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Abstract
In this paper, we introduce a technique we call geometric amortization for enumeration algorithms,
which can be used to make the delay of enumeration algorithms more regular with little overhead on
the space it uses. More precisely, we consider enumeration algorithms having incremental linear delay,
that is, algorithms enumerating, on input x, a set A(x) such that for every t ≤ ♯A(x), it outputs
at least t solutions in time O(t · p(|x|)), where p is a polynomial. We call p the incremental delay
of the algorithm. While it is folklore that one can transform such an algorithm into an algorithm
with maximal delay O(p(|x|)), the naive transformation may use exponential space. We show that,
using geometric amortization, such an algorithm can be transformed into an algorithm with delay
O(p(|x|) log(♯A(x))) and space O(s log(♯A(x))) where s is the space used by the original algorithm.
In terms of complexity, we prove that classes DelayP and IncP1 with polynomial space coincide.

We apply geometric amortization to show that one can trade the delay of flashlight search
algorithms for their average delay up to a factor of O(log(♯A(x))). We illustrate how this tradeoff is
advantageous for the enumeration of solutions of DNF formulas.
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1 Introduction

An enumeration problem is the task of listing a set of elements without redundancies. It
is an important and old class of problems: the Baguenaudier game [28] from the 19th
century can be seen as the problem of enumerating integers in Gray code order. Ruskey even
reports [33] on thousand-year-old methods to list simple combinatorial structures such as
the subsets or the partitions of a finite set. Modern enumeration algorithms date back to
the 1970s with algorithms computing circuits or spanning trees of a graph [36, 32], while
fundamental complexity notions for enumeration have been formalized 30 years ago by
Johnson, Yannakakis and Papadimitriou [23]. The main specificity of enumeration problems
is that the size of the enumerated set is typically exponential in the size of the input. Hence,
a problem is considered tractable and said to be output polynomial when it can be solved in
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18:2 Geometric Amortization of Enumeration Algorithms

time polynomial in the size of the input and the output. This measure is relevant when one
wants to generate and store all elements of a set, for instance to build a library of objects later
to be analyzed by experts, as it is done in biology, chemistry, or network analytics [2, 6, 9].

For most problems, the set to enumerate is too large, or may not be needed in its entirety.
It is then desirable to efficiently generate a part of the set for statistical analysis or on the fly
processing. In this case, a more relevant measure of the complexity and hence of the quality
of the enumeration algorithm is its delay, that is, the time spent between two consecutive
outputs. One prominent focus has been to design algorithms whose delay is bounded by a
polynomial in the size of the input. Problems admitting such algorithms constitute the class
DelayP and many problems are in this class, for example the enumeration of the maximal
independent sets of a graph [23], or answer tuples of restricted database queries [19] (see [39]
for many more examples).

It also happens that new elements of the output set, also called solutions, become
increasingly difficult to find. In this case, polynomial delay is usually out of reach but one
may still design algorithms with polynomial incremental time. An algorithm is in polynomial
incremental time if for every i, the delay between the output of the ith and the (i + 1)st

solution is polynomial in i and in the size of the input. Such algorithms naturally exist
for saturation problems: given a set of elements and a polynomial time function acting on
tuples of elements, produce the closure of the set by the function. One can generate such a
closure by iteratively applying the function until no new element is found. As the set grows
bigger, finding new elements becomes harder. The best algorithm to generate circuits of a
matroid uses a closure property of the circuits [24] and is thus in polynomial incremental
time. The fundamental problem of generating the minimal transversals of a hypergraph can
also be solved in quasi-polynomial incremental time [21, 8] and some of its restrictions in
polynomial incremental time [20]. In this paper, the class of problems which can be solved
with polynomial incremental time is denoted by UsualIncP.

While the delay is a natural way of measuring the quality of an enumeration algorithm, it
might sometimes be too strong of a restriction. Indeed, if the enumeration algorithm is used
to generate a subset of the solutions, it is often enough to have guarantees that the time
needed to generate i solutions is reasonable for every i. For example, one could be satisfied
with an algorithm that has the property that after a time i · p(n), it has output at least i

solutions, where p is a polynomial and n the input size. In this paper, we refer to this kind
of algorithm as IncP1-enumerators1 and call p(n) the incremental delay of the algorithm.

While polynomial delay enumerators are IncP1-enumerator, the converse is not true.
Indeed, IncP1-enumerators do not have to output their solutions regularly. Take for example
an algorithm that, on an input of size n, outputs 2n solutions in 2n steps, then nothing for
2n steps and finally outputs the last solution. It can be readily verified that this algorithm
outputs at least i solutions after 2i steps for every i ≤ 2n + 1, and it is thus an IncP1-
enumerator. However, the delay of such an algorithm is not polynomial as the time spent
between the output of the last two solutions is 2n. Instead of executing the output instruction
of this algorithm, one could store the solutions that are found in a queue. Then, every two
steps of the original algorithm, one solution is removed from the queue and output. The
IncP1 property ensures that the queue is never empty when dequeued and we now have
polynomial delay. Intuitively, the solutions being dense in the beginning, they are used to
pave the gap until the last solution is found. While this strategy may always be applied
to turn an IncP1-enumerator into a polynomial delay algorithm, the size of the queue may

1 The 1 in IncP1 stands for the linear dependency of the incremental time in the number of solutions.
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become exponential in the size of the input. In the above example, after the simulation of 2n

steps, 2n solutions have been pushed into the queue but only 2n−1 of them are output, so
the queue still contains 2n−1 solutions. Unfortunately, an algorithm using exponential space
may not be feasible. Therefore, much effort has been devoted to ensure that polynomial
delay methods run with polynomial space [27, 3, 15, 17, 10].

Contributions. The main result of this paper is a proof that the regularization of an IncP1-
enumerator may be done without exponentially increasing the space used. More formally, we
show that the class DelayPpoly of problems that can be solved by a polynomial delay and
polynomial space algorithm is the same as the class IncPpoly

1 of problems that can be solved
by a polynomial space IncP1-enumerator. In other words, we prove DelayPpoly = IncPpoly

1 ,
answering positively a question we raised in [11] and where only special cases were proven.
Our result relies on a constructive method that we call geometric amortization. It turns any
IncP1-enumerator into a polynomial delay algorithm whose delay and space complexity are
the incremental delay and space complexity of the original enumerator multiplied by a factor
of log(S), where S is the number of solutions (Theorem 3). Interestingly, we also show that
the total time can be asymptotically preserved.

We also apply geometric amortization to transform the average delay of many DelayP-
enumerators into a guaranteed delay. Indeed, we show that some widely used algorithmic
techniques to design DelayP algorithms also have an incremental delay that matches their
average delay. Thus, using geometric amortization, we show that the delay of such an
enumerator can be traded for their average delay multiplied by the logarithm of the number
of solutions. We apply this result to an algorithm solving ΠDNF [12], the problem of listing
the models of a DNF formula. This gives an algorithm with sublinear delay and polynomial
memory, answering an open question of [12].

The main consequence of our result is that it makes proving that an enumeration problem
is in DelayPpoly easier as one does not have to design an algorithm with polynomial delay
but only with polynomial incremental delay. One side-effect of our transformation however
is that the order the solutions are output in is changed which may have some practical
consequences when used. However, we do not see this as a downside. Actually, we do not
believe our method should be used in practice as we cannot see any advantages of having an
algorithm with polynomial delay over one with polynomial incremental delay, a notion that
we find more natural. This opinion may not be shared by everyone and the main point of
our result is to show that from a purely theoretical point of view, it actually does not matter
as both notions are – and it came as a surprise to us – the same.

Related work. The notion of polynomial incremental delay is natural enough to have
appeared before in the literature. In her PhD thesis [22], Goldberg introduced the notion
of polynomial cumulative delay, which exactly corresponds to our notion of polynomial
incremental delay. We however decided to stick to the terminology of [11]. Goldberg
mentions on page 10 that one can turn a linear incremental algorithm into a polynomial delay
algorithm but at the price of exponential space. She argues that one would probably prefer in
practice incremental delay and polynomial space to polynomial delay and exponential space.
Interestingly, she also designs for every constant k, an IncP1-algorithm with polynomial space
to enumerate on input n, every graph that is k-colorable (Theorem 15 on page 112). She
leaves open the question of designing a polynomial delay and polynomial space algorithm for
this problem, which now comes as a corollary of our theorem applied to her IncP1-algorithm.

STACS 2023
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In [37], Tziavelis, Gatterbauer and Riedewald introduce the notion of Time-To-k to
describe the time needed to output the k best answers of a database query for every k. They
design algorithms having a Time-To-k complexity of the form poly(n)k where n is the size of
the input, which hence corresponds to the notion of IncP1. They argue that delay is sufficient
but not necessary to get good Time-to-k complexity and they argue that in practice, having
small Time-to-k complexity is better than having small delay. Observe however that in their
case, our method does not apply well since they are interested in the best answers, meaning
that the order is important in this context. Our method does not preserve order.

Organization of the paper. In Section 2, we introduce enumeration problems, the related
computational model and complexity measures. Section 3 presents different techniques to
turn an IncP1-enumerator into a DelayP-enumerator using a technique called geometric
amortization. Interactive visualization of how geometric amortization works can be found at
http://florent.capelli.me/coussinet/. In Section 3.3 we apply geometric amortization
to incremental polynomial algorithms, showing that our result generalizes to the IncPi

hierarchy. Section 4 gives a method to transform many DelayP-enumerators of average delay
a(n) into a DelayP-enumerator with maximal delay a(n) log(K) where K is the number of
solutions. We use it to obtain an algorithm for the problem of enumerating the models
of a DNF formula. To outline the main ideas of our algorithms, they are presented using
pseudocode with instructions to simulate a given Random Access Machin (RAM). The details
on the complexity of using such instructions with minimal overhead are given in the appendix.

2 Preliminaries

Enumeration problems. Let Σ be a finite alphabet and Σ∗ be the set of finite words built
on Σ. We denote by |x| the length of x ∈ Σ∗. Let A ⊆ Σ∗ × Σ∗ be a binary predicat. We
write A(x) for the set of y such that A(x, y) holds. The enumeration problem ΠA is the
function which associates A(x) to x. The element x is called the instance or the input, while
an element of A(x) is called a solution. We denote the cardinality of a set A(x) by ♯A(x).

A predicate A is said to be polynomially balanced if for all y ∈ A(x), |y| is polynomial
in |x|. It implies that ♯A(x) is bounded by |Σ|poly(|x|). Let Check·A be the problem of
deciding, given x and y, whether y ∈ A(x). The class EnumP, a natural analogous to NP for
enumeration, is defined to be the set of all problems ΠA where A is polynomially balanced
and Check·A ∈ P. More details can be found in [11, 35].

Computational model. In this paper, we use the Random Access Machine (RAM) model
introduced by Cook and Reckhow [18] with comparison, addition, subtraction and multipli-
cation as its basic arithmetic operations augmented with an OUTPUT(i, j) operation which
outputs the content of the values of registers Ri, Ri+1, . . . , Rj as in [4, 34] to capture enumer-
ation problems. We use an hybrid between uniform cost model and logarithmic cost model
(see [18, 1]): output, addition, multiplication and comparison are in constant time on values
less than n, where n is the size of the input. In first-order query problems, it is justified by
bounding the values in the registers by n times a constant [19, 4]. However, it is not practical
for general enumeration algorithms which may store and access 2n solutions and thus need
to deal with large integers. Hence, rather than bounding the register size, we define the cost
of an instruction to be the sum of the size of its arguments divided by log(n). Thus, any
operation on a value polynomial in n can be done in constant time, but unlike in the usual
uniform cost model, we take into account the cost of dealing with superpolynomial values.

http://florent.capelli.me/coussinet/
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A RAM M on input x ∈ Σ∗ produces a sequence of outputs y1, . . . , yS . The set of outputs
of M is denoted by M(x) and its cardinality by ♯M(x). We say that M solves ΠA if, on
every input x ∈ Σ∗, A(x) = M(x) and for all i ̸= j we have yi ≠ yj , that is no solution is
repeated. All registers are initialized with zero. The space used by the M is the sum of the
bitsize of the integers stored in its registers, up to the register of the largest index accessed.

We denote by TM (x, i) the time taken by the machine M on input x before the ith

OUTPUT instruction is executed. When the machine is clear from the context, we drop the
subscript M and write T (x, i). The delay of a RAM which outputs the sequence y1, . . . , yS

is the maximum over all i ≤ s of the time spent between the generation of yi and yi+1, that
is max1≤i≤S T (x, i + 1)− T (x, i). The preprocessing is TM (x, 1), the time spent before the
first solution is output. The postprocessing is the time spent between the output of the last
solution and the end of the computation. To simplify the presentation, we assume that there
is no postprocessing, that is, a RAM solving an enumeration problem stops right after having
output the last solution. This assumption does not affect the complexity classes studied in
this paper, as the output of the last solution can be delayed to the end of the algorithm.

Pseudocode. In this paper, we describe our algorithms using pseudocode that is then
compiled to a RAM with the usual complexity guarantees. In our algorithms, we freely use
variables and the usual control flow instructions, arithmetic operations and data structures.
We also assume that we have access to an output(s) instruction which outputs the value of
variable s. When compiled, this instruction calls the OUTPUT instruction of the RAM on the
registers holding the value of s.

As this paper mostly deals with transforming a given enumeration algorithm into another
one having better complexity guarantees, it is convenient to call an algorithm as an oracle to
execute it step by step. Therefore, we use two other instructions in our pseudocode: load
and move. The instruction load(I, x) takes two parameters: the first one is the code of a
RAM and the second one is its input. It returns a data structure M that can later be used
with the move instruction: move(M) simulates the next step of the computation of machine
I on input x. We assume that move(M) returns false if the computation is finished. We also
assume that we have access to the following functions on M :

sol(M) returns the solution that M has just output. If the last simulated step of M was
not an output instruction, it returns undef. We abuse notation by writing if(sol(M))
then . . . to express the fact that we explore the then branch if and only if sol(M) is not
undef.

steps(M) returns the number of steps of M that have been simulated.
If we have an upper bound u(|x|) on the memory used by a machine of code I on input x, and
if u is computable in time t(|x|), we can implement load and move on a RAM with respective
complexity O(t(|x|)) and O(1) and space O(u(|x|)). Indeed, it is sufficient to reserve u(|x|)
contiguous registers in memory and shift all registers used by I so that it uses the reserved
memory.

It is also possible to implement these instructions without knowing in advance the
memory used by I but one has to use data structures able to dynamically adjust the memory
used. In this case, move can be executed either in O(1) with a small space overhead or in
O(log(log(|x|))) with no space overhead. We leave this improvement for a long version of
this article (see [13]) and state the main results when a polynomial time computable upper
bound u(|x|) on the memory is known.

STACS 2023
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Complexity measures and classes. Complexity measures and the relevant complexity classes
for enumeration have been formally introduced by Johnson, Yanakakis and Papadimitriou
in [23] first. The total time, that is TM (x, ♯A(x)), is similar to what is used for the complexity
of decision problems. Since the number of solutions can be exponential in the input size,
it is more relevant to give the total time as a function of the combined size of the input
and output. However, this notion does not capture the dynamic nature of an enumeration
algorithm. When generating all solutions already takes too long, we want to be able to
generate at least some solutions. Hence, we should measure (and bound) the total time used
to produce a given number of solutions. We give here the notion of linear incremental time,
central to the paper, while the more general notion of polynomial incremental time is given
and studied in Section 3.3.

▶ Definition 1 (Linear incremental time). A problem ΠA ∈ EnumP is in IncP1 if there is a
polynomial d and a machine M which solves ΠA, such that for all x and for all 1 < i ≤ ♯A(x),
T (x, i) < i · d(|x|) and T (x, 1) < d(|x|). Such a machine M is called an IncP1-enumerator
with incremental delay d(n).

▶ Definition 2 (Polynomial delay). A problem ΠA ∈ EnumP is in DelayP if there is a
polynomial d and a machine M which solves ΠA, such that for all x and for all 1 < i ≤ ♯A(x),
T (x, i)− T (x, i− 1) ≤ d(|x|) and T (x, 1) ≤ d(|x|). Such a machine M is called a DelayP-
enumerator of delay d(n).

Observe that if M is a DelayP-enumerator then for all i we have T (x, i) − T (x, 1) ≤∑
1<j≤i d(|x|) = (i−1)d(|x|). Hence DelayP ⊆ IncP1. Polynomial delay is the most common

notion of tractability in enumeration, because it guarantees both regularity and linear total
time and also because it is relatively easy to prove that an algorithm has a polynomial
delay. Indeed, most methods used to design enumeration algorithms such as backtrack search
with a polynomial time extension problem [29], or efficient traversal of a supergraph of
solutions [27, 3, 16], yield polynomial delay algorithms on many enumeration problems.

To better capture the notion of tractability in enumeration, it is important to use
polynomial space algorithms. We let DelayPpoly be the class of problems solvable by a
polynomial space DelayP-enumerator. We define IncPpoly

1 , as the class of problems which
can be solved by a polynomial space IncP1-enumerator.

3 From IncP1 to DelayP

3.1 Geometric Amortization
The folklore method (e.g., [23, 34, 14]) used to transform an IncP1-enumerator into a DelayP-
enumerator that was sketched in the introduction uses a queue to delay the output of solutions.
This queue may however become of size exponential in the input size. To overcome this issue,
we introduce a technique that we call geometric amortization, illustrated by Algorithm 1
which regularizes the delay of an IncP1-enumerator with a space overhead of O(log(♯I(x))),
which is polynomially bounded since I is in EnumP. To achieve this, we however have
to compromise a bit on the delay which becomes O((log(♯I(x)) · p(|x|)). Moreover, with
geometric amortization, the solutions are not output in the same order as the order they
are output by I. Algorithm 1 relies on the knowledge of an upper bound K of ♯I(x), but
this assumption is relaxed in Section 3.2. We now proceed to prove the correctness and
complexity of Algorithm 1 that is summarized in the theorem below.
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Algorithm 1 Using geometric amortization for regularizing the delay of an IncP1-
enumerator I having incremental delay p(n) only using polynomial space. In the code,
Z0 = [0; p(n)] and Zj = [2j−1p(n) + 1; 2jp(n)] for j > 0.

Input : x ∈ Σ∗ of size n and K such that K ≥ ♯I(x)
Output : Enumerate I(x) with delay O(p(n) · log(K))

1 begin
2 N ← ⌈log(K)⌉;
3 for i = 0 to N do M [i]← load(I, x) ;
4 j ← N ;
5 while j ≥ 0 do
6 for b← 2p(n) to 0 do
7 move(M [j]);
8 if sol(M [j]) and steps(M [j]) ∈ Zj then
9 output(sol(M [j]));

10 j ← N ;
11 break;

12 if b = 0 then j ← j − 1;

▶ Theorem 3. Given an IncP1-enumerator I with incremental delay p(n) and space complex-
ity s(n) and given K ≥ ♯I(x), one can construct a DelayP-enumerator I ′ which enumerates
I(x) on any input x ∈ Σ∗ with delay O(log(K)p(n)) and space complexity O(s(n) log(K)).

Proof. The pseudo-code for I ′, accessing an oracle to I as a blackbox, is presented in
Algorithm 1. Its correctness and complexity are proven in the rest of this section. ◀

Since IncP1 ⊆ EnumP, we know that there is a polynomial q(n) such that every element of
I(x) is of size at most q(|x|) and by choosing K = |Σ|q(n), we have that log(K) is polynomially
bounded and the following is a direct corollary of Theorem 3:

▶ Corollary 4. IncPpoly
1 = DelayPpoly.

The construction of I ′ from I in Theorem 3 is presented in Algorithm 1, which uses a
technique that we call geometric amortization. The idea of geometric amortization is to
simulate several copies of I on input x at different speeds. Each process is responsible for
enumerating solutions in different intervals of time to avoid repetitions in the enumeration.
The name comes from the fact that the size of the intervals we use follows a geometric
progression (the size of the (i + 1)th interval is twice the size of the ith one).

Explanation of Algorithm 1. Algorithm 1 maintains N + 1 simulations M [0], . . . , M [N ] of
I on input x where N = ⌈log(K)⌉. When simulation M [i] finds a solution, it outputs it if
and only if the number of steps of M [i] is in Zi, where Zi := [1 + 2i−1p(n), 2ip(n)] for i > 0
and Z0 = [1, p(n)]. These intervals are clearly disjoint and cover every possible step of the
simulation since the total time of I is at most ♯I(x)p(n) ≤ Kp(n) ≤ 2N p(n) (by convention,
we assumed enumerators to stop on their last solution, see Section 2). Thus, every solution
is enumerated as long as M [i] has reached the end of Zi when the algorithm stops.

STACS 2023



18:8 Geometric Amortization of Enumeration Algorithms

Algorithm 1 starts by moving M [N ]. It is given a budget of 2p(n) steps. If these 2p(n)
steps are executed without finding a solution in ZN , M [N − 1] is then moved similarly with a
budget of 2p(n) steps. It continues until one machine M [j] finds a solution in its zone Zj . In
this case, the solution is output and the algorithm proceeds back with M [N ]. The algorithm
stops when M [0] has left Z0, that is when p(n) + 1 steps of M [0] have been simulated2.

Bounding the delay. From the above description of Algorithm 1, between two outputs, the
variable j takes at most N + 1 values (from N to 0) and at most 2p(n) move instructions
are executed for each machine M [j]. A move instruction can be executed in O(1) (see
Appendix A). Moreover, the size of b being O(log(n)), we can increment it in O(1) in the
RAM model we consider. Finally, we have to compare steps(M [i]) with integers of values
in O(log(K)p(n)). Manipulating such integers in the RAM model would normally cost
O(log(K)/ log(n)). However, we give in Appendix A.2 a method using Gray Code encodings
which allows us to increment steps(M [i]) and to detect when it enters and exits Zi in O(1).
Thus, the overall delay of Algorithm 1 is O(log(K)p(n)).

Space complexity. We have seen in Section 2 that a RAM can be simulated without using
more space than the original machine (see Appendix A for more details). Since Algorithm 1
uses O(log(K) simulations of I, its space complexity is O(s(n) log(K)).

Correctness of Algorithm 1. It remains to show that Algorithm 1 correctly outputs I(x)
on input x. Recall that a solution of I(x) is enumerated by M [i] if it is produced by I at
step c ∈ Zi = [1 + 2i−1p(n), 2ip(n)]. Since, by definition, the total time of I on input x is
at most ♯I(x)p(n), it is clear that Z0 ⊎ · · · ⊎ ZN ⊇ [1, Kp(n)] ⊇ [1, ♯(I)p(n)] covers every
solution and that each solution is produced at most once. Thus, it remains to show that
when the algorithm stops, M [i] has moved by at least 2ip(n) steps, that is, it has reached
the end of Zi and output all solutions in this zone.

We study an execution of Algorithm 1 on input x. For the purpose of the proof, we
only need to look at the values of steps(M [0]), . . . , steps(M [N ]) during the execution of the
algorithm. We thus say that the algorithm is in state c = (c0, . . . , cN ) if steps(M [i]) = ci for
all 0 ≤ i ≤ N . We denote by Sc

i the set of solutions that have been output by M [0], . . . , M [i]
when state c is reached; that is, a solution is in Sc

i if and only if it is produced by I at step
k ∈ Zj for j ≤ i and k ≤ cj = steps(M [j]). We claim the following invariant:

▶ Lemma 5. For every state c and i < N , we have ci+1 ≥ 2p(n)|Sc
i |.

Proof. The proof is by induction on c. For the state c just after initializing the variables, we
have that for every i ≤ N , |Sc

i | = 0 and ci = 0. Hence, for i < N , ci+1 ≥ 0 = 2p(n)|Sc
i |.

Now assume the statement holds at state c′ and let c be the next state. Let i < N . If
|Sc

i | = |Sc′

i |, then the inequality still holds since ci+1 ≥ c′
i+1 and c′

i+1 ≥ 2p(n)|Sc′

i | = 2p(n)|Sc
i |

by induction. Otherwise, we have |Sc
i | = |Sc′

i |+ 1, that is, some simulation M [k] with k ≤ i

has just output a solution. In particular, the variable j has value k ≤ i < N . Let c′′ be
the first state before c′ such that variable j has value i + 1 and b has value 2p(n), that is,
c′′ is the state just before Algorithm 1 starts the for loop to move M [i + 1] by 2p(n) steps.
No solution has been output between state c′′ and c′ since otherwise j would have been

2 An illustration of Algorithm 1 can be found at http://florent.capelli.me/coussinet/ where one
can see the run of a machine represented as a list and the different simulations moving in this list and
discovering solutions.

http://florent.capelli.me/coussinet/
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reset to N . Thus, |Sc′′

i | = |Sc′

i |. Moreover, ci+1 ≥ c′
i+1 ≥ c′′

i+1 + 2p(n) since M [i + 1] has
moved by 2p(n) steps in the for loop without finding a solution. By induction, we have
c′′

i+1 ≥ 2p(n)|Sc′′

i | = 2p(n)|Sc′

i |. Thus ci+1 ≥ c′′
i+1 + 2p(n) = 2p(n)(|Sc′

i | + 1) = 2p(n)|Sc
i |

which concludes the induction. ◀

▶ Corollary 6. Let c = (c0, . . . , cN ) be the state reached when Algorithm 1 stops. We have
for every i ≤ N , ci ≥ 2ip(n).

Proof. The proof is by induction on i. If i is 0, then we necessarily have c0 ≥ p(n) since
Algorithm 1 stops only when M [0] has moved outside Z0, that is when it has been moved by
at least p(n) steps.

Now assume cj ≥ 2jp(n) for every j < i. This means that for every j < i, M [j] has been
moved at least to the end of Zj . Thus, M [j] has found every solution in Zj . Since it holds
for every j < i, it means that M [0], . . . , M [i− 1] have found every solution in the interval
K = [1, 2i−1p(n)]. Since I is an IncP1-enumerator with delay p(n) and since 2i−1 ≤ ♯I(x) by
definition of N , K contains at least 2i−1 solutions, that is, |Sc

i−1| ≥ 2i−1. Applying Lemma 5
gives that ci ≥ 2i−1 · 2p(n) = 2ip(n). ◀

The correctness of Algorithm 1 directly follows from Corollary 6. Indeed, it means that
for every i ≤ N , every solution of Zi = [1 + 2i−1p(n), 2ip(n)] have been output, that is, every
solution of [1, 2N p(n)] and 2N p(n) is an upper bound on the total run time of I on input x.

Observe that Algorithm 1 does not preserve the order of the solutions since it interleaves
solutions later seen in the enumeration process in order to amortize large delay between two
solutions. One possible workaround is to output pairs of the form (s, r) where s is a solution
and r its rank in the original enumeration order. To do so, one just has to keep a counter of
the number of solutions seen so far by each process and output it along a solution. It does not
restore the order, but allows recovering it afterward. When we are interested in finding the
first K solutions only (a likely scenario for solving top-k problems), the previous workaround
is not useful. However, our algorithm can output them only with a log(K) overhead by just
running log(K) processes and ignoring solutions having a rank higher than K; the solutions
will however not be output in order.

3.2 Improving Algorithm 1
One drawback of Algorithm 1 is that it needs to know in advance an upper bound K on
♯I(x) since it uses it to determine how many simulations of I it has to maintain. In theory,
such an upper bound exists because I is assumed to be in EnumP and it is often known, e.g.,
|Σ|N where N is an upper bound on the size of the output. In practice, however, it might be
cumbersome to compute it or it may hurt efficiency if the upper bound is overestimated. It
turns out that one can remove this hypothesis by slightly modifying Algorithm 1. The key
observation is that during the execution of the algorithm, if M [i] has not entered Zi, it is
simulated in the same way as M [i + 1], . . . , M [N ]. Indeed, it is not hard to see that M [j] is
always ahead of M [i] for j > i and that if M [i] is not in Zi, it will not output any solution
in the loop at Line 6, hence this iteration of the loop will move M [i] by 2p(n) steps, just like
M [j] for j > i. Hence, Algorithm 1 can be improved in the following way: we start with
only two simulations M [0], M [1] of I. Whenever M [1] is about to enter Z1, we start M [2] as
an independent copy of M [1]. During the execution of the algorithm, we hence maintain a
list M of simulations of I and each time the last simulation M [N ] is about to enter ZN , we
copy it into a new simulation M [N + 1]. The hardest part of implementing this idea is to
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Algorithm 2 Improvement of Algorithm 1 which works without upper bounds on the
number of solutions and has a better total time. In the code, a0 = 0 and aj = 2j−1p(n) + 1.

Input : x ∈ Σ∗ of size n

Output : Enumerate I(x) with delay O(p(n) · log(♯I(x)))
1 begin
2 M ← list(∅);
3 insert(M, load(I, x));
4 j ← length(M)− 1;
5 while j ≥ 0 do
6 for b← 2p(n) to 0 do
7 move(M [j]);
8 if j = length(M)− 1 and steps(M [j]) = aj then
9 insert(M, copy(M [j]));

10 j ← length(M)− 1;
11 break;
12 if sol(M [j]) and steps(M [j]) ∈ [aj ; aj+1 − 1] then
13 output(sol(M [j]);
14 j ← length(M)− 1;
15 break;

16 if b = 0 then j ← j − 1;

show that one can copy simulation M [N ] without affecting the overall delay of the algorithm.
That can be achieved by lazily copying parts of M [N ] whenever we move M [N + 1]. The
details are given in Appendix A.4.

By implementing this idea, one does not need to know an upper bound on ♯I(x) anymore:
new simulations will be created as long as it is necessary to discover new solutions ahead.
The fact that one has found every solution is still witnessed by the fact that M [0] reaches
the end of Z0. This improvement has yet another advantage compared to Algorithm 1: it
has roughly the same total time as the original algorithm. Hence, if one is interested in
generating every solution with a polynomial delay from an IncP1-enumerator, our method
may make the maximal delay worse but does not change much the time needed to generate
all solutions.

Correctness of Algorithm 2. Correctness of Algorithm 2 can be proven in a similar way as
for Algorithm 1. Lemma 5 still holds for every state, where N in the statement has to be
replaced by length(M)− 1. The proof is exactly the same but we have to verify that when
a new simulation is inserted into M , the property still holds. Indeed, let c be a state that
follows the insertion of a new simulation (Line 8). We have now length(M) − 1 = N + 1
(thus the last index of M is N + 1). Moreover, we claim that Sc

N+1 = Sc
N . Indeed, at this

point, the simulation M [N + 1] has not output any solution. Moreover, by construction,
cN = steps(M [N ]) = steps(M [N + 1]) = cN+1. Since cN ≥ 2p(n)|Sc

N | by induction, we
have that cN+1 ≥ 2p(n)|Sc

N+1|. Moreover, the following adaptation of Corollary 6 holds for
Algorithm 2.

▶ Lemma 7. Let c be the state reached when Algorithm 1 stops. Then N := length(M)− 1 =
1 + log(♯I(x)) and for every i ≤ N , ci ≥ 2ip(n).
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Proof. The lower bound ci ≥ 2ip(n) for i ≤ N is proven by induction exactly as in the proof
of Lemma 5. The induction holds as long as 2i−1 ≤ ♯I(x), because we need this assumption
to prove that there are at least 2i−1 solutions in the interval [1, 2i−1p(n)]. Now, one can
easily see that if i ≤ 1 + log(♯I(x)) and ci ≥ 2ip(n) then the simulation M [i] has reached
2i−1p(n) at some point and thus, has created a new simulation M [i + 1]. Thus, by induction,
the algorithms creates at least 1 + log(♯I(x)) = N new simulations. Thus length(M) ≥ N + 1
(as M starts with one element).

Finally, observe that M [N ] outputs solutions in the zone ZN = [2N−1p(n) + 1, 2N p(n)]
and that 2N−1p(n) = ♯I(x)p(n) which is an upper bound on the total time of I on input
x. Thus, the simulation M [N ] will end without creating a new simulation. In other words,
length(M)− 1 = N . ◀

Delay of Algorithm 2. While establishing the correctness of Algorithm 2 is similar to the
one of Algorithm 1, proving a bound on the delay of Algorithm 2 is not as straightforward.
By Lemma 7, the size of M remains bounded by 2 + log(♯I(x)) through the algorithm, so
there are at most 2p(n)(2 + log(♯I(x))) executions of move between two solutions, for the
same reasons as before. However, we also have to account for the execution of copy. When
implemented naively, this operation requires a time O(s(n)) to copy the entire configuration
of the simulation in some fresh part of the memory. It would add O(s(n)) to the delay of
Algorithm 2 compared to Algorithm 1. However, one can amortize this copy operation by
lazily copying the memory while running the original simulation and by adapting the sizes of
the zones so that we can still guarantee a delay of O(log(♯I(x))p(n)) in Algorithm 2. The
method is formally described in Appendix A.4.

Total time of Algorithm 2. A minor modification of Algorithm 2 improves its efficiency
in terms of total time. By definition, when simulation M [i] exits Zj , it does not output
solutions anymore. Thus, it can be removed from the list of simulations. It does not change
anything concerning the correctness of the algorithm. One just has to be careful to adapt
the bounds in Algorithm 2. Indeed, 2jp(n) is not the right bound anymore as removing
elements from M may shift the positions of the others. It can be easily circumvented by also
maintaining a list Z such that Z[i] always contains the zone that M [i] has to enumerate.

By doing it, it can be seen that each step of I having a position in Zi will only be visited
by two simulations: the one responsible for enumerating Zi and the one responsible for
enumerating Zi+1. Indeed, the other simulations would either be removed before entering Zi

or will be created after the last element of M has entered Zi+1. Thus, the move operation is
executed at most 2T (|x|) times where T (|x|) is the total time taken by I on input x and the
total time of this modification of Algorithm 2 is O(T (n)) where T (n) is the total time of I.

All previous comment on Algorithm 2 allows us to state the following improvement of
Theorem 3, where no upper bound on ♯I(x) is necessary but s(n) and p(n) are known.

▶ Theorem 8. Given an IncP1-enumerator I with incremental delay p(n), space complexity
s(n) and total time T (n), one can construct a DelayP-enumerator I ′ which enumerates I(x)
on any input x ∈ Σ∗ with space complexity O(s(n) log(♯I(x))), delay O(log(♯I(x))p(n)) and
total time O(T (n)).

We observe that Algorithm 2 can be modified so that it can work with IncP1-enumerators
having a preprocessing. Indeed one only needs, as a preprocessing step of Algorithm 2, to
run the first simulation created by the algorithm until it outputs its first solution to be in
the same state as the case where there is no preprocessing.
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We sill need to know two parameters (or an upper bound on them) to run Algorithm 2:
the space of the amortized algorithm and its incremental delay. By using dynamic data
structures, one could adapt our algorithm when the space used by the enumerator is not
known for a very small overhead. Moreover, it is possible to give a lower bound showing that
one cannot get a O(p(n)) polynomial delay when the incremental delay p(n) is unknown (if
I is a blackbox). We leave this improvement for a long version of this article (see [13]).

3.3 Geometric Amortization for IncPi with i > 1
The dynamic version of the total time is called incremental time: Given an enumeration
problem A, we say that a machine M solves ΠA in incremental time f(i)g(n) if on every input
x, and for all i ≤ ♯A(x), TM (x, i) ≤ f(i)g(|x|). The linear incremental time corresponds to
the case f(i) = i. We generalize IncP1, by polynomially bounding the incremental time.

▶ Definition 9 (Polynomial incremental time). A problem ΠA ∈ EnumP is in IncPa if there
is a constant b and a machine M which solves it with incremental time O(ianb). Such a
machine is called an IncPa-enumerator. Moreover, we define IncP =

⋃
a≥1 IncPa.

Allowing arbitrary polynomial preprocessing does not modify the class IncPa since this
preprocessing can be interpreted as the polynomial time before outputting the first solution.
The class IncP is believed to be strictly included in OutputP, the class of problems solvable
in total polynomial time, since this is equivalent to TFNP ̸= FP [11]. Moreover, the classes
IncPa form a strict hierarchy assuming the exponential time hypothesis [11].

▶ Definition 10 (Usual definition of incremental time.). A problem ΠA ∈ EnumP is in
UsualIncPa if there are b and c integers and a machine M which solves ΠA such that for all
x and for all 0 < t ≤ ♯A(x), T (x, t)− T (x, t− 1) < cta|x|b.

Our definition of IncP captures the fact that we can generate t solutions in time polynomial
in t and in the size of the input, which seems more general than bounding the delay because
the time between two solutions is not necessarily regular. Using geometric amortization,
we can show that both definitions are equivalent even when the space is required to be
polynomial.

For a ≥ 0, we denote by IncPpoly
a (respectively UsualIncPpoly

a ), the class of problems that
can be solved by an IncPa (respectively UsualIncPa) algorithm and polynomial space. The
following generalises Corollary 4 since DelayP = UsualIncP0.

▶ Theorem 11. For all a ≥ 0, IncPpoly
a+1 = UsualIncPpoly

a .

Proof. The inclusion UsualIncPpoly
a ⊆ IncPpoly

a+1 is straightforward and follows by a simple
computation of the time to generate i solutions, see [11].

The inclusion IncPpoly
a+1 ⊆ UsualIncPpoly

a is done by geometric amortization, by adapting
Algorithm 1. Let I be an algorithm solving a problem in IncPa+1. We assume we know
ta+1p(n), a bound on its incremental time.

Then, the only modification we do in Algorithm 1 is to maintain a counter S of the
number of output solutions and modify the initialization of b in the for loop at line 6 to
Sa(a + 1)2p(n). By construction of the amortization algorithm, the delay between two
solutions before the algorithm ends is bounded by Sa(a + 1)2p(n) log(s), where S is the
number of solutions output up to this point of the algorithm and s the total number of
solutions. Thus, the algorithm is in UsualIncPa.
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We still have to prove that all solutions are enumerated by the algorithm. Assume that
the first i + 1 machines M [0], . . . , M [i] have output all the solutions in their zones, then we
prove as in Corollary 6, that the the machine M [i + 1] has also output all its solutions. The
number of solutions output by M [0], . . . , M [i] is the number of solutions output by I up to
time step 2ip(n). Let si be this number, then sa+1

i p(n) ≥ 2ip(n) since I is in incremental
time ta+1p(n). Hence, si ≥ 2i/(a+1).

When a solution is output by a machine M [j] with j ≤ i, then j is set to N and all
machines M [k] with k > i move by at least Sa(a + 1)2p(n) steps where S is the current
number of output solutions before M [i] moves again. Hence, we can lower bound the number
of moves of the machine M [i + 1] by

∑si

S=0 Sa(a + 1)2p(n) ≥
∑2i/(a+1)

S=0 Sa(a + 1)2p(n). Since∑n
S=0 Sa ≥

∫ n

0 Sa dS ≥ na+1/(a+1), the number of moves of M [i+1] is larger than 2i+1p(n)
which is the upper bound of its zone. ◀

4 Other Applications of Geometric Amortization

4.1 Amortizing Self-Reducible Problems
Given an enumeration problem ΠA, we assume from now on, to lighten the exposition, that
the solutions in A(x) are sets over some universe U(x). From A, we define the predicate Ã

which contains the pairs ((x, a, b), y) such that y ∈ A(x) and a ⊆ y ⊆ b. From this predicate,
we define a self-reducible3 variant of ΠA and the extension problem ExtSol·A defined as
the set of triples (x, a, b) such that there is a y in Ã(x, a, b).

Solving ΠA on input x is equivalent to solving ΠÃ on (x, ∅, U(x)). Let us now formalize
a recursive method to solve ΠÃ, sometimes called binary partition, because it partitions
the solutions to enumerate in two disjoint sets. Alternatively, it is called flashlight search,
because we peek at subproblems to solve them only if they yield solutions. To our knowledge,
all uses of flashlight search in the literature can be captured by this formalization, except
for the partition of the set of solutions which can be in more than two subsets. We only
present the binary partition for the sake of clarity, but our analysis can be adapted to finer
partitions.

Given an instance (x, a, b) of ΠÃ and some global auxiliary data D, a flashlight search
consists in the following (subroutines are not specified, and yield different flashlight searches):

if a = b, a is ouput and the algorithm stops
choose u ∈ b \ a;
if (x, a ∪ {u}, b) ∈ ExtSol·A, compute some auxiliary data D1 from D and make a
recursive call on (x, a ∪ {u}, b);
if (x, a, b \ {u}) ∈ ExtSol·A, compute some auxiliary data D2 from D1 and make a
recursive call on (x, a, b \ {u}), then compute D from D2.

Flashlight search can be seen as a depth-first traversal of a partial solutions tree. A
node of this tree is a pair (a, b) such that (x, a, b) ∈ ExtSol·A. Node (a, b) has children
(a ∪ {u}, b) and (a, b \ {u}) if they are nodes. A leaf is a pair (a, a) and the root is (∅, U(x)).
The cost of a node (a, b) is the time to execute the flashlight search on (x, a, b) except the
time spent in recursive calls. Usually, the cost of a node comes from deciding ExtSol·A
and modifying the global data structure D used to solve ExtSol·A faster.

3 For a classical definition of self-reducible problems, see e.g. [25, 5].
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The cost of a path in a partial solution tree is the sum of the costs of the nodes in the
path. We define the path time of a flashlight search algorithm as the maximum over the cost
of all paths from the root. Twice the path time bounds the delay since, between two output
solutions, a flashlight search traverses at most two paths in the tree of partial solutions.
To our knowledge, all bounds on the delay of flashlight search are proved by bounding the
path time. The path time is bounded by ♯U(x) times the complexity of solving ExtSol·A.
Auxiliary data can be used to amortize the cost of evaluating ExtSol·A repeatedly, generally
to prove that the path time is equal to the complexity of solving ExtSol·A once, e.g., when
generating minimal models of monotone CNF [31].

Using flashlight search, we obtain that ΠA ∈ DelayP if ExtSol·A ∈ P and indeed many
enumeration problems are in DelayP because their extension problem are in P, see e.g.,
[38, 29]. However, there are NP-hard extension problems whose enumeration problem is in
DelayP, e.g., the extension of a maximal clique, whose hardness can be derived from the fact
that finding the largest maximal clique in lexicographic order is NP-hard [23].

The average delay (also amortized delay or amortized time) of a machine M solving ΠA

on input x is T (x, ♯A(x))/♯A(x). The average delay of an enumerator is bounded by its delay
but it can be much smaller. This happens in flashlight search when the internal nodes of
the tree of partial solutions are guaranteed to have many leaves. Uno describes the pushout
method [38] harnessing this property to obtain constant average delay algorithms for many
problems such as generating spanning trees.

To make sense of very low complexity enumeration algorithms, we may separate the
preprocessing T (x, 1) from the rest of the computation. We say that a machine with
preprocessing has incremental delay d(n) if, for all x and i, T (x, i)− T (x, 1) ≤ i · d(|x|). The
preprocessing is not taken into account in the incremental delay. When the preprocessing
time is not zero, it is explicitly specified and we use preprocessing only in this section. We
now prove, using Theorem 3, that the average delay of a flashlight search can be turned into
a delay up to a small multiplicative factor. It relies on a small queue for amortization, so
that its incremental delay is equal to its average delay, and on geometric amortization to
turn the incremental delay into a delay.

▶ Theorem 12. Let ΠA be an enumeration problem solved by a flashlight search algorithm,
with space s(n), path time p(n) and average delay d(n). Let b(n) be the size of a single
solution. There is an algorithm solving ΠA on any input x, with preprocessing O(p(n)b(n)),
delay O(d(n) log(♯I(x))) and space O(s(n) log(♯I(x)) + p(n)b(n)).

Proof. Let I be the flashlight search algorithm solving ΠA. Let us first describe an algorithm
I ′ in incremental linear time, which produces the same solutions as I on any input x of size
n. The preprocessing of I ′ is to run I for p(n) steps and to store each solution output in
a queue. It takes a time at most O(p(n)b(n)) since there are at most p(n) solutions of size
b(n) to store in the queue. The queue requires an additional space of O(p(n)b(n)). After the
preprocessing, we first output all solutions in the queue and then I is simulated for the rest
of its run and the solutions output by I are output by I ′ right away.

Checking the queue for emptiness and outputting a solution can be done in constant
time. Hence, we can guarantee that there is a constant C, such that after C computation
steps of I ′, one step of I is executed. Let us evaluate the number of solutions output when
I ′ has run for a time Ct after the preprocessing. If at this time the queue is not empty, then
a solution has been output at each time step, hence there are at least t output solutions.

If the queue is empty, the number of solutions output by I ′ is the same as the number
of solutions output by I after running for a time p(n) + t. At this point in time, the
flashlight search is considering some node (a, b) of the partial solutions tree and we denote
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Current subproblem
Enumerated subproblems

. . .

(a0, b0)

(a, b)

(a1, b1)
(a2, b2)

(a0 ∪ {u0}, b0)

(a2 ∪ {u2}, b2)

Figure 1 A traversal of the tree of partial solutions by the flashlight search. The subproblems
completely solved recursively in blue, the path to the current solution in red.

by (∅, U(x)) = (a0, b0), . . . , (ai, bi) = (a, b) the path from the root to (a, b). The time spent
on the nodes of this path is bounded by p(n), the path time of I. Hence, I spends at least a
time t in the subtrees whose root is a child of some (ai, bi).

Also, observe that a subtree rooted at a child (c, d) of (ai, bi) with (c, d) ̸= (ai+1, bi+1) has
been either completely explored by the flashlight search or not at all, as shown in Figure 1.
Since I is a flashlight search, it works recursively on subtrees, corresponding to subproblems.
If a subtree rooted at (c, d) has been completely explored, then the flashlight search has
recursively solved the problem Ã(x, c, d). By definition of the average delay, the solutions
in Ã(x, c, d) have been produced by flashlight search in total time less than d(n)♯Ã(x, c, d).
Hence, the subproblems entirely solved by I contribute at least t/d(n) solutions. Therefore,
in time Ct, I ′ outputs at least t/d(n) solutions.

Therefore, we have proven that I ′ is in incremental delay O(d(n)), space O(s(n)+p(n)b(n))
and preprocessing O(p(n)b(n)). Applying Theorem 3 to I ′ yields an algorithm with the
stated complexity. ◀

4.2 Enumeration of the Models of DNF Formulas

In this section, we explore consequences of Theorem 12 on the problem of generating models
of a DNF formula, which has been extensively studied in [12]. Let us denote by n the number
of variables of a DNF formula, by m its number of terms and by ΠDNF the problem of
generating the models of a DNF formula. The size of a DNF formula is at least m and
at most O(mn) (depending on the representation and the size of the terms), which can
be exponential in n. Hence, we want to understand whether ΠDNF can be solved with a
delay polynomial in n only, that is depending on the size of a model of the DNF formula
but not on the size of the formula itself. A problem that admits an algorithm with a delay
polynomial in the size of a single solution is said to be strongly polynomial and is in the class
SDelayP. One typical obstacle to being in SDelayP is dealing with large non-disjoint unions
of solutions. The problem ΠDNF is an example of such difficulty: its models are the union
of the models of its terms, which are easy to generate with constant delay.

The paper [12] defines the strong DNF enumeration conjecture as follows: there is no
algorithm solving ΠDNF in delay o(m). It also describes an algorithm solving ΠDNF in
average sublinear delay. It is based on flashlight search, with appropriate data structures and
choice of variables to branch on (Theorem 10 in [12]). Thanks to Theorem 12, we can trade
the average delay for a guaranteed delay and falsify the strong DNF enumeration conjecture.

▶ Corollary 13. There is an algorithm solving ΠDNF with linear preprocessing, delay
O(n2m1−log3(2)) and space O(n2m).
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Proof. The algorithm of [12] enumerates all models with average delay O(nm1−log3(2)) and
the space used is the representation of the DNF formula by a trie, that is O(mn). We apply
Theorem 12 to this algorithm. We have a bound on the incremental delay, the space used
and the number of solutions, hence we can use Theorem 3 to do the geometric amortization
without overhead in the method of Theorem 12. The auxiliary queue used in Theorem 12 is
of size n2m, since the path time is nm. The number of models is bounded by 2n, hence the
delay obtained by amortization is O(n2m1−log3(2)) and the space O(n2m), which proves the
theorem. ◀

For monotone DNF formulas, Theorem 14 of [12] gives a flashlight search with an average
delay of O(log(mn)). Hence, we obtain an algorithm with delay O(n log(mn)) listing the
models of monotone DNF formulas with strong polynomial delay by Theorem 12. It gives an
algorithm having a better delay, preprocessing and space usage than the algorithm given by
Theorem 12 of [12].

▶ Corollary 14. There is an algorithm solving ΠDNF on monotone formulas with polynomial
space, linear preprocessing and strong polynomial delay.

We have not proven that ΠDNF ∈ SDelayP, and the DNF Enumeration Conjecture, which
states that ΠDNF /∈ SDelayP still seems credible. Theorem 3 shows that this conjecture can
be restated in terms of incremental delay, suggesting that the conjectured hardness should
rely on the incremental delay and not on the delay.

▶ Conjecture 15. There is no polynomial p such that ΠDNF can be solved with polynomial
space and incremental delay p(n).
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A Oracles to RAM

In this Appendix, the size of the input of the algorithm is denoted by n. We assume in
this section that the polynomial p(n) is the known delay of I, the simulated RAM. The
complexity of any operation in the RAM model, say a + b is (log(a) + log(b))/ log(n). If a

and b are bounded by some polynomial in n, then (log(a) + log(b))/ log(n) < C for some
constant C. All integers used in this section are bounded by a polynomial in n and can
thus be manipulated in constant time and stored using constant space. We assume an
infinite supply of zero-initialized memory, that is all registers of the machines we use are first
initialized to zero. It is not a restrictive assumption, since we can relax it, by using a lazy
initialization method (see [30] 2, Section III.8.1) for all registers, for only a constant time
and space overhead for all memory accesses.

A.1 Pointers and Memory

To implement extensible data structures, we need to use pointers. A pointer is an integer,
stored in some register, which denotes the index of the register from which is stored an
element. In this article, the value of a pointer is always bounded by a polynomial in n, thus
it requires constant memory to be stored. Using pointers, it is easy to implement linked lists,
each element contains a pointer to its value and a pointer to the next element of the list.
Following a pointer in a list can be done in constant time. Adding an element at the end of
a list can be done in constant time if we maintain a pointer to the last element. We also use
arrays, which are a set of consecutive registers of known size.

In our algorithms, we may need memory to extend a data structure or to create a new
one, but we never need to free the memory. Such a memory allocator is trivial to implement:
we maintain a register containing the value F , such that no register of index larger than F

is used. When we need k consecutive free registers to extend a data structure, we use the
registers from F to F + k − 1 and we update F to F + k.

http://dx.doi.org/10.48550/arXiv.2205.05649
https://kunihirowasa.github.io/enum/problem_list
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A.2 Counters
All algorithms presented in this paper rely, sometimes implicitly, on our ability to efficiently
maintain counters, for example, to keep track of the number of steps of a RAM that have
been simulated so far. Implementing them naively by simply incrementing a register would
result in efficiency loss since these registers may end up containing values as large as 2poly(n)

and we could not assume that this register can be incremented, compared, or multiplied in
constant time in the uniform cost model that we use in this paper.

To circumvent this difficulty, we introduce in this section a data structure that allows us
to work in constant time with counters representing large values. Of course, we will not be
able to perform any arithmetic operations on these counters. However, we show that our
counter data structure enjoys the following operations in constant time: inc(c) increases the
counter by 1 and mbit(c) returns the index of the most significant bit of the value encoded
by c. In other words, if k = mbit(c) then we know that inc(c) has been executed at least 2k

times and at most 2k+1 times since the initialization of the counter.
The data structure is based on Gray code encoding of numbers. A Gray code is an

encoding enjoying two important properties: the Hamming distance of two consecutive
elements in the Gray enumeration order is one and one can produce the next element in the
order in constant time. The method we present in this section is inspired by Algorithm G
presented in [26] which itself is inspired by [7] for the complexity. The only difference with
Algorithm G is that we maintain a stack containing the positions of the 1-bits of the code in
increasing order so that we can retrieve the next bit to switch in constant time which is not
obvious in Algorithm G. Our approach is closer to the one presented in Algorithm L of [26]
but for technical reasons, we could not use it straightforwardly.

We assume in the following that we have a data structure for a stack supporting initial-
ization, push and pop operations in constant time and using O(s) registers in memory where
s is the size of the stack (it can be implemented by a linked list).

Counters with a known upper bound on the maximal value. We start by presenting the
data structure when an upper bound on the number of bits needed to encode the maximal
value to be stored in the counter is known. For now on, we assume that the counter will be
incremented at most 2k − 1 times, that is, we can encode the maximal value of the counter
using k bits.

To initialize the data structure, we simply allocate k consecutive registers R0, . . . , Rk−1
initialized to 0, which can be done in constant time since the memory is assumed to be
initialized to 0, and we initialize an empty stack S. Moreover, we have two other registers A

and M initialized to 0.
We will implement mbit and inc to ensure the following invariants: the bits of the Gray

Code encoding the value of the counter are stored in R0, . . . , Rk−1. A contains the parity of
the number of 1 in R0, . . . , Rk−1. M contains an integer smaller than k that is the position
of the most significant bit in the Gray Code (the biggest j ≤ k − 1 such that Rj contains
1). Finally, S contains all positions j such that Rj is set to 1 in decreasing order (that is if
j < j′ are both in S, j will be poped before j′).

To implement mbit, we simply return the value of M . It is well-known and can be easily
shown that the most significant bit of the Gray Code is the same as the most significant bit
of the value it represents in binary so if the invariant is maintained, M indeed contains a
value j such that the number of times inc(c) has been executed is between 2j and 2j+1 − 1.

To implement inc, we simply follow Algorithm G from [26]. If A is 0 then we swap the
value of R0. Otherwise, we swap the value of Rj+1 where j is the smallest position such
that Rj = 1 (if j is k − 1 then we have reached the maximal value of the code which we
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have assumed to be impossible, see below to handle unbounded counters). One can find
j in constant time by just popping the first value in S, which works if the invariant is
maintained. Now, one has to update the auxiliary memory: A is replaced by 1−A so that it
still represents the parity of the number of 1 in the Gray Code. To update S, we proceed as
follows: if A is 0 then either R0 has gone from 0 to 1, in which case we have to push 0 in S

or R0 has gone from 1 to 0, in which case we have to pop one value in S, which will be 0
since S respects the invariant. It can be readily proven that this transformation preserves
the invariant on S. Now, if A is 1, then either the value of Rj+1 has gone from 0 to 1 which
means that we have to push j + 1 and j on the stack (j is still the first bit containing 1 so it
has to be pushed back on the top of the stack and j + 1 is the next bit set to 1 so it has to
be just after j in S). Or the value of Rj+1 has gone from 1 to 0. In this case, it means that
after having popped j from S, j + 1 sits at the top of S. Since Rj+1 is not 0, we have to pop
j + 1 from S and push back j. Again, it is easy to see that these transformations preserve
the invariant on S. Moreover, we never do more than 2 operations on the stack so this can
be done in constant time. Finally, if Rj+1 becomes 1 and j + 1 > M , we set M to j + 1.

Observe that we are using 2k + 2 registers for this data structure since the stack will
never hold more than k values.

Unbounded counters. To handle unbounded counters, we start by initializing a bounded
counter c0 with k bits (k can be chosen arbitrarily, k = 1 works). When c0 reaches its
maximal value, we just initialize a new counter c1 with k + 1 bits and modify it so it contains
the Gray Code of c0 (with one extra bit) and copy its stack S and the values of A and M .

This can be done in constant time thanks to the following property of Gray code: the
Gray code encoding of 2k − 1 contains exactly one bit set to 1 at position k − 1. Thus, to
copy the value of c0, we only have to swap one bit in c1 (which has been initialized to 0 in
constant time). Moreover, the stack of c0 containing only positions of bit set to 1, it contains
at this point only the value k − 1 that we can push into the stack of c1. Copying registers A

and M is obviously in constant time.
To summarize, we have proven the following:

▶ Theorem 16. There is a data structure Counter that can be initialized in constant time
and for which operations inc and mbit can be implemented in constant time with the following
semantic: mbit(c) returns an integer j such that v is between 2j and 2j+1 − 1 where v is
the number of time inc(c) has been executed since the initialization of c. Moreover, the data
structure uses O(log(v)2) register.

One could make the data structure more efficient in memory by lazily freeing the memory
used by the previous counters so that it is O(log(v)). However, such an optimization is not
necessary for our purpose.

A.3 Instructions load, move and steps for Known Parameters
In this section, we explain formally how one can simulate a given RAM as an oracle with
good time and memory guarantees. More precisely, we explain how one can implement the
instructions load, move and steps that we are using in our algorithms so that their complexity
is O(1) and their memory usage is O(s(n)) where s(n) is the memory used by I the simulated
RAM on an input of size n. We do the following assumptions: we know an upper bound for
both values s(n) and ⌈log(♯I(x))⌉. We also assume that s(n) is bounded by a polynomial.
Note that ⌈log(♯I(x))⌉ is polynomial in n, since we consider only machines solving problems
in EnumP.
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Configuration. Instruction load(I, x) returns a structure M which stores the configuration
of I when its runs on input x. A configuration of I is the content of the registers up to the
last one which has been accessed and the state of the machine, i.e. the index of the next
instruction to be executed by I. Moreover, the number of executed move(M) instructions is
also part of the configuration to support the steps instruction.

Remark that we make explicit that machine I is simulated, by giving it as argument of
load. However, the amortization algorithms we design all use load only on the machine I.
They must be understood as a method to build an amortized algorithm for each I. Therefore,
we do not need a universal machine to simulate I when executing a move(M) instruction.

To simulate I in constant time, the crucial part is to be able to read and write the ith
register of I as stored in M in constant time. If we know a bound s(n) on the space used
by I, and a bound on the number of solutions ♯I(x) as in Algorithm 1, the structure M

is very simple. For a structure M , we reserve s(n) registers which are mapped one to one
to the registers R1 up to Rs(n) of I. We also require 1 register to store the index of the
current instruction to be executed by I. We also initialize a counter c to 0 as explained in
Section A.2 for steps(M) to keep track of the number of steps that have been simulated so
far. This counter will use up to O(log(♯I(x))2) registers. To really account for steps(M), one
should increment c each time an instruction move is executed. However, in Algorithm 1 and
Algorithm 2, one need to compare steps(M) with another value. We explain below how one
can adapt this counter so that this comparison is constant time for both algorithms.

Let m = s(n) + 2⌈log(♯I(x))⌉+ 2, then for all j from 0 to ⌈log(♯I(x))⌉+ 1, the structure
M [j] uses the registers from jm to (j + 1)m− 1. Hence, if M [j] must simulate the access of
I to register Ri, it accesses the register Rjm+i. This operation is in constant time, since it
requires to compute jm + i, where i, m and j are polynomial in n.

At Line 8 of Algorithm 1, one has to determine whether the number of steps simulated is
in [2j−1p(n) + 1, 2jp(n)]. To check this inequality in constant time, we simply initialize a
counter cj as in Section A.2. Instead of incrementing it each time move(M [j]) is called, we
increment it every p(n) calls to move. This can easily be done by keeping another register R

which is incremented each time move is called and whenever it reaches value p(n), it is reset
to 0 and cj is incremented. Now to decide whether M [j] enters its zone, it is sufficient to test
whether mbit(cj) = j − 1. The first time it happens, then exactly 2j−1p(n) steps of M [j]
have been executed, so it will enter its zone in the next move, so we can remember it to start
the enumeration. When mbit(cj) becomes j, it means that 2jp(n) steps of M [j] have been
executed, that is, M [j] leaves its zone. Thus, we can perform the check of Line 8 in constant
time.

A.4 Instruction copy
Algorithm 2, which does not require to know #I(x), relies on an instruction copy. This
instruction takes as a parameter a data structure M storing the configuration of a RAM and
returns a new data structure M ′ of the same machine starting in the same configuration (an
exact copy of the memory). A straightforward way of implementing copy would be to copy
every register used by the data structure M in a fresh part of the memory. However, this
approach may be too expensive since we need to copy the whole memory used by M . Since
we are guaranteed to have one output solution between each copy instruction, the delay of
Algorithm 1 becomes O(log(#I(x))(p(n) + s(n))).

In this section, we explain how one can lazily implement this functionality so that the
memory of M is copied only when needed. This method ensures that copy runs in O(1),
however, there is an overhead to the cost of the instruction move. We show it still runs in
O(1) if the memory usage of I is well behaved, otherwise the overhead is small and exists
only when log(#I(x)) ≤ log(n)2.
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Let us explain how the data structure M is lazily copied. The data structure contains a
register for the index of the current instruction, a counter of the number of steps and an
array to represent the registers of I the simulated machine. The counter in M ′ is stored as
in Theorem 16. It is initialized so that it represents the value 2j−1p(n) and it counts up
to 2j+1p(n). This value is represented by a regular counter of value 0 and the Gray code
counter contains the 2j−1p(n)th integer in Gray code order for integers of size j + 1. This
number is equal to 2j−1 + 2j−2, which has only two one bits (the second and the third),
hence it can be set up in constant time. The auxiliary structure is the list of ones of the
integer, which is here of size two and can thus be set up in constant time.

We explain how we lazily copy an array. Assume we want to create an exact copy of the
array A of size m. We create both A′ and U of size m initialized to zero. The value of U [r]
is 0 if A′[r] has not been copied from A[r] and 1 otherwise. Each time move(M) is executed
and it modifies the value A[r], if U [r] = 0, it first set A′[r] = A[r] and U [r] = 1. Each time
move(M ′) is executed and reads the value A′[r], if U [r] = 0, it first set A′[r] = A[r] and
U [r] = 1. This guarantees that the value of A′ is always the same as if we had completely
copied it from A when the instruction copy(M) is executed. The additional checks and
updates of U add a constant time overhead to move. Moreover, we maintain a simple counter
c, and each time a move(M ′) operation is executed, if U [c] = 0, we set A′[c] = A[c] and
U [c] = 1. When c = m, the copy is finished and we can use A and A′ as before, without
checking U .

The described implementation of the copy operation is in constant time. The move
instruction, modified as described, has a constant overhead for each lazy copy mechanism in
action. To evaluate the complexity of Algorithm 2, we must evaluate the number of active
copies. We prove, that when s(n) is known, a variant of Algorithm 2 has only a single active
copy mechanism at any point in time.

▶ Theorem 17. Given an IncP1-enumerator I, its incremental delay p(n) and its space
complexity s(n), one can construct a DelayP-enumerator I ′ which enumerates I(x) on input
x ∈ Σ∗ with delay

O(log(#I(x))p(n))

and space complexity O(s(n) log(#I(x))).

Proof. We use a hybrid version of Algorithm 1 and Algorithm 2. First, in the preprocessing
step, I is run for s(n) steps. If the computation terminates before s(n) steps, then we store
all solutions during the preprocessing and enumerate them afterward.

Otherwise, let i be the integer such that 2i−1p(n) ≤ s(n) < 2ip(n). We run Algorithm 1
with log(s(n)/p(n)) as a bound on the number of solutions. It means that M [0] up to M [i] are
loaded in the preprocessing. Since the number of solutions can be larger than log(s(n)/p(n)),
we need machines M [j] for j > i. These machines are created dynamically as in Algorithm 2.
When a machine M [j] is created, it is lazily copied from M [j − 1] using copy. There are
at least 2j−1p(n) ≥ 2ip(n) ≥ s(n) instructions executed before the next copy instruction.
Therefore, a single lazy copy is active at any point of the algorithm, which proves that the
delay is O(log(#I(x))p(n)). ◀
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