst-case step complexity, where n is the number of processes. More recently, Khanchandani
and Wattenhofer proposed a multiple enqueuer and multiple dequeuer wait-free queue
implementation where both the enqueue and the dequeue operations have a worst-case step
complexity of O(

√
n). In this paper, we investigate if this complexity represents the cost

necessary in order to not limit the number of processes that can apply enqueue and dequeue
operations on the concurrent queue.

By extension of algorithmic ideas from [9], we first show that a better complexity can be
achieved even with multiple enqueuers and multiple dequeuers. In particular, we present
a wait-free linearizable concurrent queue for n processes from which all n are enqueuers
and k ≤ n are dequeuers. In our implementation, the step complexity of an Enqueue
operation is in O(log n), while the complexity of a Dequeue operation is in O(k log n). Our
implementation has logarithmic complexity as long as k is a constant. Also, it improves on
the implementation by Khanchandani and Wattenhofer solution as long as k ∈ O(

√
n

log n ).
Then, we show that both Enqueue and Dequeue operations can have worst-case step

complexity in O(log n), if we allow concurrent Dequeue operations to return the same element.
This relaxed semantic denoted multiplicity has been formalized and introduced for the FIFO
queue in [1]. Table 1 summarizes the state of the art and compares it to the contributions in
this work.

Table 1 Comparing the contributions to state-of-the-art queue implementations (n is the number
of processes and m is the number of enqueued elements).

Step complexity Space complexity Concurrency limit CAS -
LL/SC

Fetch&Inc -
Swap

Khanchandani and
Wattenhofer [10] O(

√
n) O(nm) of

O(max(log n, log m)) registers None Y Y

David [3] O(1) Unbounded Single enqueuer N Y
Jayanti and
Petrovic [9] O(log n) O(n + m) Single dequeuer Y N

Li [13] O(m) Unbounded 2 dequeuers N Y
Eisenstat [4] O(m) Unbounded 2 enqueuers N Y
Exact queue
(this work)

O(log n) for Enq
O(k log n) for Deq Unbounded k dequeuers Y Y

Relaxed queue
(this work) O(log n) Unbounded None Y Y

1.2 Other Related Work
Several papers propose wait-free linearizable shared queue implementations that only use
registers and Common2 objects (a particular set of base objects with consensus number 2).
All of them limit the concurrency. In particular, there are queues shared by one or two
dequeuers and any number of enqueuers [8, 13] and a queue with a single enqueuer and
any number of dequeuers [3]. In fact, it is a long-standing open problem if it is possible to
implement a wait-free linearizable queue that supports at least three enqueuers and three
dequeuers based only on registers and consensus 2 objects. Among all the aforementioned
queue implementations, only the one by David [3] has sublinear step complexity.

Using Compare&Swap, some practical wait-free queue implementations that support
multiple enqueuers and multiple dequeuers have been proposed [5, 12, 14, 16]. Some of these
implementations are wait-free [5,12,16]; while some are only lock-free [14]. All these solutions
have been evaluated empirically and do not have formal complexity analysis. Nonetheless,
the worst-case step complexity of either the Enqueue or of the Dequeue operation is not
sublinear.



C. Johnen, A. Khattabi, and A. Milani 4:3

More recently, relaxed queues have been proposed to overcome the complexity of im-
plementing queues. For instance, in [6], Henzinger et al. formalize the definition of the
c-out-of-order queue where an element at a distance up to c− 1 from the element in the
head of the queue, is allowed to be dequeued. A linearizable and lock-free c-out-of-order
queue with no concurrency constraints is implemented in [11] using the CAS primitive.
In [1], a lock-free implementation of a queue with multiplicity where only concurrent
Dequeue operations can return the same element, is given under the coherence condition
of set-linearizability. This implementation has no concurrency constraint and uses only
Read/Write primitives. In both these implementations, the Dequeue operation’s worst-case
step complexity is unbounded since it depends on the number of Enqueue operations ex-
ecuted. Regarding practical applications, [2] discusses possible applications of the multiplicity
relaxation such as relaxed work-stealing for parallel SAT solvers.

Simply by considering an execution where a process only executes Enqueue operations,
we can show a lower bound on space complexity in the number of elements present in the
queue. However, besides this space requirement, there has been some work in optimizing the
space complexity of queue implementations using memory reclamation (e.g. [3, 16]). We do
not consider the issue of optimizing the space complexity and leave the question for future
work.

Paper organization. In Section 2 we present the model. In Section 3, we describe our
linearizable wait-free multiple enqueuer multiple dequeuer queue implementation together
with its correctness proof. Finally, we present the relaxed queue implementation with
multiplicity in Section 4.

2 Preliminaries

We consider a standard asynchronous shared memory model, consisting of a set P of n

crash-prone processes with unique ids, where all n processes can be enqueuers and k ≤ n can
be dequeuers. We also refer to this set of processes as a set of n enqueuers and k dequeuers.

Processes communicate by applying primitive operations to shared base objects. In
particular, we consider registers, Fetch&Inc, Compare&Swap, and Max registers. A register
provides atomic Read/Write primitives. The Fetch&Inc object provides a Fetch&Inc

primitive that increments the value of the object by 1 and returns the previous value. The
Compare&Swap object supports the Read and the CAS primitives. The Read simply
returns the value of the object. The call to CAS(old, new) writes new into the object only if
the current value of the object is equal to old and in that case, it returns True, otherwise, it
returns False.

The max register supports two primitives : MaxWrite(v) that writes the value v into the
register, and MaxRead() that returns the largest value written so far. Modern architectures
do not implement the max register object. However, our algorithm uses max registers in a
restricted way (essentially, each new value written increments the previous value by one),
thus we can easily implement the MaxWrite(v) and MaxRead() operations by applying a
constant number of primitives on CAS objects.

The FIFO queue provides the two high-level operations Enqueue(v) and Dequeue(). An
Enqueue(v) operation adds the element v at the tail of the queue, while the Dequeue()
operation removes the element at the head of the queue and returns its value, if the queue is
not empty, otherwise it returns a special value ϵ.

OPODIS 2022



4:4 Queue Algorithms with Multiple Enqueuers and Dequeuers

An implementation of a shared object provides a specific data-representation for the
object from a set of base objects, each of which is assigned an initial value; the implementation
also provides algorithms for each process in P to apply each operation to the object being
implemented. To avoid confusion, we call operations on the base objects primitives and
reserve the term operations for the FIFO queue object being implemented.

An execution of an implementation of a shared object is a sequence of steps (possibly
infinite), where a step is either the application of a primitive operation on a base object or
an invocation/response of an operation of the high-level implemented object. An execution
is well-formed if each process is sequential and if it invokes a new high-level operation only
after it has completed the current one. The steps taken by a process during the execution of
a high-level operation are defined by the algorithms provided by the implementation of the
shared object.

If an operation op1 returns before another operation op2 is invoked, we say that op1
precedes op2 in real-time order, denoted op1 <ro op2.

Roughly speaking, an implementation is linearizable [8] if each operation appears to take
effect atomically at some point between its invocation and response; it is wait-free [7] if each
process completes its operation if it performs a sufficiently large number of steps.

To define the relaxed FIFO queue, we consider the formalism of set-linearizability provided
in [15]. Roughly speaking, set-linearizability allows for multiple concurrent operations to
be linearized at the same point. Such a linearization point would fall within the execution
interval of all the concurrent operations. The set-linearization of an execution E is defined by
ordering different sets of the operations in E, such that the operations in a set are executed
concurrently. The FIFO queue with multiplicity [1] is a relaxed FIFO queue such that its
specification allows multiple concurrent Dequeue() operations to return the same value.

3 Wait-Free Linearizable Queue

3.1 Algorithm overview
We present hereafter a conceptual overview of the algorithm implementing the k-dequeuer
n-enqueuer concurrent queue.

As depicted in Figure 1, the queue object can be seen as n different sub-queues such
that when an Enqueue(v) operation is invoked by an enqueuer process p, the element v is
enqueued in the corresponding p-th sub-queue. Each enqueued element is associated with a
unique timestamp, used by the dequeuers to select the element to be returned (if any).

In particular, each enqueued element is associated to a pair (st, p) where st is the value
of a shared counter, and p is the id of the process that invoked the corresponding Enqueue
operation. Two processes executing concurrent Enqueue(v) operations can retrieve the same
value from the shared counter, but the process id makes each timestamp unique. Timestamps
are totally ordered according to the lexicographical order. The timestamps associated with
the elements in a given sub-queue reflect the real-time order of Enqueue() operations by the
same process. In particular, if an element e is enqueued in a sub-queue p before another
element e′, then e is associated with a smaller timestamp than e′. This also means that the
head of the sub-queue has the smallest timestamp among the other elements in the same
sub-queue.

For the sake of complexity, the timestamps are organized in a tree structure where the
n leaves correspond to the timestamps of the elements at the head of the corresponding n

sub-queues, and the root stores the smallest timestamp among the ones in the leaves. Our
construction is similar to the one proposed by Jayanti et al. in [9].



C. Johnen, A. Khattabi, and A. Milani 4:5

Figure 1 Data structure for the k-dequeuer n-enqueuer queue implementation.

Thus, a Dequeue operation simply reads the root of the tree and returns the corresponding
element in the appropriate sub-queue in the same manner that this is done in the single
dequeuer queue in [9]. However, to support k different dequeuer processes, we need to
manage the concurrency between their operations. This is done by introducing a helping
mechanism for the Dequeue operation. In particular, each Dequeue operation has a unique
sequence number. Before executing its instance of Dequeue operation, a process will first
ensure that the instances with smaller sequence numbers are not more pending. If they are,
the process will execute the steps necessary for them to finish, and it will update the tree
before executing its own instance of Dequeue. Since there are k dequeuer processes, during
an instance of Dequeue, there could be at most k − 1 other processes executing a Dequeue
operation concurrently.

3.2 Algorithm Pseudocode
In the implementation of the multiple dequeuer and multiple enqueuer queue in Algorithms 1–
2, we use two main data structures: a two-dimensional array of registers, called items, where
each row p together with two integers head[p] and tail[p] represents the sub-queue of process
p; and a balanced binary tree T with n leaves where each node is a CAS object used to
stores the timestamps of enqueued elements.

The sub-queue p contains the elements enqueued by process p that have not been dequeued,
i.e. the current sub-queue p is defined by its values h and t of the max register head[p] and
the register tail[p] respectively. If h = t, the sub-queue p is empty. Otherwise, it is the
ordered list of t− h elements : items[p][h], · · · , items[p][t− 1].

Each Enqueue operation executed by process p is associated with a unique timestamp
(st, p) where st is an integer obtained from the counter enqCounter, and p is the process id.
The empty queue is associated with a special timestamp (ϵ,−1), and we consider that ϵ > i

∀i ∈ N. items[p][i] = (val, (st, p)) means that the i-th Enqueue operation by p has enqueued
the value val, and that this Enqueue has the timestamp (st, p).

The smallest timestamp of a sub-queue p is the timestamp value of items[p][h] where h

is the current value of the head of the sub-queue. This timestamp is stored in the p-th leaf
of the tree T associated with p, called p-leaf. The following details the different functions of
the implementation in Algorithms 1–2.

Enqueue(v): when process p calls an instance of Enqueue(v), it starts by constructing the
corresponding timestamp (st, p) by reading the value of enqCounter. Process p will then
write (v, (st, p)) to item[p][t] where t is the value of tail[p]. Then, it updates the value of
tail[p] to t + 1. Afterward, the value st + 1 is written to the max register enqCounter to

OPODIS 2022



4:6 Queue Algorithms with Multiple Enqueuers and Dequeuers

Algorithm 1 Wait-free queue implementation (pseudo-code for process p).

1 Shared variables
2 enqCounter : Max register object, initially 0.
3 deqCounter :Fetch&Inc object, initially 1.
4 head[n] : Array of Max register objects, initially 0.
5 tail[n] : Array of registers where each register contains an integer, initially 0.
6 items[n][· · · ] : Two dimensional array of registers, each register contains the uplet

(val, (st, it)) initially (⊥, (⊥,⊥)).
7 T : binary tree of CAS objects with n leaves, each node contains the pair (st, id), all

initially (ϵ,−1).
8 deqOps[· · · ] : Array of CAS objects, initially (⊥,⊥). deqOps[j] = (i, id) means that

the j-th Dequeue operation returns items[id][i].val if id ̸= −1, otherwise the
operation returns ϵ.

9 Function Enqueue(v)
10 st← enqCounter.MaxRead()
11 t← tail[p]
12 items[p][t]← (v, (st, p))
13 tail[p]← tail[p] + 1
14 enqCounter.MaxWrite(st + 1)
15 Propagate(p)
16 return True

17 Function Dequeue()
18 num← deqCounter.F etch&Inc()
19 for (i← max(1, num− k + 1); i ≤ num; i + +) do
20 if deqOps[i].Read() = (⊥,⊥) then
21 if i > 1 then
22 UpdateTree(i− 1)
23 FinishDeq(i)
24 (j, id)← deqOps[num].Read()
25 if id = −1 then
26 return ϵ

27 else
28 (ret,−)← items[id][j]
29 return ret

ensure that all subsequent Enqueue operations will have a greater timestamp than (st, p).
Finally, process p calls Propagate(p) to update the timestamps in the nodes of the tree T

from the p-leaf to the root, if necessary.
Refresh(node, isLeaf ): this function is invoked during the execution of an instance of
Propagate to reset the timestamp stored in a node. If the boolean isLeaf is equal to True,
the current node represents a leaf of the tree T . In this case, the operation computes
the minimum timestamp in the corresponding sub-queue. This value is either (1) (ϵ,−1)
if the sub-queue is empty (line 16 of Algorithm 2); or a timestamp (2) (st′, i)(line 18
of Algorithm 2). If isLeaf = False then node is not a leaf; the operation reads the



C. Johnen, A. Khattabi, and A. Milani 4:7

Algorithm 2 Auxiliary functions to the queue implementation.

1 Function Propagate(id)
2 currentNode← leaf(T, id)
3 if !Refresh(currentNode, True) then
4 Refresh(currentNode, True)
5 do
6 currentNode← parent(currentNode)
7 if !Refresh(currentNode, False) then
8 Refresh(currentNode, False)
9 while currentNode ̸= root(T)

10 Function Refresh(node, isLeaf)
11 (st, id)← node.Read()
12 if isLeaf then
13 h← head[id].MaxRead()
14 t← tail[id]
15 if h = t then
16 ret← node.CAS((st, id), (ϵ,−1))
17 else
18 (−, (st′,−))← items[id][h]
19 ret← node.CAS((st, id), (st′, id))
20 return ret

21 else
22 (min_st, min_id)←read minimum timestamp in current node’s children
23 return node.CAS((st, id), (min_st, min_id))

24 Function FinishDeq(num)
25 (−, id)← root(T).Read()
26 if id = −1 then
27 deqOps[num].CAS((⊥,⊥), (ϵ,−1))
28 else
29 h← head[id].MaxRead()
30 deqOps[num].CAS((⊥,⊥), (h, id))

31 Function UpdateTree(num)
32 (j, id)← deqOps[num].Read()
33 if id ̸= −1 then
34 head[id].MaxWrite(j + 1)
35 Propagate(id)

timestamps stored in the children of the current node to compute the minimal timestamp.
Then, in both cases, the operation executes the CAS primitive on node to write the
timestamp and returns the resulting boolean.
Propagate(id): updates the nodes of the tree T in the path from the id-leaf node to
the root. Specifically, the function relies on calls to Refresh while traversing the path
to update each individual node. To ensure that the value written into a node is up to
date, the call to the function Refresh(node,−) is repeated if the first call fails because a

OPODIS 2022



4:8 Queue Algorithms with Multiple Enqueuers and Dequeuers

concurrent instance r1 of Refresh(node,−) might have written an outdated value since r1
started before the call to Refresh(node,−) in Propagate(id). However, after the second
call to Refresh(node,−), we are certain that the value written is up to date because it
can only be written by an instance invoked after Propagate(id). This technique is used
in the implementation of the single dequeuer multiple enqueuer queue in [9].
Dequeue: First, an instance of the Dequeue operation executed by a process p, computes
its unique sequence number num by applying a Fetch&Inc primitive on deqCounter.
Then, p executes the helping mechanism to assist any pending Dequeue operation with
a sequence number i ∈ [max(1, num − k + 1), num]) in increasing order of i. If the
operation with the index i is still pending (i.e. deqOps[i] is still set to its initial value),
p executes UpdateTree(i− 1) if i > 1, to ensure that the root of the tree is updated to
an accurate value. Then, p executes FinishDeq(i) to decide on the operation’s return
value in deqOps[i]. After the return values have been decided for all Dequeue operations
with indexes in [max(1, num− k + 1), num]), p reads deqOps[num] = (i, j) and returns
items[j][i].val, otherwise p returns ϵ.
FinishDeq(num): The array DeqOps stores the information regarding the return values
of each Dequeue operation. A call to FinishDeq with the parameter num decides a value
and attempts to write it to DeqOps[num] using a CAS primitive.FinishDeq(num) reads
the timestamp at the root of the tree T : (−, id). And if id = −1 (i.e. the queue is
empty), then (ϵ,−1) is written to DeqOps[num]. Otherwise, the value (h, id) is written to
DeqOps[num] where h is the value of the head of the sub-queue id. In either scenario, if
the CAS instruction fails, another process has succeeded in executing a CAS instruction
on DeqOps[num] and the return value for the corresponding Dequeue has been decided.
UpdateTree(num): A simple function call that encapsulates the steps necessary before
executing the Dequeue operation with the sequence number num + 1. If the Dequeue
operation with the sequence number num returns ϵ, then there are no additional steps
necessary. Otherwise, it is necessary to update the head of the sub-queue id from which
the return value was retrieved; followed by a call to the function Propagate(id) to update
the tree accordingly.

3.3 Proof
In this section, we establish that Algorithms 1–2 are a wait-free implementation of a k-
dequeuer multi-enqueuer queue. We also establish that an Enqueue operation has a worst-case
step complexity of O(log n) and a Dequeue operation has a worst-case step complexity of
O(k log n).

3.3.1 Algorithm properties
Each Dequeue operation is associated with a unique sequence number that is the value
obtained by applying the Fetch&Inc primitive on deqCounter at line 18 of Algorithm 1.
▶ Lemma 1. A total order between Dequeue operations is provided by their sequence number.
This order respects the real-time order.
Proof. Let deq1 and deq2 be two Dequeue operations by process p1 and p2 respectively. Let
seq1 be the sequence number of deq1 and seq2 be the sequence number of deq2. We prove
that if deq1 precedes deq2 in real-time order, then seq1 < seq2.

deq1 completes before deq2 is invoked, thus p1 executes line 18 of Algorithm 1 before the
invocation of deq2 by p2. The proof follows from the fact that deqCounter is a linearizable
Fetch&Inc object. ◀



C. Johnen, A. Khattabi, and A. Milani 4:9

The Dequeue operation with the sequence number i is complete at a given configuration C if
DeqOps[i] ̸= (⊥,⊥) (i.e.; the value of DeqOps[i] at C is not the initial value). Otherwise, it
is incomplete at C.

▶ Observation 2. Let deq denote a Dequeue operation with the sequence number i. Any call
to FinishDeq(i) is executed after the invocation of deq.

▶ Lemma 3. Fix an execution E and let C be any configuration of E. ∀h > 0 and ∀i ≥ 1, if
the h + i-th Dequeue operation exists and it is complete at C, then the i-th Dequeue operation
is complete at C.

Proof. Consider the first configuration C where the h + i-th Dequeue operation is complete,
i.e.; deqOps[i + h] ̸= (⊥,⊥). Assume by contradiction that deqOps[i] has its initial value
at C.

The value of deqOps[i] is only set during the execution of FinishDeq(i) at line 30 or 27
of Algorithm 2. According to the condition in the for-loop (line 19 of Algorithm 1), only a
Dequeue operation with a sequence number i + h ≤ l ≤ i + h + k − 1 may change the value
of deqOps[i + h].

According to Lemma 1, the Dequeue operations with a sequence number smaller than or
equal to l, and in particular ∈ [i, l], have started at the configuration immediately before
the value of deqOps[i + h] is changed by the l-th Dequeue operation. Also, the Dequeue
operations with a sequence number num ∈ [i, i+k−1] could not have returned at C otherwise
deqOps[i] ̸= (⊥,⊥) at C (contradicting our assumption). This is trivially true for num = i.
For num ∈ [i + 1, i + k − 1], and since the condition at line 20 of Algorithm 1 is true for
deqOps[i], the Dequeue operation with sequence number num will execute the FinishDeq(i)
function and set deqOps[i] ̸= (⊥,⊥) before it returns.

Thus, l should be greater than i + k − 1. But this means that there are k + 1 pending
Dequeue operations, which contradicts the fact that we can have at most k pending Dequeue
operations. There is a contradiction. ◀

As deqOps[num] is updated only during the execution of the function FinishDeq(num); the
following observation is a consequence of Lemma 3.

▶ Observation 4. Before the first execution of FinishDeq(i + h), FinishDeq(i) has been
executed.

Each Enqueue operation op has a unique timestamp composed of an integer obtained
by reading the Max register enqCounter during the execution of line 10, and the id of the
process that executed the operation op.

▶ Observation 5. For each p, the timestamps of the elements written in the sub-array
items[p] are monotonically increasing in accordance with their index in the array. In other
terms, we have items[p][i].ts < items[p][i + 1].ts.

At any given configuration, the sub-queue of process p is the sub-array of items[p] in the
range items[p][head[p].MaxRead()], ..., items[p][tail[p]− 1].

▶ Lemma 6. Let enq1 and enq2 be two Enqueue operations such that enq1 ends before enq2
is invoked. Let (st1, id1) be the timestamp of enq1 and (st2, id2) be the time stamp of enq2.
We have st1 < st2.

Proof. After the execution of line 14 of Algorithm 1 during enq1, any value returned by a
enqCounter.MaxRead is greater or equal to st1 + 1. The claim follows from the fact that
enq2 executes line 10 of Algorithm 1 after enq1 returned. ◀

OPODIS 2022



4:10 Queue Algorithms with Multiple Enqueuers and Dequeuers

We say that the i-th Enqueue operation by a process p matches the Dequeue operation with
sequence number j, if deqOps[j] = (i, p) at some point in the execution.

Meaning, if the Dequeue operation returns, it returns the element enqueued by the i-th
Enqueue operation of process p (i.e. items[p][i]).

▶ Lemma 7. An Enqueue operation has at most a single matching Dequeue operation.

Proof. Let enq be the i-th Enqueue operation by a process p. Assume by contradiction that
there are two Dequeue operations, deq1 and deq2 that match enq. Let j1 and j2 be their
corresponding sequence numbers. Then, deqOps[j1 ] = deqOps[j2 ] = (i, p). By Lemma 1 and
without loss of generality, let j1 < j2. Because of the Observation 4, FinishDeq(j1) returned
before FinishDeq(j2) is invoked. According to lines 22 to 23 of Algorithm 1, UpdateTree(j1)
is executed before FinishDeq(j1 + 1). This means that the value i + 1 is written in the Max
register head[p] at line 34 before that a process read it during the FinishDeq(j1 + 1). And
since j2 ≥ j1 + 1, the claim follows. ◀

▶ Lemma 8. Let enq denote the i-th Enqueue operation by a process p. Let ts = (st, p) be
the timestamp of enq. Let s be any node in the tree T in the path from the p-th leaf to the
root of the tree. At any configuration C after enq ends and such that deqOps[j] ̸= (i, p) for
each j ≥ 0, we have that the timestamp stored at s is smaller than or equal to ts at C.

Proof. After enq, we have that tail[p] ≥ i + 1, because enq is the i-th Enqueue operation
executed by p.

We first prove that after enq, head[p] is smaller than or equal to i as long as deqOps[l] ̸=
(i, p) for any l ≥ 0.

The value of head[p] is updated only during the execution of the function UpdateTree

(line 34 of Algorithm 2). In particular, the value of head[p] is set to a value j + 1 where
j is the value read from some deqOps[num] at line 32. Also, the value of deqOps[num] is
updated only during the execution of the function FinishDeq(num) with a value read from
head[p] (lines 29 and 30). We prove by induction on j that if the value written in head[p] is
j then, all values 0, . . . j − 1 have been previously written in head[p] (in increasing order)
and to some deqOps[num]. The base case is for j = 1. Consider the first MaxWrite() that
writes 1 to head[p] and let q be the process applying this primitive. According to line 34, q

has read the value (0, p) from some deqOps[num], which has been updated with a value read
from head[p]. The claim follows.

Suppose this is true for a value j, we show that the claim holds for j + 1. Consider
the first process, denoted q, that writes j + 1 into head[p]. q has read (j, p) from some
deqOps[num] at line 32. By inductive hypothesis, and by the linearizability of head[p] all the
values 0, . . . j have been written in head[p] and all the values 0, . . . j − 1 have been written in
some deqOps[num]. The claim follows.

Hence, head[p] ≤ i as long as for any l ≥ 0, we have deqOps[l] ̸= (i, p). This is because
to write the value i + 1 (and then any greater value), a process has to read deqOps[l] = (i, p)
for some l.

Base case k = 0. s is the p-th leaf. Since enq completes, there is at least one instance of
Propagate(p) performed after that process p has written the value i in tail[p]. The value of
head[p] is smaller than or equal to i, so any instance of Propagate(p) that changes the value
of s before C, will write a timestamp read in items[p][j] for some j ≥ i. By Observation 5,
the timestamp read is smaller than or equal to ts = (st, p).



C. Johnen, A. Khattabi, and A. Milani 4:11

It remains to prove that after an instance of Propagate(p) completes, denoted prop, a
value smaller than or equal to i has been written in the leaf corresponding to p. An instance
of Propagate(p) performs two Refresh(s). Each Refresh(s) reads the state of s, then the
head[p] and the corresponding timestamp ts and then applies a CAS to s to modify its value
with ts. Suppose that both Refresh(s) fail (and in particular the second one), otherwise the
claim is trivial. The second Refresh(s) fails because another an instance of Propagate(p),
denoted prop′ successfully applied a CAS on s. But prop′ has read head[p] after tail[p] is
set to i. Meaning that it has read a value smaller than or equal to i and it writes in s the
corresponding timestamp that is smaller than or equal to ts.

Induction case k + 1 ≤ log n. Suppose that the claim holds for j ≤ log n : the timestamp
stored at sj is smaller than or equal to ts where sj is in the path from the p-th leaf to the
root at a height of j ≤ k. We prove that the claim holds for the parent of sj , denoted sj+1.

Any instance of Propagate(p) updates the nodes in the path from the p-th leaf to the
root, one by one, starting from the leaf and following the path to the root. Also, immediately
after enq completes, there is at least one Propagate(p) instance that passed through all the
nodes in this path. Consider, the first Propagate(p) that updated node sj+1 after sj has
been updated, denoted prop.

Observe that any process that executes the Refresh function on node sj+1 writes the
minimum timestamp it reads from the children of sj+1. And that the second Refresh(sj+1)
fails only if another Propagate(p) has modified the state of this node with a value smaller
than or equal to the value at sj read by prop. ◀

▶ Lemma 9. Let enq be an Enqueue operation with the timestamp ts that enqueued items[p][i].
If (i, p) was written to deqOps[j] by a process q, then the execution of line 25 of Algorithm 2
to read ts by q was executed after the invocation of enq.

Proof. enq is the i-th enqueue operation by p. Let deq be the Dequeue operation executed
by q that retrieves ts from the root of the tree (Line 25 of Algorithm 2) before writing (i, p)
to deqOps[j]. enq must execute the line 13 of Algorithm 1 before ts can be propagated in
the tree according to the code of function Refresh. The claim follows. ◀

▶ Lemma 10. Let enq1 and enq2 be two Enqueue operations such that enq1 ends before enq2
is invoked. If enq2 has a matching Dequeue operation deq2, then enq1 also has a matching
Dequeue operation deq1.

Proof. By contradiction, we suppose that deq2 exists and deq1 does not. We denote ts1
and ts2 the timestamps associated with enq1 and enq2 respectively and num2 the sequence
number of deq2. From Lemma 6, ts1 < ts2 because enq1 ends before enq2 begins.

And since enq1 does not have a matching Dequeue, there is no j ≥ 0 such that deqOps[j] =
(i, p) where items[i][p] is enqueued by enq1. Therefore, from Lemma 8, for any node s in the
path in T from the p-th leaf to the root, the timestamp stored at s is smaller than or equal
to ts1. In particular, for the root of the tree, the timestamp stored is smaller or equal to
ts1. From Lemma 9, the step of line 25 of Algorithm 2 to read the root of the tree before
writing deqOps[num2] is executed after the invocation of enq2 which is after the invocation
of enq1. Meaning that during this step, the timestamp at the root was smaller or equal to
ts1 contradicting the fact that ts1 < ts2. ◀

▶ Lemma 11. Let enq1 and enq2 be two Enqueue operations such that enq1 ends before
enq2 is invoked and let deq1 and deq2 be the matching Dequeue operations to enq1 and enq2
respectively. We have that deq1 has a lower sequence number than deq2.

OPODIS 2022



4:12 Queue Algorithms with Multiple Enqueuers and Dequeuers

Proof. We denote num1 and num2 the sequence numbers of deq1 and deq2 respectively, and
ts1 and ts2 the timestamps of enq1 and enq2 respectively. By contradiction, we suppose that
num1 > num2. Since enq1 ends before enq2 begins we have that ts1 < ts2 (Lemma 6).

And since deqOps[i] are written in an increasing order of i according to Lemma 3, we
have that deqOps[num2] is written before deqOps[num1]. However, from Lemma 8, as long
as deqOps[num1] has its initial value, then the timestamp stored at the root is smaller than
or equal to ts1. At the execution of line 25 of Algorithm 2 to compute the final value of
deqOps[num2] , the root has a timestamp smaller or equal to ts1; contradicting the fact that
ts1 < ts2. ◀

▶ Lemma 12. Let deq be a Dequeue operation and let enq be an Enqueue operation that ends
before deq is complete. Let C be a configuration of E where enq does not have a matching
Dequeue operation deq′ or deq′ is not complete at C. If deq is complete at C, then deq does
not return ϵ.

Proof. By contradiction, we suppose that deq returns ϵ. Let i denote the sequence number
of deq and ts denote the timestamp of enq. Since deq returns ϵ, deq reads the value (ϵ,−1)
in deqOps[i] at line 24 of Algorithm 1. Therefore, during the execution of FinishDeq(i),
the process that writes deqOps[i], reads (ϵ,−1) at the root of the tree (line 27 of Algorithm
2). However, By Lemma 8, the timestamp at the root of the tree after the end of enq is
smaller than or equal to ts. Meaning that during the execution of line 25 of Algorithm 2
during the instance FinishDeq(i) that writes deqOps[i], the timestamp at the root of the
tree was smaller than or equal to ts. We reach a contradiction because (ϵ,−1) is larger than
any timestamp (h,−) ∀h ∈ N. ◀

3.3.2 Linearizability
First, we construct a permutation L of some of the Dequeue() and Enqueue() operations
invoked such that L contains all operations that have terminated. Then, we prove that L

preserves the real order as well as the semantics of a queue.

3.3.2.1 Linearization definition

Let E denote a given execution of the wait-free queue implemented in Algorithm 1 and
Algorithm 2. We classify every Dequeue() operation deq that appears in E to exactly one of
the following types :
1. deq does not execute line 18 of Algorithm 1 in E. Thus deq is not attributed a sequence

number.
2. deq executes line 18 of Algorithm 1 in E, its sequence number is j and deqOps[j] has

the initial value (⊥,⊥) in E.
3. deq executes line 18 of Algorithm 1 in E, its sequence number is j and deqOps[j] ̸= (⊥,⊥)

in E.

We remove from E, any Dequeue() operation of type 1 and 2. We denote DEQ the set
of Dequeue() operations of type 3. Each operation in DEQ is associated with a unique
sequence number j ∈ N0. We totally order all the operations in DEQ according to their
sequence number. Also, let deq be any incomplete Dequeue() operation in DEQ and let j

be its sequence number. We complete deq by returning the value v if deqOps[j] = (i, id) in
E and items[id][i] = (v,−). Otherwise, we complete deq by returning the empty queue
value ϵ.



C. Johnen, A. Khattabi, and A. Milani 4:13

We remove every Enqueue() operation that does not execute line 13 of Algorithm 1 in
E. We denote ENQ the set of Enqueue() operations that appear in E and that we do
not remove. Every Enqueue() operation enq in ENQ is uniquely identified by a pair (i, id)
meaning that enq is the i-th Enqueue() operation performed by the process id. We associate
the Dequeue() operation in DEQ with sequence number i with the Enqueue() operation
(j, id) such that deqOps[i] = (j, id).

Let ENQd denote the Enqueue() operations in ENQ that have an associated Dequeue()
operation in DEQ. We associate each Enqueue() operations in ENQd with the sequence
number of the corresponding Dequeue(). Thus, Enqueue() operations in ENQd are totally
ordered according to the given sequence number.

We construct the linearization L of the operations in E as follows:
1. First we insert the Enqueue() operations in ENQd one by one and according to their

total order, denoted enqi1 , enqi2 . . . in L. Notice that enqih
is the Enqueue() operation

associated with the Dequeue() operation having the sequence number ih. Assuming that
enqih+1 exists, we have ih < ih+1 ; and all the Dequeue() operations having a sequence
number i ∈ [ih + 1, ih+1 − 1] return the value ϵ.

2. Then, we insert the Dequeue() operations one by one according to their the sequence
number. For any sequence number k, If deqk returns ϵ it is inserted immediately after
deqk−1 if it exists, or at the beginning otherwise. In the case where deqk does not return
ϵ, it is linearized immediately after the furthest point in L following: (i) the previous
deqk−1, (ii) the matching Enqueue operation enqil

with il = k, and (iii) the last Enqueue
operation that ends before the invocation of deqk.

3. Let enq denote an Enqueue operation from the remaining Enqueue() operations with no
matching Dequeue operations (i.e. ENQ\ENQd). We insert enq after the last operation
in ENQd and before the first Dequeue() operation that starts after enq ends (or at the
end of L if such Dequeue() does not exist). If multiple operations from ENQ \ ENQd

are linearized at the same point, then they are ordered according to their real-time order.

For two operations op1 and op2, we denote op1 <L op2 when op1 precedes op2 in the
linearization L.

3.3.2.2 Linearization and real-time order

We show that the linearization defined in the previous section respects the real-time execution
order.

▶ Lemma 13. Let op1 and op2 be two Enqueue operations in E such that op1 ends before
op2 is invoked. op1 precedes op2 in L.

Proof. First, consider the case where both operations do not have matching Dequeue()
operations. From linearization rule 3, an Enqueue operation that does not have a matching
Dequeue operation is linearized before the first Dequeue operation that starts after it ends
or at the end of L if such Dequeue operation does not exist. If op1 is linearized at the
end of L, then op2 is also linearized at the end of L after op1, because op2 starts after op1
ends and there is no Dequeue operation that starts after op1 ends. We suppose that there
exists a Dequeue operation deq1 such that op1 is linearized immediately before deq1. If op2
is linearized at the end of L, the claim is trivial. So let deq2 be a Dequeue operation such
that op2 is linearized immediately before deq2. We have op1 <ro op2 <ro deq2. Meaning that
deq2 = deq1 or deq1 <L deq2, because both operations start after op1 ends, and deq1 is the
first such operation in L. Therefore, op1 <L op2 according to their real time execution order
following linearization rule 3.

OPODIS 2022



4:14 Queue Algorithms with Multiple Enqueuers and Dequeuers

Next, if op1 has a matching Dequeue() operation but op2 does not, we have that op2
is linearized after the last linearized Enqueue() operation that has a matching Dequeue()
operation. The case where op1 does not have a matching Dequeue() operation but op2 does,
is impossible according to Lemma 10. We suppose that both op1 and op2 have matching
Dequeue() operations, named respectively deq1 and deq2. From Lemma 11, we have that
deq1 has a smaller sequence number than deq2. Therefore, from linearization rule 1, op1 is
linearized before op2. ◀

▶ Lemma 14. Let deq be a Dequeue operation with the sequence number j and let enq be an
Enqueue operation invoked after deq returns. If enq has a matching Dequeue operation deq′,
then the sequence number of deq′ is greater than j.

Proof. We denote i the sequence number of deq′. By contradiction we suppose that j > i.
We consider the configuration C where deq completes. According to Lemma 3, deq′ also has
been completed at C. Meaning that deqOps[i] ̸= (⊥,⊥) at C. However, from the hypothesis,
enq has not started at C, as enq is not invoked until deq finishes. According to Lemma 9,
deq′ cannot match enq. The claim follows. ◀

▶ Lemma 15. Let deq be a Dequeue operation with the sequence number j and let enq be an
Enqueue operation invoked after deq returns. If enq has a matching Dequeue operation deq′,
then any Dequeue operation with a sequence number l < j is linearized before enq.

Proof. By contradiction, we suppose that there exists Dequeue operations with sequence
numbers strictly smaller than j that are linearized after enq, and let deql be the first of these
operations in L. Thus , if deql−1 exists, we have that deql−1 <L enq.

If deql returns ϵ, from linearization rule 2, deql is linearized immediately after deql−1 if it
exits, or at the beginning of L. Therefore, deql <L enq. There is a contradiction.

Otherwise, deql has a matching Enqueue operation denoted enql. We denote i the sequence
number of deq′. From Lemma 14, we have that j < i. Therefore, l < j < i. Thus, enql <L enq

from linearization rule 1. Furthermore, we have deql−1 <L enq (if it exists). Therefore,
since enql <L enq and deql−1 <L enq, according to linearization rule 2, enq <L deql because
enq <ro deql (rule 2.3 of linearization) . Consequently, deqj <ro enq <ro deql. Contradicting
the fact that l < j (Lemma 1). ◀

▶ Theorem 16. Let op1 and op2 be two operations in E such that op1 ends before op2 is
invoked. Then, op1 precedes op2 in L.

Proof. Four cases have to be studied according to the type of operations.
1. op1 and op2 are two Dequeue() operations. Since op1 ends before op2 begins, the sequence

number i1 of op1 is strictly smaller than the sequence number i2 of op2 (Lemma 1). From
linearization rule 2, we have op1 is before op2 in L.

2. The case where op1 and op2 are Enqueue() operations is proved by Lemma 13.
3. op1 is an Enqueue operation and op2 is a Dequeue() operation. First, consider the case

that op2 does not return ϵ. If op1 ∈ ENQd, then from linearization rule 2, op2 is linearized
after op1 because op2 is inserted after the last Enqueue operation that ends before op2
starts. Otherwise, If op1 ̸∈ ENQd, from linearization rule 3, it is linearized before the
first Dequeue operation that starts after op1 ends. Thus op1 is linearized before op2.
Next, consider the case where op2 returns ϵ, and let i denote its sequence number. By
Observation 2 and Lemma 12, op1 has a matching Dequeue operation deq, and deq is
complete before op2 is complete.



C. Johnen, A. Khattabi, and A. Milani 4:15

Let j is the sequence number of deq. Since deq is complete before op2 is complete, by
Lemma 3, we have that j < i. Therefore, from linearization rule 2, deq is linearized before
op2. Thus, from linearization rule 1, op1 <L deq <L op2. The claim follows.

4. Finally, we suppose that op1 is a Dequeue operation and that op2 is an Enqueue operation.
If op2 does not have a matching Dequeue operation, from linearization rule 3, it is
linearized before the first Dequeue operation that starts after op2 ends or at the end of L

if such operation does not exist. Thus, op2 is linearized after op1 because op1 ends before
op2 starts.
So consider that op2 has a matching Dequeue operation deq and let i be its sequence
number and j be the sequence number of op1.
If op1 returns ϵ, from the linearization rule 2, we have op1 = deqj is linearized immediately
after deqj−1 (or beginning of L if it does not exist). And from Lemma 15, for each l < j,
we have that deql is linearized before op2. In particular, we have that deqj−1 is linearized
before op2. Therefore, op1 is linearized before op2.
Otherwise, consider enqj the matching operation of op1. From linearization rule 2, op1 is
linearized after (i) deqj−1, (ii) enqj and after (iii) the last Enqueue enq′ that ends before
op1 starts. We show that op2 is linearized after all these three operations. From Lemma
15, we have that deqj−1 is linearized before op2 (i). From Lemma 14, we have that j < i

meaning that enqj is linearized before op2 according to the total order of the sequence
numbers of their matching Dequeue operations (ii). And since op1 ends before op2 starts,
enq′ <ro op2. Therefore, enq′ <L op2 because we have shown that the linearization of
the Enqueue operations respects the real time execution order (Lemma 13) (iii). The
claim follows. ◀

3.3.2.3 Linearization and the Queue Sequential Specification

▶ Lemma 17. Let deq be a Dequeue operation that returns v ̸= ϵ. There exists an Enqueue(v)
denoted enq that such that enq is linearized before deq and there is no Dequeue operation
deq′ ̸= deq that also returns v.

Proof. First, we prove that enq exists. Since deq returns v ≠ ϵ, it has read a value (j, p)
in deqOps[i] where i is the sequence number of deq (line 24 of Algorithm 1). Meaning that
items[p][j] = v and the Enqueue operation that enqueued v denoted enq, is the j-th instance
of Enqueue by process p. By linearization rule 2, deq is linearized after enq. And we have
shown in Lemma 7 that each Enqueue operation has at most a single matching Dequeue
operation. The claim follows. ◀

▶ Lemma 18. Let enq1 and enq2 be two Enqueue operations such that enq1 <L enq2. If enq2
has a matching Dequeue deq2, then enq1 has a matching Dequeue deq1 and deq1 <L deq2.

Proof. By contradiction, we suppose that enq1 does not have a matching Dequeue operation.
From linearization rule 3, enq1 is linearized after all Enqueue operations in ENQd. Especially,
enq1 is linearized after enq2. There is a contradiction. And from linearization rule 1, enq1
and enq2 are linearized according to the total order of the sequence numbers of their matching
Dequeue operations. The claim follows. ◀

From the two previous Lemmas 17–18, we have the following theorem.

▶ Theorem 19. Let deq be a Dequeue operation in L. If deq does not return ϵ, then it returns
the element enqueued by the first Enqueue operation in L that does not have a matching
Dequeue operation linearized before deq.

OPODIS 2022



4:16 Queue Algorithms with Multiple Enqueuers and Dequeuers

▶ Lemma 20. Let deqϵ be a Dequeue operation that returns ϵ. And let enq be an Enqueue
operation linearized before deqϵ. We have that enq has a matching Dequeue operation deq

that is also linearized before deqϵ.

Proof. First, we show that enq has a matching Dequeue operation deq. By contradiction,
we suppose that enq is in ENQ \ ENQd. From linearization rule 3, enq is inserted before
the first Dequeue operation deq′ that starts after enq ends or at the end of L if deq’ does
not exist. The case where enq is linearized at the end of L is trivial because it contradicts
the fact that enq is linearized before deqϵ. So deq′ exists. By lemma 12 deq′ does not return
ϵ. Since enq <L deqϵ, we have deq′ <L deqϵ Hence, deqϵ has a greater sequence number than
deq′ from linearization rule 2. Thus, deqϵ is complete after deq′ is complete (Lemma 3). We
conclude by lemma 12, that deqϵ does not return ϵ. There is a contradiction. Thus, enq has
a matching Dequeue operation denoted deq.

In the following, we establish that deq is linearized before deqϵ. Let i denote the sequence
number of deqϵ and let j be the sequence number of deq. By contradiction, we assume that
i < j (i.e. deq is linearized after deqϵ). Let deqk be the first Dequeue operation linearized
after enq with k its sequence number. Such an operation exists as enq <L deqϵ. We have
k ≤ i, according to the linearization rule 2. Assume that deqk returns ϵ. If k = 0 then
no operation is linearized before deqk; in this case, there is a contradiction. Otherwise
(k ≥ 1), there is no Enqueue operation linearized after deqk−1 and before deqk because deqk

is linearized immediately after deqk−1 (linearization rule 2). This contradicts the fact that
deqk is the first Dequeue operation linearized after enq. Hence deqk does not return ϵ. We
conclude that k < i. Therefore, deqk is complete before deqϵ is complete (Lemma 3). deqk

does not match enq as we assume that deq is linearized after deqϵ. From linearization rule 2,
deqk can only be linearized after enq because enq terminates before the invocation of deqk.
Thus, by Lemma 12, deqϵ cannot return ϵ if j > i. There is a contradiction. ◀

3.3.3 Step Complexity
We show that the worst-case step complexity of an Enqueue and Dequeue operation is
O(log n) and O(k log n), respectively. To do so, we establish the following Lemma but omit
the detailed proof because of space limitations. The main intuition is that while propagating
the timestamp, the process has to read a constant number of nodes per level going from a
leaf to the root. Since there are n leaves, the height of the tree is in O(log n).

▶ Lemma 21. A process executes O(log n) steps during a call to the function Propagate(id).

During the execution of an Enqueue operation there are no loops or function calls aside
from a call to the function Propagate(id). And during a Dequeue operation, a process
executes at most k instances of Propagate(id). The following corollary ensues.

▶ Corollary 22. A process executes O(log n) steps during the execution of an Enqueue
operation and O(k log n) steps during the execution of a Dequeue operation.

4 Set Linearizable Wait-free Queue Algorithm with multiplicity

In this section, we propose an implementation of the relaxed queue with multiplicity where
the operations have a step complexity of O(log n). For the relaxed queue with multiplicity,
concurrent Dequeue operations are allowed to return the same element from the queue (Figure
2 illustrates such an execution).



C. Johnen, A. Khattabi, and A. Milani 4:17

Algorithm 3 Relaxed-Queue: implementation of the wait-free queue with multiplicity
(Dequeue pseudo-code for process p).

1 Function Dequeue()
2 num← deqCounter.MaxRead()
3 if deqOps[num].Read() ̸= (⊥,⊥) then
4 deqCounter.MaxWrite(num + 1)
5 num← num + 1
6 if num ≥ 1 then
7 UpdateTree(num− 1)
8 FinishDeq(num)
9 (h, id)← deqOps[num].Read()

10 if id = ⊥ then
11 return ϵ

12 else
13 (ret,−)← items[id][h]
14 return ret

Figure 2 Example of a set-linearizable execution of the relaxed queue with multiplicity.

Only the algorithm of the Dequeue operation is different from the Algorithm in Section 3.
In the implementation of the relaxed queue, we do not require the unicity of the sequence
numbers of the Dequeue operations. Therefore, we use a max register object for deqCounter

instead of the previously used Fetch&Inc. Multiple concurrent Dequeue operations retrieve
the same sequence number num from deqCounter as long as deqOps[num] remains unchanged.
A Dequeue operation takes the sequence number num + 1 only after the Dequeue operations
with the sequence number num are completed (i.e. deqOps[num] ̸= (⊥,⊥)). Thus, we
relinquish the need for a helping mechanism for slow Dequeue operations since an operation
with the same sequence number will need to finish and write to deqOps before the next
sequence number is assigned.

If the value of deqCounter changes between the step a Dequeue operation retrieves the
value num and the step it reads deqops[num], the operation writes num + 1 to deqCounter

and assigns it as its sequence number. Similarly to Algorithm 1, the operation then executes
the necessary steps to write deqOps[seq] where seq ∈ {num, num+1} is the sequence number
of the operation. Meaning that the process executes UpdateTree(seq − 1) if the Dequeue
operation with the sequence number seq − 1 exists, to ensure that the root of the tree has
an accurate value. Then, the process executes FinishDeq(seq), after which deqOps[seq] is
set to a value different than its initial value. If DeqOps[seq] = (i, p) the Dequeue operation
returns items[p][i].val, otherwise it returns ϵ. Several Dequeue operations may have the

OPODIS 2022



4:18 Queue Algorithms with Multiple Enqueuers and Dequeuers

same sequence number, and thus return the same value. The design of the algorithm ensures
that two Dequeue operations can have the same sequence number only if they are concurrent.
The full proof of correctness of the relaxed queue implementation is omitted because of space
limitations but uses similar techniques as the previous sections.

5 Discussion

We have presented a wait-free implementation of a k-multiple dequeuer n-multiple enqueuer
FIFO queue. The worst case step complexity of the Enqueue operation is in O(log n) and
the Dequeue operation is in O(k log n). Meaning, that as long as the number k of dequeuer
processes is constant, our implementation has logarithmic step complexity, which improves
on the previous upper bound of O(

√
n). While we focused on theoretical evaluations of step

complexity, it could also be of interest to compare the algorithm empirically to other FIFO
implementations to gauge its applicative relevance.

Then, to the best of our knowledge, we presented the first relaxed FIFO queue with
logarithmic step complexity where every process can perform both Enqueue(v) and Dequeue()
operations. It remains an open question whether it is possible to implement an exact wait-free
linearizable FIFO queue with worst-case logarithmic step complexity without restriction on
the number of enqueuers and dequeuers or to implement a relaxed FIFO queue in constant
or near-constant step complexity.

References
1 Armando Castañeda, Sergio Rajsbaum, and Michel Raynal. Relaxed queues and stacks from

read/write operations. In 24th International Conference on Principles of Distributed Systems,
OPODIS 2020„ pages 13:1–13:19. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2020.
doi:10.4230/LIPIcs.OPODIS.2020.13.

2 Armando Castañeda and Miguel Piña. Fully read/write fence-free work-stealing with multipli-
city, 2020. doi:10.48550/arXiv.2008.04424.

3 Matei David. A single-enqueuer wait-free queue implementation. In Proceedings of 18th
International Conference Distributed Computing, DISC 2004, pages 132–143, Berlin, Heidelberg,
2004. Springer-Verlag. doi:10.1007/978-3-540-30186-8_10.

4 David Eisenstat. Two-enqueuer queue in common2, 2008.
5 Panagiota Fatourou and Nikolaos D. Kallimanis. Highly-efficient wait-free synchronization.

Theor. Comp. Sys., 55(3):475–520, October 2014. doi:10.1007/s00224-013-9491-y.
6 Thomas A. Henzinger, Christoph M. Kirsch, Hannes Payer, Ali Sezgin, and Ana Sokolova.

Quantitative relaxation of concurrent data structures. SIGPLAN Not., 48(1):317–328, January
2013. doi:10.1145/2480359.2429109.

7 Maurice Herlihy. Wait-free synchronization. ACM Trans. Program. Lang. Syst., 13(1):124–149,
January 1991. doi:10.1145/114005.102808.

8 Maurice P. Herlihy and Jeannette M. Wing. Linearizability: A correctness condition for
concurrent objects. ACM Trans. Program. Lang. Syst., 12(3):463–492, July 1990. doi:
10.1145/78969.78972.

9 Prasad Jayanti and Srdjan Petrovic. Logarithmic-time single deleter, multiple inserter wait-free
queues and stacks. In Proceedings of the 25th International Conference on Foundations of
Software Technology and Theoretical Computer Science, FSTTCS ’05, pages 408–419, Berlin,
Heidelberg, 2005. Springer-Verlag. doi:10.1007/11590156_33.

10 Pankaj Khanchandani and Roger Wattenhofer. On the importance of synchronization prim-
itives with low consensus numbers. In Proceedings of the 19th International Conference on
Distributed Computing and Networking, ICDCN ’18, pages 18:1–18:10, New York, NY, USA,
2018. Association for Computing Machinery. doi:10.1145/3154273.3154306.

https://doi.org/10.4230/LIPIcs.OPODIS.2020.13
https://doi.org/10.48550/arXiv.2008.04424
https://doi.org/10.1007/978-3-540-30186-8_10
https://doi.org/10.1007/s00224-013-9491-y
https://doi.org/10.1145/2480359.2429109
https://doi.org/10.1145/114005.102808
https://doi.org/10.1145/78969.78972
https://doi.org/10.1145/78969.78972
https://doi.org/10.1007/11590156_33
https://doi.org/10.1145/3154273.3154306


C. Johnen, A. Khattabi, and A. Milani 4:19

11 Christoph M. Kirsch, Michael Lippautz, and Hannes Payer. Fast and scalable, lock-
free k-fifo queues. In Proceedings of 12th International Conferenc Parallel Computing
Technologies, PaCT’13, pages 208–223, Berlin, Heidelberg, 2013. Springer-Verlag. doi:
10.1007/978-3-642-39958-9_18.

12 Alex Kogan and Erez Petrank. Wait-free queues with multiple enqueuers and dequeuers.
SIGPLAN Not., 46(8):223–234, February 2011. doi:10.1145/2038037.1941585.

13 Zongpeng Li. Non-blocking implementations of queues in asynchronous distributed shared-
memory systems. Master’s thesis, Univ. of Toronto, January 2001.

14 Adam Morrison and Yehuda Afek. Fast concurrent queues for x86 processors. In Proceedings
of the 18th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming,
PPoPP ’13, pages 103–112, New York, NY, USA, 2013. Association for Computing Machinery.
doi:10.1145/2442516.2442527.

15 Gil Neiger. Set-linearizability. In Proceedings of the Thirteenth Annual ACM Symposium
on Principles of Distributed Computing, PODC ’94, page 396, New York, NY, USA, 1994.
Association for Computing Machinery. doi:10.1145/197917.198176.

16 Chaoran Yang and John Mellor-Crummey. A wait-free queue as fast as fetch-and-add.
SIGPLAN Notices, 51(8):1–13, February 2016. doi:10.1145/3016078.2851168.

OPODIS 2022

https://doi.org/10.1007/978-3-642-39958-9_18
https://doi.org/10.1007/978-3-642-39958-9_18
https://doi.org/10.1145/2038037.1941585
https://doi.org/10.1145/2442516.2442527
https://doi.org/10.1145/197917.198176
https://doi.org/10.1145/3016078.2851168

	1 Introduction
	1.1 Context
	1.2 Other Related Work

	2 Preliminaries
	3 Wait-Free Linearizable Queue
	3.1 Algorithm overview
	3.2 Algorithm Pseudocode
	3.3 Proof
	3.3.1 Algorithm properties
	3.3.2 Linearizability
	3.3.3 Step Complexity


	4 Set Linearizable Wait-free Queue Algorithm with multiplicity
	5 Discussion

