
Solving Homogeneous Linear Equations over
Polynomial Semirings
Ruiwen Dong #

Department of Computer Science, University of Oxford, UK

Abstract
For a subset B of R, denote by U(B) be the semiring of (univariate) polynomials in R[X] that are
strictly positive on B. Let N[X] be the semiring of (univariate) polynomials with non-negative integer
coefficients. We study solutions of homogeneous linear equations over the polynomial semirings
U(B) and N[X]. In particular, we prove local-global principles for solving single homogeneous linear
equations over these semirings. We then show PTIME decidability of determining the existence of
non-zero solutions over N[X] of single homogeneous linear equations.

Our study of these polynomial semirings is largely motivated by several semigroup algorithmic
problems in the wreath product Z ≀ Z. As an application of our results, we show that the Identity
Problem (whether a given semigroup contains the neutral element?) and the Group Problem
(whether a given semigroup is a group?) for finitely generated sub-semigroups of the wreath product
Z ≀ Z is decidable when elements of the semigroup generator have the form (y, ±1).
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1 Introduction

Linear equations over semirings appear in various domains in mathematics and computer
science, such as automata theory, optimization, and algebra of formal processes [2, 3, 6, 11].
There have been numerous studies on linear equations over different semirings [12], for
example the semiring of natural numbers (integer programming), tropical semirings [23] and
polynomial semirings [9, 22]. Given a semiring S, define S[X] to be the set of polynomials in
variable X whose coefficients are elements of S. The set S[X] is again a semiring. One of
the simplest polynomial semirings is the semiring N[X] of single variable polynomials with
non-negative integer coefficients. The problem of solving a system of linear equations over
N[X] was shown to be undecidable by Narendran [22] using a reduction from Hilbert’s tenth
problem. More precisely, given integer polynomials hij , gj ∈ Z[X], i = 1, . . . , n, j = 1, . . . , k,
it is undecidable whether the system of equations

f1h1j + · · · + fnhnj = gj , j = 1, . . . , k, (1)

has a solution (f1, . . . , fn) over N[X]. This contrasts with the decidability of solving systems
of linear equations over N and over Z[X] (using respectively integer programming [15] and
Smith canonical forms [16]).
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26:2 Solving Homogeneous Linear Equations over Polynomial Semirings

In this paper, we show a decidability result for finding a non-zero solution of a single
homogeneous linear equation over N[X]. In particular, we are concerned with the following
problem: given integer polynomials h1, . . . , hn ∈ Z[X], does the equation

f1h1 + · · · + fnhn = 0 (2)

admit a solution (f1, . . . , fn) over N[X] \ {0} (i.e. none of the fi is zero)?
In Section 6 of this paper we give a PTIME algorithm that decides this problem. Our

algorithm relies on a local-global principle which we prove in Section 5, and reduces the
decision problem to the existential theory of the reals in one variable. Formal definitions of
these results will be given in Section 2.

It turns out that the problem of solving linear equations over the semiring N[X] is closely
related to solving the same equation over the semiring U(B), consisting of polynomials in
R[X] that are strictly positive on a subset B of R. It is also related to the semiring W(B)
of polynomials that are non-negative on B. The characterization of polynomials in U(B)
and W(B) is a central subject in the theory of real algebra. In particular, when B is a
semialgebraic set, variants of the positivstellensatz give explicit descriptions of the semirings
U(B) and W(B). This theory can be traced back to the celebrated Hilbert’s seventeenth
problem: given a polynomial that takes only non-negative values over the reals, can it be
represented as a sum of squares of rational functions? This has been answered positively
by Artin [1] using a model theoretic approach. The techniques proposed by Artin have
since developed into the rich theory of real algebra; for a comprehensive account of this
subject, see [24] or [25]. An important result in solving homogeneous linear equations over
W(R) is the Bröcker-Prestel’s local-global principle for weak isotropy of quadratic forms [24,
Theorem 8.12, 8.13]. Applied over the function field R(X), the Bröcker-Prestel local-global
principle relates the existence of non-trivial solutions over sums of squares in R(X) (and
hence over W(R)) of a homogeneous linear equation, to the behaviour of the equation in all
Henselizations of R(X). In Section 4 of this paper we prove a “strictly positive” version of
the Bröcker-Prestel local-global principle, which characterizes the existence of solutions over
U(B). This will serve as a base for proving further results in Section 5 and 6. Our proof is
inspired by Prestel’s proof of the original theorem. However, several new ideas are introduced
to deal with the strict positivity as well as the positivity constraint over a subset of R.

An important motivation for studying linear equations over N[X] comes from a semigroup
algorithmic problem in the wreath product Z ≀ Z. The wreath product is a fundamental
construction in group and semigroup theory. Given two groups G and H, their wreath
product G ≀ H is defined in the following way. Let GH be the set of all functions y : H → G

with finite support; it is a group with respect to pointwise multiplication. The group H acts
on GH as a group of automorphisms: if h ∈ H, y ∈ GH , then yh(b) = y(bh−1) for all b ∈ H.
The wreath product G ≀ H is then defined as the semi-direct product GH ⋊ H, that is, the
set of all pairs (y, h) where y ∈ GH , h ∈ H, with multiplication operation given by

(y, h)(z, k) = (ykz, hk).

One easy way to understand the group Z ≀ Z is through its isomorphism to a matrix group
over the Laurent polynomial ring Z[X, X−1] [19]:

φ : Z ≀ Z ∼−→
{(

1 f

0 Xb

) ∣∣∣∣ f ∈ Z[X, X−1], b ∈ Z
}

, (y, b) 7→
(

1
∑

k∈Z y(k)Xk

0 Xb

)
. (3)
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A large number of important groups are constructed using the wreath product, such as the
lamplighter group Z2 ≀ Z [13] and groups resulting from the Magnus embedding theorem [19].
The wreath product also plays an important role in the algebraic theory of automata. The
Krohn–Rhodes theorem states that every finite semigroup (and correspondingly, every finite
automaton) can be decomposed into elementary components using wreath products [17].

In Section 7 we give an application of our results to the Identity Problem in Z ≀ Z. Given
a finite set of elements G = {A1, . . . , Ak} in a group G as well as a target element A ∈ G,
denote by ⟨G⟩ the semigroup of generated by G, and by ⟨G⟩grp the group generated by G.
Consider the following decision problems:

(i) (Group Membership Problem) whether A ∈ ⟨G⟩grp?
(ii) (Semigroup Membership Problem) whether A ∈ ⟨G⟩?
(iii) (Identity Problem) whether the neutral element I of G is contained in ⟨G⟩?

All three problems remain undecidable even when the ambient group G is restricted to
relatively simple groups, such as the direct product F2 × F2 of two free groups over two
generators [5, 21]. Indeed, one of the first undecidability results in algorithmic theory was
the undecidability of the Semigroup Membership Problem for integer matrices, obtained by
Markov [20]. Some decidability results for the Identity Problem include its NP-completeness
in SL(2,Z) [4] and its PTIME decidability in nilpotent groups of class at most ten [10].

Let p ∈ Z>0. The group Z ≀ Z shares some common properties with the wreath product
(Z/pZ) ≀ Z and with the Baumslag-Solitar group BS(1, p). Similar to the isomorphism (3),
both (Z/pZ) ≀ Z and BS(1, p) can be represented as 2 × 2 upper triangular matrix groups:

(Z/pZ) ≀ Z ∼=
{(

1 f

0 Xb

) ∣∣∣∣ f ∈ (Z/pZ) [X, X−1], b ∈ Z
}

,

BS(1, p) ∼=
{(

1 f

0 pb

) ∣∣∣∣ f ∈ Z[1/p], b ∈ Z
}

.

Lohrey, Steinberg and Zetzsche showed decidability of the Rational Subset Membership
Problem (which subsumes all three decision problems mentioned above) in H ≀ V , where H

is a finite and V is virtually free [18]. This notably implies its decidability in (Z/pZ) ≀ Z.
Cadilhac, Chistikov and Zetzsche proved its decidability in BS(1, p) [7]. For Z ≀ Z, decision
problems are much harder due to higher encoding power of the ring Z[X, X−1]. The Group
Membership Problem in Z ≀ Z can be reduced to the membership problem for modules over
the ring Z[X, X−1], and is hence decidable [26]. As for the Semigroup Membership Problem
in Z ≀Z, Lohrey et al. showed its undecidability using an encoding of 2-counter machines [18].
Decidability of the Identity Problem in Z ≀ Z remains an intricate open problem. In this
paper we give a decidability result in the case where all the elements of the generator G are
of the form (y, ±1).

2 Main results

In this section we sum up the main results of this paper. For a subset B of R, denote by
U(B) the set of polynomials in R[X] that are strictly positive on B:

U(B) := {f ∈ R[X] | f(x) > 0 for all x ∈ B}.

Define B to be the closure of B in R under the Euclidean topology. Our first result is a
local-global principle for solutions of homogeneous linear equations over U(B). Theorem 2.1
will be proved in Section 4.

STACS 2023



26:4 Solving Homogeneous Linear Equations over Polynomial Semirings

▶ Theorem 2.1. Let B be a subset of R. Assume that h1, . . . , hn ∈ R[X] are polynomials that
satisfy gcd(h1, . . . , hn) = 1. If the equation f1h1 + · · · + fnhn = 0 has no solution (f1, . . . , fn)
over U(B), then there exists a real number t ∈ B, such that the values hi(t), i = 1, . . . , n, are
either all non-negative or all non-positive.

Our second result is a corollary of the previous theorem, it provides a similar local-global
principle for solutions over N[X] \ {0}. Theorem 2.2 will be proved in Section 5.

▶ Theorem 2.2. Given polynomials h1, . . . , hn ∈ Z[X] with gcd(h1, . . . , hn) = 1. If the
equation f1h1 + · · · + fnhn = 0 has no solution (f1, . . . , fn) over N[X] \ {0}, then there exists
t ∈ R≥0, such that the values hi(t), i = 1, . . . , n are either all non-negative or all non-positive.

Our next result shows that it is decidable in PTIME whether a linear homogeneous
equation is solvable over N[X] \ {0}. The input size is defined as the total number of bits
used to encode all the coefficients of all hi. Theorem 2.3 will be proved in Section 6.

▶ Theorem 2.3. Given as input h1, . . . , hn ∈ Z[X]. It is decidable in polynomial time
whether the equation f1h1 + · · · + fnhn = 0 has solutions f1, . . . , fn over N[X] \ {0}.

An application of this theorem is the following partial decidability result on the Identity
Problem in the wreath product Z ≀ Z. This will be the main topic of Section 7.

▶ Theorem 2.4. Given a finite set of elements G = {(y1, b1), . . . , (yn, bn)} in Z ≀ Z, where
bi = ±1 for all i. The following are decidable:
1. (Group Problem) whether the semigroup ⟨G⟩ generated by G is a group.
2. (Identity Problem) whether the neutral element I is in the semigroup ⟨G⟩.

3 Preliminaries

In this section we introduce the necessary mathematical tools on (semi)orderings of fields as
well as valuations. Most notations and definitions follow those given in Prestel’s book [24].

3.1 Orderings and semiorderings
▶ Definition 3.1 (Ordering). A linear ordering of a set S is a binary relation that satisfies

(i) a ≤ a,
(ii) a ≤ b, b ≤ c =⇒ a ≤ c,
(iii) a ≤ b, b ≤ a =⇒ a = a,
(iv) a ≤ b or b ≤ a

for all a, b, c ∈ S.
Given a field F of characteristic zero, a (field) ordering of F is a linear ordering ≤ of the

underlying set of F that additionally satisfies
(i) a ≤ b =⇒ a + c ≤ b + c,
(ii) 0 ≤ a, 0 ≤ b =⇒ 0 ≤ ab

for all a, b, c ∈ F . A field is called formally real if it admits at least one ordering.

The semiordering of a field, defined below, is a weaker version of the field ordering.

▶ Definition 3.2 (Semiordering). A semiordering of a field F is a linear ordering ≤ of the
underlying set of F that satisfies

(i) a ≤ b =⇒ a + c ≤ b + c,
(ii) 0 ≤ 1,
(iii) 0 ≤ a =⇒ 0 ≤ ab2

for all a, b, c ∈ F .
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In a field F with semiordering ≤, we have 0 ≤ x2 for all x ∈ F . The field of real numbers
R hence admits a unique semiordering, since every positive real can be written as a square.
This semiordering is simply the natural ordering on R.

It is easy to see that an ordering is always a semiordering. Conversely, a semiordering
need not be an ordering. However, in any field, the existence of a semiordering implies that
of an ordering.

▶ Lemma 3.3 ([24, Corollary 1.15]). A field F is formally real (admits an ordering) if and
only if it admits a semiordering.

For any subset P of F , define −P := {−x | x ∈ P}. For a semiordering ≤ of F , the set
P := {a ∈ F | 0 ≤ a} satisfies

(i) P + P ⊆ P ,
(ii) F 2 · P ⊆ P and 1 ∈ P ,
(iii) P ∩ −P = {0},
(iv) P ∪ −P = F .
Such a set will be called a semicone of F . A semicone P of F determines a semiordering ≤
of F by a ≤ b ⇐⇒ b − a ∈ P . Therefore, we will sometimes call P a semiordering as well.

The pre-semicone is yet a weaker version of the semiordering (or semicone).

▶ Definition 3.4 (Pre-semicone). A pre-semicone of a field F is a subset P of F that satisfies
(i) P + P ⊆ P ,
(ii) F 2 · P ⊆ P ,
(iii) P ∩ −P = {0}.
The only difference between a pre-semicone and a semicone is the absence of the rule (iv)
and the condition 1 ∈ P in (ii). Obviously every semicone is also a pre-semicone. Conversely,
a pre-semicone need not be a semicone, but it can always be extended to one.

▶ Lemma 3.5 ([24, Lemma 1.13]). For every pre-semicone P0 of a formally real field F there
exists a set P ⊇ P0 such that P or −P is a semicone of F .

Suppose F is of characteristic zero. A semiordering or an ordering ≤ of F is called
archemedean if for each a ∈ F there exists n ∈ N ⊆ F such that a ≤ n.

▶ Lemma 3.6 ([24, Lemma 1.20]). Every archimedean semiordering is an ordering.

3.2 Valuations
Let F be a field. A valuation of F is a surjective map v : F → Γ ∪ {∞}, where the value
group Γ is an abelian totally ordered group1, such that the following conditions are satisfied
for all a, b ∈ F :

(i) v(a) = ∞ if and only if a = 0,
(ii) v(ab) = v(a) + v(b),
(iii) v(a + b) ≥ min{v(a), v(b)}, with equality if v(a) ̸= v(b).
A valuation is called non-trivial if Γ ̸= {0}. A valued field is a pair (F, v) where F is a field
and v is a valuation of F . Its valuation ring Av is defined as

Av := {a ∈ F | v(a) ≥ 0}.

1 An abelian totally ordered group Γ is an abelian group equipped with a linear ordering ≤, such
that a ≤ b =⇒ a + c ≤ b + c for all a, b, c ∈ Γ. Here, the group law of Γ is written additively.
The ordering and the group law on Γ can be extended to the set Γ ∪ {∞} by defining a ≤ ∞ and
a + ∞ = ∞ + a = ∞ + ∞ = ∞ for all a ∈ Γ.
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26:6 Solving Homogeneous Linear Equations over Polynomial Semirings

We have Av ̸= F if and only if v is non-trivial. Av is a ring with a unique maximal ideal

Mv := {a ∈ F | v(a) > 0}.

The quotient Fv := Av/Mv is called the residue field of (F, v). It is indeed a field since Mv is
maximal. A valuation v is called a real place of F if the residue field Fv is formally real.

Consider the field F = R(X). The following proposition gives a well-known characteriza-
tion (up to isomorphism of the value group Γ) of the set of all non-trivial real places R(X)
whose valuation ring contains the subfield R.

▶ Proposition 3.7. Let v be a non-trivial real place of R(X) such that R ⊆ Av. Then v

belongs to one of the two following types of real places:
1. For every t ∈ R there is a real place vt : R(X) → Z ∪ {∞}, defined by vt(y) = a, where

a ∈ Z is such that y can be written as y = (X − t)a · f
g , with f, g being polynomials in

R[X] not divisible by X − t. The residue field R(X)vt
is isomorphic to R by the natural

homomorphism y + Mvt
7→ y(t).

2. There is a real place v∞ : R(X) → Z ∪ {∞}, defined by vt( f
g ) = deg g − deg f , where f, g

are polynomials in R[X]. The residue field R(X)v∞ is isomorphic to R by the natural
homomorphism y + Mv∞ 7→ limt→∞ y(t).
Let P be a semicone of a field F , and F0 be a subfield of F . Denote by ≤ the corresponding

semiordering of P ; define the set

AP
F0

:= {a ∈ F | a ≤ b and − a ≤ b for some b ∈ F0}. (4)

The following lemmas show that AP
F0

is a valuation ring, and that its corresponding residue
field admits a semiordering induced by P under additional conditions.

▶ Lemma 3.8 ([24, Lemma 7.13]). Let P be a semiordering of a field F and F0 a subfield of
F . Then AP

F0
is a valuation ring of some valuation of F .

▶ Lemma 3.9 ([24, Lemma 7.15]). Let P be a semiordering of a field F and F0 a subfield of
F , such that there exists b ∈ F with a ≤ b for all a ∈ F0. Let the valuation v of F correspond
to AP

F0
. Then (Av ∩ P )/Mv is a semiordering of Fv.

4 Local-global principle over strictly positive polynomials

For a subset B of R, define the set W(B) of polynomials that are non-negative on B:

W(B) := {f ∈ R[X] | f(x) ≥ 0 for all x ∈ B}.

Obviously U(B) ⊆ W(B). For f, g ∈ W(R) \ {0}, by the fundamental theorem of algebra,
one can write (uniquely)

f = c
∏
j∈J

(x − rj)dj

∏
k∈K

(x2 + akx + bk)ek , g = c′
∏
j∈J

(x − rj)d′
j

∏
k∈K

(x2 + akx + bk)e′
k

where c, c′, rj , ak, bk ∈ R and dj , d′
j , ek, e′

k are non-negative integers, and the polynomials
x2 + akx + bk have no real root. Here, J indexes all real roots of f and g, and K indexes all
conjugate pairs of imaginary roots of f and g. Since f and g are non-negative on R, all dj

and d′
j are even, and c, c′ are positive. Therefore, the greatest common divisor of f and g,

defined by
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gcd(f, g) :=
∏
j∈J

(x − rj)min{dj ,d′
j}

∏
k∈K

(x2 + akx + bk)min{ek,e′
k}

is also non-negative on R. It follows that the polynomials gcd(f, g), f/ gcd(f, g) and
g/ gcd(f, g) are all in W(R).

We now give a proof of our first main result, which can be considered as a “strictly
positive” version of the Bröcker-Prestel local-global principle. A comparison of our proof
with the proof of the original theorem is given in Appendix C.

▶ Theorem 2.1. Let B be a subset of R. Assume that h1, . . . , hn ∈ R[X] are polynomials that
satisfy gcd(h1, . . . , hn) = 1. If the equation f1h1 + · · · + fnhn = 0 has no solution (f1, . . . , fn)
over U(B), then there exists a real number t ∈ B, such that the values hi(t), i = 1, . . . , n, are
either all non-negative or all non-positive.

Proof. The theorem is trivially true if B is empty, hence we suppose B ̸= ∅. Suppose
f1h1 + · · · + fnhn = 0 has no solution (f1, . . . , fn) over U(B). Consider the following subset
of the field R(X):

P0 :=
{

g

G
·

n∑
i=1

fihi, where all fi ∈ U(B) and g, G ∈ W(R) \ {0}

}
.

Since f1h1 + · · · + fnhn = 0 has no solution (f1, . . . , fn) over U(B), we have 0 ̸∈ P0. We
claim that P ′

0 = P0 ∪ {0} is a pre-semicone of R(X). Indeed, we verify the three conditions
given in Definition 3.4:

(i) P ′
0+P ′

0 ⊆ P ′
0. It suffices to show P0+P0 ⊆ P0. Let c = g

G ·
∑n

i=1 fihi, c′ = g′

G′ ·
∑n

i=1 f ′
ihi

be elements of P0. Without loss of generality we can suppose gcd(g, G) = gcd(g′, G′) = 1.
Write d := gcd(g, g′), D := gcd(G, G′), then the polynomials d, g

d , g′

d , D, G
D , G′

D are all
elements of W(R) \ {0}, and gcd( gG′

dD , g′G
dD ) = 1. Hence,

c + c′ =
n∑

i=1

(
fi

g

G
+ f ′

i

g′

G′

)
hi = dD

GG′

n∑
i=1

(
fi

gG′

dD
+ f ′

i

g′G

dD

)
hi (5)

For any x ∈ B, we have gG′

dD (x) ≥ 0 and g′G
dD (x) ≥ 0. Since gcd( gG′

dD , g′G
dD ) = 1, the

two polynomials gG′

dD , g′G
dD cannot both vanish at x. Therefore either gG′

dD (x) > 0 or
g′G
dD (x) > 0. Because fi(x) > 0 and f ′

i(x) > 0, it follows that
(

fi
gG′

dD + f ′
i

g′G
dD

)
(x) > 0.

So fi
gG′

dD + f ′
i

g′G
dD ∈ U(B), and c + c′ ∈ P0.

(ii) R(X)2 · P ′
0 ⊆ P ′

0. This is obvious since R[X]2 · W(R) ⊆ W(R).
(iii) P ′

0∩−P ′
0 = {0}. It suffices to show P0∩−P0 = ∅. On the contrary suppose c ∈ P0∩−P0,

then 0 = c + (−c) ∈ P0 + P0 ⊆ P0, a contradiction.
By Lemma 3.5, P ′

0 can be extended to some P such that either P or −P is a semicone of the
field R(X). Without loss of generality suppose P ⊇ P ′

0 is a semicone, otherwise we can replace
all hi by −hi. Since the field R(X) has no archimedean ordering [25, Example 1.1.4(2)],
the semiordering corresponding to P must be non-archimedean (otherwise by Lemma 3.6
it must be an archimedean ordering). Consider the subfield R of R(X), by Lemma 3.8
the valuation ring AP

R (as defined in (4)) corresponds to some valuation v of R(X). Since
P is non-archimedean, there exists some a ∈ R(X) such that a − r ∈ P for all r ∈ R,
hence AP

R ̸= R(X). Also, Lemma 3.9 shows that the residue field Fv admits a semiordering
(P ∩ Av)/Mv. By Lemma 3.3, Fv is formally real. Therefore, v is a non-trivial real place of
R(X), and from the definition of AP

R we have R ⊆ AP
R = Av.

STACS 2023



26:8 Solving Homogeneous Linear Equations over Polynomial Semirings

Using the classification of real places of R(X) given in Proposition 3.7, consider the
following three cases. Since Fv is isomorphic to R, the semiordering (P ∩Av)/Mv corresponds
to the only ordering on R.
1. The real place v is equivalent to a place vt for some t ∈ B ⊆ R. In this case R[X] ⊆ Av.

We show that hi(t) ≥ 0 for all i. By symmetry it suffices to show h1(t) ≥ 0. For every
ε ∈ R>0, we have ε ∈ U(B), so h1+ε(h2+· · ·+hn) ∈ P0 ⊆ P . Since h1+ε(h2+· · ·+hn) ∈
R[X] ⊆ Av, we have h1 + ε(h2 + · · · + hn) ∈ P ∩ Av, which gives

h1 + ε(h2 + · · · + hn) + Mv ∈ (P ∩ Av)/Mv. (6)

Since the residue field R(X)v is isomorphic to R by the natural homomorphism y + Mv 7→
y(t), Equation (6) yields

h1(t) + ε(h2(t) + · · · + hn(t)) ≥ 0.

Since this is true for all ε > 0, we conclude that h1(t) ≥ 0 and thus hi(t) ≥ 0 for all i.
2. The real place v is equivalent to a place vt for some t ∈ R \ B. There exists a polynomial

HB ∈ R[X], such that HB(x) > 0 for all x ∈ B but HB(t) < 0. Indeed, since t ̸∈ B, there
exists an interval (t − δ, t + δ) disjoint from B; it then suffices to take HB := (X − t)2 − δ2.
As in the previous case, we have h1(t) ≥ 0. Furthermore, since HB ∈ U(B) by its
definition, we have HBh1 + ε(h2 + · · · + hn) ∈ P0 ⊆ P for all ε ∈ R>0. This yields
(HBh1)(t) ≥ 0. However, we have HB(t) < 0 by its definition. This together with
h1(t) ≥ 0 yields h1(t) = 0. By symmetry we can prove hi(t) = 0 for all i, this contradicts
the condition gcd(h1, . . . , hn) = 1.

3. The real place v is equivalent to the place v∞. We divide {h1, . . . , hn} into two parts
according to the parity of its degree. Without loss of generality, suppose h1, . . . , hk have
even degree, and hk+1, . . . , hn have odd degree.
Define the leading coefficient of a polynomial as the coefficient of its highest degree
monomial. First we claim that the leading coefficients of h1, . . . , hk are all positive. By
symmetry, we only prove positivity of the leading coefficients of h1.
Let m = max{deg h1, . . . , deg hn} + 1. Since (X2 + 1)m ∈ U(B) and Xdeg h1 ∈ W(R), we
have

h1

Xdeg h1
+ (X2 + 1)m

(X2 + 1)2m
(h2 + · · · + hn) + Mv ∈ (P ∩ Av)/Mv. (7)

Since the residue field R(X)v is isomorphic to R by the natural homomorphism y +Mvt 7→
limt→∞ y(t), Equation (7) shows that the leading coefficient of h1 is positive. Therefore
by symmetry, the leading coefficient of hi is positive for all 1 ≤ i ≤ k.
We then separate four cases.
a. If B is bounded, that is, B ⊂ (a, b) for some a, b ∈ R. Let s > max{|a|, |b|}, then

X + s ∈ U(B). Since deg hn is odd, we have Xdeg hn+1 ∈ W(R). Therefore,

(X + s)hn

Xdeg hn+1 + (X2 + 1)m

(X2 + 1)2m
(h1 + · · · + hn−1) + Mv ∈ (P ∩ Av)/Mv. (8)

This shows that the leading coefficient of hn is positive.
However, we also have −X + s ∈ U(B), so we can replace (X + s) with (−X + s) in
Equation (8). This shows that the leading coefficient of hn is negative. Therefore hn

does not exist, so all h1, . . . , hn must have even degree. But then (X+1−a)(b+1−X) ∈
U(B), so

(X + 1 − a)(b + 1 − X)h1

Xdeg h1+2 + (X2 + 1)m

(X2 + 1)2m
(h2 + · · · + hn) + Mv ∈ (P ∩ Av)/Mv. (9)
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This shows that the leading coefficient of h1 is negative, a contradiction.
b. If B ⊂ (a, +∞) for some a ∈ R, and B contains arbitrarily large positive reals, that is,

B ∩ (b, +∞) ̸= ∅ for all b ∈ R. Then X + 1 − a ∈ U(B), so

(X + 1 − a)hn

Xdeg hn+1 + (X2 + 1)m

(X2 + 1)2m
(h1 + · · · + hn−1) + Mv ∈ (P ∩ Av)/Mv. (10)

This shows that the leading coefficient of hn is positive. By symmetry, the lead-
ing coefficients of hk+1, . . . , hn are all positive. Therefore, for large enough t ∈ B,
h1(t), . . . , hn(t) are all positive.

c. If B ⊂ (−∞, a) for some a ∈ R, and B contains arbitrarily small reals, that is,
B ∩ (−∞, b) ̸= ∅ for all b ∈ R. Then a + 1 − X ∈ U(B), so

(a + 1 − X)hn

Xdeg hn+1 + (X2 + 1)m

(X2 + 1)2m
(h1 + · · · + hn−1) + Mv ∈ (P ∩ Av)/Mv. (11)

This shows that the leading coefficient of hn is negative. By symmetry, the leading
coefficients of hk+1, . . . , hn are all negative. Therefore, for small enough 0 > t ∈ B,
h1(t), . . . , hn(t) are all positive.

d. If B contains arbitrarily large and arbitrarily small reals. We claim that the leading
coefficients of hk+1, . . . , hn all have the same sign. Suppose on the contrary that they
have different signs, denote by ai the leading coefficient of hi, so hi = aiX

deg hi + Hi

for some polynomial Hi of degree at most deg hi − 1. Then there exist strictly positive
reals rk+1, . . . , rn such that rk+1ak+1 + · · · + rnan = 0. Then, for any s ∈ R, we have
X2 − 2sX + s2 + 1 ∈ U(B), so

(X2 + 1)m

(X2 + 1)2m
(h1 + · · · + hk) + rk+1(X2 − 2sX + s2 + 1)

Xdeg hk+1+1 hk+1

+ rk+2

Xdeg hk+2−1 hk+2 + · · · + rn

Xdeg hn−1 hn + Mv ∈ (P ∩ Av)/Mv. (12)

The limit of the left hand side when X tends to infinity is equal to

g(s) := lim
X→∞

rk+1(X2 − 2sX)
Xdeg hk+1+1 hk+1(X) +

n∑
j=k+2

rj

Xdeg hj−1 hj(X)


= −2sak+1rk+1 + lim

X→∞

 n∑
j=k+1

rj

Xdeg hj−1 Hj(X)


because rk+1ak+1 + · · · + rnan = 0. According to whether ak+1rk+1 is positive or
negative, we can take a positive or negative s with large enough absolute value, so
that the value of g(s) is negative. This contradicts Equation (12), which shows that
the limit of the left hand side when X → ∞ is positive.
We therefore conclude that the leading coefficients of hk+1, . . . , hn all have the same
sign. If they are positive, then for large enough t ∈ B, h1(t), . . . , hn(t) are all positive.
If they are negative, then for small enough t ∈ B, h1(t), . . . , hn(t) are all positive.

To sum up, in all possible cases, we have t ∈ B with hi(t) ≥ 0 for all i. If −P is a semicone
instead of P , analogously we can find t ∈ B such that hi(t) ≤ 0 for all i. ◀

5 Local-global principle over N[X]

In this section we prove Theorem 2.2. Omitted proofs are given in Appendix A. The key to
bridging the difference between the semirings U(B) and N[X] is Pólya’s Theorem:
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▶ Lemma 5.1 (Pólya’s Theorem [14, Theorem 56]). If a homogeneous polynomial f ∈
R[X1, . . . , Xn] is strictly positive for all (X1, . . . , Xn) on (R≥0)n \ {0}, then there exists
p ∈ N such that (X1 + · · · + Xn)p · f ∈ R≥0[X1, . . . , Xn].

The following proposition reduces Theorem 2.2 to real polynomials.

▶ Proposition 5.2. Given h1, . . . , hn ∈ Z[X]. The equation f1h1 + · · · + fnhn = 0 has a
solution (f1, . . . , fn) over N[X] \ {0} if and only if it has a solution over R≥0[X] \ {0}.

The next proposition further reduces it to U(R>0). The key to its proof is Lemma 5.1.

▶ Proposition 5.3. Given h1, . . . , hn ∈ Z[X]. The equation f1h1 + · · · + fnhn = 0 has a
solution (f1, . . . , fn) over R≥0[X] \ {0} if and only if it has a solution over U(R>0).

This justifies the need for a “strictly positive” version of the Bröcker-Prestel principle, since
Proposition 5.3 no longer holds if we replace U(R>0) with W(R>0) \ {0} (see Remark A.1).

We now prove the local-global principle for homogeneous linear equations over N[X].

▶ Theorem 2.2. Given polynomials h1, . . . , hn ∈ Z[X] with gcd(h1, . . . , hn) = 1. If the
equation f1h1 + · · · + fnhn = 0 has no solution (f1, . . . , fn) over N[X] \ {0}, then there exists
t ∈ R≥0, such that the values hi(t), i = 1, . . . , n are either all non-negative or all non-positive.

Proof. Suppose the equation f1h1+· · ·+fnhn = 0 has no solution (f1, . . . , fn) over N[X]\{0}.
By Proposition 5.2 and 5.3, it has no solution over U(R>0). Hence, by Theorem 2.1, there
exists a real number t ∈ R>0 = R≥0 such that hi(t) are all non-negative or all non-positive. ◀

6 Decidability

In this section we show our main decidability result.

▶ Theorem 2.3. Given as input h1, . . . , hn ∈ Z[X]. It is decidable in polynomial time
whether the equation f1h1 + · · · + fnhn = 0 has solutions f1, . . . , fn over N[X] \ {0}.

Proof. (A summary of the algorithm constructed in this proof is given in Appendix B.)
By the homogeneity of the linear equation, we can divide h1, . . . , hn by their greatest

common divisor and suppose gcd(h1, . . . , hn) = 1. Computing the greatest common divisor
can be done in polynomial time using the Euclidean algorithm.

We then show that we can simplify the equation so that h1, . . . , hn satisfy

hi(0) > 0, hj(0) < 0, for some i, j. (13)

Suppose this is not already the case, that hi(0) ≥ 0 for all i or hi(0) ≤ 0 for all i. Without
loss of generality suppose hi(0) ≥ 0 for all i. We write h1(0) = 0, . . . , hk(0) = 0, hk+1(0) >

0, . . . , hn(0) > 0. Then X | hi for i = 1, . . . , k.
If k = 0, that is hi(0) > 0 for all i, then f1h1 + · · · + fnhn = 0 has no solution over

N[X] \ {0}. Indeed, suppose on the contrary that (f1, . . . , fn) is such a solution. Dividing all
fi by a suitable power of X we can suppose fs(0) ̸= 0 for some s. Then fi(0) ≥ 0 for all i

while fs(0) > 0, which yields f1(0)h1(0) + · · · + fn(0)hn(0) > 0, a contradiction.
If k ≥ 1, we show that the equation

f1h1 + · · · + fnhn = 0 (14)

has a solution over N[X] \ {0} if and only if the equation

f1 · h1

X
+ · · · + fk · hk

X
+ fk+1hk+1 + · · · + fnhn = 0 (15)
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has a solution over N[X]\{0}. Let (f1, . . . , fn) be a solution over N[X]\{0} of Equation (14),
then f1(0)h1(0) + · · · + fn(0)hn(0) = 0. Since hi(0) = 0 for all i = 1, . . . , k, hi(0) > 0 for
i = k + 1, . . . , n and fi(0) ≥ 0 for i = 1, . . . , n, we must have fk+1(0) = 0, . . . , fn(0) = 0.
That is, X | fk+1, . . . , X | fn. Therefore (f1, . . . , fk, fk+1/X, . . . , fn/X) is a solution over
N[X] \ {0} of Equation (15). This shows that we can divide h1, . . . , hk by X without
changing the existence of solutions of Equation (14). Repeating this division process, one
eventually terminates by obtaining hi such that either: hi(0) are all strictly positive or all
strictly negative, in which case Equation (14) has no solution over N[X] \ {0}; or hi(0) > 0
and hj(0) < 0 for some i, j, in which case we have achieved the desired simplification to
Condition (13). This procedure is repeated at most deg h1 + · · · + deg hn times, and therefore
terminates in polynomial time.

Supposing Condition (13), we claim that f1h1 + · · · + fnhn = 0 has no solution over
N[X] \ {0} if and only if there exists t ∈ R≥0 such that hi(t) are all non-positive or all
non-negative. The first implication is given by Theorem 2.2. Conversely, suppose hi(t) are
all non-positive or all non-negative. Without loss of generality suppose hi(t) ≥ 0 for all i.
By Condition (13), we have t ̸= 0. Suppose on the contrary that (f1, . . . , fn) is a solution
over N[X] \ {0}, then fi(t) > 0 for all i since t > 0. Since gcd(h1, . . . , hn) = 1, at least one
of hi(t) must be non-zero. Since hi(t) ≥ 0 for all i, we have f1(t)h1(t) + · · · + fn(t)hn(t) > 0,
a contradiction.

Thus, it suffices to decide whether there exists t ≥ 0 such that hi(t) are all non-positive
or all non-negative. This can be expressed in the existential theory of the reals:

∃X (X ≥ 0 ∧ h1(X) ≥ 0 ∧ · · · ∧ hn(X) ≥ 0)∨(X ≥ 0 ∧ h1(X) ≤ 0 ∧ · · · ∧ hn(X) ≤ 0) . (16)

Deciding the existential theory of the reals in one variable can be done in polynomial time
with respect to the total bit length used to encode the sentence, due to a classic result by
Collins2 [8]. Therefore, one can decide the correctness of the sentence (16) in polynomial
time. Combining all the steps, we conclude that the total complexity is in PTIME. ◀

7 Application to wreath product

In this section we show the following result on wreath products.

▶ Theorem 2.4. Given a finite set of elements G = {(y1, b1), . . . , (yn, bn)} in Z ≀ Z, where
bi = ±1 for all i. The following are decidable:
1. (Group Problem) whether the semigroup ⟨G⟩ generated by G is a group.
2. (Identity Problem) whether the neutral element I is in the semigroup ⟨G⟩.

Let φ be the isomorphism defined in (3). Fix a finite set of elements G as in Theorem 2.4.
For i = 1, . . . , n, denote by Hi ∈ Z[X, X−1] the Laurent polynomial in the upper-right entry
of the image of φ((yi, bi)). Write G = G+ ∪ G− where G+ := {(yi, bi) ∈ G | bi = 1} and
G− := {(yj , bj) ∈ G | bj = −1}. Let φ(G), φ(G+), φ(G−) be the set of matrices that are images
under φ of elements in G, G+, G−. Define the sets of indices

I := {i | bi = 1}, J := {i | bi = −1}.

2 The algorithm by Collins [8] has complexity L3(nd)2O(K)
, where L is the total coefficient bit length, n

the number of polynomials, d the total degree of the polynomials, and K the number of variables. In
the one variable case, K = 1, the algorithm takes polynomial time with respect to the total bit length.
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For simplicity, we write Ai, i ∈ I for the matrices in φ(G+), and Bj , j ∈ J the matrices in
φ(G−). For every tuple (i, j) ∈ I × J , define the Laurent polynomial

hij := X−1Hi + Hj ∈ Z[X, X−1]. (17)

This is the upper-right entry of the matrix AiBj .
For a subset S ⊆ I × J , denote by πI(S) its projection onto the I coordinates, that

is, πI(S) := {i ∈ I | ∃j ∈ J, (i, j) ∈ S}. Define πJ(S) likewise. The key to proving the
partial decidability of the Group Problem in Z ≀ Z is the following proposition that relates
sub-semigroups of Z ≀ Z to equations over N[X] \ {0}.

▶ Proposition 7.1. Given a set G = G+ ∪ G− of generators defined as above. Let hij ∈
Z[X, X−1] be the polynomials defined in (17). The semigroup ⟨G⟩ is a group if and only
if there exists a set S ⊆ I × J satisfying πI(S) = I, πJ(S) = J , such that the equation∑

(i,j)∈S fijhij = 0 has a solution (fij)(i,j)∈S over N[X] \ {0}.

Proof. For a word w in the alphabet φ(G), define its product π(w) to be the matrix obtained
by multiplying all the matrices in w consecutively. Denote by |w|+ (respectively, |w|−) the
number of letters in w belonging in φ(G+) (respectively, φ(G−)). Define the height of the

word w to be h(w) := |w|+ − |w|−, then we have π(w) =
(

1 ∗
0 Xh(w)

)
, where ∗ is some

element in Z[X, X−1].
For a finite alphabet A, denote by A+ the set of non-empty words over A. We claim that

for any non-empty word w ∈ φ(G)+ such that h(w) = 0, the upper right entry of π(w) can
be written as a sum

∑
(i,j)∈I×J fijhij , where fij are elements in N[X, X−1]. We prove this

by induction on the length of the word w. For the sake of simplicity, denote U(π(w)) the
upper right entry of π(w).

If w has length at most two, then it must be of the form AiBj or BjAi, and the claim is
easy to verify. Suppose the claim is true for all words w of length less then ℓ > 2. We prove
the claim for words w of length ℓ. Distinguish the following two cases.

1. The word w is of the form Aiw
′Bj or Bjw′Ai for some i ∈ I, j ∈ J, w′ ∈

φ(G)+. Since w′ has length at most ℓ − 2 and is of height 0, by induction hypothesis,

π(w′) =
(

1 r

0 1

)
, with r a linear combination of hij with coefficients in N[X, X−1]. If

w = Aiw
′Bj , then

π(w) =
(

1 Hi

0 X

) (
1 r

0 1

) (
1 Hj

0 X−1

)
=

(
1 X−1r + (X−1Hi + Hj)
0 1

)
=

(
1 X−1r + hij

0 1

)
.

So U(π(w)) = X−1r + hij can also be written as a linear combination of hij , i ∈ I, j ∈ J

with coefficients in N[X, X−1]. If w = Bjw′Ai, then

π(w) =
(

1 Hj

0 X−1

) (
1 r

0 1

) (
1 Hi

0 X

)
=

(
1 Xr + Hi + XHj

0 1

)
=

(
1 X(r + hij)
0 1

)
.

So U(π(w)) = X(r + hij) can also be written as a linear combination of hij , i ∈ I, j ∈ J

with coefficients in N[X, X−1].
2. The word w is of the form Aiw

′Ai′ or Bjw′Bj′ for some i, i′ ∈ I or j, j′ ∈ J .
First suppose w = Aiw

′Ai′ . Since h(Ai) = 1 > 0 and h(Aiw
′) = −1 < 0, there must

exist a strict prefix v of w with height zero. This is because by reading the word w

letter by letter, this height of consecutive prefixes differs by at most one. We have
w = vv′ with h(v) = h(v′) = 0 where v, v′ are non-empty words. By induction hypothesis,
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U(π(v)), U(π(v′)) can be written as a linear combination of hij with coefficients in
N[X, X−1]. Therefore U(π(w)) = U(π(v)) + U(π(v′)) also satisfies this claim. The case
where w = Bjw′Bj′ is completely analogous.

Combining the two cases concludes the induction. It is easy to see from the induction
process that if the letter Ai appears in w, then the coefficient of the term hij in the linear
combination is not zero for some j ∈ J . This is because at some point we have replaced
r with either X−1r + hij or X(r + hij). Similarly, if the letter Bj appears in w, then the
coefficient of the term hij in the linear combination is non-zero for some i ∈ I.

If the semigroup ⟨G⟩ is a group, then there exists a word v in the alphabet G using all
letters in G, whose corresponding product is the neutral element. Taking the image under
φ yields a word w = φ(v) in the alphabet φ(G) such that h(w) = 0 and U(π(w)) = 0.
The claim above and the discussion following it show that there exist Laurent polynomials
fij ∈ N[X, X−1] such that

∑
(i,j)∈I×J fijhij = 0. Furthermore, all letters Ai, i ∈ I and

Bj , j ∈ J appear in w, so for every i, the coefficient fij in the linear combination is not
zero for some j ∈ J ; and for every j, the coefficient fij is not zero for some i ∈ I. Let
S := {(i, j) ∈ I × J | fij ̸= 0}, then

∑
(i,j)∈S fijhij = 0, and πI(S) = I, πJ(S) = J . By the

homogeneity of the equation
∑

(i,j)∈S fijhij = 0, one can multiply all fij by the monomial
Xn for a sufficiently large n, and suppose fij ∈ N[X] \ {0} instead of N[X, X−1] \ {0}. This
completes the proof of the first direction of implication in Proposition 7.1.

For the other direction of implication, suppose there exists a set S ⊆ I × J satisfying
πI(S) = I, πJ(S) = J , such that the equation

∑
(i,j)∈S fijhij = 0 has a solution (fij)(i,j)∈S

over N[X] \ {0}. By the homogeneity of the equation, suppose that there is a tuple (u, v) ∈ S

such that X ∤ fuv. Let (y, z) ∈ S be a tuple such that deg fyz ≥ deg fij for all (i, j) ∈ S.
Denote by N>0[X] the set of polynomials of the form

∑d
i=0 aiX

i, where d ≥ 0 and ai > 0
for all i. By multiplying all fij by the polynomial (1 + X)m for a sufficiently large m, we
can suppose that fuv ∈ N>0[X], X−v0(fyz)fyz ∈ N>0[X], and deg fuv ≥ v0(fyz). Indeed, we
can take any m ≥ max{deg fuv, deg X−v0(fyz)fyz, v0(fyz)}. Additionally, the condition that
deg fyz ≥ deg fij for all (i, j) ∈ S is still satisfied after this multiplication.

We now construct a word w ∈ φ(G)+ that uses every letter in φ(G), such that h(π(w)) = 0,
U(π(w)) =

∑
(i,j)∈S fijhij = 0. We start with the word

w0 := Adeg fuv
u Adeg fyz−deg fuv

y Bdeg fyz−deg fuv
z Bdeg fuv

v ,

which has height 0, and whose product has upper-right entry

U(π(w0)) = huv ·
deg fuv−1∑

i=0
Xi + hyz ·

deg fyz−1∑
i=deg fuv

Xi.

Since fuv ∈ N>0[X], X−v0(fyz)fyz ∈ N>0[X], and deg fuv ≥ v0(fyz), the polynomials
f̂uv := fuv −

∑deg fuv−1
i=0 Xi, f̂yz := fyz −

∑deg fyz−1
i=deg fuv

Xi are still polynomials in N[X] \ {0}.
For (i, j) ∈ S, define

f̂ij :=


f̂uv (i, j) = (u, v)
f̂yz (i, j) = (y, z)
fij otherwise.

These are elements in N[X]\{0} and satisfy U(π(w0))+
∑

(i,j)∈S f̂ijhij =
∑

(i,j)∈S fijhij = 0.

We then gradually insert “loops” of the form AiBj into the word w0. This insertion does
not change the height of the word, but it adds a multiple of hij to the upper-right entry
of the product. Indeed, if h(vv′) = 0, then we have h(vAiBjv′) = 0 and U(π(vAiBjv′)) =
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U(π(vv′)) + Xh(v)hij . Note that the initial word w0 has suffixes of all heights from 0 to
deg fyz. For each k = 0, . . . , deg fyz and each (i, j) ∈ S, after a suffix of height k, we insert
CoefXk (f̂ij) times the “loop” AiBj , where CoefXk (f̂ij) is the coefficient of the monomial Xk

in the polynomial f̂ij . The upper-right entry of the product after all these insertions will be

U(π(w0)) +
deg fyz∑

k=0

∑
(i,j)∈S

CoefXk (f̂ij)Xk · hij = U(π(w0)) +
∑

(i,j)∈S

f̂ijhij = 0,

because deg fyz ≥ deg fij for all (i, j) ∈ I×J . See Figure 1 for an example of this construction.
We have thus constructed a word w ∈ φ(G)+ such that h(π(w)) = 0, U(π(w)) = 0. Note

that we have inserted at least one loop AiBj for each (i, j) ∈ S. Since πI(S) = I, πJ (S) = J ,
the word w contains every letter Ai, i ∈ I and Bj , j ∈ J . Because π(w) is the neutral element,
the inverse of every letter in w can be written as a product of matrices in φ(G). Indeed, if
w = vXv′ then X−1 = π(v′v). Thus the inverse of every element of φ(G) is in ⟨φ(G)⟩. We
conclude that ⟨φ(G)⟩, and thus ⟨G⟩, is a group. ◀

Figure 1 Example of a word constructed in the proof of Proposition 7.1.
Here, S = {(u, v), (y, z), (1, 2), (3, 1)}, and fuv = 1 + X + X2 + X3, fyz =
X3 + X4 + X5 + X6, f12 = X + 2X5, f31 = 3 + X2. The constructed word is
Au(A1B2)AuAu(AuBv)AyAy(A1B2)(A1B2)Ay(AyBz)BzBzBzBv(A3B1)BvBv(A3B1)(A3B1)(A3B1).

We have thus established the link between the Group Problem in Z ≀ Z and homogeneous
linear equations over N[X]. Theorem 2.4 follows from Proposition 7.1 and the decidability
result of Theorem 2.3. Its proof is given in Appendix A.
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A Omitted proofs

▶ Proposition 3.7. Let v be a non-trivial real place of R(X) such that R ⊆ Av. Then v

belongs to one of the two following types of real places:

STACS 2023

https://doi.org/10.4230/LIPIcs.ICALP.2020.116
https://doi.org/10.48550/arXiv.2208.02164
https://hal.archives-ouvertes.fr/hal-00113779
https://hal.archives-ouvertes.fr/hal-00113779


26:16 Solving Homogeneous Linear Equations over Polynomial Semirings

1. For every t ∈ R there is a real place vt : R(X) → Z ∪ {∞}, defined by vt(y) = a, where
a ∈ Z is such that y can be written as y = (X − t)a · f

g , with f, g being polynomials in
R[X] not divisible by X − t. The residue field R(X)vt

is isomorphic to R by the natural
homomorphism y + Mvt 7→ y(t).

2. There is a real place v∞ : R(X) → Z ∪ {∞}, defined by vt( f
g ) = deg g − deg f , where f, g

are polynomials in R[X]. The residue field R(X)v∞ is isomorphic to R by the natural
homomorphism y + Mv∞ 7→ limt→∞ y(t).

Proof. Since R ⊆ Av, every element r ∈ R \ {0} satisfies v(r) ≥ 0 and v(r−1) ≥ 0. But
v(r) + v(r−1) = v(1) = 0, so v(r) = 0. Consider the value v(X), there are two possibilities:
1. If v(X) ≥ 0. In this case, we have R ⊆ Av and X ∈ Av, therefore R[X] ⊆ Av. Since

Mv is a maximal (hence prime) ideal of Av, the ideal R[X] ∩ Mv is a prime ideal of
R[X]. Furthermore, R[X] ∩ Mv is not zero, otherwise every element of R[X] \ {0} would
be invertible in Av, so R(X) ⊆ Av, contradicting the non-triviality of v. Since R[X] is
a principle ideal domain, the non-zero prime ideal R[X] ∩ Mv is generated by a single
irreducible polynomial in R[X]. Consider the two cases:
a. The ideal R[X] ∩ Mv is generated by a polynomial X − t for some t ∈ R. In this

case we have v(X − t) > 0. Every polynomial f ∈ R[X] not divisible by (X − t)
can be written as f = (X − t) · F + r for some F ∈ R[X], r ∈ R \ {0}. Since
v((X − t) · F ) = v(X − t) + v(F ) > 0 and v(r) = 0, we have v(f) = v(r) = 0.
Every element y ∈ R(X) can be written as y = (X − t)a · f

g , where f, g are polynomials
in R[X] not divisible by (X − t). Then v(y) = a · v(X − t) + v(f) − v(g) = av(X − t).
Under isomorphism of the value group Γ, we can without loss of generality suppose
v(X − t) = 1, then we get the valuation vt of type 1 described in the proposition.
Since every element y ∈ Mvt

satisfies y(t) = 0, we have that y + Mvt
7→ y(t) is an

isomorphism from the residue field to R; it is a formally real field.
b. The ideal R[X] ∩ Mv is generated by a polynomial X2 + cX + d without real roots.

In this case, the residue field Av/Mv is a quadratic extension of R, and is hence
isomorphic to the field C. However C is not formally real. Indeed, suppose on the
contrary that C admits some ordering ≤, then since 0 < i2 = −1 and 0 < 12 = 1, we
have 0 < (−1) + 1 = 0, a contradiction.

2. If v(X) < 0. In this case we have R[1/X] ⊆ Av and 1/X ∈ Mv. Since R[1/X] ∩ Mv is a
prime ideal of R[1/X] that contains 1/X, it is generated by 1/X. Then similar to the case
1.a., every element y ∈ R(X) can be written as y = (1/X)a · F

G , where F, G are polynomials
in R[1/X] not divisible by 1/X. Without loss of generality suppose v(1/X) = 1, we
have v(y) = a. Rewrite y = f

g , comparing degrees, we have a = deg g − deg f . So v is
the valuation v∞ of type 2 described in the proposition. Since every element y ∈ Mv∞

satisfies limt→∞ y(t) = 0, we have that y + Mv∞ 7→ limt→∞ y(t) is an isomorphism from
the residue field to R; it is a formally real field. ◀

▶ Proposition 5.2. Given h1, . . . , hn ∈ Z[X]. The equation f1h1 + · · · + fnhn = 0 has a
solution (f1, . . . , fn) over N[X] \ {0} if and only if it has a solution over R≥0[X] \ {0}.

Proof. A solution over N[X] \ {0} is obviously also a solution over R≥0[X] \ {0}. Conversely,
let fi =

∑di

j=0 aijXj , i = 1, . . . , n, be a solution of f1h1 + · · · + fnhn = 0. Write hi =∑ei

j=0 bijXj , i = 1, . . . , n, then the equation f1h1 + · · · + fnhn = 0 is equivalent to the system
of equations

n∑
i=1

d∑
j=0

aijbi,d−j = 0, d = 1, . . . , max
1≤i≤n

(di + ei). (18)

All the coefficients bij are integers, and bi,d−j = 0 whenever d − j < 0.
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If f1h1 + · · · + fnhn = 0 has a solution over R≥0[X] \ {0}, then System (18) has a solution
aij , i = 1, . . . , n, j = 1, . . . , di over R, satisfying

aij ≥ 0, i = 1, . . . , n, j = 1, . . . , di, (19)

and

ai1 ̸= 0 or ai2 ̸= 0 or . . . or aidi
̸= 0, i = 1, . . . , n. (20)

This condition is a boolean combination of homogeneous linear inequalities with integer
coefficients. Since the linear Systems (18), (19) and (20) have only integer coefficients,
they have a solution over R if and only if they have a solution over Q. Then, by their
homogeneity, they have a solution over Q if and only if they have a solution over Z. Hence,
the Systems (18), (19), (20) have a solution over Z, meaning f1h1 + · · · + fnhn = 0 has a
solution fi =

∑di

j=0 aijXj , i = 1, . . . , n, over N[X] \ {0}. ◀

▶ Proposition 5.3. Given h1, . . . , hn ∈ Z[X]. The equation f1h1 + · · · + fnhn = 0 has a
solution (f1, . . . , fn) over R≥0[X] \ {0} if and only if it has a solution over U(R>0).

Proof. Obviously a solution over R≥0[X] \ {0} is a solution over U(R>0).
For the other implication, we use Pólya’s Theorem (Lemma 5.1). Suppose f1h1 + · · · +

fnhn = 0 has a solution (f1, . . . , fn) over U(R>0). Write fi = Xci · Fi where ci ≥ 0 and
Fi ∈ R[X] is such that X ∤ Fi. Since X ∤ Fi we have Fi(0) ̸= 0, we claim that Fi(0) > 0. In
fact, if Fi(0) < 0, then by the continuity of Fi, there exists ε > 0 such that Fi(ε) < 0, but
then fi(ε) = εciFi(ε) < 0, contradicting the fact that fi ∈ U(R>0). Furthermore, one easily
sees that Fi(x) = fi(x)

xci
> 0 for all x > 0. So we have shown Fi(x) > 0 for all x ≥ 0.

We now show that for large enough p ∈ N, the polynomials f̂i := (X + 1)p · fi are all in
R≥0[X]. Let Y be a new variable, and for every i, let Gi be the homogenization of Fi using
the variable Y . That is, Gi = Fi(X/Y ) · Y deg(Fi). Since Fi(x/y) > 0 for all x/y ≥ 0, we have
Gi(x, y) > 0 for all x ≥ 0, y > 0. Whereas for x > 0, y = 0, Gi(x, y)/xdeg(Fi) is the leading
coefficient of Fi. This is non-zero and thus must be positive because limx→∞ Fi(x) > 0.
Therefore Gi(x, y) > 0 for x > 0, y = 0.

We have thus shown Gi(x, y) > 0 for all x ≥ 0, y ≥ 0, x + y > 0. Applying Pólya’s
Theorem yields the existence of a pi ∈ N such that (X +Y )pi ·Gi ∈ R≥0[X, Y ]. Taking Y = 1
we dehomogenize Gi and obtain (X + 1)pi · Fi ∈ R≥0[X]. Let p = max{p1, . . . , pn}, then

f̂i = (X + 1)p · fi = Xci · (X + 1)p · Fi ∈ R≥0[X] \ {0}

for all i. We have thus found the solution (f̂1, . . . , f̂n) over R≥0[X] \ {0} for the equation
f1h1 + · · · + fnhn = 0. ◀

▶ Remark A.1. Proposition 5.3 no longer holds if we replace U(R>0) with W(R>0) \ {0}.
For example, take n = 2, h1 = 1, h2 = −(X − 1)2. Then f1 = (X − 1)2, f2 = 1 is a solution
over W(R>0) \ {0} of the equation f1h1 + f2h2 = 0. However, f1h1 + f2h2 = 0 does not
admit a solution over R≥0[X] \ {0}. Indeed, any solution of f1 − f2 · (X − 1)2 = 0 over R[X]
must satisfy f1(1) = 0, so f1 cannot be in R≥0[X] \ {0}.

▶ Theorem 2.4. Given a finite set of elements G = {(y1, b1), . . . , (yn, bn)} in Z ≀ Z, where
bi = ±1 for all i. The following are decidable:
1. (Group Problem) whether the semigroup ⟨G⟩ generated by G is a group.
2. (Identity Problem) whether the neutral element I is in the semigroup ⟨G⟩.
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Proof.
1. For the Group Problem, by Proposition 7.1 it suffices to decide whether there exists a

set S ⊆ I × J satisfying πI(S) = I, πJ(S) = J , such that the equation
∑

(i,j)∈S fijhij =
0 has a solution (fij)(i,j)∈S over N[X] \ {0}. By the homogeneity of the equation∑

(i,j)∈S fijhij = 0, one can multiply all the Laurent polynomials hij by a power of X

and suppose all hij ∈ Z[X]. For every set S ⊆ I × J satisfying πI(S) = I, πJ (S) = J , we
can use Theorem 2.3 to decide whether

∑
(i,j)∈S fijhij = 0 has a solution over N[X] \ {0}.

This shows the decidability of the Group Problem.
2. The neutral element is in ⟨G⟩ if and only if a non-empty subset of G generates a group (as

a semigroup). This is because, if the product of a word w ∈ G+ is the neutral element,
then every element in the set C of letters used in w can be inverted in ⟨C⟩, so ⟨C⟩ is a
group. Therefore, in order to decide whether the neutral element is in ⟨G⟩, it suffices to
check for all subsets of G whether they generate a group. This is decidable by the above
result on the Group Problem. ◀

B Algorithm for Theorem 2.2

Algorithm 1 Deciding existence of solutions over N[X] \ {0} of the equation f1h1 + · · · +
fnhn = 0.

Input: Polynomials h1, . . . , hn ∈ Z[X].
Output: True or False.

(1) Compute d := gcd(h1, . . . , hn) and divide all hi by d.
(2) Repeat the following:

a. If hi(0) > 0 for all i, or hi(0) < 0 for all i, return False.
b. Else if hi(0) ≥ 0 for all i, or hi(0) ≤ 0 for all i, divide all the polynomials hi

that satisfy hi(0) = 0 by X.
c. Else go to 3.

(3) Decide the truth of the existential sentence (16) in the theory of reals. If (16) is
true, return False, otherwise return True.

C Comparison with the Bröcker-Prestel local-global principle

The original Bröcker-Prestel local-global principle ([24, Theorem 8.13]) can be formulated as
follows.

▶ Theorem C.1 (Bröcker-Prestel local-global principle). Let F be a formally real field, and
h1, . . . , hn be non-zero elements of F . If the equation f1h1 + · · · fnhn = 0 has no non-
trivial solution (f1, . . . , fn) ̸= (0, . . . , 0) over sums of squares of F (that is, over the set
S := {

∑k
i=1 a2

i | ai ∈ F}), then at least one of the following hold:
(i) h1, . . . , hn are all of the same sign in some archimedean ordering of F .
(ii) f1h1 + · · · + fnhn = 0 has no solution in the Henselization of some real place of F .

For a definition of Henselizations of a formally real field, see [24, Proposition 8.1].
When applied to the field F = R(X), the Bröcker-Prestel local-global principle char-

acterizes the absence of non-trivial solutions over sums of squares by condition (ii), since
the field R(X) has no archimedean orderings. Multiplying by the common denominator
and using the fact that any element in W(R) can be written as a sum of squares in R(X),
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Theorem C.1 also characterizes the absence of non-trivial solutions over W(R). However,
when considering non-trivial solutions over U(R) and U(B), the situation is quite different;
and we now compare the proof of Theorem 2.1 to Theorem C.1.

The proof of Bröcker-Prestel’s original theorem starts with the definition of the pre-
semicone

P1 :=
{

n∑
i=1

fihi, where fi are sum of squares of elements in R(X)
}

.

Since it considers solutions over sum of squares, this definition is straightforward. The
definition of P0 is our proof of Theorem 2.1 is different and less straightforward. In our
theorem, we are considering strictly positive polynomials on B ⊆ R, therefore we need to
replace sum of squares with polynomials in U(B). However, such a naive replacement does
not work due to the requirement of a pre-semicone to be closed under multiplication of
squares (unlike W(R), the set U(B) is not closed under multiplication by squares). This is
why we need to add the rational function g

G in the definition of P0 and use the fundamental
theorem of algebra to guarantee closure under addition.

Note that in order to guarantee the closure under addition of P0, it is essential that
we work in the univariate polynomial ring R[X], so that two polynomials g, g′ having a
common root implies gcd(g, g′) ̸= 1. For example, this no longer holds in the bivariate
polynomial ring R[X, Y ]. Therefore, even when supposing gcd( gG′

dD , g′G
dD ) = 1, we no longer

have
(

fi
gG′

dD + f ′
i

g′G
dD

)
(x, y) > 0 in Equation (5). Thus, for the field R(X, Y ), the closure

under addition of P0 no longer holds, a contrast with the “non-strict” version P1.
The following step of extracting the valuation ring AP

R from the semiordering P appeared
as part of the proof of the original theorem. (The original theorem used the valuation ring
AP

Q instead, but they are in fact equivalent.) This is the main part where we drew inspiration
from the original local-global principle.

After extracting the valuation ring AP
R , our proof again diverges from that of the original

theorem. Our new definition of P0 allows us to enforce strict positivity, however it also takes
away some convenient properties of the pre-semicone P1 in the original theorem. Notably,
we have h1 ∈ P1, allowing for a quick conclusion on the positivity of h1 in Henselizations.
Whereas for P0, we do not have h1 ∈ P0 due to the strict positivity of the coefficients fi. We
compensate this by the analytic approach adopted in the second half of our proof, making
use of the classification of real places of R(X) and the continuity of functions in R[X]. This
part is absent from the proof of the original theorem, which is purely algebraic and model
theoretic.
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