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—— Abstract

The Johnson-Lindenstrauss transform allows one to embed a dataset of n points in R? into R™,
while preserving the pairwise distance between any pair of points up to a factor (1 & ¢), provided
that m = Q(¢ ?1gn). The transform has found an overwhelming number of algorithmic applications,
allowing to speed up algorithms and reducing memory consumption at the price of a small loss
in accuracy. A central line of research on such transforms, focus on developing fast embedding
algorithms, with the classic example being the Fast JL transform by Ailon and Chazelle. All
known such algorithms have an embedding time of 2(d1gd), but no lower bounds rule out a clean
O(d) embedding time. In this work, we establish the first non-trivial lower bounds (of magnitude
Q(mlgm)) for a large class of embedding algorithms, including in particular most known upper
bounds.
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1 Introduction

Working with high dimensional data can be both costly in memory and computational power,
motivating the study of dimensionality reduction techniques. The goal of dimensionality
reduction is to take a high dimensional dataset X and embed it to a dataset Y in a lower
dimensional space. If Y approximately preserves similarities between points in X, then one
may use Y as input to an algorithm in place of X to save both memory and computation
time at the cost of a small inaccuracy in ones output. A greatly celebrated dimensionality
reduction result is the Johnson-Lindenstrauss lemma [18], which states: For any fixed X C R,
with the size of X being n, and any distortion 0 < ¢ < 1, there exists a map f: X — R™
such that for all z,y € X

1f(x) = FW)ll2 € A+ )]z —yll2,

with m being ©(¢?1gn) [18, 25]. Thus the mapping is approximately preserving the
Fuclidean distances between the points in X in the lower dimensional space R™. The
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property of preserving pairwise distances via the Johnson-Lindenstrauss lemma have found
great use in many applications, for instance as a preprocessing step to speed up machine
learning algorithms.

A standard approach for obtaining an embedding f satisfying the above, is to pick a
random m x d matrix A with each entry being i.i.d. N(0,1) distributed [15] (or uniform
—1/1 [5]) and embedding any input z € X to f(z) = m~'/2Az. Computing such an
embedding thus takes O(md) time. In some applications of dimensionality reduction, this
becomes the bottleneck in the running time, thus motivating faster embedding algorithms.
The work on faster dimensionality reduction in Euclidian space can be divided roughly into
two categories: 1) using sparse embedding matrices A, or 2), using matrices A with special
structure that allows fast matrix-vector multiplication. In both cases, the fastest embedding
algorithms use super-linear time in the input dimensionality in the worst case. For sparse
matrices, there is near-tight lower bound by Nelson and Nguyen [28] showing that the
embedding time cannot be reduced below roughly Q(de~!lgn). For structured matrices,
the fastest embeddings use at least 2(d1lgm) time, however in this case there are no lower
bounds ruling out faster embeddings that could conceivably embed a vector in O(d) time see
e.g. [10, 17]. Working towards such lower bounds is the focus of this work.

Our Contributions

In this work, we establish the first non-trivial lower bounds on the time required for di-
mensionality reduction in Euclidian space when not restricted to using sparse matrices to
perform the embedding. Focusing on the case of d = ¢m, for a constant ¢ > 1 and optimal
m = O(e~21gn), we prove that a large class of embedding algorithms, including most known
upper bounds, must use time Q(mlgm). This coincides with known upper bounds for several
tradeoffs between ¢ and n. In addition to establishing a first lower bound, we believe our
careful definition of the class of algorithms that the lower bound applies to, shines light on
the barriers faced when developing fast embedding algorithms.
In the following section, we survey previous work and formally present our results.

1.1 Fast Dimensionality Reduction

As mentioned above, the previous work on fast dimensionality reduction can be divided into
two categories, either based on sparse matrices or on structured matrices. We elaborate on
these approaches in the following.

Sparse JL

The basic idea in sparse JL embeddings, is to use an embedding matrix A with only s < m
non-zeros per column. With such a matrix A, the product Az can be computed trivially
in O(sd) time rather than O(md), thus speeding up the embedding. Moreover, if x itself
has few non-zeros, then the product may even be computed in O(s||z||o) time, where ||z]|o
is the number of non-zeros in x. Using sparse embedding matrices was initiated by [1]
and culminated with the current state-of-the-art embedding by Kane and Nelson [21] who
showed that it suffices to pick a matrix A having s = O(¢~!lgn) random entries (without
replacement) in each column set uniformly and independently to —1/1 and embedding a
vector = to s~ /2 Az. Moreover, this nearly matches a sparsity lower bound by Nelson and
Nguyen [28] who showed that any sparse embedding matrix must have s = Q(e = 1gn/1g(1/¢))
non-zeros per column. Another line of research in this direction, studies sparsities s below
the lower bound by Nelson and Nguyen. For instance, Feature Hashing [34] considers the
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extreme case of s = 1. Of course, such embeddings cannot work for all data sets X. However,
as shown by Weinberger et al. [34] and later refined by Kamma et al. [11] and generalized to
s > 1 by Jagadeesan [16], one can use extremely sparse embedding matrices, provided that
for all pairwise difference vectors z = x — y for z,y € X, the ratio ||z||/||2||2 is small. That
is, there are no single large coordinates in z.

Fast JL

The second line of research on fast embeddings exploits structured matrices A with fast matrix-
vector multiplication algorithms. Ailon and Chazelle [2] initiated this direction by introducing
the FastJL transform. FastJL embeds a vector by computing a product m~'/2PH Dz, where
P is a sparse matrix, H is the normalized d X d Hadamard matrix and D is a diagonal matrix
with random signs on the diagonal. The trick is that computing Dz can be done in O(d) time
and computing H(Dx) takes only O(dlgd) time by exploiting the structure of the Hadamard
matrix. Finally, the transformation H Dz has the effect of “smoothening” out the coordinates
of the input vector, making the ratio |HDx||oo/||H Dx||2 small. This is precisely the setup
allowing very sparse embedding matrices. Concretely, Ailon and Chazelle [2] showed that
it suffices to let each entry in P be non-zero with probability ¢ = O((lg?n)/d), resulting
in a total embedding time of O(dlgd + mlg? n). Their analysis was recently refined by
Fandina et al. [10], showing that the sparsity parameter ¢ can be reduced further. Numerous
other embeddings exploiting structured matrices has since then been introduced [22, 8, 3, 6],
including for instance embeddings based on Toeplitz matrices [14, 32, 12] and the Kac random
walk [19, 17]. If one insists on optimal m = O(¢~2Ign) dimensions in the embedding, then
the current state-of-the-art is either the FastJL transform or the Kac random walk depending
on the relationship between n and €. However none of these are faster than O(dlgm) for
any tradeoff between ¢ and n.

Unlike the sparse matrix case, there are no known lower bounds ruling out e.g. O(d) time
embeddings via structured matrices. Naturally, the reason for this, is that it is much harder
to prove lower bounds for general embedding algorithms that exploit structured matrices
than merely bounding the sparsity of the embedding matrix. In fact, proving super-linear
lower bounds for general linear circuits (which capture current embedding algorithms) is a
major open question in complexity theory. In light of this obstacle, which we will elaborate
on in Section 1.3, we identify common traits in most known upper bounds that we exploit to
prove lower bounds for dimensionality reduction. In the following, we formally define the
model under which we prove our lower bound.

1.2 Formal Lower Bound

As mentioned earlier, our lower bound holds for a large class of dimensionality reducing maps.
This class is captured by a certain scaling parameter. Concretely, we define a ScaledJL-matrix
as follows:

» Definition 1. Let 0 < £,6 < 1 and s € N. A stochastic matriz A € R™*? is said to be a
ScaledJL (e, 6, s )-matriz, if for any x € R we have that

P4 U]s-l/mxuz ¢ (1+¢) ||x||§] <.

Let us remark a few things about Definition 1. First, we assume that a ScaledJL(g, ¢, s)-matrix
A is such that s~'/2 A preserves the (squared) norm of any single vector z up to (14¢) except
with probability 0. This is the standard definition of a distributional Johnson-Lindenstrauss

31:3

STACS 2023



31:4

Barriers for Faster Dimensionality Reduction

transform and all known upper bounds give such a guarantee. In greater detail, known
upper bounds prove the distributional guarantee and then sets § < 1/n? and apply a union
bound over all z = x — y for z,y € X to conclude that the embedding preserves all pairwise
(squared) distances among vectors in X. In this work, we focus on the squared distance as it
simplifies calculations and anyways only changes € by a constant factor. The non-standard
thing in Definition 1 is the scaling parameter s. Of course, such a scaling parameter can also

—1/2

be implicitly hidden in A by scaling all entries of A by s . To explain the role of s in our

model, we need to first introduce a linear circuit/algorithm as defined e.g. by Morgenstern:

» Definition 2 ([26]). A linear algorithm takes as an input 1,21, ...,24 € R and proceeds
in t > 0 steps. In the l'th step the algorithm computes Tqy1 by Tati = Aa41%j + pa+1Ti for
some pair of indices i,j < d + 1, where Mgy, pay; € R.

We say that a linear algorithm computes a linear transformation B € R™*¢ if there exist
indices 1 < ky,...,ky < d+t such that: (Bx), = xg,, ..., (Bx)m = x,, for every possible
input © = (21,...,14) € RL

Note that the number of steps ¢ determines the number of operations performed by the
algorithm (up to a factor 3). Proving super-linear lower bounds for linear algorithms in the
sense of Definition 2, is a major open problem [31]. Thus several previous works [27, 7] have
considered restrictions where the coeflicients A and p are bounded in absolute value by a
constant r independent of m and d. This is crucially necessary if one wants to avoid the
long-standing complexity theoretic barriers further elaborated on in Section 1.3.

With this in mind, the role of s in our definition of ScaledJL(e, d, s)-matrix becomes
clearer. Concretely, if we consider an embedding s~/2Ax, then we think of A as being
computable by a linear algorithm/circuit where all coefficients A; and p; are bounded by
a constant. This naturally leads to a scaling factor s~/2 for some s. Such a scaling also
occurs in most known upper bounds. Let us first state our main lower bound result and then
discuss how it relates to known constructions:

» Theorem 3. Let A € R™*? be q ScaledJL(z,6,s)-matriz for ¢ < 1/4, § < C (C being
some universal constant), s € N, m = ©(¢=21g(1/6)) and d > m, then the expected (over the
random choice of A) minimum number of operations needed for any linear algorithm that
computes the transformation A for all x € R? with |\, |wi| < 1 for all i is Q(mlgs).

Let us briefly argue that most known constructions are of the form captured by the lower
bound and the definition of a ScaledJL(g, §, s)-matrix. Concretely, these upper bounds have
lgs = Q(lgm) and thus our lower bound shows that it must take Q(mlgm) operations to
compute these embeddings, even if more clever linear algorithms could be devised. As an
example of an upper bound, consider first the classic JL construction using a matrix A with

—1/2 = ;=12 In this case, the matrix A can

iid. random —1/1 entries and a scaling of s
clearly be computed by a linear algorithm using coefficients bounded by 1 in absolute value
(just carry out the trivial algorithm). So it falls under the definition of a ScaledJL(e, d, s)-
matrix with s = m. Next consider embeddings based on Toeplitz matrices [14, 32, 12]. Here
we embed as m~Y/2T Dz, where D is a diagonal with random signs and T is a Toeplitz
matrix with random signs on its diagonals. The matrix T can be computed via a fast
Fourier transform using coefficients bounded by a constant. Hence the construction also
falls under the definition of ScaledJL(g, d, s)-matrix with s = m. We could also consider
the sparse JL transform by Kane and Nelson [21]. Their construction uses an embedding
matrix where each column has t = ©(¢~!lgn) non-zero entries, each of magnitude t=1/2.

Such a sparse embedding is typically computed by moving the scaling t~1/2 outside and then
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doing the straight-forward sparse matrix-vector multiplication using constant magnitude

coefficients. It thus falls under the definition of a ScaledJL(e, 0, s)-matrix with s = ¢t = O(em).

This has lgs = Q(lgm) when m is optimal O(¢=21gn). Finally, consider for instance the
m~Y2PHD construction by Ailon and Chazelle [2]. They use the normalized Hadamard
matrix, i.e. all entries in H are scaled down by d—/2. If we move that scaling factor outside,
as (md)~Y2PHD, then H is computed recursively using coefficients of 1 and —1. The
entries of P are b- N(0,¢~!) distributed, where b is a Bernoulli random variable with success
probability ¢ for a g > 1g(1/d)/d. With high probability, no entry of P is thus larger than
about O(v/d). Moving this scaling factor outside, it cancels out with the d—/2 from the
Hadamard matrix and then P can also be computed using coefficients bounded by a constant
and the final algorithm is a ScaledJL(g, d, s)-matrix with s = ©(m). Common to all these
approaches, is that they project onto something that resembles a random m-dimensional
subspace. Intuitively, such a matrix should have m rows all of norm about y/d/m. With d
columns, this would imply that each entry should be about m~—1/2
the scaling factor outside to have constant magnitude entries, results in the m
factor observed in all these upper bounds.

Thus many known upper bounds fall under the definition of a ScaledJL(e, §, s)-matrix
with a scaling s satisfying lg s = Q(lgm). Theorem 3 therefore sheds light on why they all
require (mlgm) time (which is w(d) when d = O(m)). Let us also mention the only upper
bound we are aware of, that does not seem to suffer from the lower bound. In the Kac JL
transform [19, 17], one embeds a vector by repeatedly picking two random coordinates, among
the d input coordinates, and performing a random rotation on the two. After sufficiently
many steps (2(dlgd + mlgn) in the current analysis), all but the first m coordinates are
discarded and those m coordinates are scaled by +/d/m. While seemingly not being captured
by the lower bound, we remark that the analysis of Kac JL cannot be sharpened to o(dlgd)
steps as otherwise, by a coupon collector argument, there is a vector e; among €,,41,...,€q
whose coordinate 7 is never involved in a rotation and hence e; is embedded to 0.

Of course, it would have been more natural, if our lower bound in Theorem 3 only required
bounded coefficients in the linear algorithm, not that there is also a scaling parameter s
Unfortunately, as we argue in Section 1.3, it seems unlikely that we can establish such a
lower bound using current techniques. We thus believe our results can be seen in two ways:
1) as providing strong evidence that FastJL constructions cannot be made much faster, or 2)

in magnitude. Moving

~1/2 scaling

as pointing towards a direction for further improvements, by trying to design embeddings
where a constant scaling parameter s suffices, or super-constant coefficients are used when
computing the embedding, or perhaps using non-linearity.

1.3 Barriers for Linear Algorithm Lower Bounds

Proving super-linear unconditional lower bounds is one of the biggest barriers in many areas
of complexity theory, including in particular for linear operators. A natural computational
model for computing linear operators is a linear algorithm, a.k.a. linear circuit, as in
Definition 2. While being a very natural model of computation for linear operators, capturing
in particular all known JL constructions, it suffers from a lack of tools for proving lower
bounds (without any assumptions on coefficients). Concretely, there are still no super-linear
size lower bounds, even for circuits restricted to logarithmic depth. Moreover, this road
block is not for lack of trying. For instance, already in 1977, Valiant [31] introduced the
notion of matriz rigidity. Loosely stated, the rigidity of a square matrix (corresponding
to a linear operator) A € R"*" is the minimum number of entries in A that needs to be
changed to reduce its rank below n/2. Valiant showed that any explicit matrix A with

-1/2
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rigidity Q(n?/lglgn) cannot have a linear-sized and log-depth linear circuit for computing
the corresponding linear operator. Matrix rigidity has since then been the topic of much
research, see e.g. [13, 4, 30, 9], however none of these works lead to super-linear lower bounds
(also when considering rectangular matrices) for explicit matrices, despite the fact that a
random matrix has high rigidity with high probability.

Bounded Coefficients

In light of the above strong barriers for proving lower bounds for linear circuits, a natural
restriction to the computational model, is to assume that all coefficients A\; and u; used by the
gates are bounded in absolute value by a constant r. Indeed, if we enforce such a restriction,
then Morgenstern [27] for instance proved an Q(nlgn) lower bound on the size of any linear
circuit computing the n x n unnormalized fast Fourier transform. A lower bound for the
size of circuits with bound coefficients by Pudlak [29] yields a similar lower bound for the
unnormalized fast Fourier and Hadamard transform. Similarly, Chazelle [7] proved Q(nlgn)
lower bounds for linear circuits, with bounded integer coefficients, for computing linear
transformation corresponding to incidence matrices for various geometric range searching
problems. Common to these techniques, is that they relate the circuit complexity to the
eigenvalues of the corresponding matrix A. In particular, the lower bounds one obtains peak
at Q(¢1g~y,), where v, denotes the £'th largest eigenvalue of AT A.

Now in the context of dimensionality reduction, an embedding matrix A € R™*¢

can have
at most m non-zero eigenvalues. This means that lower bounds obtained via these techniques
will be proportional to only Q(mlg~y,) for an £ € ©(m). Since the size of the circuit is already
at least d, it makes most sense from a lower bound point of view to consider setups where m
and d are within constant factors. However, since embedding matrices A must preserve the
norm of standard unit vectors e;, their columns will have norms of magnitude (1 £ ¢). This
implies that the trace of AT A is d(1 £ ¢) = ©(m). Since the trace of AT A equals the sum of
its eigenvalues, we get for £ € ©(m) that v, is at best a constant. Thus the lower bounds we
may hope to obtain are only £2(m), i.e. trivial. Thus considering only the restriction to have
coeflicients bounded by a constant is insufficient for proving non-trivial lower bounds using
known techniques.

Output Scaling

Having observed the above, we examined existing FastJL constructions and found a common
trait in most of them: they embed a vector z by computing s~ /2 Az for some scaling factor
s and matrix A, where A can be computed efficiently by a linear circuit using coefficients of
constant magnitude. Given the obstacles mentioned above, we thus settled on proving lower
bounds for embeddings that follow this template, resulting in Theorem 3 above.

2 Lower Bound for Linear Algorithms

The goal of this section is to prove our lower bound from Theorem 3 on the operations needed
for any linear algorithm computing a ScaledJL(g, 8, s)-matrix. We state a stronger version of
the theorem here:

» Theorem 4. Let A € R™*? be a ScaledJL(z,§, s )-matriz for e < 1/4, 6 < C(C being some
universal constant), s € N and te=?1g(1/6) = m, t > 1 and d > m, then the expected (over the
random choice of A) minimum number of operations needed for any linear algorithm computing
Az for any x € R? with |\;|, || < r for all i and v > 1/2, is Q(mlg(s/t?)/(t1g(2r)).

We notice that Theorem 3 is a special case of Theorem 4 where r is set equal to 1 and

t=0(1).
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The main tool for proving Theorem 4 is a lemma by Morgenstern relating the operations
needed by a linear algorithm computing a linear transformation B to the determinants of
square submatrices of B:

» Lemma 5 ([27]). Let B be a real matriz and let A(B) denote the mazimum over the
absolute value of the determinant of any square submatriz of B. A linear algorithm computing

the linear transformation B, with |\, || < r for all i and r > 1/2, must use at least
lg(A(B))/1g(2r) operations.

Using Lemma 5 as our offset, our goal is thus to show that any ScaledJL(e, §, s)-matrix

Qm) Since A is allowed to

A must have a submatrix whose determinant is in the order of s
be stochastic and fail to preserve the norm of a vector x with probability §, we only prove

that this holds with constant probability over A:

» Lemma 6. Let A € R™*? be a ScaledJL(e,d,s)-matriz for ¢ < 1/4, 6§ < C (C being
some universal constant), s € N and te=21g(1/8) = m, t > 1 and d > m, then there exist
a set S C supp(A) such that P4 [S] > 1/2 and for B € S it holds that there exists a square
submatrix F of B such that

| det(F)| > (c2s/(3(et)?)) /1172
where ¢ 1s some universal constant less than 1.
The proof of Theorem 4 follows immediately from the above two lemmas:

Proof of Theorem 4. Let A be a ScaledJL(e, d, s)-matrix. Lemma 6 gives the existence
of a set S C supp(A) with P4[S] > 1/2 and for B € S, B has a square submatrix F
such that | det(F)| > (c2s/(3(et)?)) “™*1? implying that A(B) > (c2s/(3(et)?))™"1*. 1t
now follows by Lemma 5 that a linear algorithm calculating Bz for all € R? must use
lg(A(B))/1g(2r) operations. Since lg(A(B)) > ([em/t])1g(c?s/(3(et)?))/2 = Q(mlg(s/t?)/t)
we get that 1g(A(B))/lg(2r) = Q(mlg(s/t?)/(t1g(2r)). Thus we conclude, since P4[S] > 1/2,
that the expected number of operations needed by any linear algorithm computing the
transformation A is Q(mlg(s/t?)/(t1g(2r)), which concludes the proof of Theorem 4. <

The main challenge we face is thus establishing Lemma 6, i.e. proving that for any
ScaledJL(e, d, s)-matrix A, it is often the case that A has a square submatrix of large
determinant. This is the focus of the next section.

2.1 Submatrix with Large Determinant (Proof Lemma 6)

To prove Lemma 6, we have to show that with probability at least 1/2, a ScaledJL(e, §, s)-
matrix has a square submatrix with an (c?s/(3(et)?)) fom/t1/2 large determinant. For this, we
will use a technical lemma from [23] which relates the eigenvalues of BT B to the determinants
of square submatrices of B:

» Lemma 7. (/23] proof of Theorem 10) For B € R™*4 with m < d, let \y > Ao > -+ >
Am > 0 denote the eigenvalues of BT B. For all positive integers | < m, there exists a square
submatriz F € R™! of B such that
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By the above lemma, we can reduce the problem of finding a square submatrix of a
ScaledJL(e, d, s)-matrix A with large determinant, to lower bounding the eigenvalues of
a AT A. Using X\;(BT B) to denote the i’th largest eigenvalue of BT B, this is precisely the
contents of the following lemma:

» Lemma 8. Let A € R™*? be a ScaledJL(z, 6, s)-matriz for e < 1/4, § < C(C being some
universal constant) and s € N, te 21g(1/8) = m, t > 1 and d > m, then there exist a set
S C supp(A) such that P4 [S] > 1/2 and for B € S it holds that

Aremye) (BT B) > ds/(3m)
where ¢ is some universal constant less than 1.

Before we give the proof of Lemma 8, let us see that it suffices to finish the proof of Lemma 6:

Proof of Lemma 6. Let A be ScaledJL(e, §, s)-matrix such that the conditions of Lemma 8
are met. We then have for B in the set S described in Lemma 8 that the [ = [em/t]’th
largest eigenvalue of BT B is at least ds/(3m). Now by Lemma 7. we have that there exist
a square submatrix F' € R™*! of B such that |det(F)| > (Héz1 /\1/(7) (")), Now using
these two properties combined with (}) < (en/k)* and | > em/t we get that

el (H N/ ((7) (77»)/ > (dst?/(3c%dm®)) " = s/ (3(e)?) 1.

Thus Lemma 6 follows by the conditions in Lemma 6 and Lemma 8 on the ScaledJL(g, d, s)-
matrix being the same. |

After having established the above connection between eigenvalues and linear algorithms,
we are left with proving Lemma 8, i.e. to show that for a ScaledJL(e, d, s)-matrix A, it is
often the case that AT A has many large eigenvalues. We first give an overview of the main
ideas in the proof, before proceeding to give the formal details.

Proof Overview

The proof of Lemma 8 is at a high level inspired by methods used in [24]. The main result
of [24] was a lower bound of m = Q(¢7%1gn) on the embedding dimension of any linear
dimensionality reducing map. Their lower bound was proved for a “hard” set of vectors
consisting of the standard basis vectors and several independent Gaussian vectors. The
standard basis vectors were used to lower bound the trace Tr(A” A) where A is the full
embedding matrix (including any scaling factors), whereas the Gaussian vectors were used
to upper bound the squared Frobenius norm ||AT A||%. Since Tr(AT A) is the sum of the
eigenvalues of AT A and ||AT A||% is the sum of squared eigenvalues, one cannot have a large
Tr(ATA) and a small ||AT A||%2 without having many non-zero eigenvalues. Their lower
bound on m follows by observing that the number of non-zero eigenvalues equals the rank of
A, and the rank cannot exceed m. We remark that the idea of using Gaussian vectors as a
hard instance was also seen in [20].

Compared to the proof above, we need to show something stronger. More precisely, the
previous work merely showed that there are Q(e~21gn) non-zero eigenvalues. We need to
show that there are Q(¢~2?1gn) eigenvalues that are all at least ds/(3m) large. This requires
a more refined analysis and the introduction of the scaling parameter s~'/2 in the embedding
s71/2 Az as in the definition of a ScaledJL(e, 6, s)-matrix.
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The hard instance in our lower bound is also the standard basis vectors eq, ..., eq in R?
together with a Gaussian distributed vector g € R?. By Markov’s inequality, we get that the
following two events hold simultaneous with constant probability over the random choice of
A: The number of basis vectors whose norm is preserved, i.e. |{i: HAei/\/EH2 € (lxe)},is
Q(d), and secondly, the probability that the random Gaussian vector has its norm preserved
satisfies Pg[||Ag/\/§||2/ € (1+¢)||g/*] > 1 —©O(4). Thus if we now consider an outcome B of
A which satisfies these two relations, we get by |{i : ||Bei/\/§||2 € (1 £e)} =Q(d) that the
trace of BT B, which is equal to the sum of the eigenvalues BT B, is Q(ds). Now by ||Bg/\/§||2
being in (14 ¢) [|g]|* and ||g||* being in (1 + )d, both with probability least 1 — 62 over g,
we also get with probability at least 1 — 3§91 over g that || Bg||® € (1 + ©(e))ds.

Now using the lower bound Y>> A\(BT B); = Q(ds) and the fact that BT B has at most
m non-zero eigenvalues, we get that the sum of the eigenvalues larger than ds/(3m) is at
least Q(ds) — m(ds/(3m)) = Q(ds) (provided that we can prove a large enough constant
in the Q(ds) notation). However, we also need to prove that there are not just a few such
eigenvalues that are huge and account for most of the sum. For this, let [ denote the number
of eigenvalues that are greater than or equal to ds/(3m).

To prove a lower bound on [, we first use anti-concentration inequalities to relate the
distribution of ||Bg||* to Tr(BT B), obtaining an upper bound on || BT B||2 = S A(BTB)? <
O((ds)?/m) (like in previous work). Using the upper bound on Y A(B? B)? and Cauchy-
Schwartz, we then conclude that the sum of the eigenvalues larger than ds/(3m) is at most
©(ds\/1/m) - hence combining the lower and upper bound on the sum of the eigenvalues
larger than ds/(3m), we get that ©(ds+/I/m) = Q(ds), so we conclude that [ = Q(m) as
wanted. We remark that while this last part of our proof carries some resemblance to that
in [24], we believe that the whole reduction above, reducing the problem to arguing that the
embedding matrix must have many large eigenvalues, is highly novel in its own right.

Preliminaries

To prove Lemma 8, we need the following two concentration bounds for normal distributed
random variables.

» Lemma 9 ([35]). Let g1,...,9q4 be independent N(0,1) random variables and uq, ..., uq
be non-negative numbers, then for constants ¢y <1 and C7 > 1 we have that

d
crexp (—Ciz?/|ul3) <P [Z ui(g? —1) > x] , Y0<z
i—1
d
crexp (—=Ciz?/||ull3) < P [Z ui(gf — 1) < —iL’] , V0<z < elufl3/flufo
i=1

» Lemma 10 (Example 2.11 [33]). Let g1, ..., 94 be independent N(0,1) random variables
then

|

Proof of Lemma 8

d

> gl —d

k=1

> ad] < 2e_d0‘2/8, for all a € (0,1).

We are now ready to give the proof of Lemma 8.
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Proof. Let A € R™*? be a ScaledJL(z, 6, s)-matrix for ¢ < 1/4 and § < C (where C is a
constant to be fixed later), te=21g(1/6) = m and d > m.

Let eq, ..., eq be the standard basis vectors in R?. Let further P, denote the measure of
a standard Gaussian random vector ¢ € R? independent of A. We now claim the existence
of a set of matrices S such that A € S holds with probability at least 1/2 and for B € S, we
have that

. 2
i+ || Bes/ V3 = lleal | > e llesl} < 46d (1)
and

P, [I1|Bg/Val = lgl*] > ellgl’] < 45 @)

To show this, define for each ¢ € [d] the event F; = {| ||Aei/\/§H2 —Jles]? | > € les]|*} and
set X, equal to 1g,, such that Y0, X; = |{i : |[|Bei/v/5l° — llesll” | > € les]|*}|. By the
ScaledJL(e, 9, s)-matrix assumption of A, we have that

d
ZX,;] <4d

=1

Ea

so by Markov’s inequality we get that
rd
Pyl X;> 454} <1/4

Li=1

similarly by the ScaledJL(g, d, s)-matrix assumption we have that

Ea [Py [ [[4g/V5]" = gl | > = llgl)] < 6

so by applying Markov’s inequality again, we get that

Pa [P [I|4g/v3II" — l9l*] > €llgl?] = 48] < 1/4.

Now using a union bound gives that Equation (1) and Equation (2) hold simultaenously
with probability at least 1/2 as claimed.

If we can show that for B € S, it holds that A(B” B)[epm /¢ > ds/(3m), then we are done
since the probability of A being in S is at least 1/2. So let B € S. We now notice that by
Equation (1) there exist (1 — 48)d indices in i € [d] such that (BT B);; € (1 +¢)s. If we now
let \;(BT B) denote the i’th largest eigenvalue of BT B, we get the following lower bound on
the sum of eigenvalues of BT B (assuming ¢ < 1/4 and § < C < 1/36):

Zm: \i(BTB) =Tr(BTB) > (1 —¢)(1 — 46)ds > 2ds/3. (3)

i=1

Now by Cauchy-Schwartz, we also have that

m m

Z Xi(BTB) < ,|mY_ A\i(BTB)?

i=1

< mi/\i(BTBV > X(BTB)? /A = /m i Xi(BTB)? /) (4)

i=1 i=1
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Combining Equation (3) and Equation (4), we get that

O _M(BTB)?)/M(B"B) > 2ds/3v/m > ds/4y/m. (5)

=1

Now since B was in S, we have by Equation (2) that ||Bgl||* € (1+¢) ||g||* with probability
at least 1 — 46§ over g. At the same time, we have by Lemma 10 that for 0 < o < 1, it holds
that ||g||> € (1 + a)d with probability at least 1 — 2exp (—da?/8). Now choosing a = ¢,
we get that 2exp(—de?/8) < 26'/%. By the assumption that d > m > ¢~ 21g(1/d), we get
that [|g]|*> € (1 + )d with probability at least 1 — 261/ over g. Now combining this with
|Bg|”> € (1 +¢) ||g||* with probability at least 1 — 48 over g, we get by a union bound that

|Bg||> € (1+e)(1+e)ds = (1 — 2 +2,1+ 2 +¢&2)ds (6)

with probability at least 1 — 65/ over g.

Now using the eigenvalue decomposition of BT B into U? DU, where U is an orthogonal
matrix and D an diagonal matrix with the eigenvalues of B” B on its diagonal in decreasing
order, and that a standard normal Gaussian vector is invariant in distribution under rotations,
we obtain the following relation

|Bg||> — Tr(BTB) = ¢" B"Bg — Tr(BTB) = ¢"UT DUg — Tr(BT B) (7)
d d
d . ~ ~
£§"Dg— > N(B"B) = M(B"B)( 1) (®)
i=1 i=1

Our next step is to relate Y, \?(BT B) to 6. Here we take two different approaches depending
on Tr(BTB). ¢; and Cj in the following are the constants of Lemma 10.

Case 1. If Tr(BTB) < (1 — 2¢ + ¢1/(4y/m))ds then by Equation (6) (and the comment
above the equation) we have with probability at least 1 — 65'/8 over g that

|Bg||”> — Tr(BTB) > (1 —2e 4+ €2) — (1 — 2e + 1 /(4y/m)))ds > —cids/4/m.

implying that 65'/® > P, {HBQ”Q —Tr(BTB) < —clds/4\/m].
Now noticing that cids/4y/m < c1 (31—, Mi(BT B)?) /A1 (BT B) by Equation (5), we may
invoke the second relation in Lemma 9 on Equation (8) to get:

d
P, [||Bg|‘2 —Tr(B"B) < _clds/wﬁ} ~P, [Z AN(BTB)(§? — 1) < —crds/4v/m
i=1

d
> ¢) exp <—Cl(clds)2 /(16m > A?(BTB))> :

i=1

Yielding that 65'/8 > ¢; exp (—Cl(clds)z/(16m 25:1 )\f(BTB))).

Case 2. If Tr(BTB) € [(1—2¢+c1/(4y/m))ds,00) then by Equation (6) (and the comment
below the equation) we have with probability at least 1 — 65'/8 over g that

IBgl|> = Tr(BTB) < (1 + 2¢ +€2) — (1 — 26 + ¢1/(4v/m))))ds < Seds.

implying that 65'/® > P, |Bg||*> — Tr(BTB) > 5eds|.
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Now using the first relation in Lemma 9 combined with Equation (8), it follows that

d

> X(BTB) (G - 1) > 55d31

i=1
> ¢ exp ( C( 55ds Z)\2 BTB )

Yielding that 651/8 > ¢; exp (—01(55d5)2 /(L A?(BTB))).

Py [I Byl ~ Tr(BT B) > beds| B,

Conclusion. Now using that m > ¢ 2?1g(1/§) and ¢; < 1 it follows that ¢Z/16m < 52¢2
which then implies that Ci(c1ds)2/(16m Y %, A2(BTB)) < Cy(5eds)?/(X¢_, A2(BT B).
Combining this with the conclusion of the above two cases, we get 658 >
1 exXp (—Cl (5£ds)2/(22-l:1 /\Z-Z(BTB))). With this relation, choosing the universal constant
C = (¢1/6)'% (less than 1/36 as used in Equation (3)), which implies that ¢; /(66*/1¢) > 1,
and using that m = te=21g(1/4), we now get that

1g(66Y/%) > 1g(c1) — Oy (5eds)? Z)\Q (BTB))

which implies

d
> A}(BTB) < Ci(5eds)?/(1g(c1 /(66V/%))) < C116(5eds)? /1g(1/8) < 20°Cyt(ds)?/m. (9)

i=1

We now define the vector w € R? as

[w]; = {1 if \;(BTB) > ds/(3m)

0 else

and let [ be equal to the number of non-zero entries of w. Let further A denote the vector in
R? with the eigenvalues of BT B in decreasing order. It then follows by Cauchy-Schwartz
and Equation (9) that we have the following upper bound on the sum of the eigenvalues of
BT B larger than ds/(3m):

d
> X(BTB)l < \/20°Ct(ds)?l/m.

i=1

> Xi(BTB) = (\w) < A Jw] =
©:X\; (BT B)>ds/(3m)

At the same time, we get the following lower bound on the sum of the eigenvalues of BT B
larger than ds/(3m) by Equation (3) and the fact that (BT B) has rank at most m and hence
at most m non-zero eigenvalues

d
> Xi(BTB)=> \(B"B) - > Xi(BTB)
i:X; (BT B)>ds/(3m) i=1 :X; (BT B)<ds/(3m)
> 2ds/3 —ds/3 =ds/3.

Hence combining the upper and lower bound we obtain that ds/3 < 1/202C1t(ds)?l/m,
implying that m/(602C;t) < I, which by setting ¢ in Lemma 8 equal to 1/602C; <1 (Cy > 1
by Lemma 9) concludes the proof of Lemma 8. <



0. Nova Fandina, M. Mgller Hggsgaard, and K. Green Larsen

—— References

1

10

11

12

13

14

15

Dimitris Achlioptas. Database-friendly random projections: Johnson-lindenstrauss with binary
coins. J. Comput. Syst. Sci., 66(4):671-687, 2003. doi:10.1016/50022-0000(03)00025-4.
Nir Ailon and Bernard Chazelle. The fast johnson-lindenstrauss transform and approximate
nearest neighbors. SIAM J. Comput., 39:302—-322, 2009.

Nir Ailon and Edo Liberty. Fast dimension reduction using rademacher series on dual
BCH codes. In Shang-Hua Teng, editor, Proceedings of the Nineteenth Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA 2008, San Francisco, California, USA, January
20-22, 2008, pages 1-9. STAM, 2008. URL: http://dl.acm.org/citation.cfm?id=1347082.
1347083.

Noga Alon, Rina Panigrahy, and Sergey Yekhanin. Deterministic approximation algorithms for
the nearest codeword problem. In Irit Dinur, Klaus Jansen, Joseph Naor, and José D. P. Rolim,
editors, Approxzimation, Randomization, and Combinatorial Optimization. Algorithms and
Techniques, 12th International Workshop, APPROX 2009, and 13th International Workshop,
RANDOM 2009, Berkeley, CA, USA, August 21-28, 2009. Proceedings, volume 5687 of Lecture
Notes in Computer Science, pages 339-351. Springer, 2009. doi:10.1007/978-3-642-03685-9_
26.

Rosa I. Arriaga and Santosh S. Vempala. An algorithmic theory of learning: Robust
concepts and random projection. Mach. Learn., 63(2):161-182, 2006. doi:10.1007/
510994-006-6265-7.

Stefan Bamberger and Felix Krahmer. Optimal fast johnson-lindenstrauss embeddings for
large data sets. Sampling Theory, Signal Processing, and Data Analysis, 19(1):3, 2021.
do0i:10.1007/s43670-021-00003-5.

Bernard Chazelle. A spectral approach to lower bounds with applications to geometric searching.
SIAM Journal on Computing, 27(2):545-556, 1998. doi:10.1137/80097539794275665.
Thong T. Do, Lu Gan, Yi Chen, Nam Nguyen, and Trac D. Tran. Fast and efficient
dimensionality reduction using structurally random matrices. In 2009 IEEE International
Conference on Acoustics, Speech and Signal Processing, pages 1821-1824, 2009. doi:10.1109/
ICASSP.2009.4959960.

Zeev Dvir, Alexander Golovnev, and Omri Weinstein. Static data structure lower bounds
imply rigidity. In Moses Charikar and Edith Cohen, editors, Proceedings of the 51st Annual
ACM SIGACT Symposium on Theory of Computing, STOC 2019, Phoeniz, AZ, USA, June
23-26, 2019, pages 967-978. ACM, 2019. doi:10.1145/3313276.3316348.

Ora Nova Fandina, Mikael Mgller Hggsgaard, and Kasper Green Larsen. The fast johnson-

lindenstrauss transform is even faster. CoRR, abs/2204.01800, 2022. doi:10.48550/arXiv.

2204.01800.

Casper Freksen, Lior Kamma, and Kasper Green Larsen. Fully understanding the hashing
trick. In Proceedings of the 32nd International Conference on Neural Information Processing
Systems, NIPS’18, pages 53945404, Red Hook, NY, USA, 2018. Curran Associates Inc.
Casper Benjamin Freksen and Kasper Green Larsen. On using toeplitz and circulant matrices
for johnson-lindenstrauss transforms. Algorithmica, 82(2):338-354, 2020. doi:10.1007/
s00453-019-00644-y.

Joel Friedman. A note on matrix rigidity. Comb., 13(2):235-239, 1993. doi:10.1007/
BF01303207.

Aicke Hinrichs and Jan Vybiral. Johnson-lindenstrauss lemma for circulant matrices. Random
Structures & Algorithms, 39(3):391-398, 2011. doi:10.1002/rsa.20360.

Piotr Indyk and Rajeev Motwani. Approximate nearest neighbors: Towards removing the
curse of dimensionality. In Proceedings of the Thirtieth Annual ACM Symposium on Theory of
Computing, STOC ’98, pages 604—613, New York, NY, USA, 1998. Association for Computing
Machinery. doi:10.1145/276698.276876.

31:13

STACS 2023


https://doi.org/10.1016/S0022-0000(03)00025-4
http://dl.acm.org/citation.cfm?id=1347082.1347083
http://dl.acm.org/citation.cfm?id=1347082.1347083
https://doi.org/10.1007/978-3-642-03685-9_26
https://doi.org/10.1007/978-3-642-03685-9_26
https://doi.org/10.1007/s10994-006-6265-7
https://doi.org/10.1007/s10994-006-6265-7
https://doi.org/10.1007/s43670-021-00003-5
https://doi.org/10.1137/S0097539794275665
https://doi.org/10.1109/ICASSP.2009.4959960
https://doi.org/10.1109/ICASSP.2009.4959960
https://doi.org/10.1145/3313276.3316348
https://doi.org/10.48550/arXiv.2204.01800
https://doi.org/10.48550/arXiv.2204.01800
https://doi.org/10.1007/s00453-019-00644-y
https://doi.org/10.1007/s00453-019-00644-y
https://doi.org/10.1007/BF01303207
https://doi.org/10.1007/BF01303207
https://doi.org/10.1002/rsa.20360
https://doi.org/10.1145/276698.276876

31:14

Barriers for Faster Dimensionality Reduction

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

Meena Jagadeesan. Understanding sparse JL for feature hashing. In Hanna M. Wallach, Hugo
Larochelle, Alina Beygelzimer, Florence d’Alché-Buc, Emily B. Fox, and Roman Garnett,
editors, Advances in Neural Information Processing Systems 32: Annual Conference on Neural
Information Processing Systems 2019, NeurIPS 2019, December 8-14, 2019, Vancouver, BC,
Canada, pages 15177-15187, 2019. URL: https://proceedings.neurips.cc/paper/2019/
hash/502cc2c94bela7c4ca7ef25b8b50bc04-Abstract . html.

Vishesh Jain, Natesh S. Pillai, and Aaron Smith. Kac meets johnson and lindenstrauss: a
memory-optimal, fast johnson-lindenstrauss transform. CoRR, abs/2003.10069, 2020. To
appear in Annals of Applied Probability. doi:10.48550/arXiv.2003.10069.

William Johnson and Joram Lindenstrauss. Extensions of lipschitz maps into a hilbert space.
Contemporary Mathematics, 26:189-206, January 1984. doi:10.1090/conm/026/737400.
Mark Kac. Foundations of kinetic theory. In Proceedings of The third Berkeley symposium on
mathematical statistics and probability, pages 171-197. University of California Press Berkeley
and Los Angeles, California, 1958.

Daniel M. Kane, Raghu Meka, and Jelani Nelson. Almost optimal explicit johnson-lindenstrauss
families. In Approzimation, Randomization, and Combinatorial Optimization. Algorithms and
Techniques — 14th International Workshop, APPROX 2011, and 15th International Workshop,
RANDOM 2011, Princeton, NJ, USA, August 17-19, 2011. Proceedings, pages 628-639, 2011.
doi:10.1007/978-3-642-22935-0_53.

Daniel M. Kane and Jelani Nelson. Sparser johnson-lindenstrauss transforms. J. ACM,
61(1):4:1-4:23, 2014. doi:10.1145/2559902.

Felix Krahmer and Rachel Ward. New and improved johnson-lindenstrauss embeddings
via the restricted isometry property. SIAM J. Math. Anal., 43(3):1269-1281, 2011. doi:
10.1137/100810447.

Kasper Green Larsen. Constructive discrepancy minimization with hereditary L2 guarantees.
In Rolf Niedermeier and Christophe Paul, editors, 36th International Symposium on Theoretical
Aspects of Computer Science, STACS 2019, March 13-16, 2019, Berlin, Germany, volume
126 of LIPIcs, pages 48:1-48:13. Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, 2019.
doi:10.4230/LIPIcs.STACS.2019.48.

Kasper Green Larsen and Jelani Nelson. The johnson-lindenstrauss lemma is optimal for
linear dimensionality reduction. In 43rd International Colloguium on Automata, Languages,
and Programming, ICALP 2016, July 11-15, 2016, Rome, Italy, pages 82:1-82:11, 2016.
doi:10.4230/LIPIcs.ICALP.2016.82.

Kasper Green Larsen and Jelani Nelson. Optimality of the johnson-lindenstrauss lemma. In
Chris Umans, editor, 58th IEEE Annual Symposium on Foundations of Computer Science,
FOCS 2017, Berkeley, CA, USA, October 15-17, 2017, pages 633-638. IEEE Computer Society,
2017. doi:10.1109/F0CS.2017.64.

Jacques Morgenstern. On linear algorithms. In Zvi Kohavi and Azaria Paz, editors, The-
ory of Machines and Computations, pages 59-66. Academic Press, 1971. doi:10.1016/
B978-0-12-417750-5.50009-9.

Jacques Morgenstern. Note on a lower bound on the linear complexity of the fast fourier
transform. J. ACM, 20:305-306, 1973.

Jelani Nelson and Huy L. Nguyen. Sparsity lower bounds for dimensionality reducing maps.
In Dan Boneh, Tim Roughgarden, and Joan Feigenbaum, editors, Symposium on Theory of
Computing Conference, STOC’13, Palo Alto, CA, USA, June 1-4, 2013, pages 101-110. ACM,
2013. doi:10.1145/2488608.2488622.

Pavel Pudlak. A note on the use of determinant for proving lower bounds on the size of linear
circuits. Information Processing Letters, 74(5):197-201, 2000. doi:10.1016/50020-0190(00)
00058-2.

Shubhangi Saraf and Sergey Yekhanin. Noisy interpolation of sparse polynomials, and
applications. In Proceedings of the 26th Annual IEEE Conference on Computational Complezity,
CCC 2011, San Jose, California, USA, June 8-10, 2011, pages 86-92. IEEE Computer Society,
2011. doi:10.1109/CCC.2011.38.


https://proceedings.neurips.cc/paper/2019/hash/502cc2c94be1a7c4ca7ef25b8b50bc04-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/502cc2c94be1a7c4ca7ef25b8b50bc04-Abstract.html
https://doi.org/10.48550/arXiv.2003.10069
https://doi.org/10.1090/conm/026/737400
https://doi.org/10.1007/978-3-642-22935-0_53
https://doi.org/10.1145/2559902
https://doi.org/10.1137/100810447
https://doi.org/10.1137/100810447
https://doi.org/10.4230/LIPIcs.STACS.2019.48
https://doi.org/10.4230/LIPIcs.ICALP.2016.82
https://doi.org/10.1109/FOCS.2017.64
https://doi.org/10.1016/B978-0-12-417750-5.50009-9
https://doi.org/10.1016/B978-0-12-417750-5.50009-9
https://doi.org/10.1145/2488608.2488622
https://doi.org/10.1016/S0020-0190(00)00058-2
https://doi.org/10.1016/S0020-0190(00)00058-2
https://doi.org/10.1109/CCC.2011.38

0. Nova Fandina, M. Mgller Hggsgaard, and K. Green Larsen

31

32

33

34

35

Leslie G. Valiant. Graph-theoretic arguments in low-level complexity. In Jozef Gruska, editor,
Mathematical Foundations of Computer Science 1977, 6th Symposium, Tatranska Lomnica,
Czechoslovakia, September 5-9, 1977, Proceedings, volume 53 of Lecture Notes in Computer
Science, pages 162-176. Springer, 1977. doi:10.1007/3-540-08353-7_135.

Jan Vybiral. A variant of the johnson-lindenstrauss lemma for circulant matrices. Journal of
Functional Analysis, 260:1096-1105, February 2010. doi:10.1016/j.jfa.2010.11.014.
Martin J. Wainwright. Basic tail and concentration bounds, pages 21-57. Cambridge Series in
Statistical and Probabilistic Mathematics. Cambridge University Press, 2019. doi:10.1017/
9781108627771.002.

Kilian Q. Weinberger, Anirban Dasgupta, John Langford, Alexander J. Smola, and Josh
Attenberg. Feature hashing for large scale multitask learning. In Proceedings of the 26th
Annual International Conference on Machine Learning, ICML 2009, Montreal, Quebec, Canada,
June 14-18, 2009, pages 1113-1120, 2009.

Anru R. Zhang and Yuchen Zhou. On the non-asymptotic and sharp lower tail bounds of
random variables. Stat, 9(1):e314, 2020. e314 sta4.314. doi:10.1002/sta4.314.

31:15

STACS 2023


https://doi.org/10.1007/3-540-08353-7_135
https://doi.org/10.1016/j.jfa.2010.11.014
https://doi.org/10.1017/9781108627771.002
https://doi.org/10.1017/9781108627771.002
https://doi.org/10.1002/sta4.314

	1 Introduction
	1.1 Fast Dimensionality Reduction
	1.2 Formal Lower Bound
	1.3 Barriers for Linear Algorithm Lower Bounds

	2 Lower Bound for Linear Algorithms
	2.1 Submatrix with Large Determinant (Proof Lemma 6)


