Representation of Short Distances in Structurally
Sparse Graphs

Zdenék Dvorak =
Computer Science Institute, Charles University, Prague, Czech Republic

—— Abstract

A partial orientation H of a graph G is a weak r-guidance system if for any two vertices at distance
at most 7 in G, there exists a shortest path P between them such that H directs all but one edge in
P towards this edge. In case that H has bounded maximum outdegree A, this gives an efficient
representation of shortest paths of length at most r in G: For any pair of vertices, we can either
determine the distance between them or decide the distance is more than r, and in the former case,
find a shortest path between them, in time O(A"). We show that graphs from many natural graph
classes admit such weak guidance systems, and study the algorithmic aspects of this notion. We
also apply the notion to obtain approximation algorithms for distance variants of the independence
and domination number in graph classes that admit weak guidance systems of bounded maximum
outdegree.
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1 Introduction

We consider the following general question: Given an undirected unweighted graph G, can
short distances in G be represented efficiently? More precisely, the setting that interests us
is as follows:

G is known to belong to some class G of well-structured graphs (e.g., planar graphs,

graphs of clique-width at most 6, ... ).

We are only interested in distances up to some fixed upper bound r.

We are allowed to preprocess G in polynomial time; let D denote the resulting data

structure.

The data structure D should enable us to efficiently answer the queries of the following

form:

Are two input vertices u and v at distance at most r in G7
In case that the answer is positive, we may also want to determine the distance between
u and v, and return a shortest path between them.

Note that we consider both G and r to be fixed parameters. There are several criteria to
consider:

The time complexity of the preprocessing.

The time complexity of the queries.

The space complexity (the size of D).
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Of course, there are some trade-offs between these criteria. E.g., D could store distances
between all pairs of vertices, resulting in a relatively slow preprocessing time and space
complexity ©(|V(G)[?), but constant query time. In this paper we consider a solution which
still achieves constant query time (depending only on G and r), but is memory efficient in
the sense that storing D takes up about as much space as the graph G itself. To achieve
this, D will only consist of an orientation of G.

An orientation of an undirected graph G is a directed graph H such that for every
(u,v) € E(H), we have uv € E(G), and for every uv € E(G), at least one of (u,v) and (v, u)
is a directed edge of H. Note that H can contain both (u,v) and (v,u), i.c., we allow an
edge of G to be directed in both ways at the same time. Let By (v,a) denote the set of
vertices reachable in H from v by a directed path of length at most a. An r-guidance system
is an orientation H such that for any vertices u,v € V(G) at distance ¢ < r in G, there exist
non-negative integers ¢ and b such that a +b = £ and Bg(u,a) N Bg(v,b) # 0; i.e., there
is a shortest path between v and v in G whose edges are directed in H towards one of its
vertices. Note that if H has maximum outdegree at most ¢, all such paths can be enumerated
in time O(c"), and if ¢ is small, this enables us to find a shortest path between a given pair
of vertices (or verify that their distance is greater than r) efficiently.

The guidance systems were (without explicitly naming them) introduced by Kowalik and
Kurowski [11], who proved that they can be used to represent short distances in planar graphs,
and more generally for every F', in any graph avoiding F' as a topological minor. As observed
in [7], essentially the same argument shows that graphs from even more general graph classes,
namely all classes with bounded expansion and more generally all nowhere-dense classes,
admit guidance systems of bounded maximum outdegree. To state the result precisely, we
need to introduce several definitions.

For a non-negative integer s, a graph H is an s-shallow minor of a graph G if H is
obtained from a subgraph of G by contracting pairwise-disjoint subgraphs, each of radius
at most s. For a class G, let VG denote the class of all graphs H that appear as s-shallow
minors in graphs from G. A class G of graphs has bounded expansion if for every s > 0 there
exists ds such that every graph in V,G has average degree at most ds. Even less restrictively,
a class G is nowhere-dense if for every s > 0 there exists ds such that K4, ¢ V;G. Examples
of classes of graphs with bounded expansion include planar graphs and more generally all
proper minor-closed classes, graphs with bounded maximum degree and more generally all
proper classes closed under topological minors, graphs drawn in the plane with O(1) crossings
on each edge, and many other classes of sparse graphs; see [13] for more details.

» Theorem 1 (Dvofak and Lahiri [7]). Let G be a class of graphs and r a positive integer.
If G has bounded expansion, then there exists ¢ such that every graph G € G has an
r-guidance system of maximum outdegree at most c. Moreover, such an r-guidance system
can be found in time O(|V(G)]).

If G is nowhere-dense, then for every e > 0, there exists ¢ such that every graph G € G
has an r-guidance system of mazimum outdegree at most c|V(G)|¢. Moreover, such an
r-guidance system can be found in time O(|V (G)[*+*).

A graph with an orientation of maximum outdegree at most ¢ necessarily has maximum
average degree at most 2¢, and thus it is (2¢ + 1)-degenerate. Hence, guidance systems of
bounded maximum outdegree can only exist in sparse graphs. This brings us to the main
topic of our paper: Does there exist a variant of the notion useful for dense graphs?

Note that representing distance one by a guidance system forces us to orient all edges.
If we relax the notion to only represent distances 2, 3, ..., r, this may not be necessary.
A partial orientation of a graph G is a spanning directed subgraph of an orientation of G



Z. Dvorak

(i.e., we allow some edges not to be oriented in either direction). An r+-guidance system
is a partial orientation H of a graph G such that for any vertices u,v € V(G) at distance
£ in G, where 2 < ¢ < r, there exist non-negative integers a and b such that a + b = ¢ and
Bg(u,a) N Bg(v,b) # 0. Let us give a (trivial) example showing that there are dense graphs
admitting rT-guidance systems.

» Example 2. Let G be a graph containing a universal vertex u, and let H be the partial
orientation obtained by directing all edges incident with u towards u. Observe that for any
positive integer v, H is an rT-guidance system in G of maximum outdegree one.

However, there are some quite simple graphs that do not admit r+-guidance systems of
bounded outdegree. For a graph G and a positive integer k, let G* denote the k-distance
power of G, that is, the graph with vertex set V(G) and two vertices adjacent if and only if
the distance between them in G is at most k.

» Example 3. Let T be the graph obtained from K; , by subdividing every edge exactly
twice, let X be the set of its leaves, and let Y be the set of neighbors of the central vertex of
degree n. Let G = T?. Note that Y induces a clique in G, and any two vertices of X are
joined by a unique path of length three using exactly one edge of this clique. This implies
that in any 37-guidance system for G, every edge of the clique on Y must be directed in at
least one direction, and thus some vertex of Y has outdegree at least (n — 1)/2.

This example highlights the fact that in dense graphs, we cannot afford to represent the
shortest paths by having all of their edges oriented. This motivates us to generalize the
guidance systems as follows, introducing the main notion of interest for this paper.

» Definition 4. A weak r-guidance system is a partial orientation H of G such that for any
distinct vertices u,v € V(G) at distance £ <1 in G, there exist non-negative integers a and
b such that a +b = { —1 and G contains an edge between By (u,a) and Bg(v,b); that is,
there exists a shortest path between u and v in G such that all but one edge e of this path is
directed in H towards this exceptional edge e (which may or may not be directed).

In particular, an r-guidance system (or an rT-guidance system) is also a weak r-guidance
system. Note that if the graph G is represented so that we can in constant time test whether
two vertices are adjacent, then a weak r-guidance system of maximum outdegree ¢ makes it
possible to find a shortest path between a given pair of vertices (or verify that their distance
is greater than r) in time O(c"1).

The goal of this paper is to develop the theory of weak guidance systems; we show that
several interesting graph classes admit weak guidance systems of small maximum outdegree
(constant, or logarithmic in the number of vertices), address the algorithmic question of
finding weak guidance systems efficiently, and on the negative side, we give examples of
simple graph classes that do not admit weak guidance systems of small maximum outdegree.

Guidance systems and related notions such as weak coloring numbers have many appli-
cations in algorithmic design, for example in efficient practical algorithms for determining
statistics of small subgraphs [16] and design of approximation algorithms [4, 6, 7]. We expect
weak guidance systems to be similarly useful; to illustrate this, we describe an application in
approximation of distance variants of the independence and domination number, generalizing
the results of [4].

1.1 Summary of our results

We start by describing basic properties of weak guidance systems, including the fact that
they behave well under the distance power operation considered in Example 3.
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A standard way of generalizing results for sparse graphs (e.g., for classes with bounded
expansion) is to consider graphs definable in them by first-order logic formulas. We show
that this approach works for weak guidance systems in Theorem 8, which generalizes
Theorem 1 to the dense setting in this way.

The aforementioned results guaranteeing the existence of weak guidance systems of
bounded maximum outdegree do not provide polynomial-time algorithms to find such a
weak guidance system. In Corollary 16, we provide an approximation algorithm for this
problem that for an n-vertex graph which admits a weak guidance system of maximum
outdegree ¢ returns one of maximum outdegree O(clogn).

In Theorem 19, we improve this bound to O(clogc¢) under an additional assumption that
certain set systems have bounded VC-dimension. This in particular gives an efficient
algorithmic version of Theorem 8 (Corollary 21).

On the negative side, in Section 2.3 we show that several natural graph classes do not
admit weak guidance systems of bounded maximum outdegree, specifically graphs of girth
at least five and large average degree, split graphs, and graphs of bounded clique-width.
In Section 3, we show an application of weak guidance systems in design of approximation
algorithms for distance independence and domination number (under an additional
assumption that the considered graph class is stable, which we show to be necessary). In
particular, this gives a constant-factor approximation algorithm for any graphs that are
first-order definable in classes with bounded expansion.

2 Theory of weak guidance systems

In this section, we describe the theoretical results on weak guidance systems in detail. Some
of the proofs are defered to the Appendix; the claims marked with (1) have simple proofs
which we do not present due to space constraints. Before we start, let us note that weak
guidance systems enable us to circumvent the difficulty from Example 3.

» Lemma 5 (1). Let G be a graph and let k > 1 and ¢ > 2 be integers. For any positive
integer v, if G has a weak kr-guidance system H of maximum outdegree at most c, then G*
has a weak r-guidance system F of mazimum outdegree at most 2c*.

Weak guidance systems are qualitatively different from guidance systems only in dense graphs,
as in degenerate graphs, a weak guidance system can be completed to a guidance system by
directing the rest of the edges while preserving the bounded maximum outdegree.

» Observation 6. If G admits a weak r-quidance system of mazximum outdegree ¢ and G is
t-degenerate, then G also admits an r-quidance system of maximum outdegree at most c + t.

Finally, we give the following description of weak r-guidance systems, which we use often
in the rest of the paper. For vertices 4 and v of a graph G at distance ¢, let G(u — v) be the
set of neighbors of u at distance £ — 1 from v; i.e., G(u — v) consists of all possible second
vertices of shortest paths from u to v.

» Observation 7. A partial orientation H of a graph G is a weak r-guidance system if and
only if the following claim holds for all u,v € V(Q) at distance £ in G, where 2 < { <r:
(%) Either u has an outneighbor in G(u — v), or v has an outneighbor in G(v — w).

2.1 Weak guidance systems in structurally sparse graphs

The standard way of generalizing the concepts of bounded expansion and nowhere-density
to dense graphs is through the notion of first-order transductions, see e.g. [8, 9, 2, 12]. For
a positive integer k and a graph G, let kG denote the disjoint union of k copies of G. A
transduction T consists of
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a positive integer k
a binary predicate symbol M and unary predicate symbols Uy, ..., Us, and
first-order formulas w(x) and e(z,y) with free variables © (resp. x and y) using these
predicate symbols and the binary predicate symbol FE.
For graphs H and G, we write H € T(G) if there exist sets C1,...,Cs C V(kG) such that
V(H) consists exactly of the vertices v € V(kG) satisfying

kG, Uy :=C4,...,Us :=Cs E w(v)
and FE(H) consists exactly of the pairs u,v € V(H) such that
kG, Uy :=C4,...,Us :=Cy E e(u,v),

where the predicate symbol F is interpreted as adjacency in kG and M is interpreted as the
equivalence between the k copies of each vertex.

That is, a transduction allows us to blow up the graph by replicating each vertex a
bounded number of times, then non-deterministically color some vertices (via the predicates
Ui, ..., Us), and finally define the vertices and edges of the new graph by a first-order
formula. As an example, if T is the transduction with & = 1, s = 0, w(x) = true and

(r,y) = (¢ #y) A (F2)(z =2V E(z,2)) A E(2,y),

then H € T(G) if and only if H = G?. Hence, the transduction operation generalizes the
graph power operations we considered in Lemma 5.

For a class of graphs G’ and a transduction T, let T(G’) denote the class of all graphs
G such that G € T(G’) for some G’ € G'. We say that a class of graphs G has structurally
bounded expansion (resp., is structurally nowhere-dense) if G C T(G') for a transduction
T and a graph class G’ of bounded expansion (resp., being nowhere-dense). As our first
result, we show that weak guidance systems behave as one would expect for these standard
generalizations of the notions of sparsity to dense graphs.

» Theorem 8. Let G be a class of graphs and let r be a positive integer.

If G has structurally bounded expansion, then for some positive integer c, every graph in

G has a weak r-guidance system of maximum outdegree at most c.

If G is structurally nowhere-dense and € > 0, then for some positive integer c, every graph

in G has a weak r-guidance system of maximum outdegree at most c|V(G)|°.

In preparation for the proof of Theorem 8, let us consider the graph classes with bounded
shrub-depth. The notion of shrub-depth was defined by Ganian et al. [10] using the concept
of tree models. For a positive integer m, an m-signature is a function S : Z+ — 2lmIx[m]
assigning a symmetric relation S(7) to each ¢ > 0. For a positive integer d, an (m, d)-tree
model of a graph G is a triple (T, ¢, S), where

T is a rooted tree with leaf set V' (G) and such that the length of every root-leaf path is d,

¢ : V(G) — [m] assigns one of m labels to each leaf,

S is an m-signature, and

for every u,v € V(G), if 2i is the distance between v and v in T' (i.e., if ¢ is the distance

from w and v to their nearest common ancestor in T'), then wv € E(G) if and only if

(p(u), p(v)) € S(i).

A class G of graphs has shrub-depth at most d if for some positive integer m, every graph in
G has an (m, d)-model.

» Lemma 9. For every class G of graphs of bounded shrub-depth and every positive integer r,
there exists a positive integer ¢ such that every graph from G has a weak r-guidance system
of maximum outdegree at most c.

28:5

STACS 2023



28:6

Representation of Short Distances in Structurally Sparse Graphs

Proof. Let m and d be positive integers such that every graph G € G has an (m, d)-tree
model (T, ¢, S). Let ¢ = r3m™(d+1)""d.

For a positive integer k, a k-type is a pair (f,g) of functions f : [k] — [m] and g :
[k]> — {0} U [d]. The type of a k-tuple (v1,...,vx) of vertices of G is the k-type (f,g)
such that f(i) = ¢(v;) for i € [k] and ¢(,) is half of the distance between v; and v; in
T. For each vertex x € V(T), each positive integer k < r, and each k-type t, if there
exist a k-tuple (v1,...,vg) of leaves of T with ancestor x and of type ¢, fix such a k-tuple
Q(z,t) = (v1,...,vg) arbitrarily and let A(z,t) = {vy,...,vx}; otherwise, let A(z,t) = 0.
For each non-leaf vertex y € V(T'), if y has more than r children x such that A(z,t) # 0,
then let R(y,t) be a set of r + 1 of them chosen arbitrarily; otherwise let R(y,t) be the set
of all children z of y such that A(z,t) # 0. Let B(y,t) = U,cp(,.) Az, t), and let B(y) be
the union of B(y,t) over all k-types ¢t with k < r.

Let H be the partial orientation of G containing exactly the edges (u,v) such that
wv € E(G) and v € B(y) for some ancestor y of u in T. Clearly, H has maximum outdegree
at most c. Let us now argue that H is a weak r-guidance system.

Consider any vertices u,v € V(G) at distance ¢ in G, where 2 < ¢ < r, and let
P = wguy ... up, where ugp = u and uy = v, be a shortest path from u to v in G. We will
show that the condition (x) from Observation 7 is satisfied for u and v. Let y be the nearest
common ancestor of v and u; in T, let X be the set of children of y that have a descendant
belonging to V(P), and let 27 be the child of y whose descendant is uy. Suppose first that
v is not a descendant of x;. Let @) be the tuple of vertices of P that are descendants of
z1 (in any order) and let ¢ be its type. Since |X| < r+ 1 and A(z1,t) # 0, there exists
) € R(y,t) \ (X \ {z1}). Let Q" = Q(=},t) and let P’ be obtained from P by replacing the
vertices of @ by the vertices of Q. Observe that since Q and Q" have the same type and the
same common ancestors with the other vertices of P, P’ is also a shortest path from u to v
in G. Moreover, the construction of H implies that the first edge of P’ is directed away from
u, establishing the validity of the condition (%) from Observation 7.

Hence, suppose that v is a descendant of z;. In particular, this implies that y is also the
nearest common ancestor of u and v. Let x3 be the child of y whose descendant is u. By
symmetry, we can assume that uy_1 is a descendant of x5 as well. Let Q1 = (ug, us, ..., ux) be
the maximal initial segment of P —u consisting of descendants of x1; we have k < £—1. Let ¢;
be the type of Q1. Since | X| < r+1 and A(xy,t1) # 0, there exists 2} € R(y,t1)\ (X \{z1}).
Let Q) = Q(«!,t1) and let P| be obtained from P by replacing the vertices of @1 by the
vertices of Q). Observe that since Q; and @] have the same type and the same common
ancestors with u and wugy1, Pj is also a shortest path from w to v in G. Moreover, the
construction of H implies that the first edge of P is directed away from wu, establishing the
validity of the condition (*) from Observation 7.

We conclude that H is a weak r-guidance system. |

Crucially, the notions of structurally bounded expansion and structural nowhere-density
can be characterized in terms of bounded shrub-depth covers. A cover of a graph G is a
system of subsets of V(G). Let a be a positive integer. A cover C of G is a-generic if for
every subset A C V(G) of size at most a, there exists C' € C such that A C C. An a-generic
bounded shrub-depth cover assignment for a graph class G is a function C that to each graph
G € G assigns an a-generic cover C(G) such that the class

C(G) = {G[C]: G € G,C eC(G)}

has bounded shrub-depth.
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» Theorem 10 (Gajarsky et al. [9] and Dreier et al. [3]). Let G be a class of graphs and let a
be a positive integer.
If G has structurally bounded expansion, then for some positive integer k, G has an
a-generic bounded shrub-depth cover assignment C such that |C(G)| < k for every G € G.
If G is structurally nowhere-dense and € > 0, then for some positive integer k, G has an
a-generic bounded shrub-depth cover assignment C such that |C(G)| < k|V(G)|® for every
Geg.

Together with Lemma 9, this gives the main result of this section.

Proof of Theorem 8. Let C be an (r + 1)-generic bounded shrub-depth cover assignment
and k the corresponding constant from Theorem 10. Let ¢y be the constant from Lemma 9
for the class C(G). Let ¢ = kco.

For any graph G € G, let H be the union of the weak r-guidance systems of the subgraphs
G[C] for C € C(G) obtained using Lemma 9. Clearly, the maximum outdegree of H is at
most ¢ if G has structurally bounded expansion and at most ¢|V(G)|¢ if G is structurally
nowhere-dense. Moreover, consider any vertices v and v at distance at most r in G, and let
P be a shortest path between them. Since the cover C(G) is (r + 1)-generic, there exists
C € C(G) such that G[C] contains P. Since H restricted to C is a weak r-guidance system
in G[C], there exists a shortest path between u and v in G[C|] (and thus also in G) directed
by H towards one of its edges. We conclude that H is a weak r-guidance system in G. <«

Let us remark that r-guidance systems can be used to characterize bounded expansion
and nowhere-density.

» Lemma 11. Let G be a class of graphs closed under induced subgraphs.
If there exists ¢ : Zt — Z% such that for every positive integer v, every G € G has an
r-guidance system of maximum outdegree at most c¢(r), then G has bounded expansion.
If there exists ¢ : ZT x Rt — Z such that for every positive integer r and for every e > 0,
every G € G has an r-guidance system of mazimum outdegree at most c(r,e)|V(G)|¢, then
G is nowhere-dense.

Note that the assumption of being closed under induced subgraphs is needed, as seen by
Example 2: This example together with Observation 6 shows that the class of graphs formed
from cliques by subdividing each edge once and adding a universal vertex afterwards admits
an r-guidance system of maximum outdegree at most 4 for every r > 1; but this class is not
nowhere-dense.

It is tempting to ask whether weak r-guidance systems similarly characterize structurally
bounded expansion or structural nowhere-density. However, this is not the case. We define a
weak co-guidance system to be a partial orientation that is a weak r-guidance system for
every positive integer r. Interval graphs are the intersection graphs of sets of open intervals
in the real line.

» Example 12. Consider any interval graph G. Let H be the partial orientation of G
obtained as follows. For each u € V(G), let v; and vs be the neighbors of u such that
the right endpoint of the interval of v; is maximum among all neighbors of u, and the left
endpoint of the interval of vy is minimum among them. Include in A the edges (u,v;) and
(u,v2). Then H is a weak co-guidance system in G of maximum outdegree at most two.

The class of interval graphs is closed under induced subgraphs, but it is well-known not to
be structurally nowhere-dense.

28:7
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2.2 Algorithmic aspects

The proof of Theorem 8 is based on the fact that structurally sparse graphs are known to
admit bounded shrub-depth covers, see Theorem 10. However, it is currently not known
how to obtain such covers efficiently. Consequently, Theorem 8 does not give an efficient
algorithm to obtain weak guidance systems. A similar remark applies for Lemma 5, in case
we are not given the weak guidance system H but only the graph G* as the input.

In this section, we address this issue, giving a polynomial-time algorithm that given an
n-vertex graph returns a weak guidance system whose maximum outdegree is worse than
optimal only by an O(logn) factor, and an improved approximation algorithm in case certain
relevant set systems have bounded VC-dimension.

First, let us introduce one more relaxation of the guidance system notion. A fractional
orientation of a graph G is a function p that assigns a non-negative real number p(u, v) to
each pair (u,v) of adjacent vertices of G. The outdegree d,f (u) of a vertex u in the fractional
orientation p is ZUZWGE(G) p(u,v). We say that p is a fractional r-guidance system if for
every u,v € V(G) at distance ¢, where 2 < ¢ < r, we have

Yo oplwy)+ D ply) =1 (1)

yEG(u—v) yeG(v—u)

By Observation 7, weak guidance systems can naturally be interpreted as fractional
guidance systems.

» Observation 13. Suppose H is a weak r-quidance system in a graph G, of mazximum
outdegree c. Let us define p(u,v) = 1 for every (u,v) € E(H) and p(u,v) = 0 for every

wv € E(G) such that (u,v) € E(H). Then p is a fractional r-guidance system of mazimum
outdegree c.

Moreover, an optimal fractional guidance system can be constructed through linear
programming.

» Lemma 14 (7). If a graph G has a weak r-guidance system of mazimum outdegree cg, we
can find a fractional r-guidance system of maximum outdegree at most cy in G in polynomial
time.

A fractional r-guidance system p can be directly used to test presence of shortest paths,
with a small probability of error, by constructing a pair of random walks between the two
given vertices, with the probability distribution derived from p in the natural way; see the
Appendix for details. More interestingly, we can turn a fractional r-guidance system to a
weak r-guidance system with a logarithmic loss in the maximum degree. The basic idea is
that a random selection of an outgoing edge at each vertex from the probability distribution
given by p makes sure that in expectation the condition (x) from Observation 7 is satisfied
by a constant fraction of pairs of vertices, and iterating such sampling O(logn) times is
sufficient for (x) to hold for all pairs, which shows that the resulting partial orientation is a
weak r-guidance system.

» Lemma 15. Let ¢ be a positive real number, let n be a positive integer, and let m = [4clogn].
Suppose p is a fractional r-guidance system in a graph G, with maximum outdegree at most
c. There exists an algorithm that in polynomial time returns a weak r-guidance system H in
G with mazimum outdegree at most m.

Combining Lemmas 14 and 15, we obtain the following claim.
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» Corollary 16. There exists an algorithm that, for an input n-vertex graph G that admits a
weak r-guidance system of maximum outdegree at most ¢, outputs in polynomial time a weak
r-guidance system of maximum outdegree O(clogn).

Let us remark that the logarithmic loss in Lemma 15 cannot be avoided in general. For
positive integers a and k, let m = k2*+! and let G, be the random graph obtained as
follows. We start with a random bipartite graph with parts L of size a and R of size ma,

with each vertex of L being adjacent to each vertex of R independently with probability 1/2.

We then divide R into m parts Ry, ..., Ry, of size a arbitrarily, and for i = 1,...,m, we
add a vertex x; adjacent to all vertices of R;.

» Lemma 17. There exists an integer ag such that for every a > ag and k < loga, with
positive probability
Ga.i has a fractional 2-guidance system with mazimum outdegree at most 3, and

Gq.i; does not have a weak 2-guidance system with mazimum outdegree at most k.
Note that if we set k = |loga], we have
n=|V(Ger) < (m+1)(a+1) < (kaH +1) - (exp(k + 1) +1) < exp(O(k)),

and thus Lemma 17 gives examples of graphs with an arbitrarily large number n of vertices
and a fractional 2-guidance system of maximum outdegree at most 3 such that every weak
2-guidance system has maximum outdegree Q(logn).

However, we can do better in case the VC-dimension of relevant systems is bounded.

Recall that a system S of subsets of a set X shatters a set A C X if {ANS : S € S} contains
all subsets of A, and that the VC-dimension of S is the size of the largest subset of X
shattered by S. For a graph G, integer r > 2, and vertex u € V(G), let VC(G, r,u) denote
the VC-dimension of the system

{Glu—v):veV(Q),2<dg(u,v) <r},

and let VC(G,r) = max,cv(q) VC(G,r,u).

The key property of systems with bounded VC-dimension is that they admit efficient
(randomized) approximation for smallest hitting set in terms of the size of the smallest
fractional hitting set (a hitting set for S is a subset of X intersecting all elements of S, and
a fractional hitting set is a function w : X — R such that, defining w(A) =Y ., w(z) for
each subset A of X, each element S € S satisfies w(S) > 1; the size of the fractional hitting
set w is w(X)). For the following standard result, see e.g. [14].

» Theorem 18. There exists a polynomial-time randomized algorithm that, given a system
S of subsets of a set X of VC-dimension at most d and a fractional hitting set w of size s,
with probability at least 1/2 returns a hitting set for S of size O(dslog s).

We now apply this fact to give an improved algorithm to obtain weak guidance systems
from fractional ones when VC(G, r) is bounded.

» Theorem 19. There exists a polynomial-time randomized algorithm that, for an input
n-verter graph G that admits a weak r-guidance system of mazimum outdegree at most
¢, with probability at least 1/2 outputs a weak r-quidance system of mazximum outdegree
O(VC(G,r) - clogc).

28:9

STACS 2023



28:10

Representation of Short Distances in Structurally Sparse Graphs

Proof. Let p be a fractional r-guidance system of maximum outdegree at most ¢ in G found
using Lemma 14. For each u € V(G), let R, be the set of vertices v € V(G) such that
2 < dg(u,v) <r and

Z p(u,z) > 1/2.

2€G(u—v)

Since p is a fractional r-guidance system, for each u,v € V(G) such that 2 < dg(u,v) <7,
we have v € R, or u € R,.

Let S, be the system {G(u — v) : v € R, } of subsets of the set Ng(u) of neighbors of
u. For z € Ng(u), let us define w(z) = 2p(u, z). By the choice of R, we have w(S) > 1
for each S € S, and thus w is a fractional hitting set for S,. Moreover, w(Ng(u)) < 2¢,
since the maximum outdegree of p is at most ¢. The VC-dimension of S, is at most
VC(G,r,u) < VC(G,r), and thus we can by Theorem 18 find a hitting set H,, C Ng(u) for
S, of size O(VC(G, ) - clog c¢); note that we iterate the algorithm Q(|V(G)|) times to make
the probability of error less than m, and thus we find a valid hitting set for all u € V(G)
with probability at least 1/2.

Let us now define a partial orientation G of G by, for each u € V(G), directing the edges
from u to H,. Clearly, G has maximum outdegree O(VC(G, r) - clog ). Moreover, consider
any u,v € V(G) such that 2 < dg(u,v) < r. By symmetry, we can assume that v € R, and
thus H, intersects the set G(u — v) € S,,. Hence, u has an outneighbor in G(u — v). By
Observation 7, we conclude that G is a weak r-guidance system for G. |

In particular, this is useful for structurally nowhere-dense classes (and especially for classes
with structurally bounded expansion), as follows from the fact that first-order definable sets
in graphs from these classes have bounded VC-dimension [1, 15].

» Lemma 20. For every structurally nowhere-dense class G of graphs and every integer
r > 2, there exists a constant d such that VC(G,r) < d for every graph G € G.

Hence, Theorem 19 gives the following algorithmic form of Theorem 8.

» Corollary 21. Let G be a class of graphs and let v be a positive integer.

If G has structurally bounded expansion, then there exists ¢ and a randomized algorithm
that for an input n-vertex graph G € G outputs in polynomial time with probability at
least 1/2 a weak r-guidance system of maximum outdegree at most c.

If G is structurally nowhere-dense and € > 0, then there exists ¢ and a randomized
algorithm that for an input n-verter graph G € G outputs in polynomial time with
probability at least 1/2 a weak r-guidance system of mazimum outdegree at most cn®.

2.3 Graph classes without bounded outdegree weak guidance systems

To better understand obstructions to the existence of weak r-guidance systems of bounded
maximum outdegree, it is natural to consider the dual of the linear program from the proof
of Lemma 14, which can be reformulated as follows. For uz € E(G), let R,-(u, z) be the set
of vertices v € V(@) such that the distance between u and v is between 2 and r and z lies
on a shortest path from u to v in G; i.e., z € G(u — v).
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» Lemma 22 (). Let G be a graph and let r be a positive integer. Let ¢ be the solution to
the following optimization problem:

Yup = 0 for every u,v € V(QG) at distance between 2 and r

T, = max w or every u € V(G
zuz€E(G) 'UGRZ(u z)y f 4 ( )

wv:2<dg (u,v)<r Yuw

maximaize

ZvGV(G) Ly
Then every fractional or weak r-guidance system in G has mazimum outdegree at least c.

As an example, this easily shows that no good weak guidance systems exist for graphs
of girth at least five and large maximum average degree (the mazimum average degree of a
graph is the maximum of the average degrees of its subgraphs).

» Lemma 23. Let G be a graph of girth at least five and mazimum average degree d > 2.
Every fractional or weak 2-guidance system in G has mazimum outdegree at least d/2.

Proof. Let Z C V(G) be a smallest set such that G[Z] has average degree d. Since d > 2,
every vertex of G[Z] has degree at least two, since deleting vertices of degree at most one
would not decrease the average degree.

Since G has girth at least 5, any vertices u,v € Z at distance two in G[Z] have a unique
common neighbor z € Z; we define

1

Yuoor = 7T -
deggz12 —1

For any pair u,v € V(G) of vertices at distance two in G such that {u,v} Z Z or the common
neighbor of u and v does not belong to Z, we define y,,, = 0. For any edge uz of G, if
{u,2} C Z, then we have |Ra(u,z) N Z| = deggz # — 1, and thus

Z Yuv = 1;
vER3 (u,z)

while if {u, z} Z Z, then

Z Yuv = 0.

vERs(u,z)

Therefore,

T, = max Yuo = 1
“ z:quE(G)velg(u 2) w

foru € Z and z,, =0 for u € V(G) \ Z, and

Zuv:dc(u,v)ZZ Yuov _ % ’ ZUGZ Zz:uzeE(G[Z]) ZUGRQ(u,z) Yuv _ |E(G[Z])| _ d/2
2 uev(a) Tu 4 Z|

The claim now follows from Lemma 22. <

This shows that weak guidance systems can be qualitatively different from guidance
systems only in graphs of girth at most four.
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» Corollary 24. Let G be a graph of girth at least five. For any r > 2, if G admits a weak
r-quidance system of mazximum outdegree at most c, then G also admits an r-guidance system
of maximum outdegree at most 3c.

Proof. By Lemma 23, G has maximum average degree at most 2¢, and thus G is 2c-degenerate.
The claim then follows by Observation 6. |

Next, we consider the class of split graphs (a graph G is a split graph if there exists a
partition (A, B) of its vertex set where A is a clique and B is an independent set). An easy
construction based on the incidence graphs of finite projective planes shows that split graphs
do not admit weak guidance systems of bounded maximum outdegree.

» Lemma 25. For every n such that n is a power of a prime, there exists a split graph G,
with 2(n? +n + 1) vertices such that every fractional or weak 2-guidance system in G has
mazimum outdegree at least (n +1)/2.

Let us remark that split graphs are a special case of chordal graphs (graphs with no induced
cycle of length at least four), and thus chordal graphs do not in general admit weak guidance
systems of bounded maximum outdegree.

A k-labeled graph is a graph where each vertex is assigned a label from [k] (several
vertices can have the same label, and not all labels must be used). A k-labeled graph G is
constructible if G has only one vertex or

G is the disjoint union of at least two constructible k-labeled graphs, or

G is obtained from a constructible k-labeled graph G’ by, for some 4, j € [k], changing all

labels ¢ to j, or

G is obtained from a constructible k-labeled graph G’ by, for some i, j € [k], adding all

edges between vertices with labels ¢ and j.

We say a graph has clique-width at most k if we can assign labels to its vertices so that the
resulting k-labeled graph is constructible. For graphs of bounded clique-width, we again
obtain a superconstant lower bound, though substantially smaller than in the case of split
graphs.

» Lemma 26. There exist arbitrarily large graphs G of clique-width at most 6 such that any
weak 2-guidance system in G has maximum outdegree at least Q(log |V (G)|/loglog |V (G)]).

Note this is in contrast to Lemma 9, where we prove that graphs of bounded shrubdepth
(a natural subclass of graphs of bounded clique-width) admit weak guidance systems with
bounded maximum outdegree. On the positive side, we can show that graphs of bounded
clique-width admit weak guidance systems of logarithmic outdegree.

Let us start by a useful observation. Suppose (A, B) is a partition of the vertex set of a
graph G. For u,v € V(G), we write u =4 p) v if either u,v € A and u and v have the same
neighbors in B, or u,v € B and u and v have the same neighbors in A.

» Lemma 27. Let r be a positive integer or co. Suppose (A, B) is a partition of the vertex set
of a graph G and =4,y has k equivalence classes. If G[A] and G[B] have a weak r-guidance
system of mazximum outdegree at most c, then G has a weak r-guidance system of mazximum
outdegree at most ¢ + k.

Proof. Let Hy and Hp be weak r-guidance systems of maximum outdegree at most c¢ in
G[A] and G|B], respectively. Let H consist of H, U Hp and the following edges: For each
u € V(G) and each equivalence class C' of =(4 p) intersecting the component of G' containing
u, choose a vertex ug in C nearest to u in G and a vertex uc € G(u — uy,) arbitrarily, and
add the edge (u, u¢). Clearly, H has maximum outdegree at most ¢ + k.
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Consider now any vertices u,v € V(G) at distance £, where 2 < ¢ < r, and let P be
a shortest path between v and v in G. If an edge of P incident with u or v belongs to
G[A]UG|B], switch the names of vertices u and v if necessary so that such an edge is incident
with u. By symmetry, we can assume u € A. If P C G[A4], then by Observation 7, Ha
(and thus also H) contains an edge directed from u to G[A](u — v) € G(u — v) or an edge
directed from v to G[A](v — u) C G(v — u). Hence, suppose that P Z G[A].

If the first edge of P is contained in G[A], then let P’ be the longest initial segment of
P contained in G[A]. If the first edge of P is not contained in G[A], then let P’ be the
longest initial segment of P contained in G[B U {u}]. Let C be the equivalence class of
=(4,p) containing the last vertex z of P’. Note that z # v: In the first case, this is because
P is not contained in G[A]. In the second case, this is because |E(P)| = ¢ > 2 and the choice
of the names of the vertices u and v implies that the last edge of P is not contained in G[B].
Since uy, is a nearest vertex from v in C, ug is at distance at most |E(P’)| from u in G.
Moreover, ug, is in the same equivalence class of =4 gy as 2, and thus ug is adjacent to the
vertex following z in P. Hence, uc € G(u — v) and H contains the edge (u, uc).

Observation 7 then implies that H is a weak r-guidance system in G. <

We combine this with the following well-known fact about clique-width.

» Observation 28. If G is a graph with n vertices and clique-width at most k, then there
exists a partition (A, B) of vertices of G such that |A|,|B| < 2n and =4, p) has at most 2k
equivalence classes.

Since any induced subgraph of a graph of clique-width at most k also has clique-width at
most k, the desired bound follows.

» Corollary 29. For every k > 0, every n-vertex graph of clzque width at most k has a partial
orientation H of mazimum outdegree O(klogn) such that H is a weak oo- -guidance system.

3 Application: Approximation of distance domination and
independence number

For a positive integer r, a set S of vertices of a graph G is r-dominating if every vertex of G
is at distance at most r from S, and r-independent if distinct vertices of S are at distance
greater than r from one another. Let ~,(G) denote the smallest size of an r-dominating
set in G, and «.,.(G) the largest size of an r-independent set in G. Observe that if D is an
r-dominating and A a 2r-independent set in G, then every vertex of D is at distance at most
r from at most one vertex of A, and since every vertex of A is at distance at most r from D,
we have |A| < |D|. Consequently, oo, (G) < v-(G).

In general, the converse inequality does not hold and it is not even possible to bound
~-(G) by a function of as,.(G); however, Dvordk [4] proved that if G is from a class of graphs
with bounded expansion, then an approximate converse holds, i.e., 7,(G) = O(az(G)). A
small variation of the argument gives the following stronger claim.

» Lemma 30. For all positive integers ¢ and r, there exists a linear-time algorithm that,
given a graph G together with its 2r-guidance system of maximum outdegree less than c,
returns an r-dominating set D and a 2r-independent set A in G such that |D| < c¢?|Al.

Note that this implies that v,.(G) < |D| < ¢?4,.(G) and Faz,(G) < |A| < a3,(G), and
thus this gives a linear-time algorithm to approximate both the r-domination and the
2r-independence number of G within the constant factor c2.
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The goal of this section is to show that a similar result holds for classes of graphs that
admit weak guidance systems. However, the presence of a weak 2r-guidance system of
bounded outdegree is not by itself sufficient to ensure this.

» Example 31. Let K be a random orientation of the clique with vertex set {1,...,n}
(for each edge, choose direction uniformly independently at random). Let G be the graph
obtained from K as follows: We have V(G) = {v1,...,0n,u1,...,un, 2}, where for each
i € {1,...,n}, u; is adjacent to z, v;, and all vertices v; such that (i,7) € E(K). Let H
be the partial orientation of G where for i € {1,...,n}, the edge v;u; for i € {1,...,n}
is directed towards u;, and the edge u;z is directed towards z. Note that for any distinct
i,j €{1,...,n}, we have (i, ) € E(K) or (j,i) € E(K), and thus the path V;U;Vj OF VjU;V;
has the first edge directed towards its middle vertex. Consequently, H is a weak 2-guidance
system for G of maximum outdegree one. Moreover, any 2-independent set in G contains
at most one of the vertices {vy,...,v,, 2} and at most one of the vertices {uq,...,u,}, and
thus as(G) < 2. On the other hand, we have v1(G) = Q(logn): By replacing each vertex v;
by u; in an optimal dominating set and possibly adding z, we obtain a dominating set D of
size at most 1 (G) + 1 containing none of the vertices vy, ..., v,, and to dominate these
vertices, observe that with high probability D needs to contain Q(logn) of the vertices uq,
ey Uy

We can solve this issue by adding another condition. An (r, k)-halfgraph in a graph G is
a sequence uj, ..., Ug, U1, ..., U of vertices of G such that for every ¢,5 € {1,...,k},

if j <14, then the distance between u; and v; in G is greater than r, and

if j > 1, then the distance between u; and v; in G is exactly r.
We say that a graph is (r, k)-stable if it does not contain any (r, k)-halfgraph.

» Theorem 32. For all positive integers v, k, and ¢ > 2, there exists a constant b and a linear-
time algorithm that, given an (r,k)-stable graph G together with its weak 2r-guidance system
H of mazimum outdegree at most c, returns an r-dominating set D and a 2r-independent
set A in G such that |D| < b|A|.

Proof. Let D and A’ be the sets of vertices of G obtained as follows. We initialize D := ()
and A’ := (. As long as D is not an r-dominating set, we choose a vertex = at distance
greater than r from D arbitrarily, we add = to A’, and we add = and all vertices reachable in
H from z by directed paths of length at most r to D. At the end, D is an r-dominating set
and |D| < "L A'.

Let < be the linear ordering on vertices of A’ such that x < y when x was added to A’
before y. The algorithm above enforces the following property (f): If z < y, then every
vertex reachable from = by a directed path in H of length at most r is at distance greater
than r from y.

Let o(1) = 0 and for p = 2,...,k, let o(p) = > *(o(p — 1) +1). The set A’ is not
necessarily 2r-independent, however it has the following property: If S C A’ consists of
vertices pairwise at distance at most 2r from one another, then |S| < o(k + 1). To prove
this, we will show a stronger claim. For a positive integer p < k + 1, a p-halfgraph extension
of S is a sequence up, ..., Uy, Up, ..., v of vertices of G such that for i =p,... k,

(i) w; € A" u; <wuspq if i < k, and s < u; for every s € S.

(i) H contains a directed path from u; to v; of length exactly r,
(iii) the distance between u; and v; in G is exactly r for every j € {¢,...,k}, and
(iv) the distance between v; and s is exactly r for every s € S.
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We will prove by induction on p that if there exists a p-halfgraph extension of S, then
|S] < a(p); |S] < o(k + 1) then follows, since an empty sequence trivially forms a (k + 1)-
halfgraph extension of S. For p = 1, note that if 1 < j <i <k, then u; < u; by (i), and (ii)
and (1) imply that the distance between v; and w; in G is greater than r. Together with
(iii), this implies that G contains an (r, k)-halfgraph, which is a contradiction. That is, the
case p = 1 can never occur and the conclusion |S| < (1) holds trivially.

Suppose now that p > 2 and that the claim holds for p—1. If S = ), then |S| < o(p) holds.
Otherwise, let u,_; be the last vertex of S in the ordering <. Since the distance between
any vertices of .S is at most 2r and H is a weak 2r-guidance system, for each s € S\ {u,_1},
there exists a shortest path P; in G between u,_; and s directed in H towards one of its
edges. Let @5 be the longest initial segment of P, directed away from wu,_;. By the choice of
Up—1, we have s < u,_1, and thus (1) implies that the part of Py directed away from s has
length at most r — 1, and consequently |E(Qs)| > r.

For any directed path @ in H starting in u,_; of length between r and 2r, let Sg be the
set of vertices s € S\ {up—_1} such that Qs = Q. The preceding argument shows that S is the
union of the sets Sg over all such paths, and thus we can fix Q such that |[Sg| > |S|/c*" 1.
If |Sg| <1, then |S| < 227! < g(p), as required. Hence, suppose that |Sg| > 2. Let v,_;
be the final vertex of () and let sg be the first vertex of Sg in the ordering <. Consider
any vertex s’ € Sg \ {sq}. Note that G contains a path of length at most 2r — |E(Q)| < r
from sg to v,—1 with all but possibly the last edge directed away from sg in H , and since
sg < s’ by the choice of sg, (1) implies that s’ is at distance at least r from v,_;. Since s is
also at distance at most 2r from u,_; through a shortest path whose initial segment is @,
s’ is at distance at most 2r — |[E(Q)| < r from v,_1. We conclude that |E(Q)| = r and all
vertices of Sg \ {sq} are at distance exactly r from v,_1. Therefore, up_1, ..., ug, vp—1, ...,
vy is a (p — 1)-halfgraph extension of Sg \ {sg}, and |Sg \ {sg}| < o(p—1) by the induction
hypothesis. But then |S| < ¢* TS| < @ (a(p—1)+ 1) = o(p).

Let F' be the auxiliary graph with V(F') = A’ and with distinct vertices u,v € A’ adjacent
if the distance between them in G is at most 2r. We claim that each vertex of F' has at
most ¢>" 1o (k + 1) neighbors that precede it in the ordering <. Indeed, let N be the set
of such neighbors of a vertex u € A’, and for each directed path @ in H starting in u of
length between 7 and 2r, let Ng consist of the vertices v € N such that @ is the maximal
initial directed segment of a shortest path from w to v in G which is directed towards one
of its edges by H. As in the preceding part of the proof, note that () and the fact that H
is a weak 2r-guidance system implies that IV is the union of the sets Ng over such paths,
and thus we can fix such a path @ for which |[Ng| > |N|/c*" 1. However, the vertices of
Ng are at distance at most 2r — |[E(Q)| < r from the final vertex of @, and thus they are
pairwise at distance at most 2r from one another. Consequently, |Ng| < o(k + 1), and
IN| < lo(k +1).

We conclude that F is ¢>" 1o (k+1)-degenerate, and thus it is (c*"*1o(k+1)+1)-colorable
and has an independent set A of size at least

Al Dl
ok +1)+1 = (2 Ho(k+1)+ 1)

By the construction of F', A is a 2r-independent set in G. Therefore, the theorem holds with
b=c"tHc* ok +1)+1). <

By the results of Adler and Adler [1], for any structurally nowhere-dense graph class G
and every r, there exists k so that all graphs in G are (r, k)-stable. In combination with
Corollary 21, we have the following consequence.
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» Corollary 33. For any class G with structurally bounded expansion and for any positive
integer r, there exists a constant b and a polynomial-time randomized algorithm that, given a
graph G € G with probability at least 1/2 returns an r-dominating set D and a 2r-independent
set A in G such that |D| < b|A|.

4  Conclusions

As we have shown, many interesting graph classes admit weak guidance systems of bounded
maximum outdegree, including

interval graphs,

classes with structurally bounded expansion, and

distance powers of graphs with bounded outdegree weak guidance systems.
However, we do not have an exact characterization of the graph classes with this property.

» Problem 34. Characterize hereditary graph classes G such that for every positive integer
r, every graph from G admits a weak r-guidance system of bounded mazimum outdegree.

We have also exhibited several graph classes that only admit weak guidance systems
whose outdegree grows slowly with the number of vertices of the graph, in particular
structurally nowhere-dense classes, and
graphs of bounded clique-width.
Again, we do not have a good description of the graph classes with this property.

» Problem 35. Characterize hereditary graph classes G such that for every positive integer
r, every graph G € G admits a weak r-guidance system of mazximum outdegree at most

V(G)w.

In sparse graphs, guidance systems and related notions (such as generalized coloring
numbers) have various algorithmic and structural applications. We suspect that similar
applications can be found for weak guidance systems as well, generalizing them to dense
graphs; we demonstrated this on the example of approximation algorithms for distance
domination and independence number.
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A Appendix

Let us start by giving the short proof that r-guidance systems can be used to characterize
bounded expansion and nowhere-density.

Proof of Lemma 11. Suppose for a contradiction that G is not nowhere-dense. By assump-
tions, for every € > 0, every graph G € G has an orientation with maximum outdegree at
most ¢(1,¢)|V(G)|?, and thus the maximum average degree of subgraphs of G is at most
2¢(1,e)|V(G)|°. By [5, Theorem 6], there exists » > 2, a graph G € G, and a graph H of
average degree d > 2¢(r,e)|V(G)|® such that G contains the graph H’ obtained from H by
subdividing each edge exactly r — 1 times as an induced subgraph. Since G is closed under
induced subgraphs, we can assume G = H’. Suppose H is an r-guidance system in G. Then
for every uwv € E(H), the corresponding path Py, of length r in G contains an edge directed
away from w or from v, and thus the average outdegree of the vertices of H in G is at least
|[E(H)|/IV(H)| =d/2 > c(r,e)|V(G)|¢. This contradicts the assumptions.

The argument for the bounded expansion case is analogous, using [5, Theorem 5] instead
of [5, Theorem 6]. <

B  Algorithmic aspects

Fractional r-guidance systems can be directly used to test presence of shortest paths, with
a small probability of error. Let p be a fractional r-guidance system in a graph G. If u
is a non-isolated vertex of G, then by a p-random neighbor of u, we mean a neighbor of u
selected at random, with the probability that a neighbor v is selected being p(u, v)/df (u); if
df (u) = 0, the probability is 1/degu, instead. For distinct vertices u and v and a positive
integer r, a random (p,r)-exploration between u and v is a random pair of walks (P, P,)
from uw and v selected as follows:
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If ww € E(G), then P, = wv and P, = v.
Otherwise, if r = 1 or u or v is an isolated vertex, then P, = u and P, = v.
Otherwise, let @ € {u,v} be selected uniformly at random, and let y be a p-random
neighbor of x;
if # = u, then select a random (p, r — 1)-exploration (P, P,) between y and v and let
P, be the concatenation of uy and P,, and
if = v, then select a random (p, r — 1)-exploration (P,, P,) between u and y and let
P, be the concatenation of vy and F,.

» Observation 36. Suppose p is a fractional r-guidance system in a graph G, of maximum
outdegree c. Let u and v be distinct vertices of G at distance at most r, and let (P, P,) be a
random (p,r)-exploration between u and v. The probability that P, U P, is a shortest path
between u and v in G is at least (4c)~ ("1,

Note that for Observation 36 to be practically useful, we would need a representation of
p that enables us to choose a p-random neighbor efficiently; in that case, we could iterate
k(4c)"~! times the procedure from Observation 36 to find the shortest path between u and v
(or decide that the distance between them is greater than r) with error probability at most
e~*. Next, let us show how to turn a fractional guidance system into a (slightly worse) weak
guidance system.

Proof of Lemma 15. Let us say that pair {u,v} of vertices is dissatisfied by a partial
orientation F if the distance ¢ between u and v satisfies 2 < /¢ <7 and F contains neither an
edge from u to G(u — v) nor an edge from v to G(v — u). By Observation 7, F' is a weak
r-guidance system if and only if there are no dissatisfied pairs.

Let X be any set of pairs of vertices of G at distance between 2 and r. Let F be a random
partial orientation of G obtained by, for each non-isolated vertex z of G, choosing a random
p-neighbor 2’ and adding the edge (z,2'). Clearly, F' has maximum outdegree at most one.
Moreover, consider any {u,v} € X. By (1) and symmetry, we can assume that

> pluy)>1/2

y€G(u—v)

Hence, the probability that u/ € G(u — v) (and thus {u,v} is not dissatisfied in F) is at
least i By the linearity of expectation, the expected number of dissatisfied pairs in X is at
most (1 — 5-)|X]|.

Moreover, we can use the method of conditional probabilities to derandomize this proce-
dure and to deterministically construct a partial orientation F of G of maximum outdegree
at most one such that the number of pairs in X dissatisfied by F is at most (1-%)X].
Indeed, we can select the outneighbors one by one, always maintaining the invariant (initially
satisfied by the computation from the previous paragraph) that the expected number of
pairs in X dissatisfied by the orientation obtained by choosing the remaining outneighbors
as random p-neighbors is at most (1 — i) | X]. To do so, when processing a vertex u, we
only need to be able to compute this expected number after each possible choice of the
outneighbor of u, which is straightforward due to the linearity of expectation.

Now, to obtain H , we let X be the set of all pairs of vertices whose distance is between 2
and r in G. Then, for ¢ = 1,...,m, we use the procedure described in the previous paragraph
to find a partial orientation F, of maximum outdegree at most one so that the set X; of pairs
from X;_; dissatisfied by F; has size at most (1 - 2)|X;-1]. Note that

| Xo|

Xl < (1—2)"|Xo| < — < 1,
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and thus X,,, = (). Consequently, no pair is dissatisfied by

—

H=JF,

—

1

2

and thus H is the desired weak r-guidance system in G. |
Let us now show that the logarithmic loss cannot be avoided in general.

Proof of Lemma 17. Let us use the notation from the definition of the graph G, . Note
that
fori=1,...,m and v € L, the expected number of neighbors of v in R; is a/2, and by
Chernoff inequality, the probability that v has less than a/3 neighbors in R; is less than
exp(—a/36).
for distinct vertices u,v € R, the expected number of common neighbors of u and v in
L is a/4, and by Chernoff inequality, the probability that u and v have less than a/5
common neighbors in L is less than exp(—a/200),
for distinct uw,v € L, the probability that v and v have less than a/5 common neighbors
in Ry is also less than exp(—a/200), and
for i € 1,...,m and a k-tuple K of vertices of R;, the expected number of vertices of
L with no neighbor in K is 27*a, and by Chernoff inequality, the probability that the
number of such vertices is at most 27%~1q is at most exp(—2*k*3a).
Hence, the probability that any of these events occurs is less than

ma - exp(—a/36) + (m? + 1)a® - exp(—a/200) +ma® - exp(—27%"%a) < 1

if a is sufficiently large (and using the assumption that k& < log a; note that the basis of the
logarithm is e, and thus 2¥ < a!°82 < a). Hence, with positive probability,
fori=1,...,m, each vertex v € L has at least a/3 neighbors in R;,
any distinct vertices u,v € R have at least a/5 common neighbors in L,
any distinct vertices u,v € L have at least a/5 common neighbors in R;, and
for i € 1,...,m and for every k-tuple K of vertices of R;, more than 2=%*~1q vertices of
L have no neighbor in K.

Let us define a fractional orientation p of G, as follows:

Fori=1,...,m and v € R;, we set p(x;,v) = 3/a,

for each adjacent v € R and z € L, we set p(u, 2) = 2.5/a, and

for each adjacent z € L and u € Ry, we set p(z,u) = 2.5/a;
p is 0 everywhere else. Note that this fractional orientation has maximum outdegree at most
3, since deg x; = |R;| = a, the number of neighbors of v € R in L is at most |L| = a, and
the number of neighbors of z € L in Ry is at most |R;| = a. Consider now any vertices
z,y € V(Gg ) at distance exactly two from one another. Note that G, is bipartite, and
thus either z,y € R, or z,y € V(G4 ) \ R. There are the following cases:

One of z and y belongs to {z1,...,Zm}, say © = ;. Then y necessarily belongs to L,

and y has at least a/3 neighbors in R;. Hence, |Gy 1 (z — y)| > a/3 and

> plaz)>a/3-3/a=1

2€Gq k(z—Y)
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Both x and y belong to L. Since = and y have at least a/5 common neighbors in Ry, we
have |Gy rx(x = y) N R1| = |Gox(y — ) N R1| > a/5, and

o p@a+ > pyz)>2-a/5-25/a=1.

2E€Gq,k(x—y) 2€Gq,k(y—x)

Similarly, if 2,y € R, then x and y have at least a/5 common neighbors in L, and

S op@a+ > py2)=2-a/5-25/a=1.

2E€Gq,k(xz—Y) 2€Gq,k(y—x)

Therefore, p is a fractional 2-guidance system for G .

Consider now any partial orientation H of G, with maximum outdegree at most k.
Then each vertex v € L has an outneighbor in R; for at most k choices of i, and thus there
exists i € {1,...,m} such that at least (1 — k/m)a = (1 —27%"!)a vertices of L have no
outneighbor in R;. Let K be a k-tuple of vertices of R; containing all outneighbors of x;.
More than 2~%~1q vertices of L have no neighbor in K, and thus there exists a vertex v € L
with no outneighbor in R; and no neighbor in K. However, z; and v are at distance 2, yet
neither x; nor v has an outneighbor in Gy i (z; = v) = G (v = ;) C R; \ K. Hence His
not a weak 2-guidance system. Consequently, every weak 2-guidance system for G, ; must
have maximum outdegree greater than k. |

For a first-order formula ¢ (Z,§) with two groups & and ¥ of free variables, a graph G,
and a |Z|-tuple @ of vertices of G, let Sy ¢ (%) be the set of |¢]-tuples ¢ of vertices of G such
that G = ¢(u, V), and let Sy, ¢ be the system

{Sy.q(@0) : @ V(G)}

of sets of |g]-tuples of vertices of G. The following bound follows from the results of Adler
and Adler [1], see also [15] for a more precise bounds and the discussion of the possibility to
introduce vertex and edge colors (unary and binary predicates from the statement of the
theorem).

» Theorem 37. For every nowhere-dense graph class G and a first-order formula ¥(Z, )
using unary predicate symbols Uy, ..., Us and binary predicate symbols Eq, ..., Ey, there
ezists a constant d such that the following claim holds. Consider any graph G € G, and
interpret U; for i € {1,...,s} as a subset of V(G) and E; for j € {1,...,t} as a subset of
E(G). Then the system Sy, has VC-dimension at most d.

This easily gives the bound on VC(G, ) for structurally nowhere-dense classes.

Proof of Lemma 20. Since G is structurally nowhere-dense, there exists a nowhere-dense
class Gy and a transduction T = (k, M, Uy, ..., Us,w, €) such that for each G € G there exists
a graph H € Gy such that G € T(H); let C¢, ..., C¢ be the corresponding subsets of V (H)
used to interpret Uy, ..., Us.

For H € Gy, let (kH)' be the graph obtained from the disjoint union of %k copies of G by
adding a clique on each k-tuple of vertices corresponding to the same vertex of H, and let
My be the set of the edges of these cliques. Also, let Ey be the set of edges of kH. Let
G1 ={(kH) : H € Gy}. Since (kH)' is a subgraph of the lexicographic product of H with a
clique of bounded size and Gy is nowhere-dense, the class Gy is nowhere-dense as well [13].
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Note that there exists a first-order formula ,.(z1, 22, y) with three free variables such that
for each u,v € V(G) satisfying 2 < dg(u,v) <rand z € V(G), G = ¥, (u,v, z) if and only
if 2 € G(u — v). Let 9. be the formula obtained from 1), by restricting the quantification to
vertices satisfying w and replacing each usage of the adjacency predicate by e. Clearly, if
G € T(H), then

G E Yp(u,v,2) iff (kH)' U, :=CC,... Uy :=CE E:=Eg,M := My = .(u,v, 2).

Therefore, with the interpretation of the unary and binary symbols as above, Sy, ¢ is a
subset of {SNV(G) : S € Sys (xmy }, and thus the VC-dimension of Sy, ¢ is at most as large
as the VC-dimension of Sy, (xg) . Since (kH)' € G; and G, is nowhere-dense, Theorem 37
implies that this VC-dimension is bounded. |

C Graph classes without bounded outdegree weak guidance systems

Let us now prove the lower bound for split graphs.

Proof of Lemma 25. It is well-known that whenever n is a power of prime, there exists a
finite projective plane B of order n, i.e., a system of n?+n+1 subsets of the set A = [n?4+n+1]
with the property that

(i) |p1 Np2| =1 for every distinct p1,pe € B and

(ii) every element of A belongs to exactly n + 1 sets from B.
Let G,, be the graph with vertex set AU B, vertices in A forming a clique, vertices in B
forming an independent set, and vertices z € A and p € B adjacent iff z € p. Note that
distinct vertices of B are at distance two in G,, by (i), and that for each p € B and z € p,
|R2(p, z) N B| = n by (ii). Therefore, defining y,,,, = 1 for any distinct p1,p2 € B and
Yuv = 0 for any other pair u,v of vertices of G,,, we have

= . U =n
p’'€R2(p,2)
for p € B and z, = 0 for z € A. Therefore,
Zuv:dcn(uw):? Yuo _ (U;I) _ |B| -1 _ n+1
ZUEV(G”) Ty |B|n 2n 2

The claim now follows from Lemma 22. <

Finally, let us prove the following claim, which clearly implies Lemma 26.

» Lemma 38. For every d > 0 and a > max(2,2d — 1), there exists a constructible 6-labeled
graph Hg o with half its vertices labeled 1 and half its vertices labeled 2, such that
(i) |V(Haa)| < 8a -6 and
(ii) for every partial orientation G of Hq,q of mazimum outdegree less than d, there exist
vertices u and v of labels 1 and 2, respectively, at distance exactly two, such that for
every common neighbor x of u and v, we have (u,z), (v, z) & E(G).

Proof. For d = 0, we can let Hy, = K with one vertex labeled 1 and the other vertex
labeled 2. Suppose we already constructed Hy_1 4, and let us show how to inductively obtain
Hg . First, let H&ilya be the graph obtained from Hy_; , by adding vertices v3 and v4 with
labels 3 and 4 and adding all edges between vertices with labels 1 and 4 and between vertices
with labels 2 and 3. Next, we form the disjoint union of a copies of Hj , ,. Then we add
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two vertices vs and vg with labels 5 and 6, and all edges between vertices with labels ¢ and
i+ 2 for i € {3,4}. Finally, we relabel vertices with labels 3 and 5 to label 1 and vertices
with labels 4 and 6 to label 2.

The construction uses only 6 labels, and thus Hg, is a constructible 6-labeled graph.
Moreover,

V(Hgo)| = a(|lV(Ho-1.4) +2) +2 < a(8a®' —4) +2 < 8a® — 6,

where the last inequality holds since a > 2. Consider any partial orientation G of Hg, of
maximum outdegree less than d. Since vs and vg have outdegree less than d, for one of the
a > 2d — 1 copies of H&_l’a in Hy,, denoted by F’, we have (v;,v) ¢ G for every i € {5,6}
and v € V(F'). Let F be the copy of Hyq_1 4 in F’. Suppose that for any two vertices u and
v of F of labels 1 and 2, respectively, at distance exactly two in Hg ,, there exists a common
neighbor z of w and v in Hy, such that (u,z) € E(G) or (v,z) € E(G). The construction of
Hj ,, and Hg, ensures that such a common neighbor z necessarily belongs to I, as we did
not add any vertex adjacent both to vertices with label 1 and with label 2. Hence, by the
induction hypothesis, the restriction of G to F has maximum outdegree at least d — 1. Let u
be a vertex of F' with at least d — 1 outneighbors in G belonging to F'. By symmetry, we can
assume u has label 1. Since G has maximum outdegree less than d, we have (u,vs) € E(G).
Moreover, by the choice of F', we have (vg,v4) ¢ E(G). Note that vg has label 2 in Hgq
and the copy of v4 in F' is the only common neighbor of u and ve in Hg 4. This shows that
Hg,, satisfies the property (ii). <
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