
A Regular and Complete Notion of Delay for
Streaming String Transducers
Emmanuel Filiot #

Université libre de Bruxelles, Belgium

Ismaël Jecker #

University of Warsaw, Poland

Christof Löding #

RWTH Aachen University, Germany

Sarah Winter #

Université libre de Bruxelles, Belgium

Abstract
The notion of delay between finite transducers is a core element of numerous fundamental results of
transducer theory. The goal of this work is to provide a similar notion for more complex abstract
machines: we introduce a new notion of delay tailored to measure the similarity between streaming
string transducers (SST). We show that our notion is regular : we design a finite automaton that can
check whether the delay between any two SSTs executions is smaller than some given bound. As a
consequence, our notion enjoys good decidability properties: in particular, while equivalence between
non-deterministic SSTs is undecidable, we show that equivalence up to fixed delay is decidable.
Moreover, we show that our notion has good completeness properties: we prove that two SSTs are
equivalent if and only if they are equivalent up to some (computable) bounded delay. Together with
the regularity of our delay notion, it provides an alternative proof that SSTs equivalence is decidable.
Finally, the definition of our delay notion is machine-independent, as it only depends on the origin
semantics of SSTs. As a corollary, the completeness result also holds for equivalent machine models
such as deterministic two-way transducers, or MSO transducers.

2012 ACM Subject Classification Theory of computation → Formal languages and automata theory

Keywords and phrases Streaming string transducers, Delay, Origin

Digital Object Identifier 10.4230/LIPIcs.STACS.2023.32

Related Version Full Version: https://arxiv.org/abs/2205.04287

Funding This work was partially supported by the Fonds de la Recherche Scientifique – F.R.S.-FNRS
under the MIS project F451019F.
Emmanuel Filiot: Emmanuel Filiot is a senior research associate at F.R.S-FNRS.
Sarah Winter : Sarah Winter is a postdoctoral researcher at F.R.S.-FNRS.

1 Introduction

Transducers are another fundamental extension of finite automata for computing functions,
and more generally relations, between structures. In this paper, we consider string-to-
string transducers, which operate on (input) strings and produce (output) strings. The
most basic, finite transducers, are obtained by adding output words on the transitions of a
finite automaton [32, 21]. At the heart of several important results in the theory of finite
transducers is a notion, called delay, allowing to finely compare, in a regular way (with a
finite automaton), transducer executions. The goal of this paper is to provide such a notion
for a strictly more powerful class of transducers, streaming string transducers [1], which have

© Emmanuel Filiot, Ismaël Jecker, Christof Löding, and Sarah Winter;
licensed under Creative Commons License CC-BY 4.0

40th International Symposium on Theoretical Aspects of Computer Science (STACS 2023).
Editors: Petra Berenbrink, Patricia Bouyer, Anuj Dawar, and Mamadou Moustapha Kanté;
Article No. 32; pp. 32:1–32:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:efiliot@ulb.ac.be
https://orcid.org/0000-0002-2520-5630
mailto:ismael.jecker@gmail.com
https://orcid.org/0000-0002-6527-4470
mailto:loeding@cs.rwth-aachen.de
https://orcid.org/0000-0002-1529-2806
mailto:swinter@ulb.ac.be
https://orcid.org/0000-0002-3499-1995
https://doi.org/10.4230/LIPIcs.STACS.2023.32
https://arxiv.org/abs/2205.04287
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

32:2 A Regular and Complete Notion of Delay for Streaming String Transducers

ρ5 :
ρ4 :
ρ3 :
ρ2 :
ρ1 :

4

t = 1 t = 2 t = 3 t = 4
a 3a a 2a a a 1a a a a 1b b b b 2b b b 3b b 4b

1a a a a 2a a a 3a a 4a 4b 3b b 2b b b 1b b b b

4a 4a 3a a 3a a 2b b b 2b b b 1b b b b 1b b b b

1a a a a 1a a a a 2a a a 2a a a 3b b 3b b 4b 4b

2a a a 2a a a 2a a a 2a a a 4b 4b 4b 4b

Figure 1 Five ways of producing the output sequence a4b4, and the corresponding origin functions.

received a lot of attention in the recent years, due to their robustness and equivalence with
many other formalisms to define string-to-string functions. In particular, this paper answers
positively the following high-level question:
Is it possible to measure in a regular manner how differently executions of equivalent
streaming string transducers produce their outputs?

Finite transducers. We first explain how the above question is answered for finite transducers.
Transitions of finite transducers over some alphabet Σ are tuples (p, σ, w, q) where p, q

are states, σ ∈ Σ is a symbol read on the input tape, and w ∈ Σ∗ is a word (possibly
empty) written on the output tape. A finite transducer execution, i.e., a sequence of
successive transitions ρ = (p1, σ1, w1, p2) . . . (pn−1, σn, wn, pn), operates on the input word
in(ρ) = σ1 . . . σn and produces the output word out(ρ) = w1 . . . wn. The semantics of a finite
transducer is the set of pairs (in(ρ), out(ρ)) for all accepting executions ρ. Two different
executions ρ1 and ρ2 might define the same input/output pair, but can produce the output
in a different way because the output words wi occurring on the transitions of the two runs
may differ, although their whole concatenation is the same.

Origin information. Differences in the way transducers produce their output are best
captured by the notion of origin information, initially proposed for streaming string trans-
ducers [10]. An origin function maps any position of the output word to the input position
where it was produced. In an execution such as ρ above, any position of wi has origin i.
Figure 1 illustrates five different ways of producing the same output word a4b4 (the input
word of length 4 is irrelevant here and not depicted). Consider for example the execution
ρ1. When reading the first input symbol (timestep t = 1), nothing is produced. At timestep
t = 2, a4 is produced, and its positions have origin 2, as depicted to the right of the figure.
The sequence b4 is produced at timestep t = 4 so its corresponding positions have origin 4.
Note that ρ3, ρ4, ρ5 do not correspond to finite transducer executions, as a4b4 is not produced
from left to right.

Delay for finite transducers. A natural way of comparing two finite transducer executions
ρ1, ρ2 on the same input and producing the same output, is to compare the origin functions
o1, o2 they induce, and in particular how much one is ahead of the other. In Figure 1, both ρ1
and ρ2 produce the same output from left to right, yet at different speed: ρ1 produces bigger
chunks of output at lower frequency. The delay between both executions is 2 for t ∈ {1, 3}
and 0 for t ∈ {2, 4}. The global delay delay(ρ1, ρ2) is defined as the maximal delay along the
executions, in this case 2. Two transducers T1 and T2 are said to be k-delay equivalent if for
each run ρ1 of T1 or T2 the other transducer has a run ρ2 with the same input and output
satisfying delay(ρ1, ρ2) ≤ k. This delay notion enjoys two important properties:

E. Filiot, I. Jecker, C. Löding, and S. Winter 32:3

Regularity: While the set E = {(ρ1, ρ2) | in(ρ1) = in(ρ2) ∧ out(ρ1) = out(ρ2)} is not regular1

in general for finite transducer executions, its restrictions to pairs of executions with
bounded delay is regular: For every k ∈ N, the set Ek = {(ρ1, ρ2) ∈ E | delay(ρ1, ρ2) ≤ k}
is regular [24]. As finite automata compose well with other abstract machines, this allows
to use the delay in all kinds of constructions while preserving good decidability properties.
For instance k-delay equivalence is decidable [24].

Completeness: For any two finite transducers T1, T2 defining string-to-string functions, there
exists a computable bound k such that T1 and T2 are equivalent iff they are k-delay
equivalent. The completeness even holds in broader classes [24], such as finite-valued
transducers, for which there is a global bound on the number of outputs mapped to a
single input.

Applications. Due to its regularity and completeness, the notion of delay, while basic,
proves to be very powerful, and is omnipresent in the study of finite transducers. It provides
decidable approximations of various undecidable decision problems, which reveals to be exact
for broad classes of transducers, such as finite-valued transducers [24]. Various patterns
characterizing important subclasses of transducers are based on the delay notion: For instance,
transducers which are sequential [14, 9] (i.e., definable by an input-deterministic transducer);
equivalent to finite union of sequential functions [27, 20]; finite-valued [29, 31]. Moreover,
it has been used to show that any finite-valued transducer can be decomposed as a union
of 1-valued transducers [33, 30]. Canonical notions for finite transducers are also based on
delay: for input-deterministic transducers [15] and 1-valued transducers [28].

Streaming string transducers and regular functions. Streaming string transducers (SST)
are obtained by equipping deterministic finite automata with a finite set of registers that
store output [1]. Those registers cannot be tested, but are updated by concatenating them, or
prepending/appending some symbols to them. E.g., consider a single-state SST with a loop
which, whatever it reads as input, updates its single register O by the operation O := aOb,
and finally outputs the whole content of O. The execution ρ5 in Figure 1 represents an
execution of this SST. Consider an equivalent single-state SST with two registers X, Y which,
whatever the input, executes X := Xa and Y := bY , and finally outputs the concatenation
XY (ρ4 in Figure 1 produces the output in this way). While equivalent, those two transducers
are not equivalent if the origin information is included in the semantics.

SSTs define a robust set of string-to-string functions, called regular functions, which
can be equivalently defined by deterministic two-way transducers [1], monadic second-order
transductions [16, 22, 4], regular transducer expressions [5, 8, 18, 19], and a logic with
origins [17]. Regular functions also enjoy a Krohn-Rhodes decomposition theorem [11]. SSTs
have a decidable equivalence problem [26], have been applied to the verification of list-
processing programs [2], and have been implemented for evaluating string transformations [3].

There are two natural ways of extending the delay defined for finite transducers to compare
executions of SSTs with the same input and output: we can either simply compare the
number of produced output letters without caring about the positions where it is produced,
or we can count the number of positions whose output has already been produced in one
run but not in the other. Both methods match the previously defined delay if the output is
produced from left to right, but unfortunately neither preserves conjointly the regularity and

1 Regularity here is defined as classical regularity of word languages, where a pair (ρ1, ρ2), are encoded as
a single word over a product alphabet of transitions.

STACS 2023

32:4 A Regular and Complete Notion of Delay for Streaming String Transducers

the completeness once other output production mechanisms, such as in SSTs, are considered2.
As the basic notions of delay for SSTs fail to satisfy good properties, better ways of comparing
SSTs were introduced, yet none that conjointly has good decidability and completeness
properties. For instance, bounded regular resynchronizers can alter origin functions of SSTs
in a controlled manner while preserving good decidability properties, but they are are not
complete [13, 12]. In the restricted setting of single-register SSTs, a regular and complete
notion of delay is defined based on word equations [25]. This approach was applied to prove
a decomposition theorem for single-register SSTs, but unfortunately fails when more registers
are allowed.

Contributions. We define a delay notion for comparing SST executions, based on the origin
functions they induce, that is both regular (Theorem 5) and complete for fundamental SST
decision problems including equivalence (Theorem 3 and Corollaries 10 and 11). This delay
notion is described in the next subsection. We first present our results. Since our notion
is based on origins, it more generally applies to regular functions with origin information.
SSTs are known to be equivalent to deterministic two-way and MSO transducers, via origin-
preserving encodings [10], so we obtain as a corollary that our delay notion is also complete
for equivalence of deterministic two-way transducers and MSO transducers (Corollary 4).

The origin semantics allows us to recover decidability of several decision problems:
While non-deterministic SST equivalence is undecidable, we can decide whether two non-
deterministic SSTs define the same relations with same origins. However, asking for identical
origins is very restrictive: it fails to detect equivalence if the origins are perturbed ever so
slightly. This observation was already made in [24] in the context of finite transducers, where
it is proposed to relax several decision problems, such as equivalence with same origins,
to decision problems with close origins, such as equivalence up to a given delay bound
k. We prove that the inclusion, equivalence and variable minimization problems up to a
given delay bound are decidable for (non-deterministic) SSTs (Theorems 8 and 9), while in
general those problems are undecidable. Since our delay notion is complete for equivalence
of (deterministic) SSTs, the latter result provides an alternative proof that such SSTs have
decidable equivalence problem, and sheds light on the intrinsic reasons why SSTs executions
are equivalent.

Delay for SSTs. Our notion of delay is based on the following observation: The order of
production of each output segment that is a power of a small word should have no impact
on the delay. For every ℓ ∈ N, we introduce the measure delayℓ, which first decomposes
the output into blocks that are powers of words smaller than or equal to ℓ. Then, at any
position j ending a block (instead of any position), we measure the maximal difference at any
timestep t, between the number of output positions at the left of j produced before timestep
t in the first and second executions. We then take the maximal such value for all j. Consider
ρ4 and ρ5 for example. delay1 splits the output a4b4 of Figure 1 into two blocks, a4 and b4.
Consider ending block position j = 4. At any timestep, the maximal difference of quantity of
outputs produced at the left of j is always 0, because ρ4, ρ5 produce exactly one symbol per
timestep before position j = 4. The same reasoning applies for ending block position j = 8,
where here instead, exactly two symbols are produced by ρ4, ρ5 at any timestep, at the left
of position j = 8. Hence delay1(ρ4, ρ5) = 0. We refer to Section 3 for a smooth introduction

2 We refer the interested reader to the appendix for more details about those natural extensions and an
explanation of why they are not satisfactory.

E. Filiot, I. Jecker, C. Löding, and S. Winter 32:5

to our delay notion and the main results and to Section 4.1 for a proof of its completeness,
and to Section 4.2 for a proof of its regularity. The completeness proof is perhaps the most
involved. It is based on a key pumping lemma (Lemma 6), which intuitively states that for
any SST, there exist computable bounds k and ℓ such that, if the delay delayℓ between two
executions on the same input/output is greater than k, then those two executions can be
pumped to construct two executions over the same input but with different outputs.

2 Preliminaries

We fix our notation. Let N denote the set of non-negative integers. The interval between
integers a and b including resp. excluding a and b is denoted [a, b] resp. (a, b).

Free monoid. Given a finite alphabet Σ, the free monoid over Σ is the monoid (Σ∗, ·, ε)
defined as follows. The set Σ∗ is composed of finite sequences of elements of Σ, called words.
The operation · is the usual word concatenation. The neutral element ε is the empty word.

A subset L ⊆ Σ∗ is called a language. Given a word u = a1 · · · an ∈ Σ∗, |u| denotes its
length, u[i] denotes its ith letter ai, u[i, j] denotes its infix ai · · · aj . Given an additional
word v = b1 · · · bn ∈ Σ∗, u ⊗ v denote the convolution

(
a1···an

b1···bn

)
∈ (Σ × Σ)∗.

Automaton. A (finite state) automaton is a tuple A = (Σ, Q, I, ∆, F) composed of a finite
alphabet Σ, a finite set of states Q, a set of initial states I ⊆ Q, a set of final states F ⊆ Q, and
a set of transitions ∆ ⊆ Q×Σ×Q. A run of A is a sequence ρ = q0a1q1a2q2 · · · anqn ∈ Q(ΣQ)∗

such that (qi−1, ai, qi) ∈ ∆ for every 1 ≤ i ≤ n. The input of ρ is the word a1a2 · · · an ∈ Σ∗.
The run ρ is called accepting if its first state is initial (q0 ∈ I) and its last state is final
(qn ∈ F). The automaton A is deterministic if I is a singleton and ∆ is expressed as a
function δ : Q × Σ → Q. The language recognized by A is the set L(A) ⊆ Σ∗ composed of
the inputs of all its accepting runs.

Substitutions monoid. Given a finite alphabet Σ, a finite set X = {X1, X2, . . . , Xn} of
variables, and a designated output variable O ∈ X , the (copyless) substitutions monoid
(SX ,Σ, ◦, IdX) is defined as follows. The set SX ,Σ contains all functions σ : X → (X ∪ Σ)∗

such that no variable appears twice in the image of a variable and no variable appears
in the images of two distinct variables, i.e., the word σ(X1) . . . σ(Xn) does not contain
twice the same variable. The composition σ1 ◦ σ2 of two substitutions σ1, σ2 ∈ SX ,Σ is
obtained by first applying σ2, and then σ1. Formally, it is the function σ̂1(σ̂2(·)), where
each substitution σ is morphically extended to σ̂ over (X ∪ Σ)∗ by letting σ̂(X) = σ(X) and
σ̂(α) = α for α ∈ Σ. We write σ in place of σ̂. For instance, the substitution composition
(σ1 : X 7→ ε) ◦ (σ2 : X 7→ aX) ◦ (σ3 : X 7→ bXc) maps X to bac, since σ3(X) = bXc,
σ2(bXc) = baXc and σ1(baXc) = bac. The neutral element IdX is the identity function
mapping each variable X ∈ X to itself. Finally, we denote by σε the substitution mapping
each variable X ∈ X to ε. We recall that O is the designated output variable; the output of
a substitution σ is the word out(σ) = (σε ◦ σ)(O).

Streaming string transducer. A streaming string transducer (SST) is a tuple T =
(Σ, Q, I, δ, F, X , O, κ, κF) where AT = (Σ, Q, I, δ, F) is a deterministic automaton, called
underlying automaton of T , X is a finite set of variables (also called registers), O ∈ X is a final
variable, κ : δ → SX ,Σ is an output function, and κF : Q → SX ,Σ is a final output function. A
run of T is a run ρ = q0a1q1a2q2 · · · anqn ∈ Q(ΣQ)∗ of AT , we define κ(ρ) as the substitution

STACS 2023

32:6 A Regular and Complete Notion of Delay for Streaming String Transducers

T1
O := XY

a, X := Xa, Y := Y, O := ε

b, X := X, Y := Y b, O := ε

T2
O := O

a, O := aO

b, O := Ob

Figure 2 Two deterministic SSTs that realize the same sorting function, cf. Example 1.

obtained by composing sequentially all substitutions occurring on the transitions and the final
substitutions, i.e. κ(ρ) = κ((q0, a1, q1))◦κ((q1, a2, q2))◦· · ·◦κ((qn−1, an, qn))◦κF (qn) ∈ SX ,Σ.
The output of the run ρ is the word (σε ◦ κ(ρ))(O). The transduction R(T) recognized (also
called realized) by T is the set of pairs (u, v) ∈ Σ∗ × Σ∗ such that T has an accepting run
with input u and output v. Non-deterministic SST are defined the same way except that AT

is non-deterministic. We emphasize that the transduction realized by a (deterministic) SST
is a partial function.

▶ Example 1. Depicted in Figure 2 are deterministic SSTs T1 and T2 that realize the same
sorting function f : {a, b}∗ → {a, b}∗ that maps u ∈ {a, b}∗ to ambn, where m (resp. n) is
the number of occurrences of a (resp. b) in u.

Origin information. A word with origins is a word ũ := u ⊗ o ∈ (Σ ×N)∗ where each letter
of u is annotated with a natural number signifying its origin in time. A transduction with
origins is a relation R ⊆ Σ∗ × (Σ ×N)∗.

Naturally, we associate with a sequence λ = σ1σ2 · · · σn ∈ S∗
X ,Σ of substitutions the

output word with origins ˜out(λ) = out(λ) ⊗ i1 · · · i|out(λ)| with ij = out(σ′
1σ′

2 · · · σ′
n)[j] for

1 ≤ j ≤ |out(λ)| where for all 1 ≤ t ≤ n, the substitution σ′
t ∈ SX ,N is obtained by replacing

each output letter in σt with the number t. Furthermore, we associate with an SST T the
transduction with origins Rori(T) that is the set of pairs (u, ˜out(λ)) ∈ Σ∗ × (Σ×N)∗ such that
T has an accepting run ρ with input u and sequence of substitutions κ(ρ) = λ. For example,
regarding the SSTs T1 and T2 from Figure 2, we obtain that (abaa,

(
aaab
1342

)
) ∈ Rori(T1) and

(abaa,
(

aaab
4312

)
) ∈ Rori(T2).

3 Delay measure

As mentioned in the introduction, the concept of delay has proven to be a useful tool in the
understanding of finite transducers. Our goal is to introduce a robust delay measure suitable
to gain a better understanding of streaming string transducers. Towards that, we informally
recall the notion of delay for finite transducers: The delay between two finite transducer
computations that produce the same output in the end, is a measure for how much ahead
one output is compared to the other during the computation. In other words, the difference
between the length of the so-far produced output is measured.

A key difference between finite transducers and SSTs is that the former build their outputs
from left to right while SSTs do not have this restriction. To design a notion of delay taking
this into account, we use origin information to define a notion of weight difference. These
notions are illustrated in Example 2.

Weight difference. Given a word with origins ũ := u ⊗ o ∈ (Σ ×N)∗, a time t ∈ N, and
j ∈ N, we define the positional weight weightj,t(ũ) ∈ N as the number of positions of u up
to j whose origin is no later than t, i.e.,

weightj,t(ũ) =
∣∣{i ∈ {1, 2, . . . , min(j, |u|)} | o[i] ≤ t}

∣∣.

E. Filiot, I. Jecker, C. Löding, and S. Winter 32:7

Note that weightj,t(ũ) = weight|u|,t(ũ) for all j ≥ |u|. Given a second word with origins
ṽ ∈ (Σ ×N)∗, and j1, j2 ∈ N, we define the weight difference as

diffj1,j2,t(ũ, ṽ) =
∣∣weightj1,t(ũ) − weightj2,t(ṽ)

∣∣ and diffj,t(ũ, ṽ) = diffj,j,t(ũ, ṽ).

Furthermore, we define the maximal weight difference as

max-diffj1,j2(ũ, ṽ) = max
t∈N

(
diffj1,j2,t(ũ, ṽ)

)
and max-diffj(ũ, ṽ) = max

t∈N

(
diffj,t(ũ, ṽ)

)
.

We remark that the value of max-diff is bounded even though t takes infinitely many values.
Also, we note that max-diff0(ũ, ṽ) = 0. We illustrate these notions.

▶ Example 2. We base our example on the SSTs T1, T2 from Figure 2. On input abaaa

both SSTs produce output aaaab. The associated origins differ, we have ũ =
(

aaaab
13452

)
and

ṽ =
(

aaaab
54312

)
. We obtain diff2,0(ũ, ṽ) = 0, diff2,1(ũ, ṽ) = 1, diff2,2(ũ, ṽ) = 1, diff2,3(ũ, ṽ) = 2,

diff2,4(ũ, ṽ) = 1, diff2,5(ũ, ṽ) = 0, and max-diff2(ũ, ṽ) = 2. More generally, on input abai the
output is ai+1b and with origins we have ũi =

(
a a a ··· a a b
1 3 4 ··· i+1 i+2 2

)
and ṽi =

(
a a ··· a a a b

i+2 i+1 ··· 4 3 1 2
)

for all i > 0. Moreover, max-diff(i+1)/2(ũi, ṽi) = (i + 1)/2 for all odd i.

The first idea of a delay notion for SSTs similar to finite transducers is to consider the
maximal weight difference that can occur. In Example 2, since T1 builds the a-output block
from left to right and T2 from right to left, their maximal weight difference is unbounded
even though T1 ≡ T2. Hence, this first idea of a delay notion violates the completeness
requirement. To avoid this problem, we would like our notion of delay to reflect that, for a
periodic block, it is not important if a repetition of the period is appended or prepended: the
result is the same. Therefore, we only measure the difference at the end of periodic blocks
and not inside of them. To this end, we introduce a new notion.

Factors, cuts. The primitive root of a word u ∈ Σ∗, denoted root(u), is the shortest word w

such that u = wk for some positive integer k. We call a word u ∈ Σ∗ primitive if root(u) = u.
Let u ∈ Σ∗ and ℓ > 0. We cut u into factors such that each factor has a primitive root of

length at most ℓ. The factors are chosen inductively from left to right in a way to maximize
the size of each factor as follows. The first factor u1 of u is the longest prefix of u such
that |root(u1)| ≤ ℓ, the ith factor ui of u is the longest prefix of u′ such that |root(ui)| ≤ ℓ

where u = u1 · · · ui−1u′. We refer to this unique ℓ-factorization as factorsℓ(u). Moreover, we
denote by cutℓ(u) the set that contains the end positions of the factors referred to as ℓ-cuts.
For example, consider u = aaababcbabaaaaa and ℓ = 2, then the unique ℓ-factorization is
aaa|ba|bc|baba|aaaa| and its ℓ-cuts are {3, 5, 7, 11, 15}.

Delay. We define delay for a word and two origin annotations (of said word) by considering
the maximal weight difference at the cut positions which are obtained via the factorization
into periodic words as introduced above. Formally, given a word w ∈ Σ∗ and two annotated
versions ũ, ṽ with origin, i.e., ũ := w ⊗ o1, ṽ := w ⊗ o2 ∈ (Σ ×N)∗, we define the ℓ-delay
delayℓ(ũ, ṽ) (delay for short) as

delayℓ(ũ, ṽ) = max
j∈cutℓ(w)

max-diffj(ũ, ṽ).

Going back to Example 2, we have delay1(ũi, ṽi) = 0, because the 1-factorization of ai+1b

is ai+1|b| and we have max-diffi+1(ũi, ṽi) = max-diffi+2(ũi, ṽi) = 0.
We apply the delay notion to transductions with origin. Intuitively, two such transductions

are “close” if for every pair (u, w ⊗ o1) (from one transduction) there is some pair (u, w ⊗ o2)
(from the other transduction) such that the delay between these outputs with origins is small.

STACS 2023

32:8 A Regular and Complete Notion of Delay for Streaming String Transducers

Let R1, R2 denote transductions with origin. We say that R1 is (k, ℓ)-included in R2 (written
R1 ⊆k,ℓ R2) if the following holds: for all (u, w ⊗ o1) ∈ R1, there exists (u, w ⊗ o2) ∈ R2
such that delayℓ(w ⊗ o1, w ⊗ o2) ≤ k. We say that R1 is (k, ℓ)-equivalent to R2 (written
R1 ≡k,ℓ R2) if R1 ⊆k,ℓ R2 and conversely R2 ⊆k,ℓ R1. We are ready to state our first main
result which illustrates the generality of our delay notion.

▶ Theorem 3 (Completeness). Given two SSTs T1 and T2, there exist computable integers
k, ℓ such that T1 ≡ T2 iff Rori(T1) ≡k,ℓ Rori(T2).

Section 4.1 is devoted to the proof of Theorem 3 and Section 5 illustrates some consequences
of Theorem 3. As the delay between streaming string transducers only depends on their
induced transductions with origin, we are able to state a more general result. Corollary 4 uses
the fact that deterministic streaming string transducers, deterministic two-way transducers
and MSO transducers are equally expressive – they characterize the so-called regular functions
– and every regular function given in one formalism can be translated into every other one
without changing its induced transduction with origins [16, 22, 4].

▶ Corollary 4. Given deterministic two-way transducers resp. MSO transducers T1 and
T2. Let R1 and R2 denote their induced transductions with origin. There exist computable
integers k, ℓ such that T1 ≡ T2 iff R1 ≡k,ℓ R2.

We focus on the second main aspect of our delay measure, namely, regularity. Meaning
that for every k, ℓ ∈ N, we would like to construct a finite automaton that accepts (suitable
representations of) pairs (w ⊗ o1, w ⊗ o2) with delayℓ(w ⊗ o1, w ⊗ o2) ≤ k. As finite automata
enjoy good closure properties, this yields a useful tool to solve for instance decision problems
up to fixed delay, cf. Section 5. As mentioned in the paragraph before Corollary 4, our delay
measure is applicable to transductions with origins and is complete for several transducer
models. However, we need to pick some way to represent such transductions to show regularity.
Hence, we prove our second main result for streaming string transducers.

▶ Theorem 5 (Regularity). Let S ⊆ SX ,Σ be a finite subset of SX ,Σ, let k ≥ 0 and ℓ > 0.
The following set is a regular language:

Dk,ℓ,S = {λ ⊗ µ ∈ (S × S)∗ | delayℓ(˜out(λ), ˜out(µ)) ≤ k and |λ| = |µ|}.

Note that λ ⊗ µ ∈ Dk,ℓ,S implies out(λ) = out(µ) because delayℓ is defined only for such
substitution sequences. We write Dk,ℓ instead of Dk,ℓ,S when S is clear from the context.
We prove Theorem 5 in Section 4.2 and show some applications of this result in Section 5.

4 Completeness and regularity

4.1 Completeness of the delay notion
We now prove the completeness result for SSTs, as stated in Theorem 3. To this end, we show
that whenever the delay between two sequences of substitutions is sufficiently large we can
pump well-chosen factors to obtain two sequences of substitutions producing outputs that are
distinct. Formally, given a sequence of substitutions λ ∈ S∗ and 1 ≤ s < t < |λ|, we denote
by pump(s,t](λ) the sequence of substitutions λ[1, t]λ(s, t]λ(t, |λ|) obtained by pumping the
interval (s, t], and we prove the following:

E. Filiot, I. Jecker, C. Löding, and S. Winter 32:9

out(µ) :
=

out(λ) :

jj1 j2

out(pump(s,s′](µ)) :
̸=

out(pump(s,s′](λ)) :

j+z

j+y

Figure 3 Illustration of the main idea used in the proof of Lemma 6.

▶ Lemma 6. Let S be a finite set of substitutions. There exist computable integers k, ℓ ∈ N
such that for every integer C ∈ N and every pair λ, µ ∈ S∗ that satisfy |λ| = |µ|, out(λ) =
out(µ), and delayCℓ(˜out(λ), ˜out(µ)) > C2k, there exist 0 ≤ t1 < t2 < . . . < tC < |λ| satisfying

out(pump(ti,tj](λ)) ̸= out(pump(ti,tj](µ)) for every 1 ≤ i < j ≤ C.

Moreover we can choose k and ℓ exponential with respect to the number of variables of S.
Before delving into the proof of Lemma 6, we argue that Theorem 3 follows as a corollary.

Proof of Theorem 3. Let T1 and T2 be two SSTs with set of states Q1 and Q2. By symmetry,
it is sufficient to show that R(T1) ⊆ R(T2) iff Rori(T1) ⊆C2k,Cℓ Rori(T2), where C = |Q1| ·
|Q2| + 1, and k, ℓ are as in the statement of Lemma 6 with respect to the union S = S1 ∪ S2
of the substitutions used by T1 and T2. The right to left direction of the ’iff’ is immediate,
as inclusion up to bounded delay is stronger than inclusion.

We now apply Lemma 6 to prove the converse direction. Suppose that Rori(T1) ̸⊆C2k,Cℓ

Rori(T2). Then there exists a pair with origins (u, w⊗o1) ∈ Rori(T1) such that all the pairs with
origin (u, w⊗o2) ∈ Rori(T2) with matching input and output satisfy delayCℓ(w⊗o1, w⊗o2) >

C2k. Two possible cases arise: either there is no pair of the form (u, w ⊗ o2) in Rori(T2), or
there exists such a pair (u, w ⊗ o2) ∈ Rori(T2), and it satisfies delayCℓ(w ⊗ o1, w ⊗ o2) > C2k.
In the former case, we immediately get that R(T1) ̸⊆ R(T2), since (u, w) is in R(T1) but
not in R(T2). In the latter case, we get that there exists a run ρ1 of T1 and a run ρ2 of T2
over the same input u that both produce the same output w, but with very different origins
functions: delayCℓ(˜out(κ1(ρ1)), ˜out(κ2(ρ2))) > C2k. Then Lemma 6 implies that we can find
C intermediate points in κ1(ρ1) and κ2(ρ2) such that iterating the segment between any two
points yields sequences of substitutions producing distinct outputs. As C = |Q1| · |Q2| + 1,
two of these points mark a loop in both ρ1 and ρ2, and pumping these loops creates runs of
T1 and T2 with the same input but different outputs. Since T2 is deterministic, and therefore
cannot map an input word to two distinct output words, this implies that R(T1) is not
included in R(T2). ◀

Proof overview of Lemma 6. We consider two substitution sequences λ, µ ∈ S∗ that have
the same length, produce the same output, and satisfy delayCℓ(˜out(λ), ˜out(µ)) > C2k for
some C, k, ℓ ∈ N. This implies the existence of a cut position j ∈ cutCℓ(out(λ)) and a point
t ∈ [0, |λ|) for which the weight difference diffj,t(˜out(λ), ˜out(µ)) is equal to C2k.

Our proof is based on the following fact, illustrated by Figure 3: If we choose k such
that diffj,t(˜out(λ), ˜out(µ)) is sufficiently large, there are intervals (s, s′] ⊂ [1, |λ|) that, once
pumped, add distinct amount of output before position j, thus creating a misalignment
between two copies of the letter out(λ)[j] in the output words generated by pump(s,s′](λ)
and pump(s,s′](µ). Moreover, we show that carefully identifying patterns occurring along the
two substitution sequences also allows us to ensure that some neighborhood out(λ)[j1, j2] =
out(µ)[j1, j2] of the position j is preserved in both out(pump(s,s′](λ)) and out(pump(s,s′](µ)),

STACS 2023

32:10 A Regular and Complete Notion of Delay for Streaming String Transducers

in a way that these two copies overlap, but not perfectly (this is the most complex part
of the proof). At this point, we use the fact that j is a cut position of out(λ): since j

marks the position where the period changes, and this position is not aligned properly in
out(pump(s,s′](λ)) and out(pump(s,s′](µ)), we can derive the existence of a mismatch, proving
that out(pump(s,s′](λ)) ̸= out(pump(s,s′](µ)).

Then, all that remains to do is to combine a few counting arguments to show how
to choose k and ℓ sufficiently large with respect to the parameters of S (and, crucially,
independently of C) so that the fact that diffj,t(˜out(λ), ˜out(µ)) > C2k implies the ex-
istence of C consecutive intervals (s, s′] ⊂ [1, |λ|), which, as described earlier, satisfy
out(pump(s,s′](λ)) ̸= out(pump(s,s′](µ)), which concludes the proof of Lemma 6. ◀

4.2 Regularity of the delay notion
Our goal is to prove that the delay notion is regular, as stated in Theorem 5. All over
this section, k and ℓ are non-negative integers, and S is a finite set of substitutions over a
finite set of variables X and an alphabet Σ. Lemma 7 characterizes the pairs of substitution
sequences whose outputs end with a unique endmarker symbol ⊣ and that are not in Dk,ℓ,S ,
using properties which are independently shown to be regular. We first start with the
characterization, then give an overview on how to show its regularity.

A characterization. Note that a pair (λ, µ) of two substitution sequences of the same length
is not in Dk,ℓ,S if either out(λ) ̸= out(µ) or there is a cut witnessing a delay greater than k.
Unfortunately, the first condition out(λ) ̸= out(µ) is not regular. So in order to characterize
the complement of Dk,ℓ,S by regular properties, we somehow have to mix conditions on
differences in the output and on positions witnessing a big delay. For the corresponding
formal statement in Lemma 7 we need the following definition.

Given a sequence of substitutions λ and i ≥ 0, let next-cutℓ(i, out(λ)) be the smallest
output position j such that j > i and j ∈ cutℓ(out(λ)), if it exists. Note that, as the last
output position is a cut, such a position j always exists unless i is the last output position.
Formally, next-cutℓ(i, out(λ)) denotes the set min (cutℓ(out(λ)) ∩ {j | j > i}). The result is
either a singleton or the empty set. In the former case, we write next-cutℓ(i, out(λ)) = j

instead of next-cutℓ(i, out(λ)) = {j}.

▶ Lemma 7. Let ⊣∈ Σ and λ, µ ∈ S∗ be sequences with out(λ), out(µ) ∈ (Σ \ {⊣})∗⊣ and
|λ| = |µ|. Then λ ⊗ µ ̸∈ Dk,ℓ,S iff there exists i ∈ (cutℓ(out(λ)) ∩ cutℓ(out(µ))) ∪ {0} such
that max-diffi(˜out(λ), ˜out(µ)) ≤ k, and one of the following holds:
1. Both j1 = next-cutℓ(i, out(λ)) and j2 = next-cutℓ(i, out(µ)) exist, and either j1 ≠ j2 or

max-diffj1,j2(˜out(λ), ˜out(µ)) > k;
2. out(λ)[i + b] ̸= out(µ)[i + b] for some b ∈ [0, ℓ2].

Proof sketch. Assume that λ, µ satisfy Item 1 or 2 from the above statement. If out(λ) ̸=
out(µ), then clearly λ ⊗ µ ̸∈ Dk,ℓ,S . So assume that out(λ) = out(µ). Then cutℓ(out(λ)) =
cutℓ(out(µ)). Hence Item 1 is satisfied with j1 = j2 =: j and max-diffj(˜out(λ), ˜out(µ)) > k.
Since j is a cut, we obtain that delayℓ(˜out(λ), ˜out(µ)) > k and thus λ ⊗ µ ̸∈ Dk,ℓ,S .

Conversely, let λ ⊗ µ ̸∈ Dk,ℓ,S . First assume out(λ) = out(µ). Since λ ⊗ µ /∈ Dk,ℓ,S , there
exists some j ∈ cutℓ(out(λ)) ∩ cutℓ(out(µ)) such that max-diffj(˜out(λ), ˜out(µ)) > k, and we
can satisfy Item 1. Second, we assume out(λ) ̸= out(µ). Let m be the position of the earliest
mismatch (that is, out(λ)[m] ̸= out(µ)[m]), and i be the nearest common cut to the left of the
mismatch. If max-diffi(˜out(λ), ˜out(µ)) > k, we have a common cut with a too large difference
before a mismatch occurs. We can treat this situation as if out(λ) = out(µ) and satisfy Item 1

E. Filiot, I. Jecker, C. Löding, and S. Winter 32:11

as before. If max-diffi(˜out(λ), ˜out(µ)) ≤ k, we show that either the mismatch is close to i

(that is, m ≤ i + ℓ2) and Item 2 is satisfied, or the mismatch causes j1 = next-cutℓ(i, out(λ))
and j2 = next-cutℓ(i, out(µ)) to be different and Item 1 is satisfied for j1 ̸= j2. ◀

Proof overview for the regularity of the delay notion. Let us denote by C⊣
k,ℓ,S the set of

words of the form λ ⊗ µ such that λ, µ ∈ S∗ satisfy the properties of the characterization
given in Lemma 7. The main technical part is to show that C⊣

k,ℓ,S is regular. Then regularity
of Dk,ℓ,S follows by complementation and end-marker removal, which preserve regularity.

First, note that the definition of C⊣
k,ℓ,S is existential in nature: it asks for the existence

of positions in out(λ) and out(µ) satisfying some properties. A classical way of dealing with
positions quantified existentially in automata theory is to mark some positions in the input
by using an extended alphabet, construct an automaton over the extended alphabet, and
then project this automaton over the original alphabet. Here, the positions needed in C⊣

k,ℓ,S
are positions of out(λ) and out(µ), while the automata we want to construct read λ and µ

as input. So, instead of marking input positions, we rather mark positions in right-hand
sides of updates occurring in the substitutions of λ and µ. Let us make this more precise.
First, for n ≥ 0, words u over the alphabet Σ are extended into n-marked words, i.e., words
over the alphabet Σ × 2{1,...,n}, such that the additional information in {1, . . . , n} precisely
corresponds to an n-tuple of positions x of u (position xi is marked with label i for all
i ∈ {1, . . . , n}, and we consider sets because the same position can correspond to different
components of x). By extension, we also define an operation ▷ which marks any substitution
sequence λ ∈ S∗

X ,Σ by a tuple x of positions of out(λ), resulting in a substitution sequence
(λ ▷ x) ∈ S∗

X ,Σ×2{1,...,n} such that out(λ ▷ x) = out(λ) ▷ x.
We show that the set of substitution sequences λ ▷ i satisfying i ∈ cutℓ(out(λ)) is regular,

and similarly for next-cutℓ. To do so, we prove that the set {u ▷ i | i ∈ cutℓ(u)} is regular
(and similarly for next-cutℓ) and then transfer this result to marked substitution sequences,
as regular languages are preserved under inverse of SSTs.

Then, we show regularity results for predicates of the form max-diffi(˜out(λ), ˜out(µ)) ≤ k

and max-diffj1,j2(˜out(λ), ˜out(µ)) > k. In the end, all parts of the property of the charac-
terization of Lemma 7 are shown to be regular, so that the whole property can be checked
by a synchronized product of automata. Perhaps the most interesting part is how to show
that the predicate max-diffi(˜out(λ), ˜out(µ)) ≤ k is regular. More precisely, it is shown that
the set of (λ ▷ i1) ⊗ (µ ▷ i2) such that i1 = i2 = i and max-diffi(˜out(λ), ˜out(µ)) is smaller
than k (which is a given constant), is regular. Let us intuitively explain why. In general,
checking whether two marked positions i1 (in out(λ)) and i2 (in out(µ)) are equal cannot
be done in a regular way (recall that the automaton reads λ ⊗ µ and not their outputs).
However, if additionally, one has to check that max-diffi1,i2(˜out(λ), ˜out(µ)) is smaller than k,
it is actually regular. To do so, a finite automaton needs to monitor the difference in the
outputs produced in λ and µ before positions i1 and i2 resp., and check that it is bounded
by k (otherwise it rejects). The difference must eventually reach 0 when the whole inputs λ

and µ have been read, to ensure i1 = i2.
We also prove that once a position i in out(λ) is marked, then the next cut j1 =

next-cutℓ(i, out(λ)) can be identified in a regular way by an automaton. Similarly, given a
constant d, the output position i + d can also be identified in a regular way. This allows
us to check the properties of Item 1 and Item 2 respectively of Lemma 7. This concludes
the overview of the proof of Theorem 5. A complexity analysis yields that the set Dk,ℓ,S is
recognizable by a DFA with a number of states doubly exponential in ℓ3 and in |X |, and
singly exponential in k.

STACS 2023

32:12 A Regular and Complete Notion of Delay for Streaming String Transducers

5 Applications of delay completeness and regularity

Decision problems up to fixed delay. Instead of comparing the transductions defined by
non-deterministic SSTs for inclusion or equivalence, which are undecidable problems already
for finite (variable-free) transducers, we show here that the strengthening of those problems
up to fixed delay, ⊆k,l and ≡k,l, are decidable. The key to decide inclusion and equivalence
up to fixed delay is the regularity of the delay notion as stated in Theorem 5. Hence, those
problems can be reduced to classical inclusion and equivalence problems of regular languages.

▶ Theorem 8. Given integers k, ℓ, the (k, ℓ)-inclusion problem for non-deterministic SSTs
is decidable. It is PSpace-complete if k, ℓ are constants and the number of variables |X | is a
constant. The same results hold for the (k, ℓ)-equivalence problem.

Proof sketch. We sketch the result for the inclusion problem. For a non-deterministic SST
T over input alphabet Σ, we denote by L(T) its language, defined as the set of words of the
form u ⊗ τ(ρ), where u ∈ Σ∗, ρ is an accepting run of T over u, and τ(ρ) is the sequence of
substitutions occurring on ρ. Let T1 and T2 be two non-deterministic SSTs over two finite
sets of variables X1 and X2 respectively, both with output variable O. Let S1 (resp. S2) be
the finite set of substitutions occurring in T1 (resp. T2). Let S = S1 ∪ S2 and X = X1 ∪ X2.
Let ℓ, k ∈ N.

We let Din
k,ℓ,S = {u ⊗ λ ⊗ µ | u ∈ Σ∗ ∧ λ ⊗ µ ∈ Dk,ℓ,S}. The automaton recognizing Dk,ℓ,S

from the proof of Theorem 5 can be easily extended into an automaton which recognizes Din
k,ℓ,S .

Now, observe that T1 is (k, ℓ)-included in T2 iff L(T1) ⊆ Din
k,ℓ,S(L(T2)), where Din

k,ℓ,S(L(T2))
denotes the set {u ⊗ λ | ∃u ⊗ µ ∈ L(T2) : u ⊗ λ ⊗ µ ∈ Din

k,ℓ,S}. ◀

We turn to the variable minimization problem which is open for (deterministic) SSTs
and undecidable for non-deterministic SSTs. We prove decidability for variable minimization
up to fixed delay in both cases.

▶ Theorem 9. Given integers k, ℓ, m and a non-deterministic SST T , it is decidable whether
T ≡k,ℓ T ′ for some (non-deterministic resp. deterministic) SST T ′ that uses at most m

variables.

Proof sketch. First, we sketch the result for non-deterministic SST. Since we are looking for
some non-deterministic SST T ′ with m variables such that T ≡k,ℓ T ′, we need to consider
SSTs that produce at most r := 2k + p letters (where p is the maximal number of letters
produced by T in one step) per computation step in order to not violate the delay bound.
The reasoning is that the difference between the output of the computations can be at most
k letters, then in the next computation step, the computation that was k letters ahead may
produce p letters, the other computation must recover the difference by producing at least p

letters and at most 2k + p letters to keep the difference at most k. Thus, let S = ST ∪ Sr,m

and X = XT ∪ Xm, where ST (resp. XT) are the substitutions (resp. variables) occurring in
T , Xm = {X1, · · · , Xm}, and Sr,m are substitutions over Xm producing at most r letters.

As as in the proof sketch of Theorem 8, L(T) is the set of words of the form u ⊗ τ(ρ),
where u ∈ Σ∗, ρ is an accepting run of T over u, and τ(ρ) is the sequence of substitutions
occurring on ρ. Furthermore, as in the proof sketch above, we let Din

k,ℓ,S = {u ⊗ λ ⊗ µ | u ∈
Σ∗ ∧ λ ⊗ µ ∈ Dk,ℓ,S}. Now, observe that there exists some non-deterministic SST T ′ with
m variables such that T ≡k,ℓ T ′ iff L(T) ⊆ Din

k,ℓ,S(L) where L is the set of all words u ⊗ µ

such that u ∈ Σ∗ and µ ∈ S∗
r,m. As in the proof sketch above, Din

k,ℓ,S(L) denotes the set
{u ⊗ λ | ∃u ⊗ µ ∈ L : u ⊗ λ ⊗ µ ∈ Din

k,ℓ,S}.

E. Filiot, I. Jecker, C. Löding, and S. Winter 32:13

If the goal is to have a deterministic SST, we need to adapt the above procedure. Let
M be the projection of Din

k,ℓ,S onto its first and third component. Hence, M contains all
u ⊗ µ such that there is some u ⊗ λ ∈ L(T) with delayℓ(˜out(λ), ˜out(µ)) ≤ k. We reduce the
problem to a safety game played on a DFA for M . In alternation, one player provides an
input letter, the other chooses a matching transition in the DFA. If the input player has
provided a sequence u ∈ dom(R(T)) then the play must be in an accepting state of the DFA,
otherwise the output player has lost. We show that the output player has a winning strategy
iff there exists an equivalent deterministic SST with at most m variables. ◀

Comparison with delay for finite transducers. We compare our notion of delay for streaming
string transducers with the previously existing delay notion for finite transducers [24]. A
rational SST is a non-deterministic SST with only one variable O, and updates all of the
form O := Ou. In other words, a rational SST T is simply a finite transducer. Applying our
delay notion to rational SSTs yields that if T1 is (k, ℓ)-included in T2 for two rational SSTs
T1, T2, then T1 is k-included in T2 for the definition according to [24] and vice versa. The
k-inclusion problem for finite transducers is PSpace-complete for fixed k [24]. Hence, the
complexity obtained in Theorem 8 matches this bound. on conceptual differences between
those notions.

Consequences of completeness. We now turn to some consequences of our completeness
result (Theorem 3). Inclusion for (deterministic) SSTs is known to be decidable [2]. It
is undecidable for non-deterministic SSTs, but (k, ℓ)-inclusion is decidable (Theorem 8).
Although Theorem 3 provides a new decision procedure for the inclusion problem for SSTs
its value lies in showing that our notion of delay is a sensible approach to gain a better
understanding of streaming string transducers. The following two corollaries are easy
consequences of Theorem 3.

▶ Corollary 10. Given an SST T and an integer m, there exist integers k, ℓ such that there
exists an SST T ′ with m variables such that T ≡ T ′ iff there exists an SST T ′′ with m

variables such that T ≡k,ℓ T ′′.

Note that the above corollary does not imply that k and ℓ are computable. This would
entail a solution for the variable minimization problem for SSTs which is open (and decidable
for concatenation-free SSTs [6]). The next result is about rational functions, that is, functions
recognizable by finite transducers.

▶ Corollary 11. Given an SST T , there exist integers k, ℓ such that there exists a rational
SST T ′ such that T ≡ T ′ iff there exists a rational SST T ′′ such that T ≡k,ℓ T ′′.

It was shown that it decidable whether a deterministic two-way transducer (which is
effectively equivalent to an SST) recognizes a rational function [23]. The decision procedure
is effective, i.e., a finite transducer is constructed if possible. A procedure with improved
complexity was given that yields a finite transducer of doubly exponential size in [7]. While
computability is not implied by Corollary 11, note that one could compute k, ℓ satisfying
the statement of Corollary 11 using Theorem 3 from an equivalent rational SST (if it exists)
that has been obtained using the decision procedure from [7].

Other applications. We mention other potential applications of our delay notion that ought
to be investigated. For instance, a decomposition theorem for SST relations is still only
conjectured: Can every finite-valued SST relation be decomposed into a finite union of SST

STACS 2023

32:14 A Regular and Complete Notion of Delay for Streaming String Transducers

functions? In other settings where the corresponding statement holds (finite transducers [33],
single-variable SST [25]), the main ingredients of the proof is the regularity and completeness
of the appropriate notion of delay. So, having a good delay notion seems necessary to
obtain such a result, but solving the decomposition theorem for SSTs does not seem to be a
low-hanging fruit of our present study.

The notion of delay might also help to solve the variable minimization problem: Can
we determine the minimal number of variables needed to define a given SST function?
Corollary 10 makes some progress towards a positive answer, yet it remains to prove that
the integers k and ℓ of the statement are computable, which is likely a complex problem.
Another interesting research direction is to study how our notion of delay fares beyond SST.
For copyful SST (where the copyless restriction of the substitutions is dropped), our notion
of delay can be defined in the same manner, but its properties are unclear: our proofs of
regularity and completeness both crucially rely on the copyless assumption.

References
1 Rajeev Alur and Pavol Cerný. Expressiveness of streaming string transducers. In Kamal

Lodaya and Meena Mahajan, editors, FSTTCS 2010, volume 8 of LIPIcs, pages 1–12. Schloss
Dagstuhl – Leibniz-Zentrum für Informatik, 2010. doi:10.4230/LIPIcs.FSTTCS.2010.1.

2 Rajeev Alur and Pavol Cerný. Streaming transducers for algorithmic verification of single-pass
list-processing programs. In POPL 2011, pages 599–610. ACM, 2011.

3 Rajeev Alur, Loris D’Antoni, and Mukund Raghothaman. Drex: A declarative language for
efficiently evaluating regular string transformations. In Sriram K. Rajamani and David Walker,
editors, POPL 2015, pages 125–137. ACM, 2015. doi:10.1145/2676726.2676981.

4 Rajeev Alur and Jyotirmoy V. Deshmukh. Nondeterministic streaming string transducers. In
Luca Aceto, Monika Henzinger, and Jirí Sgall, editors, ICALP 2011, volume 6756 of Lecture
Notes in Computer Science, pages 1–20. Springer, 2011. doi:10.1007/978-3-642-22012-8_1.

5 Rajeev Alur, Adam Freilich, and Mukund Raghothaman. Regular combinators for string
transformations. In Thomas A. Henzinger and Dale Miller, editors, Joint Meeting of the Twenty-
Third EACSL Annual Conference on Computer Science Logic (CSL) and the Twenty-Ninth
Annual ACM/IEEE Symposium on Logic in Computer Science (LICS), CSL-LICS ’14, Vienna,
Austria, July 14–18, 2014, pages 9:1–9:10. ACM, 2014. doi:10.1145/2603088.2603151.

6 Félix Baschenis, Olivier Gauwin, Anca Muscholl, and Gabriele Puppis. Minimizing resources
of sweeping and streaming string transducers. In ICALP 2016, volume 55 of LIPIcs, pages
114:1–114:14. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2016.

7 Félix Baschenis, Olivier Gauwin, Anca Muscholl, and Gabriele Puppis. Untwisting two-way
transducers in elementary time. In LICS 2017, pages 1–12. IEEE Computer Society, 2017.

8 Nicolas Baudru and Pierre-Alain Reynier. From two-way transducers to regular function expres-
sions. Int. J. Found. Comput. Sci., 31(6):843–873, 2020. doi:10.1142/S0129054120410087.

9 Marie-Pierre Béal, Olivier Carton, Christophe Prieur, and Jacques Sakarovitch. Squaring
transducers: an efficient procedure for deciding functionality and sequentiality. Theor. Comput.
Sci., 292(1):45–63, 2003. doi:10.1016/S0304-3975(01)00214-6.

10 Mikolaj Bojanczyk. Transducers with origin information. In Javier Esparza, Pierre Fraigniaud,
Thore Husfeldt, and Elias Koutsoupias, editors, ICALP 2014, volume 8573 of Lecture Notes in
Computer Science, pages 26–37. Springer, 2014. doi:10.1007/978-3-662-43951-7_3.

11 Mikolaj Bojanczyk. Polyregular functions. CoRR, abs/1810.08760, 2018. arXiv:1810.08760.
12 Sougata Bose. On decision problems on word transducers with origin semantics. (Sur les

problèmes de décision concernant les transducteurs de mots avec la sémantique d’origine).
PhD thesis, University of Bordeaux, France, 2021. URL: https://tel.archives-ouvertes.
fr/tel-03216029.

13 Sougata Bose, Anca Muscholl, Vincent Penelle, and Gabriele Puppis. Origin-equivalence of
two-way word transducers is in PSPACE. CoRR, abs/1807.08053, 2018. arXiv:1807.08053.

https://doi.org/10.4230/LIPIcs.FSTTCS.2010.1
https://doi.org/10.1145/2676726.2676981
https://doi.org/10.1007/978-3-642-22012-8_1
https://doi.org/10.1145/2603088.2603151
https://doi.org/10.1142/S0129054120410087
https://doi.org/10.1016/S0304-3975(01)00214-6
https://doi.org/10.1007/978-3-662-43951-7_3
http://arxiv.org/abs/1810.08760
https://tel.archives-ouvertes.fr/tel-03216029
https://tel.archives-ouvertes.fr/tel-03216029
http://arxiv.org/abs/1807.08053

E. Filiot, I. Jecker, C. Löding, and S. Winter 32:15

14 Christian Choffrut. Une caracterisation des fonctions sequentielles et des fonctions sous-
sequentielles en tant que relations rationnelles. Theor. Comput. Sci., 5(3):325–337, 1977.
doi:10.1016/0304-3975(77)90049-4.

15 Christian Choffrut. Minimizing subsequential transducers: a survey. Theor. Comput. Sci.,
292(1):131–143, 2003. doi:10.1016/S0304-3975(01)00219-5.

16 Bruno Courcelle and Joost Engelfriet. Graph Structure and Monadic Second-Order Logic – A
Language-Theoretic Approach, volume 138 of Encyclopedia of mathematics and its applications.
Cambridge University Press, 2012. URL: http://www.cambridge.org/fr/knowledge/isbn/
item5758776/?site_locale=fr_FR.

17 Luc Dartois, Emmanuel Filiot, and Nathan Lhote. Logics for word transductions with
synthesis. In Anuj Dawar and Erich Grädel, editors, Proceedings of the 33rd Annual ACM/IEEE
Symposium on Logic in Computer Science, LICS 2018, Oxford, UK, July 09-12, 2018, pages
295–304. ACM, 2018.

18 Luc Dartois, Paul Gastin, R. Govind, and Shankara Narayanan Krishna. Efficient construction
of reversible transducers from regular transducer expressions. In Christel Baier and Dana
Fisman, editors, LICS ’22: 37th Annual ACM/IEEE Symposium on Logic in Computer Science,
Haifa, Israel, August 2–5, 2022, pages 50:1–50:13. ACM, 2022.

19 Luc Dartois, Paul Gastin, and Shankara Narayanan Krishna. Sd-regular transducer expressions
for aperiodic transformations. In 36th Annual ACM/IEEE Symposium on Logic in Computer
Science, LICS 2021, Rome, Italy, June 29 – July 2, 2021, pages 1–13. IEEE, 2021. doi:
10.1109/LICS52264.2021.9470738.

20 Laure Daviaud, Ismaël Jecker, Pierre-Alain Reynier, and Didier Villevalois. Degree of se-
quentiality of weighted automata. In Javier Esparza and Andrzej S. Murawski, editors,
FOSSACS 2017, volume 10203 of Lecture Notes in Computer Science, pages 215–230, 2017.
doi:10.1007/978-3-662-54458-7_13.

21 Calvin C. Elgot and Jorge E. Mezei. On relations defined by generalized finite automata. IBM
J. Res. Dev., 9(1):47–68, 1965. doi:10.1147/rd.91.0047.

22 Joost Engelfriet and Hendrik Jan Hoogeboom. MSO definable string transductions and
two-way finite-state transducers. ACM Trans. Comput. Log., 2(2):216–254, 2001. doi:
10.1145/371316.371512.

23 Emmanuel Filiot, Olivier Gauwin, Pierre-Alain Reynier, and Frédéric Servais. From two-way
to one-way finite state transducers. In LICS 2013, pages 468–477. IEEE Computer Society,
2013.

24 Emmanuel Filiot, Ismaël Jecker, Christof Löding, and Sarah Winter. On equivalence and
uniformisation problems for finite transducers. In Ioannis Chatzigiannakis, Michael Mitzen-
macher, Yuval Rabani, and Davide Sangiorgi, editors, ICALP 2016, volume 55 of LIPIcs,
pages 125:1–125:14. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2016.

25 Paul Gallot, Anca Muscholl, Gabriele Puppis, and Sylvain Salvati. On the decomposition of
finite-valued streaming string transducers. In Heribert Vollmer and Brigitte Vallée, editors,
STACS 2017, volume 66 of LIPIcs, pages 34:1–34:14. Schloss Dagstuhl – Leibniz-Zentrum für
Informatik, 2017. doi:10.4230/LIPIcs.STACS.2017.34.

26 Eitan M. Gurari. The equivalence problem for deterministic two-way sequential transducers is
decidable. SIAM J. Comput., 11(3):448–452, 1982. doi:10.1137/0211035.

27 Ismaël Jecker and Emmanuel Filiot. Multi-sequential word relations. In Igor Potapov, editor,
DLT 2015, volume 9168 of Lecture Notes in Computer Science, pages 288–299. Springer, 2015.
doi:10.1007/978-3-319-21500-6_23.

28 Christophe Reutenauer and Marcel Paul Schützenberger. Minimization of rational word
functions. SIAM J. Comput., 20(4):669–685, 1991. doi:10.1137/0220042.

29 Jacques Sakarovitch and Rodrigo de Souza. On the decidability of bounded valuedness for
transducers. In Edward Ochmanski and Jerzy Tyszkiewicz, editors, MFCS 2008, volume
5162 of Lecture Notes in Computer Science, pages 588–600. Springer, 2008. doi:10.1007/
978-3-540-85238-4_48.

STACS 2023

https://doi.org/10.1016/0304-3975(77)90049-4
https://doi.org/10.1016/S0304-3975(01)00219-5
http://www.cambridge.org/fr/knowledge/isbn/item5758776/?site_locale=fr_FR
http://www.cambridge.org/fr/knowledge/isbn/item5758776/?site_locale=fr_FR
https://doi.org/10.1109/LICS52264.2021.9470738
https://doi.org/10.1109/LICS52264.2021.9470738
https://doi.org/10.1007/978-3-662-54458-7_13
https://doi.org/10.1147/rd.91.0047
https://doi.org/10.1145/371316.371512
https://doi.org/10.1145/371316.371512
https://doi.org/10.4230/LIPIcs.STACS.2017.34
https://doi.org/10.1137/0211035
https://doi.org/10.1007/978-3-319-21500-6_23
https://doi.org/10.1137/0220042
https://doi.org/10.1007/978-3-540-85238-4_48
https://doi.org/10.1007/978-3-540-85238-4_48

32:16 A Regular and Complete Notion of Delay for Streaming String Transducers

30 Jacques Sakarovitch and Rodrigo de Souza. On the decomposition of k-valued rational
relations. In Susanne Albers and Pascal Weil, editors, STACS 2008, 25th Annual Symposium on
Theoretical Aspects of Computer Science, Bordeaux, France, February 21-23, 2008, Proceedings,
volume 1 of LIPIcs, pages 621–632. Schloss Dagstuhl – Leibniz-Zentrum für Informatik,
Germany, 2008. doi:10.4230/LIPIcs.STACS.2008.1324.

31 Jacques Sakarovitch and Rodrigo de Souza. Lexicographic decomposition of k-valued trans-
ducers. Theory Comput. Syst., 47(3):758–785, 2010. doi:10.1007/s00224-009-9206-6.

32 Marcel Paul Schützenberger. A remark on finite transducers. Inf. Control., 4(2-3):185–196,
1961. doi:10.1016/S0019-9958(61)80006-5.

33 Andreas Weber. Decomposing A k-valued transducer into k unambiguous ones. RAIRO Theor.
Informatics Appl., 30(5):379–413, 1996. doi:10.1051/ita/1996300503791.

https://doi.org/10.4230/LIPIcs.STACS.2008.1324
https://doi.org/10.1007/s00224-009-9206-6
https://doi.org/10.1016/S0019-9958(61)80006-5
https://doi.org/10.1051/ita/1996300503791

	1 Introduction
	2 Preliminaries
	3 Delay measure
	4 Completeness and regularity
	4.1 Completeness of the delay notion
	4.2 Regularity of the delay notion

	5 Applications of delay completeness and regularity

