Counting Temporal Paths

Jessica Enright &
School of Computing Science, University of Glasgow, UK

Kitty Meeks =
School of Computing Science, University of Glasgow, UK

Hendrik Molter =

Department of Computer Science and Department of Industrial Engineering and Management,
Ben-Gurion University of the Negev, Beer-Sheva, Israel

—— Abstract
The betweenness centrality of a vertex v is an important centrality measure that quantifies how many
optimal paths between pairs of other vertices visit v. Computing betweenness centrality in a temporal
graph, in which the edge set may change over discrete timesteps, requires us to count temporal paths
that are optimal with respect to some criterion. For several natural notions of optimality, including
foremost or fastest temporal paths, this counting problem reduces to #TEMPORAL PATH, the
problem of counting all temporal paths between a fixed pair of vertices; like the problems of counting
foremost and fastest temporal paths, # TEMPORAL PATH is #P-hard in general. Motivated by the
many applications of this intractable problem, we initiate a systematic study of the parameterised
and approximation complexity of #TEMPORAL PATH. We show that the problem presumably does
not admit an FPT-algorithm for the feedback vertex number of the static underlying graph, and that
it is hard to approximate in general. On the positive side, we prove several exact and approximate
FPT-algorithms for special cases.

2012 ACM Subject Classification Theory of computation — Graph algorithms analysis; Theory
of computation — Parameterized complexity and exact algorithms; Theory of computation —
Approximation algorithms analysis; Mathematics of computing — Discrete mathematics

Keywords and phrases Temporal Paths, Temporal Graphs, Parameterised Counting, Approximate
Counting, #P-hard Counting Problems, Temporal Betweenness Centrality

Digital Object Identifier 10.4230/LIPIcs.STACS.2023.30
Related Version Full Version: https://arxiv.org/abs/2202.12055

Funding Jessica Enright: Supported by EPSRC grant EP/T004878/1.

Kitty Meeks: Supported by EPSRC grants EP/T004878/1 and EP/V032305/1.

Hendrik Molter: Supported by the ISF, grants No. 1456/18 and No. 1070/20, and European Research
Council, grant number 949707.

Acknowledgements This work was initiated at the Dagstuhl Seminar “Temporal Graphs: Structure,
Algorithms, Applications” (Dagstuhl Seminar Nr. 21171).

1 Introduction

Computing a (shortest) path between two vertices in a graph is one of the most important
tasks in algorithmic graph theory and serves as a subroutine in a wide variety of algorithms
for connectivity-related graph problems. The betweenness centrality measure for vertices
in a graph was introduced by Freeman [23] and motivates the task of counting shortest
paths in a graph. Intuitively, betweenness centrality measures the importance of a vertex for
information flow under the assumption that information travels along optimal (i.e. shortest)
paths. More formally, the betweenness of a vertex v is based on the ratio of the number
of shortest paths between vertex pairs that visit v as an intermediate vertex and the total
number of shortest paths, thus its computation is closely related to shortest path counting.

© Jessica Enright, Kitty Meeks, and Hendrik Molter; L)

37 licensed under Creative Commons License CC-BY 4.0 V"
40th International Symposium on Theoretical Aspects of Computer Science (STACS 2023). m I_
Editors: Petra Berenbrink, Patricia Bouyer, Anuj Dawar, and Mamadou Moustapha Kanté; 4 S1

Article No. 30; pp. 30:1-30:19

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fir Informatik, Dagstuhl Publishing, Germany

mailto:jessica.enright@glasgow.ac.uk
mailto:kitty.meeks@glasgow.ac.uk
https://orcid.org/0000-0001-5299-3073
mailto:molterh@post.bgu.ac.il
https://orcid.org/0000-0002-4590-798X
https://doi.org/10.4230/LIPIcs.STACS.2023.30
https://arxiv.org/abs/2202.12055
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

30:2

Counting Temporal Paths

The betweenness centrality is a commonly used tool in network analysis and it can be
computed in polynomial time; e.g. Brandes’ algorithm [9] serves as a blueprint for all modern
betweenness computation algorithms and implicitly also counts shortest paths.

In contrast to the tractability of counting shortest paths, the problem of counting all
paths between two vertices in a graph is one of the classic problems discussed in the seminal
paper by Valiant [46] that is complete for the complexity class #P (the counting analogue of
NP) and hence is presumably not doable in polynomial time.

Temporal graphs are a natural generalisation of graphs that capture dynamic changes
over time in the edge set. They have a fixed vertex set and a set of time-edges which have
integer time labels indicating at which time(s) they are active. In recent years, the research
field of studying algorithmic problems on temporal graphs has steadily grown [28, 29, 34, 35].
In particular, an additional layer of complexity is added to connectivity related problems
in the temporal setting. Paths in temporal graphs have to respect time, that is, a temporal
path has to traverse time-edges with non-decreasing time labels [32]'. This implies that
temporal connectivity is generally not symmetric and not transitive, a major difference
from the non-temporal case. Furthermore, there are several natural optimality concepts for
temporal paths, the most important being shortest, foremost, and fastest temporal paths [10].
Intuitively speaking, shortest temporal paths use a minimum number of time-edges, foremost
temporal paths arrive as early as possible, and fastest temporal paths have a minimum
difference between start and arrival times. We remark that an optimal path with respect
to any of these three criteria can be found in polynomial time [10, 47]. The existence of
multiple natural optimality concepts for temporal paths implies several natural definitions of
temporal betweenness, one for each path optimality concept [40, 12, 34].

Similar to the non-temporal case, the ability to count optimal temporal paths is a
key ingredient for the corresponding temporal betweenness computation. However, the
picture is more complex in the temporal setting. Shortest temporal paths can be counted in
polynomial time and the corresponding temporal betweenness can be computed in polynomial
time [12, 33, 27, 40]. In contrast, counting foremost or fastest temporal paths is #P-
hard [39, 12, 36], which implies that computing the corresponding temporal betweenness
is #P-hard as well [12]. Indeed, BuB et al. [12] show that there is a polynomial time
reduction from the problem of counting foremost or fastest temporal paths to the problem of
the corresponding temporal betweenness computation. Note that a reduction in the other
direction is straightforward.

In this work, we study the (parameterised) computational complexity of (approximately)
counting foremost or fastest temporal paths. In fact, we study the simpler and arguably
more natural problem of counting all temporal paths from a start vertex s to a destination
vertex z in a temporal graph.

Let G = (V,&,T) denote a temporal graph with vertex set V, time-edge set £, and
maximum time label (or lifetime) T (formal definitions are given in Section 2). We are then
concerned with the following computational problem:

#TEMPORAL PATH
Input: A temporal graph G = (V,&,T) and two vertices s,z € V.

Task: Count the temporal (s, z)-paths in G.

! Temporal paths that traverse time-edge with non-decreasing time labels are often referred to as “non-
strict”, in contrast to strict temporal paths, which traverse time-edges with increasing time labels. In
this work, we focus on non-strict temporal paths.

J. Enright, K. Meeks, and H. Molter

It is easy to see that # TEMPORAL PATH generalises the problem of counting paths in a non-
temporal graph (all time-edges have the same time label), hence we deduce that # TEMPORAL
PATH is #P-hard. Furthermore, observe that using an algorithm for # TEMPORAL PATH,
it is possible to count foremost or fastest temporal paths with only polynomial overhead
in the running time; we discuss this reduction in more detail in Section 2.3. Hence, all
exact algorithms we develop for # TEMPORAL PATH can be used to compute the temporal
betweenness based on foremost or fastest temporal paths with polynomial overhead in the
running time. To the best of our knowledge, this is the first attempt to systematically study
the parameterised complexity and approximability of # TEMPORAL PATH.

1.1 Related Work

As discussed above, the temporal setting adds a new dimension to connectivity-related
problems. The problems of computing shortest, foremost, and fastest temporal paths have
been studied thoroughly [10, 47, 5]. The temporal setting also offers room for new natural
temporal path variants that do not have an analogue in the non-temporal setting. Casteigts
et al. [13] study the problem of finding restless temporal paths that dwell an upper-bounded
number of time steps in each vertex, while Fiichsle et al. [24] study the problem of finding
delay-robust routes in a temporal graph (intuitively, temporal paths that are robust with
respect to edge delays); both problems turn out to be NP-hard.

The problem of counting (optimal) temporal paths has mostly been studied indirectly in
the context of temporal betweenness computation. However, the computation of temporal
betweenness has received much attention [12, 39, 40, 33, 44, 27, 43, 2, 45, 38, 41]. Most
of the mentioned work considers temporal betweenness variants that are polynomial-time
computable. The corresponding optimal temporal paths are mostly shortest temporal paths
or variations thereof. There are at least three notable exceptions: Bufl et al. [12] also
consider prefiz-foremost temporal paths and the corresponding temporal betweenness and
show that the latter is computable in polynomial time. Furthermore they show #P-hardness
for several temporal betweenness variants based on strict optimal temporal paths. Rad
et al. [39] consider temporal betweenness based on foremost temporal paths and show that
its computation is #P-hard. They further give an FPT-algorithm to compute temporal
betweenness based on foremost temporal paths for the number of vertices as a parameter
(note that the size of a temporal graph generally cannot be bounded by a function of the
number of its vertices). Rymar et al. [40] give a quite general sufficient condition called
prefiz-compatibility for optimality concepts for temporal paths that makes it possible to
compute the corresponding temporal betweenness in polynomial time.

In the static setting the general problem of counting (s, z)-paths in static graphs is known
to be #P-complete [46]. In the parameterised setting, the problem of counting length-%
paths (with parameter k) was one of the first problems shown to be #W/[1]-complete [21],
but the problem does admit an efficient parameterised approximation algorithm [3]. It is
also generally considered folklore that the problem of counting paths (of any length) admits
an FPT-algorithm parameterised by the treewidth of the input graph.

1.2 Our Contribution

Our goal is to initiate the systematic study of the parameterised and approximation complexity
of # TEMPORAL PATH. We provide an argument that # TEMPORAL PATH is essentially
equivalent to counting foremost or fastest paths or computing the respective temporal
betweenness centrality in Section 2.3. Due to space constraints, proofs of results marked
with (%) are (partially) deferred to the full version of this work [19].

30:3

STACS 2023

30:4

Counting Temporal Paths

Hardness results (Section 3). The main technical contribution of this paper is a reduction
showing that # TEMPORAL PATH is intractable even when very strong restrictions are placed
on the underlying graph; specifically the problem is hard for @W[1] when parameterised by
the feedback vertex number of the underlying graph, which rules out the existence of FPT
algorithms with respect to several common parameters. We also show that it is NP-hard
even to approximate the number of temporal (s, z)-paths in general, motivating the study of
approximate counting in more restricted settings.

Exact algorithms for special cases (Section 4). We show that the problem is polynomial-
time solvable if the underlying graph is a forest, and then use a wide range of algorithmic
techniques to generalise this result in different ways. We show that the problem is fixed-
parameter tractable with respect to two “distance to forest” parameterisations that are larger
than the feedback vertex number of the underlying graph (timed feedback vertex number
and underlying feedback edge number). We further show that #TEMPORAL PATH is in
FPT parameterised by the treewidth of the underlying graph and the lifetime combined, or
parameterised by the recently introduced parameter “vertex-interval-membership-width”.

Approximation algorithms (Section 5). 'We show that there is an FPTRAS for # TEMPORAL
PATH parameterised by the maximum permitted length of a temporal (s, z)-path. We
then turn our attention to the problem of approximating betweenness centrality, as the
relationship between path counting and computing betweenness is not so straightforward in
the approximate setting: we demonstrate that, whenever there exists an FPRAS (respectively
FPTRAS) for #TEMPORAL PATH, we can efficiently approximate the maximum betweenness
centrality of any vertex in the temporal graph. These two results together give an FPTRAS
to estimate the maximum betweenness centrality of any vertex in a temporal graph (with
respect to either foremost or fastest temporal paths) parameterised by the vertex cover
number or treedepth of the underlying input graph.

2 Preliminaries and Basic Observations

In this section we provide all basic notations, definitions, and terminology used in this
work. We discuss the relation between temporal path counting and temporal betweenness
computation in more detail in Section 2.3. We use standard definitions and terminology from
parameterised complexity theory [18, 22, 16, 3, 21]. Additional background on parameterised
and approximate counting complexity are given in the full version of this work [19].

Given a static graph G = (V, E), we say that a sequence P = ({v;_1, Ui})le of edges in
E forms a path in G if v; #v; forall 0 <i < j <k.

2.1 Temporal Graphs and Paths

There are several different definitions and notations used in the context of temporal graphs [28,
29, 34, 35] which are mostly equivalent. Here, we use the following definitions and notations:

An (undirected, simple) temporal graph with lifetime 7' € N is a tuple G = (V, £, T), with
time-edge set €& C (‘2/) x [T]. We assume all temporal graphs in this paper to be undirected
and simple. The underlying graph of G is defined as the static graph G = (V, {{u,v} | 3t €
[T] s.t. ({u,v},t) € £}). We denote by E; the set of edges of G that are active at time ¢,
that is, Fy = {{u,v} | ({u,v},t) € £}.

J. Enright, K. Meeks, and H. Molter

For every v € V and every time step ¢ € [T], we denote the appearance of vertex v at
time t by the pair (v,t). For a time-edge ({v,w},t) we call the vertex appearances (v,t) and
(w,t) its endpoints and we call {v,w} its underlying edge.

We assume that every number in [T] appears at least once as a label for an edge in £.
In other words, we ignore labels that are not used for any edges since they are irrelevant
for the problems we consider in this work. It follows that we assume T' < |€| and hence
T e O(g]) = O(V]+[€]).

A temporal (s, z)-path (or temporal path) of length k from vertex s = vg to vertex z = vy, in
a temporal graph G = (V,£,T) is a sequence P = (({v;—1,v;}, ti))le of time-edges in £ such
that the corresponding sequence of underlying edges forms a path in the underlying graph of G
and, for all ¢ € [k—1], we have that t; < t;11. Given a temporal path P = (({v;—1,v;}, ti))le,
we denote the set of vertices of P by V(P) = {vg, v1,...,v;} and we say that P visits the
vertex v; if v; € V(P). Moreover, we call vertex appearances (v;_1,t;) outgoing for P and
we call the vertex appearances (v;,t;) incoming for P. Note that, if ¢; = ¢;41, then (v;, ;)
is both incoming and outgoing for P. We define (vg, 1) to be incoming for P and (v, T)
to be outgoing for P. We say that a vertex appearance is visited by P if it is outgoing or
incoming for P (so a vertex is visited by P if and only if at least one of its appearances is
visited by P). We say that P starts at vy at time ¢; and arrives at vy at time t. We say
that P’ is a temporal subpath of P if P’ is a subsequence of P. Furthermore, we define the
following optimality concepts for temporal (s, z)-paths P.

P is a shortest temporal (s, z)-path if there is no temporal path P’ from s to z such that
the length of P’ is strictly less than the length of P.

P is a foremost temporal (s, z)-path if there is no temporal path P’ from s to z such that
P’ arrives at z at a strictly smaller time than P.

P is a fastest temporal (s, z)-path if there is no temporal path P’ from s to z such that
the difference between the time at which P’ starts at s and the time at which P’ arrives
at z is strictly smaller than the analogous difference of times for P.

2.2 Temporal Betweenness Centrality

We follow the notation and definition for temporal betweenness given by Buf et al. [12]. Let

G = (V,&€,T) be a temporal graph. For any s,z € V| ng) is the number of x-optimal temporal

paths from s to z. We define aq(,f,) := 1. For any vertex v € V, we write ng) (v) for the
number of x-optimal paths that pass through v. We set agz)(s) = ng) and ng) () := ng).

We do not assume that there is a temporal path from any vertex to any other vertex in
the graph. To determine between which (ordered) pairs of vertices a temporal path exists,
we use a connectivity matriz A of the temporal graph: let A be a |V x |V| matrix, where for
every v,w € V we have that A, ., = 1 if there is a temporal path from v to w, and A, ,, =0
otherwise. Note that A, . =1 if and only if ng) = (. Formally, temporal betweenness based
on x-optimal temporal paths is defined as follows.

» Definition 1 (Temporal Betweenness). The temporal betweenness of any vertex v € V' is
given by:

(*)
* Osz (U)
01(3)(1)) = E -

s#v#z and Ag =1 Osz

30:5

STACS 2023

30:6

Counting Temporal Paths

2.3 Temporal Betweenness vs. Temporal Path Counting

In this subsection we discuss the relationship between the problems of computing temporal
betweenness and counting temporal paths. We show that we can compute temporal between-
ness based on foremost and fastest temporal paths using an algorithm for #TEMPORAL
PATH with only polynomial overhead in the running time. Let G = (V,£,T) be a temporal
graph. We start with the following easy observation.

» Observation 2. Given an algorithm to count all x-optimal temporal (s, z)-paths in G in
time t(G), we can compute the temporal betweenness based on x-optimal temporal paths of
any vertex of G in t(G) - |G|M) time.

This follows by observing that we can count the number of temporal (s, z)-paths in G that
visit a vertex v by first counting all temporal (s, z)-paths in G and then subtracting the
number of temporal (s, z)-paths in G — {v}.

Next we observe that we can count foremost and fastest temporal (s, z)-paths using an
algorithm for #TEMPORAL PATH, with only polynomial overhead.

» Observation 3. Given an algorithm for #TEMPORAL PATH that runs in time t(G), we can
compute all foremost temporal (s, z)-paths and all fastest temporal (s, z)-paths in t(G) -|G|°M)
time.

First, note that we can compute a foremost temporal (s, z)-path and a fastest temporal
(s, z)-path in polynomial time [10, 47]. In the case of foremost temporal (s, z)-paths, we
can in this way obtain the time at which a foremost temporal (s, z)-path arrives at z and
remove all time-edges with later time labels from G. After this modification, every temporal
(s, z)-path is foremost hence we can count them using an algorithm for #TEMPORAL PATH.

In the case of fastest temporal (s, z)-paths, we can in the same way obtain the time
difference t; between starting at s and arriving at z for any fastest temporal (s, z)-path.
We can now iterate over all intervals [to,to + t] with 1 < to < T — t; and, for each one,
create an instance of #TEMPORAL PATH by removing all time-edges from G that are either
earlier than ¢y or later than ¢o +t;. After this modification, every temporal (s, z)-path in the
instance corresponding to any interval is fastest, and every fastest temporal path survives in
exactly one instance; hence we can count fastest temporal paths by calling an algorithm for
#TEMPORAL PATH on each instance and summing the results.

Using Observations 2 and 3 we obtain the following lemma, which implies that our
polynomial-time and FPT-algorithms for special cases of # TEMPORAL PATH yield polynomial-
time solvability and fixed-parameter tractability results respectively for temporal betweenness
based on foremost temporal paths or fastest temporal paths, under the same restrictions.

» Lemma 4. Given an algorithm for #TEMPORAL PATH that runs in time t(G), we can can
compute the temporal betweenness based on foremost temporal paths or fastest temporal paths
of any vertex of G in t(G) - |G|°M) time.

If we can only count temporal paths approzimately, however, the relationship between
temporal path counting and temporal betweenness computation is not so straightforward. In
the exact setting, we were able to determine the number of temporal (s, z)-paths visiting v
by calculating the difference between the number of temporal (s, z)-paths in G and G — {v}
respectively. However, in the approximate setting, we cannot use the same strategy: if there
are N temporal paths in total and N_, is an e-approximation to the number of temporal
paths that do not contain v, it does not follow that N — N_,, is an e-approximation to the
number of temporal paths that do contain v, as the relative error will potentially be much

J. Enright, K. Meeks, and H. Molter

higher if the proportion of temporal paths containing v is very small. A similar issue arises
if we aim to estimate the number of temporal paths through v by sampling a collection
of temporal paths (from an approximately uniform distribution) and using the proportion
that contain v as an estimate for the total proportion of temporal paths containing v: if the
proportion that contain v is exponentially small, we would need exponentially many samples
to have a non-trivial probability of finding at least one temporal path which does contain v;
otherwise we deduce incorrectly that there are no temporal paths through v and output 0,

which cannot be an e-approximation of a non-zero number of temporal paths for any ¢ < 1.

Lastly, we briefly shift our attention to computational hardness. Buf§ et al. [12] provide a
reduction from #TEMPORAL PATH to the computation of temporal betweenness based on
foremost temporal paths and to the computation of temporal betweenness based on fastest
temporal paths. In both cases, three new vertices are added to the temporal graph and all
newly added time-edges are incident with at least one of the newly added vertices. This
implies that our parameterised hardness result in the next section (Theorem 5) also holds for
temporal betweenness computation based on foremost temporal paths or fastest temporal
paths, since the reductions by Bufl et al. [12] increase the feedback vertex number of the
underlying graph by at most three.

3 Intractability Results for Temporal Path Counting

In this section we prove two hardness results for #TEMPORAL PATH. In Section 3.1 we
demonstrate parameterised intractability with respect to the feedback vertex number of the
underlying graph. We follow this in Section 3.2 with an easy reduction demonstrating that
the classical #P-complete #PATH problem [46] (definition as below) is unlikely to admit an

FPRAS in general, which straightforwardly implies the same result for # TEMPORAL PATH.

#PATH

Input: A graph G = (V, E) and two vertices s,z € V.
Task: Compute the number of paths from s to z in G.

3.1 Parameterised Hardness

In this section we present our main parameterised hardness result, which provides strong
evidence that # TEMPORAL PATH does not admit an FPT algorithm when parameterised
by the feedback vertex number of the underlying graph. Note that this also rules out FPT

algorithms for many other parameterizations, including the treewidth of the underlying graph.

However, it is folklore that #PATH admits an FPT algorithm parameterised by treewidth
as a parameter (this is also implied by our result Theorem 14). The result here, therefore,
means that #TEMPORAL PATH is strictly harder than #PATH in terms of parameterised
complexity for the parameterisations that are at most the feedback vertex number of the
underlying graph and at least the treewidth of the underlying graph.

» Theorem 5 (x). #TEMPORAL PATH is ® W/[1]-hard when parameterised by the feedback
vertex number of the underlying graph.

Proof. We present a parameterised counting Turing reduction from GMULTICOLOURED
INDEPENDENT SET ON 2-TRACK INTERVAL GRAPHS parameterised by the number of
colours k. In @MULTICOLOURED INDEPENDENT SET ON 2-TRACK INTERVAL GRAPHS
we are given a set I of interval pairs and a colouring function ¢ : I — [k] and asked
whether there is an odd number of k-sized sets of interval pairs in I such that in each set,

30:7

STACS 2023

30:8

Counting Temporal Paths

every two interval pairs have different colours and are non-intersecting. Two interval pairs
([xa, xb), [Tars 20])s ([Yas Ub)s [Vars Yr]) are considered non-intersecting if [zq, 5] N [Ya, ys] = 0
and [/, 23] 0 [yar,] = 0.

Inspecting the W[1]-hardness proof by Jiang [31] for INDEPENDENT SET ON 2-TRACK IN-
TERVAL GRAPHS shows that the reduction used from MULTICOLOURED CLIQUE parameterised
by the number of colours k is parsimonious? and the reduction also shows W[1]-hardness for
the multicoloured version of the problem. Since @MULTICOLOURED CLIQUE is @W/[1]-hard
when parameterised by the number of colours & [8], we can conclude that @ MULTICOLOURED
INDEPENDENT SET ON 2-TRACK INTERVAL GRAPHS is @W([1]-hard when parameterised by
the number of colours k.

Given an instance (I,c¢) of @MULTICOLOURED INDEPENDENT SET ON 2-TRACK
INTERVAL GRAPHS, where I is a set of interval pairs and ¢ : I — [k] is a col-
ouring function, we create O(2F) temporal graphs. We assume w.l.o.g. that for all
([was o), [Tar, 21])s ([Yas Yols [Yar, yer]) € I that {2a, T, Ya, Yo }| = 4 and [{zar, T, Yar s yor }| = 4
or ([Za,), [Zars To']) = ([Ya, Ub), [Yar, Yor]), that is, if two interval pairs are different, we as-
sume that all endpoints on each track are pairwise different. Furthermore, we assume w.l.o.g.
that all intervals contained in pairs in I are integer subsets of [2|I]]. The main intuition of
our construction follows:

We model track one with a path in the underlying graph and track two with time.

Through the feedback vertices of the underlying graph, a temporal path can “enter” and

“leave” the path that models track one.

The number of feedback vertices corresponds to the number of colours.

We have to make sure that we can determine the parity of the number of temporal paths

visiting all feedback vertices.

The number of temporal paths that do not correspond to independent sets should not

be considered. It seems difficult to get an exact handle on the number of such paths,

however we will show that this number is even. Note that, intuitively, this is the main

reason we show hardness for @W/[1] and not #W][1].

We construct a family of directed temporal graphs (G¢ = (V, A%, 2|I| + 1))ccpy with
rational time labels (such that the maximum time label is at most 2|I| + 1), where A€ C
V xV xQ for all C C [k]. Towards the end of the proof we explain how to remove the
need for directed edges which will also have the consequence that the temporal graphs only
contain strict temporal paths. Note that we can scale up the lifetime to remove the need for
rational time labels, however using rational time labels will be convenient in the construction
and the correctness proof.

We set V :=Vy U {s, 2/, 2} U{wi,...,wi} U{u, | x € T}, where Vi := {v1,..., v}
We set A€ = Userneyec Az U{(s,wi, 1) i € [k]} U{(2,2,2[I| + 1)}, where

Az ::{(wc(z)aua:aal)v (uwavav bl)7 (Uw,’Ua, b +1-— a5)7 (Uba 2/7 bl)}
O {(un i) i € K] Ai # c(a)}
U {(vj,vj41,8), (v, 0541, + 1= (G + 1)e) | j € {a,...,b—1}}

for xr = ([a7b]7 [al,b/]) € I and e = W

2 Informally speaking, parsimonious reductions do not change the number of solutions.

J. Enright, K. Meeks, and H. Molter

2l +1»Q 2

5,6 ¢ 4,5 3¢
O-5.6- 26056300 0 F 15 5e O 45— 6= 0
) €) 4,5 — 4de))
U1 U2 U3 V4 U5 V6 V2|1

Figure 1 Illustration of G¢ with C = {1,3} and two interval pairs x1,22 € I where z; =
([1,4],[2,5]) and z2 = ([3,6],[1,4]), and the corresponding colours are ¢(z1) =1 and ¢(z2) = 3. The
arcs added for x; are depicted in red and the arcs added for x2 are depicted in blue.

For all G¢ we use s as the starting vertex and z as the end vertex of the temporal paths we
want to count. The temporal graphs GC can each clearly be constructed in polynomial time
and it is easy to see that the vertex set {s,z’,z,w1,...,wx} constitutes a feedback vertex
set of size O(k) for each of them (even if edge directions are removed). The construction is
illustrated in Figure 1. The correctness proof of the reduction is deferred to the full version
of this work [19]. <

3.2 Approximation Hardness
In this section, we prove the following result.

» Theorem 6. There is no fully polynomial randomised approximation scheme (FPRAS) for
#TEMPORAL PATH unless randomised polynomial time (RP) equals NP.

It is straightforward to reduce from #PATH, the problem of counting (s, z)-paths in
a static graph, to # TEMPORAL PATH: we set every edge to be active at time one only.
Hardness of #PATH is proved easily by imitating the reduction used by Jerrum et al. [30]
to demonstrate that there is no FPRAS to count directed cycles in a directed graph.? We
note that the reduction also rules out the existence of any polynomial-time (randomised)
approximation algorithm achieving any polynomial additive error.

» Theorem 7 (x). There is no FPRAS for #PATH unless RP=NP.

4 Exact Algorithms for Temporal Path Counting

In this section, we present several exact algorithms for #TEMPORAL PATH. We start
in Section 4.1 with a polynomial-time algorithm for temporal graphs that have a forest
as underlying graph. In Section 4.2 we show that our polynomial-time algorithm can be
generalised in two ways, obtaining FPT-algorithms for the so-called timed feedback vertex

3 Indeed, the fact that this technique can be adapted to demonstrate the hardness of approximately
counting (s, z)-paths is noted without proof by Sinclair [42].

30:9

STACS 2023

30:10

Counting Temporal Paths

number and the feedback edge number of the underlying graph. In Section 4.3 we show that
#TEMPORAL PATH is in FPT when parameterised by the treewidth of the underlying graph
and the lifetime combined. Lastly, in Section 4.4, we give an FPT algorithm for # TEMPORAL
PATH parameterised by the so-called vertex-interval-membership-width.

4.1 A Polynomial Time Algorithms for Forests

As a warm-up, we note that # TEMPORAL PATH can be solved in polynomial time with a
simple dynamic program if the underlying graph is a forest. This is used as a subroutine for
algorithms presented in Section 4.2.

» Theorem 8. #TEMPORAL PATH is solvable in O(|V|-T?) time if the underlying graph of
the input temporal graph is a forest.

Proof. Let G = (V, &, T) together with two verices s, z € V be an an instance of #TEMPORAL
PATH. We argue that this instance can be solved in polynomial time if there is a unique path
between s and z in the underlying graph of G. Note that this is the case if the underlying
graph of G is a forest.

First, observe that when counting (s, z)-paths starting at s and arriving at z, if there is
a unique static path between s and z in the underlying graph then we need only consider
time-edges between vertices of that unique static path in our temporal graph when counting,
as our temporal path may not repeat vertices and so corresponds to a path in the underlying
graph. Edges not lying on the unique static path between s and z can therefore be deleted
without changing the result, so we may w.l.o.g. consider an instance in which the underlying
graph consists only of a static path P = (vg,v1,...,v|p|) With s = vy and z = vp| as the leaf
vertices.

We will base our counting on a recording at each vertex v; in P of how many temporal
(s,v;)-paths there are starting at s and arriving at v; at time ¢ or earlier. Note that there
are O(|P|-T) = O(|]V] - T) such vertex-time pairs.

We argue by induction on ¢ that we can correctly compute this number for every vertex-
time pair by dynamic programming. As a base case, note that there is one path from s to
s for any arrival time. Then we assume that we have these numbers computed correctly
for some v; with ¢ > 0 and show how we compute them for v;;1. Formally, our dynamic
program is defined as follows.

Flug=s,t)=1

F(u,t) = > F(v;_1,t') for i > 1,
({vie1,v: },t")EE with /<t

It is straightforward to check that F(z,T) can be computed in the claimed running time.
We now formally prove correctness by induction on i. That is, we prove that F'(v;,t) equals
the number of temporal (s,v;)-paths that start at s and arrive at v; at time ¢ or earlier; it
will follow immediately that F'(z,T) is the number of (s, z)-paths, so it suffices to compute
F(v;,t) for all 0 <7 < |P|.

The base case i = 0 is trivial. Assume that ¢ > 0. We sum over the last time-edge of
the temporal (s, v;)-paths starting at s and arriving at v; at time ¢ or earlier. Let P be the
set of all temporal (s, v;)-paths starting at s and arriving at v; at time ¢ or earlier that use
({vi—1,v:},t') € € as the last time-edge. All these temporal paths need to arrive at v;_1 at
time t’ or earlier, otherwise they cannot use time-edge ({v;—1,v;},t’). Since all temporal
paths in P do not differ in the last time-edge, the cardinality of P equals the number of

J. Enright, K. Meeks, and H. Molter

temporal (s,v;_1)-paths starting at s and arriving at v;,—; at time ¢’ or earlier. By the
induction hypothesis this number equals F(v;_1,t"). Clearly, if the last time-edge of two
temporal (s, v;)-paths starting at s and arriving at v; at time ¢ or earlier is different, then
the two temporal paths are different, so we do not double count. Hence, we have shown
that F(v;,t) equals the number of temporal (s, v;)-paths that start at s and arriving at v; at
time ¢ or earlier. <

4.2 Generalisations of the Forest Algorithm

In this subsection, we present two generalisations of Theorem 8. The first one results in an
FPT-algorithm for the timed-feedback vertex number as a parameter and the second one in
an FPT-algorithm for the feedback edge number of the underlying graph as a parameter. We
remark that both parameters are larger than the feedback vertex number of the underlying
graph, for which Theorem 5 refutes the existence of FPT-algorithms. Both algorithms
are inspired by algorithms presented by Casteigts et al. [13] for the so-called RESTLESS
TEMPORAL PATH problem.

The timed feedback vertex number was introduced by Casteigts et al. [13] and, intuitively,
counts the minimum number of vertex appearances that need to be removed from a temporal
graph to make its underlying graph cycle-free. Formally, it is defined as follows.

» Definition 9 ([13]). Let G = (V,&,T) be a temporal graph. A timed feedback vertex set of
G is a set X CV x [T] of vertex appearances such that the underlying graph of G' = (V, &', T)
is a forest, where & := E\ {({v,w},t) € €| (v,t) € X V (w,t) € X}. The timed feedback
vertex number of a temporal graph G is the minimum cardinality of a timed feedback vertex

set of G.

Our FPT-algorithm for the timed feedback vertex number as a parameter follows similar

ideas as the one by Casteigts et al. [13] for the RESTLESS TEMPORAL PATH problem.

Roughly speaking, our algorithm performs the following steps.

1. Compute a minimum cardinality timed feedback vertex set of the input temporal graph.

2. Iterate over all possibilities for how a temporal path can traverse the vertex appearances
in the timed feedback vertex set.

3. For each possibility, create an instance of the so-called # WEIGHTED MULTICOLOURED
INDEPENDENT SET ON CHORDAL GRAPHS problem to compute the number of possibilities
for connecting the vertex appearances of the timed feedback vertex set that are supposed
to be traversed.

4. Use this to compute the total number of temporal (s, z)-paths in the temporal input graph.

The intuition here is that the possibilities for connecting the vertex appearances of the
timed feedback vertex set that are supposed to be traversed correspond to path segments in
the underlying graph of the temporal graph without the timed feedback vertex set, which
is a forest. It is well-known that chordal graphs are intersection graphs of subtrees in
forest [25]. This means that an independent set in a chordal graph corresponds to a selection
of non-intersecting subtrees (which here will all be paths). The colours can be used to make
sure that, for each pair of vertex appearances of the timed feedback vertex set that are
supposed to be traversed directly after one another, exactly one path segment connecting
them can be in the independent set. The weights can be used to model how many temporal
paths follow the corresponding path segment of the underlying graph.

As mentioned above, we have to solve #WEIGHTED MULTICOLOURED INDEPENDENT
SET ON CHORDAL GRAPHS as a subroutine instead of the unweighted decision version of
the problem. This is the main difference between our algorithm and the one by Casteigts
et al. [13]. In the following we give a formal definition.

30:11

STACS 2023

30:12

Counting Temporal Paths

#WEIGHTED MULTICOLOURED INDEPENDENT SET ON CHORDAL GRAPHS
Input: A chordal graph G = (V, E), a colouring function ¢ : V — [k], and a weight function
w:V —N.

Task: Compute w(v).

ZX§V|X is a multicoloured independent set in G HUEX

We can observe that #WEIGHTED MULTICOLOURED INDEPENDENT SET ON CHORDAL
GRAPHS presumably cannot be solved in polynomial time. This follows directly from the
NP-hardness of MULTICOLOURED INDEPENDENT SET ON CHORDAL GRAPHS [7, Lemma 2].
Hence, we have the following.

» Observation 10. #WEIGHTED MULTICOLOURED INDEPENDENT SET ON CHORDAL
GRAPHS cannot be solved in polynomial time unless P=NP.

However, we can obtain an FPT-algorithm for # WEIGHTED MULTICOLOURED INDE-
PENDENT SET ON CHORDAL GRAPHS parameterised by the number of colours. This will
be sufficient for our purposes. To show this result, we adapt an algorithm by Bentert et al.
[6, Proposition 5.6] to solve MAXIMUM WEIGHT MULTICOLOURED INDEPENDENT SET ON
CHORDAL GRAPHS, where given a chordal graph G = (V| E), a colouring function ¢ : V' — [k],
and a weight function w : V' — N, one is asked to compute a multicoloured independent set
of maximum weight in G. Here, the weight of an independent set is the sum of the weights of
its vertices. Note that in #WEIGHTED MULTICOLOURED INDEPENDENT SET ON CHORDAL
GRAPHS the weight of an independent set is the product of the weights of its vertices.

» Proposition 11 (x). #WEIGHTED MULTICOLOURED INDEPENDENT SET ON CHORDAL
GRAPHS is fized-parameter tractable when parameterised by the number k of colours.

Using Proposition 11, we are ready to give our FPT-algorithm for # TEMPORAL PATH
parameterised by the timed feedback vertex number.

» Theorem 12 (x). #TEMPORAL PATH is fized-parameter tractable when parameterised by
the timed feedback vertex number of the input temporal graph.

Now we consider the feedback edge number of the input temporal graph as our parameter,
and show the following fixed-parameter tractability result. It is very similar to an algorithm
by Casteigts et al. [13] for the so-called RESTLESS TEMPORAL PATH problem parameterised
by the feedback edge number, we only sketch the proof.

» Theorem 13. #TEMPORAL PATH is fized-parameter tractable when parameterised by the
feedback edge number of the underlying graph of the input temporal graph.

Proof Sketch. Let (G, s, z) be an instance of #TEMPORAL PATH. We adapt an algorithm

by Casteigts et al. [13, Theorem 7] for the so-called RESTLESS TEMPORAL PATH problem.

The algorithm consist of four steps (only the last step needs adaptation to our problem):

1. Exhaustively remove vertices with degree < 1 from the underlying graph of G (except s
and z). Let G’ be the resulting (static) graph.

2. Compute a minimum feedback edge set F of G'. Let f := |F|.

3. Let V22 denote all vertices of G with degree at least three. Partition the forest G/ — F
into a set of maximal paths P with endpoints in (J,.eUV=3U {s, 2}, and intermediate
vertices all of degree 2. It holds that |P| € O(f) [4, Lemma 2].

4. Any temporal (s, z)-path in G can be formed with time-edges whose underlying edges are
feedback edges from F or form paths in P. Enumerate all 2°/) sequences of underlying
edges that a temporal (s, z)-path in G can follow and for each one count the temporal
(s, z)-paths following these underlying edges using Theorem 8. Add up all path counts.

The correctness follows from the correctness of [13, Theorem 7] and that due to the exhaustive

search, all temporal (s, z)-paths in G are considered and correctly counted. <

J. Enright, K. Meeks, and H. Molter

4.3 Parameterisation by Treewidth and Lifetime

Our goal in this subsection is to demonstrate that # TEMPORAL PATH is in FPT when
parameterised simultaneously by the treewidth of the underlying graph and the lifetime; to
do this we give an MSO-encoding of the problem and make use of the counting version of
Courcelle’s theorem for model-checking on relational structures [15].

» Theorem 14 (x). #TEMPORAL PATH is in FPT when parameterised by the combination
of the treewidth of the underlying graph and the lifetime.

4.4 Parameterisation by Vertex-Interval-Membership-Width

In this subsection, we present an FPT algorithm for # TEMPORAL PATH parameterised by
the so-called vertex-interval-membership-width of the input temporal graph. The vertex-
interval-membership-width is a temporal graph parameter recently introduced by Bumpus
and Meeks [11] which, like the timed feedback vertex number, depends not only on the
structure of the underlying graph but also on the assignment of times to edges. Intuitively,
the vertex-interval-membership-width counts the maximum number of vertices that are
“relevant” at any timestep, where a vertex is considered relevant if it has an incident edge
both (weakly) before and after the current timestep (so, for example, a vertex v is relevant
only at times when a temporal path could have entered but not yet left v).

» Definition 15 ([11]). The vertex interval membership sequence of a temporal graph (G, E,T)
is the sequence (Fy)icr) of vertez-subsets of G where

Foi={veV(G)|3i<t<jandu,weV(G) such that {u,v} € E; and {w,v} € E,}.

Note that we allow u = w. The vertex-interval-membership-width of (G,E,T) is the integer
vimw(G, €, T) 1= max,e[q) | F.

Note that every vertex incident with an edge in E; must belong to F;, and so |E;| <
(lgil) < |F;|?. The vertex interval membership sequence gives us a structure we can use for
dynamic programming, which we exploit to obtain the following result.

> Theorem 16 (x). #TEMPORAL PATH can be solved in time O(w?**+* . T) where T and
w are the lifetime and vertex-interval-membership-width respectively of the input graph.

In our dynamic programming algorithm, a state of the bag F}; is a pair (v, X), where
v € Fy and X C F; \ {v}. For any state (v, X) of F;, we compute the number P;(v,X)
of temporal paths @ from s to v, arriving by time ¢, such that V(Q) N (F; \ {v}) = X.
Computing all such values P;(v, X) is clearly sufficient, since the total number of temporal
(s, z)-paths is ZYQFT\{Z} Pr(z,Y). We compute the values for each bag F} in turn, assuming
for t > 1 that we have already computed all counts corresponding to F;_;.

5 Approximation Algorithms for Temporal Path Counting

In this section we consider the problems of approximating # TEMPORAL PATH and approxim-
ating the temporal betweenness centrality. For # TEMPORAL PATH, recall from Section 3.2
that there is unlikely to be an FPRAS for #2TEMPORAL PATH in general; in Section 5.1,
we show that there is however an FPTRAS for # TEMPORAL PATH when the maximum
permitted path length is taken as the parameter. This in turn implies the existence of
an FPTRAS for #TEMPORAL PATH when restrictions are placed on the structure of the

30:13

STACS 2023

30:14

Counting Temporal Paths

underlying graph that limit the length of the longest path. We remark that Theorem 5 and
Theorem 6 do not rule out exact FPT-algorithms for these parameterisations. We leave open
whether stronger hardness results or exact algorithms for this case can be obtained.

In Section 5.2 we apply this approximation result to the problem of approximating
temporal betweenness: we demonstrate that, whenever we can efficiently approximate
#TEMPORAL PATH, we can efficiently estimate the maximum temporal betweenness centrality
over all vertices of the input graph.

5.1 Approximately Counting Short Temporal Paths

In this subsection we consider the complexity of approximately counting (s, z)-paths para-
meterised by the length of the path.

#SHORT TEMPORAL PATH

Input: A temporal graph G = (V,&,T), two vertices s,z € V, and an integer k.
Task: Count the temporal (s, z)-paths in G that contain exactly k edges.

We prove the following result.

» Theorem 17. There is a randomised algorithm which, given as input an instance (G, s, z)
of #SHORT TEMPORAL PATH together with error parameters € >0 and 0 < § < 1, outputs
an estimate N of the number of temporal (s, z)-paths in G containing exactly k edges; with
probability at least 1 -4, N is an e-approzimation to the number of (s, z)-paths in G containing
ezactly k edges. The running time of the algorithm is O(kle* log(1/6)e=2n?T?).

The key ingredient in the proof is an efficient algorithm for the multicoloured version of
this problem, in which the input graph is equipped with a vertex-colouring (not necessarily
proper) and we wish to count paths containing exactly one vertex of each colour. We note
that #SHORT TEMPORAL PATH meets the conditions for a uniform witness problem given by
Dell et al. [17], and therefore in order to demonstrate the existence of an FPTRAS it would
suffice to demonstrate that the multicoloured version of the problem admits an FPT decision
algorithm. However, in this case it is easy to show that in fact exact counting is tractable
in the multicoloured setting, so we can infer the existence of an FPTRAS immediately by
applying a standard colour-coding technique, without invoking the power of the metatheorem
by Dell et al. [17].

#MULTICOLOURED TEMPORAL PATH

Input: A temporal graph G = (V,&,T), two vertices s,z € V, and a partition of V'\ {s, z} into
colour sets Vi W .- - W V.

Task: Count the number of temporal (s, z)-paths that contain exactly one vertex from each
colour-set Vi,..., V.

» Proposition 18 (x). #MULTICOLOURED TEMPORAL PATH is solvable in O((¢ + 1)In?T?)
time.

Equipped with this algorithm for #MULTICOLOURED TEMPORAL PATH, we use a standard
colour-coding technique to obtain an FPTRAS for #SHORT TEMPORAL PATH. This involves
repeatedly generating random colourings (not necessarily proper) of the vertices of V'\ {s, z}
using k — 1 colours; note that a single colouring can clearly be generated in time O(nk).
For each colouring, we solve the corresponding instance of #MULTICOLOURED TEMPORAL
PATH using the algorithm of Proposition 18. Setting N to be the sum of counts over all

J. Enright, K. Meeks, and H. Molter

colourings, we return Nk* /k!. Following the argument by Alon et al. [1, Section 2.1], we see
that the number of colourings we must generate to obtain an e-approximation to #SHORT
TEMPORAL PATH with probability at least 1 — § is O(e¥ log(1/8)e~2), giving the result.

Since the maximum possible path length is bounded by a function of either the vertex
cover number or the treedepth? of the underlying input graph, we immediately obtain the
following corollary to Theorem 17.

» Corollary 19. #TEMPORAL PATH admits an FPTRAS parameterised by either vertex
cover number or treedepth of the underlying input graph.

5.2 Approximating Temporal Betweenness

Observe that it is not clear how to use an approximation algorithm for # TEMPORAL PATH
to approximate the temporal betweenness centrality for every vertex in the input graph (we
give a detailed discussion in Section 2.3). In this section, we address the simpler problem of
determining the maximal temporal betweenness centrality of any vertex in the graph: we
show that we can efficiently approximate this quantity whenever there is an FPRAS (or
FPTRAS) for # TEMPORAL PATH.

» Theorem 20 (). Let C be a class of temporal graphs on which #TEMPORAL PATH
admits an FPRAS. Then C admits an FPRAS to estimate, given an input temporal graph
G = (V,E,T) € C, max,ecv C’g) (v), for x € {fastest, foremost}. Similarly, if C is a class
of graphs on which there exists an FPTRAS for # TEMPORAL PATH with respect to some
parameterisation k then, with respect to the same parameterisation, C admits an FPTRAS
to estimate, given an input temporal graph G = (V,E,T) € C, maxycy C](B*) (v), for x €
{fastest, foremost}.

The proof relies on the fact that we may assume that at least one vertex has temporal
betweenness centrality at least m,
that we can efficiently identify the inputs for which this lower bound does not hold, and
that in these cases the correct answer is in fact 0. Using this assumption, we show that the
following procedure is likely to produce a good approximation to max,cy CJ(B*) (v): for each
vertex pair (s, z), sample a large (polynomial) number of x-optimal temporal (s, z)-paths,
and record the number that contain each vertex v as an internal vertex; after considering all
pairs (s, z), we assume that the vertex vy.x we have seen most frequently has the maximum
betweenness centrality, and return as our estimate the proportion of sampled paths that
contain vmax. We note that, applying a general result of Jerrum et al. [30], we can assume
the existence of an efficient algorithm to sample x-optimal temporal (s, z)-paths almost
uniformly whenever there is an FPRAS (or FPTRAS).

Combining Theorem 20 with Corollary 19 gives the following immediate corollary.

where n is the number of vertices; we begin by arguing

» Corollary 21. There is an FPTRAS which, given as input a temporal graph G = (V,E,T),
computes an approrimation to max,cy C’](;)(v) (for = € {fastest, foremost}), parameterised
by either the vertex cover number or treedepth of the underlying input graph.

4 We refer to the book of Nesetril and de Mendez [37] for the definition of treedepth, and a proof that the
maximum length of a path in a graph is bounded by a function of its treedepth.

30:15

STACS 2023

30:16

Counting Temporal Paths

6 Conclusion

In this work, we initiate the systematic study of the parameterised and approximation
complexity of #TEMPORAL PATH. We present parameterised and approximation hardness
results and complement them with several parameterised exact and approximation algorithms.

In terms of improving our results, we conjecture that it is possible to prove #W/1]-hardness
instead of @W/[1]-hardness for #TEMPORAL PATH parameterised by the feedback vertex
number of the underlying graph. Furthermore, we leave open whether our parameterised
approximation results for vertex cover number or treedepth of the underlying graph can be
improved from a classification standpoint by obtaining exact algorithms, or whether we can
also show parameterised hardness for those cases.

We leave open to what extent our results transfer to the problem of counting strict
temporal (s, z)-paths, where the labels on the time-edges have to be strictly increasing. We
conjecture that most of our results hold for the strict case. In fact, we believe that the MSO
formulation used to obtain fixed-parameter tractability for the treewidth of the underlying
graph combined with the lifetime can be simplified: in the strict case, a first-order formula
should suffice, which would lead to fixed-parameter tractability in terms of the lifetime on
any class of nowhere-dense graphs [26], or for the combined parameter of cliquewidth and
lifetime [14].

We conjecture that our polynomial-time algorithm for the case where the underlying
graph is a forest (Section 4.1) can be extended to the case where the underlying graph is
series-parallel [20]. Recall that a forest can be seen as a series-parallel graph where only
series compositions are used. The idea would be to extend the dynamic program to parallel
compositions, exploiting the observation that any temporal path can visit the terminal
vertices of a series-parallel graph at most once.

Finally, we believe that our FPT-algorithms presented in Section 4.2 for the timed
feedback vertex number and feedback edge number of the underlying graph, respectively,
can be adapted to count other types of temporal (s, z)-paths for which counting is in general
#P-hard. A key ingredient for both algorithms is a polynomial-time algorithm for instances
that have a forest as underlying graph. This leads us to believe that the algorithms can be
modified to count restless temporal (s, z)-paths [13] and possibly also to count delay-robust
(s, z)-routes [24], since both of these path types can be found in polynomial time when the
underlying graph of the input temporal graph is a forest.

—— References

1 Noga Alon, Phuong Dao, Iman Hajirasouliha, Fereydoun Hormozdiari, and Siileyman Cenk
Sahinalp. Biomolecular network motif counting and discovery by color coding. In Proceedings
16th International Conference on Intelligent Systems for Molecular Biology (ISMB '08), pages
241-249, 2008.

2 Ahmad Alsayed and Desmond J Higham. Betweenness in time dependent networks. Chaos,
Solitons & Fractals, 72:35-48, 2015.

3 Vikraman Arvind and Venkatesh Raman. Approximation algorithms for some parameterized
counting problems. In Prosenjit Bose and Pat Morin, editors, Proceedings of the 13th Inter-
national Symposium on Algorithms and Computation (ISAAC ’02), volume 2518 of Lecture
Notes in Computer Science, pages 453-464. Springer, 2002.

4 Matthias Bentert, Alexander Dittmann, Leon Kellerhals, André Nichterlein, and Rolf Nieder-

meier. An adaptive version of Brandes’ algorithm for betweenness centrality. Journal of Graph
Algorithms and Applications, 24(3):483-522, 2020.

J. Enright, K. Meeks, and H. Molter

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

Matthias Bentert, Anne-Sophie Himmel, André Nichterlein, and Rolf Niedermeier. Efficient
computation of optimal temporal walks under waiting-time constraints. Applied Network
Science, 5(1):73, 2020.

Matthias Bentert, René van Bevern, and Rolf Niedermeier. Inductive k-independent graphs
and c-colorable subgraphs in scheduling: a review. Journal of Scheduling, 22(1):3-20, 2019.
René Bevernvan Bevern, Matthias Mnich, Rolf Niedermeier, and Mathias Weller. Interval
scheduling and colorful independent sets. Journal of Scheduling, 18(5):449-469, 2015.
Andreas Bjorklund, Holger Dell, and Thore Husfeldt. The parity of set systems under random
restrictions with applications to exponential time problems. In Proceedings of the 42nd
International Colloquium on Automata, Languages, and Programming (ICALP ’15), pages
231-242. Springer, 2015.

Ulrik Brandes. A faster algorithm for betweenness centrality. Journal of Mathematical
Sociology, 25(2):163-177, 2001.

Binh-Minh Bui-Xuan, Afonso Ferreira, and Aubin Jarry. Computing shortest, fastest, and
foremost journeys in dynamic networks. International Journal of Foundations of Computer
Science, 14(02):267-285, 2003.

Benjamin Merlin Bumpus and Kitty Meeks. Edge exploration of temporal graphs. In
Proceedings of the 32nd International Workshop on Combinatorial Algorithms (IWOCA ’21),
volume 12757 of Lecture Notes in Computer Science, pages 107—121. Springer, 2021.

S. BuB, H. Molter, R. Niedermeier, and M. Rymar. Algorithmic aspects of temporal betweenness.
In Proceedings of the 26th ACM SIGKDD Conference on Knowledge Discovery and Data Mining
(KDD ’20), pages 2084-2092, 2020. arXiv:2006.08668.

Arnaud Casteigts, Anne-Sophie Himmel, Hendrik Molter, and Philipp Zschoche. Finding
temporal paths under waiting time constraints. Algorithmica, 83(9):2754-2802, 2021.

B. Courcelle, J.A. Makowsky, and U. Rotics. On the fixed parameter complexity of graph
enumeration problems definable in monadic second-order logic. Discrete Applied Mathematics,
108(1):23-52, 2001.

Bruno Courcelle and Joost Engelfriet. Graph Structure and Monadic Second-Order Logic: A
Language-Theoretic Approach. Encyclopedia of Mathematics and its Applications. Cambridge
University Press, 2012.

Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Daniel Marx, Marcin
Pilipczuk, Michat Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer, 2015.
Holger Dell, John Lapinskas, and Kitty Meeks. Approximately counting and sampling small
witnesses using a colourful decision oracle. In Proceedings of the 31st Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA ’20), pages 2201-2180. Society for Industrial and
Applied Mathematics, 2020.

Rodney G Downey and Michael R Fellows. Fundamentals of Parameterized Complezity.

Springer, 2013.

Jessica A. Enright, Kitty Meeks, and Hendrik Molter. Counting temporal paths. CoRR,
abs/2202.12055, 2022. arXiv:2202.12055.

David Eppstein. Parallel recognition of series-parallel graphs. Information and Computation,
98(1):41-55, 1992.

Jorg Flum and Martin Grohe. The parameterized complexity of counting problems. SIAM
Journal on Computing, 33(4):892-922, 2004.

Jorg Flum and Martin Grohe. Parameterized Complexity Theory, volume XIV of Texts in
Theoretical Computer Science. An EATCS Series. Springer, 2006.

Linton C. Freeman. A set of measures of centrality based on betweenness. Sociometry,
40(1):35-41, 1977.

Eugen Fiichsle, Hendrik Molter, Rolf Niedermeier, and Malte Renken. Delay-robust routes in
temporal graphs. In Proceedings of the 39th International Symposium on Theoretical Aspects
of Computer Science (STACS ’22), volume 219 of LIPIcs, pages 30:1-30:15, 2022.

30:17

STACS 2023

http://arxiv.org/abs/2006.08668
http://arxiv.org/abs/2202.12055

30:18

Counting Temporal Paths

25

26

27

28

29
30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

Fanica Gavril. The intersection graphs of subtrees in trees are exactly the chordal graphs.
Journal of Combinatorial Theory, Series B, 16(1):47-56, 1974.

Martin Grohe and Nicole Schweikardt. First-order query evaluation with cardinality conditions.
In Proceedings of the 37th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of
Database Systems (SIGMOD/PODS ’18), pages 253-266. ACM, 2018.

Habiba, Chayant Tantipathananandh, and Tanya Y Berger-Wolf. Betweenness centrality
measure in dynamic networks. Technical Report 19, Department of Computer Science,
University of Illinois at Chicago, Chicago, 2007. DIMACS Technical Report.

Petter Holme. Modern temporal network theory: a colloquium. The Furopean Physical Journal
B, 88(9):234:1-234:30, 2015.

Petter Holme and Jari Saraméki. Temporal Network Theory. Springer, 2019.

Mark R. Jerrum, Leslie G. Valiant, and Vijay V. Vazirani. Random generation of combinatorial
structures from a uniform distribution. Theoretical Computer Science, 43:169—-188, 1986.
Minghui Jiang. On the parameterized complexity of some optimization problems related to
multiple-interval graphs. Theoretical Computer Science, 411(49):4253-4262, 2010.

David Kempe, Jon Kleinberg, and Amit Kumar. Connectivity and inference problems for
temporal networks. Journal of Computer and System Sciences, 64(4):820-842, 2002.
Hyoungshick Kim and Ross Anderson. Temporal node centrality in complex networks. Physical
Review E, 85(2):026107, 2012.

Matthieu Latapy, Tiphaine Viard, and Clémence Magnien. Stream graphs and link streams for
the modeling of interactions over time. Social Network Analysis and Mining, 8(1):61:1-61:29,
2018.

Othon Michail. An introduction to temporal graphs: An algorithmic perspective. Internet
Mathematics, 12(4):239-280, 2016.

Petra Mutzel and Lutz Oettershagen. On the enumeration of bicriteria temporal paths.
In Proceedings of the 15th Annual Conference on Theory and Applications of Models of
Computation (TAMC ’19), volume 11436 of Lecture Notes in Computer Science, pages 518-535.
Springer, 2019.

Jaroslav Nesetril and Patrice Ossona de Mendez. Sparsity - Graphs, Structures, and Algorithms,
volume 28 of Algorithms and Combinatorics. Springer, 2012.

Vincenzo Nicosia, John Tang, Cecilia Mascolo, Mirco Musolesi, Giovanni Russo, and Vito
Latora. Graph metrics for temporal networks. In Temporal Networks, pages 15—40. Springer,
2013.

Amir Afrasiabi Rad, Paola Flocchini, and Joanne Gaudet. Computation and analysis of
temporal betweenness in a knowledge mobilization network. Computational Social Networks,
4(1):5, 2017.

Maciej Rymar, Hendrik Molter, André Nichterlein, and Rolf Niedermeier. Towards classifying
the polynomial-time solvability of temporal betweenness centrality. In Proceedings of the 47th
International Workshop on Graph-Theoretic Concepts in Computer Science (WG ’21), volume
12911 of Lecture Notes in Computer Science, pages 219-231. Springer, 2021.

Frédéric Simard, Clémence Magnien, and Matthieu Latapy. Computing betweenness centrality
in link streams. CoRR, abs/2102.06543, 2021. arXiv:2102.06543.

Alistair Sinclair. Randomised algorithms for counting and generating combinatorial structures.
PhD thesis, University of Edinburgh, 1988.

John Tang, Ilias Leontiadis, Salvatore Scellato, Vincenzo Nicosia, Cecilia Mascolo, Mirco
Musolesi, and Vito Latora. Applications of temporal graph metrics to real-world networks. In
Temporal Networks, pages 135—159. Springer, 2013.

John Tang, Mirco Musolesi, Cecilia Mascolo, Vito Latora, and Vincenzo Nicosia. Analysing
information flows and key mediators through temporal centrality metrics. In Proceedings of
the 3rd ACM Workshop on Social Network Systems, pages 3:1-3:6. ACM, 2010.

http://arxiv.org/abs/2102.06543

J. Enright, K. Meeks, and H. Molter

45

46

47

Toanna Tsalouchidou, Ricardo Baeza-Yates, Francesco Bonchi, Kewen Liao, and Timos Sellis.

Temporal betweenness centrality in dynamic graphs. International Journal of Data Science
and Analytics, 9(3):257-272, 2020.

Leslie G Valiant. The complexity of enumeration and reliability problems. SIAM Journal on
Computing, 8(3):410-421, 1979.

Huanhuan Wu, James Cheng, Yiping Ke, Silu Huang, Yuzhen Huang, and Hejun Wu. Efficient
algorithms for temporal path computation. IEEE Transactions on Knowledge and Data
Engineering, 28(11):2927-2942, 2016.

30:19

STACS 2023

	1 Introduction
	1.1 Related Work
	1.2 Our Contribution

	2 Preliminaries and Basic Observations
	2.1 Temporal Graphs and Paths
	2.2 Temporal Betweenness Centrality
	2.3 Temporal Betweenness vs. Temporal Path Counting

	3 Intractability Results for Temporal Path Counting
	3.1 Parameterised Hardness
	3.2 Approximation Hardness

	4 Exact Algorithms for Temporal Path Counting
	4.1 A Polynomial Time Algorithms for Forests
	4.2 Generalisations of the Forest Algorithm
	4.3 Parameterisation by Treewidth and Lifetime
	4.4 Parameterisation by Vertex-Interval-Membership-Width

	5 Approximation Algorithms for Temporal Path Counting
	5.1 Approximately Counting Short Temporal Paths
	5.2 Approximating Temporal Betweenness

	6 Conclusion

