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Abstract
We consider finite algebraic structures and ask whether every solution of a given system of equations
satisfies some other equation. This can be formulated as checking the validity of certain first
order formulae called quasi-identities. Checking the validity of quasi-identities is closely linked
to solving systems of equations. For systems of equations over finite algebras with finitely many
fundamental operations, a complete P/NPC dichotomy is known, while the situation appears to be
more complicated for single equations. The complexity of checking the validity of a quasi-identity
lies between the complexity of term equivalence (checking whether two terms induce the same
function) and the complexity of solving systems of polynomial equations. We prove that for each
finite algebra with a Mal’cev term and finitely many fundamental operations, checking the validity of
quasi-identities is coNP-complete if the algebra is not abelian, and in P when the algebra is abelian.
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1 Introduction

The computational complexity of solving equations over some fixed finite algebra has been
an active field of research for the last two decades, and several different problems related to
solving equations have been studied in the literature. The most general problem that we
consider is that of solving systems of polynomial equations (PolSysSat). For this problem,
Goldmann and Russel [9] have proved a P/NPC dichotomy for groups, which was later
generalized to algebras in congruence modular varieties by Larose and Zádori [15, 22]. For
arbitrary finite algebras with finitely many fundamental operations, a dichotomy follows
from [3, 23] because solving polynomial systems can be seen as a constraint satisfaction
problem [15, Theorem 2.2]. If the input is restricted to a single equation (PolSat), it
becomes easier for some algebras, including nilpotent rings and groups [12]. No dichotomy
theorem is known for PolSat and in fact, recent results suggest that such a dichotomy
might not exist [21, 14]. The situation is similar for the problem of checking whether two
polynomials induce the same function (PolEqv).

In this paper, we ask whether all solutions of a system of term equations over an algebraic
structure A = (A, (fi)i∈I) satisfy some other equation. Solving this problem, we can
determine whether a set S = {x ∈ An |

∧
i∈k si(x ) = ti(x )} defined as the solution set

of a system of term equations is contained in another set U = {x ∈ An | u(x ) = v(x )}.
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4:2 Quasi-Identities over Finite Mal’cev Algebras

(For k ∈ N0, we use k as an abbreviation for {1, 2, . . . , k}.) This problem arises naturally
in algebraic geometry and has therefore motivated considerable mathematical insights: for
algebraically closed fields, Hilbert’s Nullstellensatz reduces this question to the radical
membership problem of a multivariate polynomial ring, and in a finite field Fq, a polynomial
u ∈ Fq[x1, . . . , xn] vanishes at all solutions of s1(x1, . . . , xn) = · · · = sk(x1, . . . , xn) = 0
if and only if there are a1, . . . , ak, b1, . . . , bn ∈ Fq[x1, . . . , xn] such that u =

∑k
i=1 ai si +∑n

i=1 bi (xq
i − xi) ([19], [6, Theorem 7]). In the present note, we consider this problem for

finite algebras from the viewpoint of universal algebra [5, 17], and we seek to determine
its computational complexity. For an algebraic structure A = (A, (fi)i∈I), an equation is
a formula s(x1, . . . , xn) = t(x1, . . . , xn), where s and t are terms built from the operation
symbols fi and the variables x1, . . . , xn. A solution to this equation is a tuple (a1, . . . , an) ∈
An such that s(a1, . . . , an) = t(a1, . . . , an). Given k, n ∈ N, equations si(x1, . . . , xn) =
ti(x1, . . . , xn) (i ∈ {1, . . . , k}) and an equation u(x1, . . . , xn) = v(x1, . . . , xn), the solutions
of

∧
i∈k si(x1, . . . , xn) = ti(x1, . . . , xn) are contained in the solutions of u(x1, . . . , xn) =

v(x1, . . . , xn) if and only if the first order formula

∀x :
( ∧

i∈k

si(x ) = ti(x )
)

⇒ u(x ) = v(x )

holds in A. Such a formula is called a conditional identity or quasi-identity. For a given
algebra A, the problem QuasiIdVal(A) is to decide whether a given quasi-identity holds in A.
For example, in the group S3, ∀x1, x2 : (x1·(x1·x1) = 1∧x2·(x2·x2) = 1) ⇒ x1·x2 = x2·x1 is a
valid quasi-identity expressing that all elements of order dividing 3 commute. For semigroups,
this decision problem has been investigated in [20].

▶ Definition 1.1. Let A be an algebra. Then the quasi-identity validity problem over A,
QuasiIdVal(A), is defined as follows: Given terms s1, t1, . . . , sk, tk, u, v over the variables
(xi)i∈n in the language of the algebra A, determine whether

∀a ∈ An :
( ∧

i∈k

si(a) = ti(a)
)

⇒ u(a) = v(a)

holds.

We refer to
∧

i∈k si(x ) = ti(x ) as the precondition and to u(x ) = v(x ) as the conclusion of
the quasi-identity. The length of the input is defined by l := (

∑k
i=1 ||si|| + ||ti||) + ||u|| + ||v||,

where ||t|| denotes the length of t as defined, e.g., in [2]. There are constants c1, c2 ∈ R such
that over a finite alphabet with at least two letters, we can encode the input into a string
of length x with c1 l ≤ x ≤ c2 l log(l); the log(l) factor comes from the fact that the input
terms may contain at most l different variables, for which we find names of length ≤ c3 log(l).
Since our results are a mere P/coNPC-distinction, measuring computation time in terms of l
is a sufficient degree of precision. We will use the notions from complexity theory as they
are defined in [18]; in particular, coNP-completeness is to be understood with respect to
polynomial time many-one reductions. For a finite algebra of finite type, a tuple a from An

for which the precondition is true and the conclusion is false can serve as a certificate for the
answer “no”, and therefore the problem is in coNP. Since QuasiIdVal is closely related to
solving polynomial systems and checking identities, the complexity of QuasiIdVal is often
determined by the connection to these problems.
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2 Complexity determined by the relation to other problems on terms
and polynomials

For a finite algebra A, we first compare QuasiIdVal(A) to the problem PolSysSat(A) of
solving systems of polynomial equations over A, which was studied, e.g., in [15]. Here, a
polynomial equation over A is a formula s(x1, . . . , xn, b1, . . . , bm) = t(x1, . . . , xn, b1, . . . , bm),
where s, t are terms and b1, . . . , bm ∈ A; a solution is an a ∈ An with

s(a1, . . . , an, b1, . . . , bm) = t(a1, . . . , an, b1, . . . , bm).

We first observe that PolSysSat(A) is harder than QuasiIdVal(A) because an instance of
(the negation of) QuasiIdVal(A) can be reduced to solving a constant number of instances
of PolSysSat(A): given an instance

∀x ∈ An : (
∧
i∈k

si(x ) = ti(x )) ⇒ u(x ) = v(x ) (2.1)

of QuasiIdVal(A), we observe that (2.1) is not valid if and only if there are a, b ∈ A with
a ̸= b such that the system

(
∧
i∈k

si(x ) = ti(x )) ∧ u(x ) = a ∧ v(x ) = b (2.2)

has a solution. We note that this reduction from (the negation of) QuasiIdVal to PolSysSat
is not a many-one reduction, but just a truth table reduction: we solve |A|·(|A|−1) polynomial
systems in order to find a counterexample to the validity of a given quasi-identity.

When A has all constant functions in its term operations, which means that each
polynomial function of A is a term function, and |A| ≥ 2, then PolSysSat(A) can be
reduced to (the negation of) QuasiIdVal(A) by observing that the system

∧
i∈k pi(x ) = qi(x )

has a solution if and only if

(
∧
i∈k

pi(x ) = qi(x )) ⇒ y = z

is not valid, where y, z are distinct variables that do not appear among the xi’s. Without
constants, this reduction shows that QuasiIdVal(A) is harder than solving systems of term
equations (TermSysSat(A)). If A is a group or a ring, every system of term equations is
satisfied by x = (1, . . . , 1) (respectively x = (0, . . . , 0)). This means that solving systems of
term equations is trivial for groups and rings, and therefore for these algebras, the relation to
TermSysSat does not yield a meaningful lower bound on the complexity of QuasiIdVal(A).

Such a bound can be obtained by comparing QuasiIdVal(A) to the term equivalence
problem TermEqv(A). This is the problem that asks whether two given terms s, t induce
the same function on A. The quasi-identity validity problem is at least as hard as checking
the validity of a single term equality because ∀x ∈ An : s(x ) = t(x ) is valid if and only if
the quasi-identity

∀x ∈ An, y ∈ A : y = y ⇒ s(x ) = t(x )

holds. For an algebra A, let Clo(A) denote the set of its finitary term functions (this set
has also been called the clone of A). Strengthening the relation between TermEqv and
QuasiIdVal given above, we have that for every algebra B of finite type with Clo(B) ⊆

STACS 2023



4:4 Quasi-Identities over Finite Mal’cev Algebras

Clo(A), TermEqv(B) can be reduced to QuasiIdVal(A); we explain this reduction by an
example. Let A = (A, ·) be a group, and let B = (B, f, g) with f(x, y) := y · (x · y) and
g(x) := x · x. Suppose that we want to check whether the equality

f(g(x1), f(x2, x3)) = g(x3) (2.3)

is valid in B. Then by replacing f and g with their definition in terms of the operation ·, we
obtain that (2.3) is valid in B if and only if the quasi-identity

x1 = x1 ⇒ (x3 · (x2 · x3)) · ((x1 · x1) · (x3 · (x2 · x3))) = x3 · x3 (2.4)

holds in A. However, in this example, we see that the quasi-identity in (2.4) is longer than the
equality in (2.3) from which we started. In general, the reduction given above may produce
a quasi-identity whose size is exponential in the length of the given equality, and therefore
does not qualify as a polynomial time many-one reduction. This exponential increase in
length is avoided if we introduce variables for all subterms that appear in (2.3). We observe
that (2.3) is valid in B if and only if the quasi-identity

(z1 = x1 · x1 ∧ z2 = x3 · (x2 · x3) ∧ z3 = z2 · (z1 · z2) ∧ z4 = x3 · x3) ⇒ z3 = z4

holds in A, and the size of the quasi-identity obtained in this way is bounded by a polynomial
in the size of the input equality. Hence in this way, we obtain a polynomial time reduction
of TermEqv(B) to QuasiIdVal(A). The problem TermEqv has been investigated for
some classes of finite groups and rings (see e.g. [4, 9]). In [13], it is proved that for every
non-nilpotent group A, there is an algebra B with Clo(B) = Clo(A) such that TermEqv(B)
is coNP-complete; this implies that every non-nilpotent group has a coNP-complete quasi-
identity validity problem. We summarize these consequences of the literature in Table 1.
In this table, we do not require that a ring has a unit element; a ring is nilpotent if there

Table 1 Complexity of the studied problems as known before the present note.

A TermEqv(A) QuasiIdVal(A) PolSysSat(A)
module/abelian group/zero ring P P P ([9, 15])

nonabelian nilpotent group P ([9]) open NPC ([9])
non-nilpotent solvable group partially open coNPC ([13]) NPC ([9])

non-solvable group coNPC ([9]) coNPC NPC ([9])
non-zero nilpotent ring P ([4]) open NPC ([15])

non-nilpotent ring coNPC ([4]) coNPC NPC ([15])

is a k ∈ N such that every product of at least k elements is 0, and a ring R with r · s = 0
for all r, s ∈ R is called a zero ring. Theorem 3.1 establishes that in both cases in which
the complexity of QuasiIdVal is referred to as open in the above table, the answer is
coNP-complete.

In [20], M. Volkov constructs a 10-element semigroup Q such that TermEqv(Q) is in P
and QuasiIdVal(Q) is coNP-complete. Combining the results of the present note with [9, 4],
we obtain that every finite nilpotent nonabelian group and every finite nilpotent nonzero
ring, such as the quaternion group and the ring 2Z8, have a tractable term equivalence and
a coNP-complete quasi-identity validity problem.
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3 Complexity for finite Mal’cev algebras

Groups and rings are all contained in the larger class of Mal’cev algebras. An algebra A is a
Mal’cev algebra if it has a ternary term function M ∈ Clo(A) (called a Mal’cev term) such
that M(a, b, b) = M(b, b, a) = a for all a, b ∈ A (cf. [16, 17]). For a group M(x, y, z) = xy−1z,
and for a ring M(x, y, z) = x− y + z are examples of Mal’cev terms. In the present note, we
show that for a finite Mal’cev algebra of finite type (i.e., having finitely many fundamental
operations), QuasiIdVal is either in P or coNP-complete, and that the dividing line is the
same as for PolSysSat. This dividing line can be expressed using a notion from universal
algebra. Denoting the set of n-ary term functions of an algebra A by Clon(A), the algebra
A is called abelian if for all m ∈ N, for all t ∈ Clo1+m(A) and for all a, b ∈ A and c,d ∈ Am

with t(a, c) = t(a,d), also t(b, c) = t(b,d) holds [17, Definition 4.146]. A group is abelian in
this sense if and only if its operation is commutative, i.e., it is abelian in the sense of classic
algebra, and a ring is abelian if and only if it is a zero ring. The main result of this note,
proved in Section 5, is:

▶ Theorem 3.1. Let A be a finite nonabelian Mal’cev algebra of finite type. Then
QuasiIdVal(A) is coNP-complete.

If A is abelian, then it follows from [15] that PolSysSat(A) is in P. Then as observed at
the beginning of Section 2, the validity of a given quasi-identity Φ can be determined by
checking the solvability of |A| · (|A| − 1) systems of polynomial equations. Hence we obtain:

▶ Corollary 3.2. Let A be a finite Mal’cev algebra of finite type. Then QuasiIdVal(A) is
in P if A is abelian, and coNP-complete otherwise.

4 Preliminaries on Mal’cev Algebras

Our proof of Theorem 3.1 requires the notions congruence and commutator from universal
algebra, and we therefore introduce these briefly. A congruence relation of an algebra
A = (A,F ) is an equivalence relation α on A that satisfies the compatibility condition

(a1, b1) ∈ α, . . . (an, bn) ∈ α =⇒ (f(a1, . . . , an), f(b1, . . . , bn)) ∈ α

for each n ∈ N, for each n-ary basic operation f of A, and for each a , b ∈ An. For such an α
and for an n-ary basic operation f of A, the operation fα(a1/α, . . . , an/α) := f(a1, . . . , an)/α
is well-defined; this allows to define a factor algebra A/α. For a group G, each congruence
relation α is of the form

α = {(g1, g2) ∈ G×G | g−1
1 g2 ∈ Nα},

where Nα is a normal subgroup of G; similarly, every congruence of a ring R is of the form

α = {(r1, r2) ∈ R×R | r1 − r2 ∈ Iα}

for some ideal Iα of R. For k ∈ N and a = (a1, . . . , ak) and b = (b1, . . . , bk) ∈ Ak, we write
ΘA(a , b) for the smallest congruence relation on A containing {(a1, b1), . . . , (ak, bk)} as a
subset, and call ΘA(a , b) the congruence on A that is generated by {(a1, b1), . . . , (ak, bk)}.
For the algebras that we consider, the generated congruence has a useful description using
term operations. In fact, if A is a Mal’cev algebra, we have

ΘA(a , b) = {(t(a , e), t(b, e)) | m ∈ N, t ∈ Clok+m(A), e ∈ Am};

STACS 2023



4:6 Quasi-Identities over Finite Mal’cev Algebras

it is easy to verify that the right hand side of this equation is a subuniverse of A × A
containing 0A = {(a, a) | a ∈ A}; in a Mal’cev algebra, all subuniverses of A × A containing
0A are congruence relations (cf., e.g., [11, Lemma 5.22]). We denote the set of congruence
relations on A by Con(A).

The other concept from universal algebra that we use is the commutator. Here, one
associates a congruence relation γ, denoted by [α, β], with every pair of congruences α, β from
Con(A). The universal algebraic construction generalizes the commutator subgroup [N,M ]
of two normal subgroups N,M of G, which is the subgroup generated by {n−1m−1nm |
n ∈ N,m ∈ M}, and the ideal product IJ of two ideals I, J in rings, which is the ideal
generated by {ij | i ∈ I, j ∈ J} ∪ {ji | i ∈ I, j ∈ J}. For generalizing these concepts
to arbitrary universal algebras, one starts by defining a relation C(α, β; η) between three
congruences α, β, η that is designed to guarantee that [α, β] ≤ γ. Doing this formally, we say
that for α, β, η ∈ Con(A), the congruence α centralizes β modulo η if for all m,n ∈ N, for all
a , b ∈ Am and c,d ∈ An with ΘA(a , b) ≤ α and ΘA(c,d) ≤ β and for all t ∈ Clom+n(A)
we have

(t(a , c), t(a ,d)) ∈ η ⇒ (t(b, c), t(b,d)) ∈ η. (4.1)

The commutator of α and β, denoted by [α, β], is then defined to be the smallest congruence
relation η on A such that α centralizes β modulo η. What is given here is a reformulation
of [8, Definition 3.2(2)]; other sources give slightly different, but equivalent, definitions of
the commutator. For example, in [17, Definition 4.148], m is restricted to be equal to 1,
which gives an equivalent condition (a rough explanation of this equivalence is that in the
implication (4.1), we may change a to b by changing one component of a at a time, repeating
this m times, see also [1, Proposition 2.1(2)]). Using the concept of commutators, we see
that an algebra A is abelian if and only if [1A, 1A] = 0A.

From this definition, it is not easy to determine the commutator [α, β] of two congruences,
and therefore one seeks descriptions of [α, β] that allow us to compute its elements more
directly. In Lemmas 4.2 and 4.3, we provide parametrizations of those commutators [α, β]
where one of α and β is equal to 1A = A × A. It is known that if A has a Mal’cev term,
then [α, β] = [β, α] ([17, Exercise 4.156(13)], a proof is written in [1, Lemma 2.5]). Hence
[ΘA(a , b), 1A] = [1A,ΘA(a , b)].

▶ Definition 4.1. Let A be an algebra, let k,m ∈ N, and let t ∈ Clok+m(A). Then z ∈ Am

is called a right zero of t if t(x , z ) = t(y , z ) for all x ,y ∈ Ak.

▶ Lemma 4.2. Let A be a Mal’cev algebra, let k ∈ N, and let a , b ∈ Ak. Then [ΘA(a , b), 1A]
= {(t(a ,w), t(b,w)) | m ∈ N,w ∈ Am, and t ∈ Clok+m(A) such that t has a right zero}.

Proof. We define

Ψ(a , b) := {(t(a ,w), t(b,w)) | m ∈ N,w ∈ Am, t ∈ Clok+m(A), t has a right zero}.

For ⊇, we observe that for a term t with a right zero z , we have t(a , z ) = t(b, z ). Now
using the term condition (4.1) (for t′(x ,y) := t(y ,x ) and η := [1A,ΘA(a , b)]) and observing
that, obviously, ΘA(z ,w) ≤ 1A, we obtain (t(a ,w), t(b,w)) ∈ [1A,ΘA(a , b)].

For ⊆, we first show that Ψ(a , b) is a congruence of A. To this end, we show that for all
n, p ∈ N, s ∈ Clon+p(A), (c1, d1), . . . , (cn, dn) ∈ Ψ(a , b) and e ∈ Ap, we have

(s(c1, . . . , cn, e), s(d1, . . . , dn, e)) ∈ Ψ(a , b). (4.2)
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For each i ∈ n, let ti be a term function with right zero z (i) and let w (i) be a tuple from A
such that (ci, di) = (ti(a ,w (i)), ti(b,w (i))). Let

s′(x ,y (1), . . . ,y (n), z ) := s(t1(x ,y (1)), . . . , tn(x ,y (n)), z ).

Since z (i) is a right zero of ti, (z (1), . . . , z (n), e) is a right zero of s′. Hence

(s′(a ,w (1), . . . ,w (n), e), s′(b,w (1), . . . ,w (n), e)) ∈ Ψ(a , b),

and thus (s(c, e), s(d , e)) ∈ Ψ(a , b), completing the proof of (4.2).
From (4.2), we see that Ψ(a , b) is a subuniverse of A × A that contains the diagonal 0A

as a subset. Since A is a Mal’cev algebra, this implies that Ψ(a , b) is a congruence of A.
Next, we show that ΘA(a , b) centralizes 1A modulo Ψ(a , b). To this end, let f, g ∈

A with (f, g) ∈ ΘA(a , b), let m ∈ N, let c,d ∈ Am, and let t ∈ Clo1+m(A) be such
that (t(f, c), t(f,d)) ∈ Ψ(a , b). For proving the centralizing property, we need to show
(t(g, c), t(g,d)) ∈ Ψ(a , b). First, we observe that since (f, g) ∈ ΘA(a , b), there are n ∈ N, a
term function r ∈ Clok+n(A) and e ∈ An such that f = r(a , e) and g = r(b, e). Denoting
the Mal’cev term of A by M(x, y, z), we define a term function q ∈ Clok+(m+n+m+1)(A) by

q(x ,y ,u , v , w) := M(t(r(x ,u),y), t(r(x ,u), v), t(w, v)).

Then (y ,u , v , w) := (c, e , c, g) is a right zero of q because for all x ,x ′ ∈ Ak, we have

q(x , c, e , c, g) = M(t(r(x , e), c), t(r(x , e), c), t(g, c))
= t(g, c)
= M(t(r(x ′, e), c), t(r(x ′, e), c), t(g, c))
= q(x ′, c, e , c, g).

Hence

(q(a ,d , e , c, g), q(b,d , e , c, g)) ∈ Ψ(a , b).

We have

q(a ,d , e , c, g) = M(t(r(a , e),d), t(r(a , e), c), t(g, c))
= M(t(f,d), t(f, c), t(g, c))

and

q(b,d , e , c, g)) = M(t(r(b, e),d), t(r(b, e), c), t(g, c))
= M(t(g,d), t(g, c), t(g, c))
= t(g,d).

From the definition of Ψ(a , b), we therefore obtain(
M(t(f,d), t(f, c), t(g, c)), t(g,d)

)
∈ Ψ(a , b).

Since (t(f, c), t(f,d)) ∈ Ψ(a , b), we have that M(t(f,d), t(f, c), t(g, c)) is congruent modulo
Ψ(a , b) to M(t(f,d), t(f,d), t(g, c)) = t(g, c). Thus we have (t(g, c), t(g,d)) ∈ Ψ(a , b).
Hence ΘA(a , b) centralizes 1A modulo Ψ(a , b). Since [ΘA(a , b), 1A] is defined as the
intersection of all congruences ψ such that ΘA(a , b) centralizes 1A modulo ψ, we obtain
[ΘA(a , b), 1A] ⊆ Ψ(a , b). ◀

STACS 2023



4:8 Quasi-Identities over Finite Mal’cev Algebras

The next lemma tells that we can find one single term to parametrize commutators of the
form [α, 1A].

▶ Lemma 4.3. Let A be a finite Mal’cev algebra and let k ∈ N. Then there exist m ∈ N and
t ∈ Clok+m(A) such that

t has a right zero, and for all a , b ∈ Ak,

we have [ΘA(a , b), 1A] = {(t(a ,w), t(b,w)) | w ∈ Am}. (4.3)

Proof. For each m ∈ N and each t ∈ Clok+m(A) with a right zero, let

Ψ(t,a , b) := {(t(a ,w), t(b,w)) | w ∈ Am}.

We order the terms in

T := {t ∈ Clok+m(A) | m ∈ N, t has a right zero}

by t1 ≤ t2 if Ψ(t1,a , b) ⊆ Ψ(t2,a , b) for all a , b ∈ Ak. The relation ≤ is a quasi-order. For
the term function π(x1, . . . , xk, y) := y, we have Ψ(π,a , b) = 0A. Since Ψ(t,a , b) can take
only finitely many values, there is t ∈ T such that π ≤ t and t is maximal in T with respect
to ≤. Let m ∈ N be such that t ∈ Clok+m(A). Our claim is that this t satisfies (4.3). By
Lemma 4.2, we have [ΘA(a , b), 1A] ⊇ {(t(a ,w), t(b,w)) | w ∈ Am} for all a , b ∈ Ak.

For proving the “⊆”-inclusion of (4.3), suppose that there are c,d ∈ Ak, (f, g) ∈
[ΘA(c,d), 1A] and (f, g) ̸∈ {(t(c,w), t(d ,w)) | w ∈ Am}. By Lemma 4.2, there are n ∈ N,
an s ∈ Clok+n(A) with a right zero and e ∈ An such that (f, g) = (s(c, e), s(d , e)). Denoting
the Mal’cev term of A by M(x, y, z), we define a term function r ∈ Clok+(n+m+m)(A) by

r(u ,x ,y , z ) := M(s(u ,x ), t(u ,y), t(u , z )).

Let h , i be the right zeros of s and t, respectively. Then (h , i , i) is a right zero of r. We
first show that t ≤ r. To this end, let a , b ∈ Ak and w ∈ Am. We want to show that
(t(a ,w), t(b,w)) ∈ Ψ(r,a , b). Since h is a right zero of s, we have s(a ,h) = s(b,h), and
thus (s(a ,h), s(b,h)) ∈ 0A = Ψ(π,a , b). Since π ≤ t, we therefore have (s(a ,h), s(b,h)) ∈
Ψ(t,a , b) and thus there is v ∈ Am such that (t(a , v), t(b, v)) = (s(a ,h), s(b,h)). Hence

(r(a ,h , v ,w), r(b,h , v ,w)) =
(
M(s(a ,h), t(a , v), t(a ,w)),M(s(b,h), t(b, v), t(b,w))

)
=

(
M(s(a ,h), s(a ,h), t(a ,w)),M(s(b,h), s(b,h), t(b,w))

)
= (t(a ,w), t(b,w)),

and thus (t(a ,w), t(b,w)) ∈ Ψ(r,a , b). Hence Ψ(t,a , b) ⊆ Ψ(r,a , b) and thus t ≤ r.
We will now establish that r ̸≤ t. To this end, we observe that (f, g) is an element of

Ψ(r, c,d) because

(s(c, e), s(d , e)) = (r(c, e , i , i), r(d , e , i , i)) ∈ Ψ(r, c,d).

Since (f, g) ∈ Ψ(r, c,d) and by assumption (f, g) ̸∈ Ψ(t, c,d), we have r ̸≤ t.
Now t ≤ r and r ̸≤ t contradict the maximality of t, which completes the proof that

[ΘA(a , b), 1A] ⊆ {(t(a ,w), t(b,w)) | w ∈ Am}

for all a , b ∈ Ak. ◀
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5 Graphs and the completeness proof

For establishing coNP-completeness, we use an NP-complete problem from graph theory.
In our proof, we take the formal viewpoint to consider a graph as a relational structure
G = (G, ρ) such that ρ ⊆ G×G is symmetric. We call the graph G loopless if there is no
v ∈ G with (v, v) ∈ ρ, and we say that G contains a triangle if there are u, v, w ∈ G with
(u, v) ∈ ρ, (v, w) ∈ ρ, (u,w) ∈ ρ. For a graph H, the computational problem H-Coloring
studied in [10] asks whether for a finite input graph G, there exists a homomorphism from G
to H. Theorem 1 of [10] states that if H is loopless and not bipartite, then H-Coloring is
NP-complete. Since a bipartite graph cannot contain a triangle, we obtain:

▶ Corollary 5.1 ([10]). Let H be a finite loopless graph that contains a triangle. Then
H-Coloring is NP-complete.

Let A be a finite Mal’cev algebra and let µ ∈ Con(A). The difference graph of A with
respect to µ is the graph Hµ = (Hµ, ρµ), where the set of vertices Hµ is equal to A2. The
set of edges ρµ is defined by

ρµ = {(a , b) | a , b ∈ A2, µ ≤ [ΘA(a , b), 1A]}.

Intuitively, we draw an edge between two vectors a , b from A2 if a , b are “sufficiently
different”. Here, “sufficiently different” means that the smallest congruence collapsing a and
b is still large enough to have its commutator with 1A above µ.

▶ Lemma 5.2. Let A be a finite Mal’cev algebra, and let µ ∈ Con(A) with µ > 0A. Then
the difference graph Hµ = (Hµ, ρµ) is loopless.

Proof. Let a ∈ A2. We have to show that (a ,a) is not an edge of Hµ. Suppose that
(a ,a) ∈ ρµ. Then from the definition of ρµ, we obtain µ ≤ [ΘA(a ,a), 1A]. Clearly,
ΘA(a ,a) = 0A. Furthermore, by [17, Lemma 4.149(i)], the commutator [α, β] is always
contained in the intersection α ∩ β, and therefore [ΘA(a ,a), 1A] = [0A, 1A] = 0A. Hence
µ ≤ 0A, contradicting the assumption µ > 0A. Thus (a ,a) is not an edge of Hµ, and
therefore Hµ is loopless. ◀

▶ Lemma 5.3. Let A be a finite nonabelian Mal’cev algebra. Then there is β ∈ Con(A) such
that β > 0A and Hβ = (Hβ , ρβ) has a triangle.

Proof. Let ζ be the center of A, i.e., the largest congruence with [ζ, 1A] = 0A. We note that
from [17, Lemma 4.149(ii)] it follows that such a largest congruence exists: in fact, ζ is the
join of all congruences ζ ′ with [ζ ′, 1A] = 0A. In particular, every congruence ζ ′ ∈ Con(A)
with [ζ ′, 1A] = 0A satisfies ζ ′ ≤ ζ. Since A is nonabelian, ζ < 1A. Thus there are a, b ∈ A

such that (a, b) ̸∈ ζ. Let

β := [ΘA(a, b), 1A].

We first show that β > 0A. Suppose β = 0A. Then [ΘA(a, b), 1A] = 0A, and therefore
ΘA(a, b) ≤ ζ. Then (a, b) ∈ ζ, contradicting the choice of a and b. Hence β > 0A. Next, we
show that Hβ has a triangle. To this end, we consider the vertices u = ( a

a ), v = ( a
b ), w = ( b

b )
of Hβ . For showing that (u , v) is an edge of Hβ , we observe that (u , v) ∈ ρβ if and only if β ≤
[ΘA(( a

a ), ( a
b )), 1A]. Now ΘA(( a

a ), ( a
b )) is the smallest congruence containing {(a, a), (a, b)}

and therefore ΘA(( a
a ), ( a

b )) = ΘA(a, b). Hence β = [ΘA(a, b), 1A] = [ΘA(( a
a ), ( a

b )), 1A], and
therefore (u , v) ∈ ρβ . Similarly, (u ,w) and (v ,w) are edges of Hβ . ◀
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On a set G of graphs, we can define a quasi-order by G ⪯ H if there is a homomorphism from
G to H. We say that G is maximal in G with respect to ⪯ if for every H ∈ G with G ⪯ H, we
also have H ⪯ G. If G is finite and nonempty, it must contain at least one maximal element.

▶ Lemma 5.4. Let A be a finite nonabelian Mal’cev algebra. For each γ ∈ Con(A), let Hγ

be the difference graph of A with respect to γ. Let β ∈ Con(A) be such that β > 0A and Hβ

has a triangle. Let µ ∈ Con(A) be such that µ > 0A and Hµ = (Hµ, ρµ) is maximal with
respect to ⪯ in

{Hα | α ∈ Con(A), α > 0A,Hβ ⪯ Hα}.

Let m ∈ N and let t(x, y, z1, . . . , zm) be a term in the language of A such that its induced term
function tA ∈ Clo2+m(A) satisfies (4.3); such a term exists by Lemma 4.3. Let G = (G, ρG)
be a graph. We assume that G ∩Hµ = ∅. Let Φ be the quasi-identity( ∧

(u,v) ∈ ρG ∪ ρµ

(
a = t(xu, yu, z(u,v)) ∧ b = t(xv, yv, z(u,v))

))
⇒ a = b

in the variables {xu | u ∈ G ∪ Hµ} ∪ {yu | u ∈ G ∪ Hµ} ∪ {(z(u,v))i | i ∈ m, (u, v) ∈
ρG ∪ ρµ} ∪ {a, b}. Then G ⪯ Hµ if and only if Φ is not valid in A.

Proof. For the “only if”-direction, let f be a homomorphism from G to Hµ. We set the
variables in Φ in a way that contradicts the validity of Φ. First, we assign values to a and
b such that (a, b) ∈ µ \ 0A. Next, we assign values to the variables xu, yu with u ∈ G. To
this end, for each u ∈ G, we set xu, yu ∈ A such that ( xu

yu ) = f(u). Then for each pair
(u, v) ∈ ρG, the fact that f is a homomorphism yields (f(u), f(v)) ∈ ρµ, and therefore we
have µ ≤ [Θ(( xu

yu ), ( xv
yv )), 1A]. Since (a, b) ∈ µ, Lemma 4.3 allows us to find z(u,v) ∈ Am such

that t(xu, yu, z(u,v)) = a and t(xv, yv, z(u,v)) = b. In the next step, we assign values to the
variables xu, yu with u ∈ Hµ. To this end, we observe that each u ∈ Hµ is an element of
A2, and hence there are xu, yu ∈ A such that u = ( xu

yu ). Then for each (u, v) ∈ ρµ, we have
(( xu

yu ), ( xv
yv )) = (u, v) ∈ ρµ. Hence from the definition of ρµ, we obtain

µ ≤ [Θ(( xu
yu ), ( xv

yv )), 1A].

Thus from Lemma 4.3 we obtain z(u,v) ∈ Am such that t(xu, yu, z(u,v)) = a and
t(xv, yv, z(u,v)) = b. Now this assignment of the variables confirms that Φ is not valid
in A.

For the “if”-direction, we assume that that the variables in Φ are assigned such that Φ
does not hold and we construct a homomorphism f : G → Hµ. Let τ := ΘA(a, b). Since
a ̸= b, we have τ > 0A. We first define a mapping g from Hµ to Hτ by

g(u) = ( xu
yu ) for all u ∈ Hµ.

Next, we prove that g is a homomorphism from Hµ to Hτ . Since Φ does not hold, its
precondition is fulfilled, and therefore for each (u, v) ∈ ρµ, we have a = t(xu, yu, z(u,v))
and b = t(xv, yv, z(u,v)). Hence setting a := ( xu

yu ) and b := ( xv
yv ) in Lemma 4.2, we obtain

(a, b) ∈ [Θ(( xu
yu ), ( xv

yv )), 1A], and therefore τ ≤ [Θ(( xu
yu ), ( xv

yv )), 1A]. From the definition of the
difference graph Hτ , we now see that (( xu

yu ), ( xv
yv )) = (g(u), g(v)) is an edge of Hτ . Hence g is

a homomorphism from Hµ to Hτ , which implies Hµ ⪯ Hτ . Since Hβ ⪯ Hµ, we have Hβ ⪯ Hτ

and thus Hτ ∈ {Hα | α ∈ Con(A), α > 0A,Hβ ⪯ Hα}. By the maximality of Hµ within this
set, we therefore have Hτ ⪯ Hµ, which yields a graph homomorphism h : Hτ → Hµ.
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Next, we define a homomorphism j : G → Hτ . For u ∈ G, we define j(u) := ( xu
yu ).

Using the same reasoning as for g, we show that j is a homomorphism: assume that
(u, v) ∈ ρG. Since Φ is not satisfied, we have t(xu, yu, z(u,v)) = a and t(xv, yv, z(u,v)) =
b. Hence (a, b) ∈ [Θ(( xu

yu ), ( xv
yv )), 1A], which implies that τ ≤ [Θ(( xu

yu ), ( xv
yv )), 1A]. Thus

(j(u), j(v)) = (( xu
yu ), ( xv

yv )) is an edge of Hτ , and therefore j is a homomorphism from G
to Hτ .

Now f := h ◦ j is the required homomorphism from G to Hµ. ◀

We will now prove the main result.

Proof of Theorem 3.1. From Lemma 5.3, we obtain β ∈ Con(A) such that the difference
graph Hβ has a triangle. Let Hµ be as in the assumptions of Lemma 5.4. Since µ > 0A, Hµ is
loopless. Now from Hβ ⪯ Hµ, we obtain that Hµ contains a triangle. Thus from Corollary 5.1,
we obtain that Hµ-coloring is NP-complete. By Lemma 5.4, the existence of a Hµ-coloring
of a given graph G can be determined by checking the validity of a quasi-identity Φ that
can be computed in time polynomial in the size of G. This implies that QuasiIdVal(A) is
coNP-complete. ◀

Proof of Corollary 3.2. Given Theorem 3.1, we only have to verify that QuasiIdVal(A) is
in P when A is an abelian finite Mal’cev algebra of finite type. In Section 2, we observed
that QuasiIdVal(A) can be reduced to PolSysSat(A) using a truth table reduction. In
fact, a counterexample to the validity of a quasi-identity can be found as the solution of one
of |A| · (|A| − 1) many polynomial systems: one passes from a quasi-identity such as (2.1)
to the systems given in (2.2). From this reduction, we see that it suffices to show that
PolSysSat(A) is in P when A is an abelian finite Mal’cev algebra of finite type. Since a
Mal’cev algebra generates a congruence modular variety, it follows from [15, Corollary 3.14]
(which is proved using [7, Theorem 33]) that in this case PolSysSat(A) can be solved in
polynomial time. ◀

As special cases, we obtain:

▶ Corollary 5.5. For a finite group G, QuasiIdVal(G) is in P if G is abelian, and coNP-
complete otherwise. For a finite ring R (not necessarily commutative and not necessarily
with unit), QuasiIdVal(R) is in P if R is a zero ring, i.e., R ·R = 0, and coNP-complete
otherwise.
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