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Abstract
We study approximation algorithms for Maximum Matching that are given access to the input graph
solely via an edge-query maximal matching oracle. More specifically, in each round, an algorithm
queries a set of potential edges and the oracle returns a maximal matching in the subgraph spanned
by the query edges that are also contained in the input graph. This model is more general than the
vertex-query model introduced by binti Khalil and Konrad [FSTTCS’20], where each query consists
of a subset of vertices and the oracle returns a maximal matching in the subgraph of the input graph
induced by the queried vertices.

In this paper, we give tight bounds for deterministic edge-query algorithms for up to three
rounds. In more detail:
1. As our main result, we give a deterministic 3-round edge-query algorithm with approximation

factor 0.625 on bipartite graphs. This result establishes a separation between the edge-query
and the vertex-query models since every deterministic 3-round vertex-query algorithm has an
approximation factor of at most 0.6 [binti Khalil, Konrad, FSTTCS’20], even on bipartite
graphs. Our algorithm can also be implemented in the semi-streaming model of computation in
a straightforward manner and improves upon the state-of-the-art 3-pass 0.6111-approximation
algorithm by Feldman and Szarf [APPROX’22] for bipartite graphs.

2. We show that the aforementioned algorithm is optimal in that every deterministic 3-round
edge-query algorithm has an approximation factor of at most 0.625, even on bipartite graphs.

3. Last, we also give optimal bounds for one and two query rounds, where the best approximation
factors achievable are 1/2 and 1/2 + Θ( 1

n
), respectively, where n is the number of vertices in the

input graph.
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1 Introduction

In this work, we study approximation algorithms for the Maximum Matching problem (MM)
and its bipartite version, the Maximum Bipartite Matching problem (MBM), that are only
given query access to the input graph G = (V, E) via a maximal matching oracle. A matching
M ⊆ E in graph G is a subset of vertex-disjoint edges. The matching M is maximum if
|M | ≥ |M ′|, for every other matching M ′. The matching number µ(G) of a graph G is the
size of a maximum matching. Furthermore, a matching M is maximal if it is inclusion-wise
maximal, i.e., M ∪{e} is not a matching, for every e ∈ E \M . In each round i of the maximal
matching edge-query model, the algorithm sends a set of potential edges Qi ⊆ V ×V , denoted
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41:2 Maximum Matching via Maximal Matching Queries

the query edges, to the oracle, which in turn responds with an arbitrary maximal matching
in the subgraph G[Qi ∩E], i.e., the subgraph of G spanned by the query edges that are also
contained in G. For brevity, we will refer to this model as the edge-query model.

Maximal Matching Queries. The study of algorithms for MM that solely execute maximal
matching queries was introduced by binti Khalil and Konrad [8]. They considered a vertex-
query model, where, in each round i, the algorithm queries a subset of vertices Ui ⊆ V , and
the oracle responds with an arbitrary maximal matching in subgraph G[Ui], i.e., the subgraph
induced by vertices Ui. The edge-query model is more general than the vertex-query model
since vertex queries can be simulated in the edge query model: For each query Ui ⊆ V in
the vertex-query model, querying the set of edges Qi that turns Ui into a clique yields an
equivalent edge-query algorithm.

The study of maximal matching query models is motivated by the fact that, in many
computational models, including the data streaming model [20] and the Massively Parallel
Computation model [17], computing maximal matchings is easy, while computing substantially
larger matchings is more challenging. Computing maximal matchings can thus be regarded
as a black-box subroutine, which allows for the design of matching algorithms that are
independent of the underlying computational model.

For example, in the semi-streaming model for processing large graphs [12, 20], an algorithm
makes few passes over the edges of the input graph in arbitrary order while maintaining
a memory of size O(n poly log n), where n is the number of vertices in the input graph.
The Greedy matching algorithm, which inserts every arriving edge into an initially empty
matching if possible, i.e., if none of its endpoints are already matched, yields a maximal
matching and constitutes a one-pass semi-streaming algorithm. Since a maximal matching
is at least half the size of a maximum matching, Greedy can also be regarded as a 1

2 -
approximation semi-streaming algorithm for MM. While it is unknown whether it is possible
to go beyond the approximation factor of 1/2 in a single pass even on bipartite graphs
(currently only approximation factors beyond 1

1+ln 2 ≈ 0.59 are ruled out [16]), improved
results are known for multiple passes, and, indeed, most multi-pass semi-streaming algorithms
solely execute Greedy on carefully selected subgraphs in each pass (e.g. [9, 2, 18, 5]). This
includes the state-of-the-art1 (1− ϵ)-approximation algorithm for MBM by Assadi et al. [5],
which executes Greedy O( 1

ϵ2 ) times and thus runs in O( 1
ϵ2 ) passes. This algorithm can

easily be implemented in the Massively Parallel Computation model [17] and also constitutes
the state-of-the-art result in this model. As such, maximal matching query models capture
these algorithms and allow for a systematic study of what can and cannot be achieved.

Our Results. In this paper, we give tight approximation ratios for deterministic edge-query
algorithms for MBM for up to three rounds. Our results for one and two rounds as well as
the lower bound for three rounds also hold for MM. In Table 1, we illustrate our bounds and
compare them to the respective tight bounds that holds in the vertex-query model [8].

One Round. We show that the best approximation factor achievable in a single round for
MBM is 1

2 , which matches the vertex-query setting (Theorem 15-1). Querying all potential
edges, i.e., the query V × V , yields a matching upper bound, even in general graphs.

1 We note that the algorithm by [5] yields a (1 − ϵ)-approximation in O( 1
ϵ2 ) passes. Very recently, Assadi

et al. [4] gave a (1 − ϵ)-approximation algorithms for MBM that operates in O( 1
ϵ · log n)-passes, which,

for very small values of ϵ, asymptotically requires fewer rounds than [5].
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Table 1 Optimal approximation ratios achievable for deterministic algorithms for MBM in the
edge-query (this paper) and vertex-query models ([8]).

# Rounds Vertex-query model ([8]) Edge-query model (this paper)
1 1

2
1
2 (Theorem 15-1)

2 1
2

1
2 + Θ( 1

n
) (Theorem 15-2)

3 3
5 = 0.6 5

8 = 0.625 (Theorems 1 and 15-3)

Two Rounds. The approximation factor can be very slightly improved in two rounds,
even in general graphs. Consider the algorithm that queries all edges V × V in the first
round, which produces a maximal matching M1 in the input graph. Next, pick any edge
uv ∈ M1 and query all edges incident to u and v different to uv in the next round. Then,
we will either find a 3-augmenting path that allows us to augment the edge uv, or the
edge uv is not 3-augmentable. In both cases, we establish that the resulting matching is
a 1

2 + Θ( 1
n )-approximation, and we also prove that no algorithm can do better, even in

bipartite graphs (Theorem 15-2). While the Θ( 1
n ) additive term is not significant in terms of

an improved approximation guarantee, it nevertheless illustrates that the edge-query and
vertex-query models behave slightly differently in the two rounds setting.

Three Rounds. As our main result, we give a deterministic 3-round algorithm for MBM in
the edge-query model that produces a 0.625-approximation (Theorem 1), and we show that
this is best possible (Theorem 15-3). Our algorithm can be implemented in a straightforward
way in the semi-streaming model and improves upon the previously best 3-pass semi-streaming
0.6111-approximation algorithm for MBM by Feldman and Szarf [13].

On 3-pass Semi-streaming Algorithms for MBM. The first 3-pass semi-streaming algorithm
for MBM was implicit in [12], explicitly mentioned in [19], and analysed by Kale and
Tirodkar [15], who showed that the approximation ratio is 0.6. Subsequently, binti Khalil and
Konrad [8] proved that this algorithm constitutes an optimal 3-round vertex-query algorithm
(and can thus also be implemented in the edge-query model). Various improvements have
since been established via semi-streaming algorithms that cannot be implemented in the
edge-query model. First, Esfandiari et al. [10] gave a 0.605-approximation algorithm, which
was then further improved by Konrad [18] who gave a randomized 0.6067-approximation
algorithm. Very recently, Feldman and Szarf [13] gave a 0.6111-approximation. In this paper,
we improve the approximation factor to 0.625, again, with a 3-round deterministic edge-query
algorithm.

While edge-query algorithms appear somewhat restricted in how they operate as compared
to arbitrary semi-streaming algorithms, the literature illustrates that they are surprisingly
powerful as they constitute the state-of-the-art algorithms in the 3-pass (this paper) and
(1− ϵ)-approximation [5] streaming settings for MBM.

Techniques. We will first discuss the ideas behind our 3-round algorithm for MBM in the
edge-query model, and then give the intuition behind our lower bound results.

3-round Query Algorithm. Our 3-round algorithm computes a maximal matching in
the first round, and then finds augmenting paths in the subsequent rounds. This is a well-
established technique, and almost all known 2-pass and 3-pass streaming algorithms operate
in this fashion (e.g. [19, 10, 15, 18, 13]). To this end, denote by M1 a maximal matching in the
bipartite input graph G = (A, B, E) that we obtain by querying all potential edges A×B. We
observe that every augmenting path for M1 starts with an edge in GL = G[A(M1) ∪B(M1)]

STACS 2023



41:4 Maximum Matching via Maximal Matching Queries

and ends with an edge in GR = G[A(M1) ∪ B(M1)], where A(M1) denotes the A-vertices
matched in M1, and A(M1) = A \ A(M1) (B(M1) and B(M1) are defined similarly). In
our second round, we therefore compute maximal matchings ML and MR in GL and GR,
respectively. Observe that we can indeed compute both of these matchings with the single
query

(
A(M1)×B(M1)

)
∪

(
A(M1)×B(M1)

)
in the edge-query model. At this stage, we

are guaranteed that the set M1 ∪ML ∪MR contains various length-2 paths consisting of one
edge of M1 and one additional edge either from ML or MR, and the usual idea employed
in the literature is to complete these length-2 paths to length-3 augmenting paths using an
additional pass over the data/an additional query. Indeed, if we attempted to complete the
length-2 paths by computing a maximal matching between the endpoints of length-2 paths in
M1 and the yet unmatched vertices in the third round then we obtain a 0.6-approximation.

Our key idea for the third query round that leads to an improvement over previous work
is to simultaneously attempt to complete length-5 augmenting paths. To this end, denote by
A′ the endpoints of length-2 paths in A(M1), and by B′ the endpoints of length-2 paths in
B(M1). Our third round query consists of all potential edges interconnecting the vertices

A′ ∪B′ ∪A(M1) ∪B(M1) ,

i.e., we both attempt to complete length-2 paths to length-3 augmenting paths by considering
the edges between A′ and B(M1) and between B′ and A(M1), but we also attempt to join
two disjoint length-2 paths by connecting them via an edge between A′ and B′ to form a
length-5 augmenting path. The main challenge in the analysis of this method is to address
the complications that arise from the fact that the single maximal matching returned in
round 3 completes both length-3 and length-5 augmenting paths.

Lower Bounds. The key idea behind our lower bound arguments is to keep track of the
information revealed when the oracle returns a maximal matching Mi as a response to the
query edges Qi in round i. This approach was previously successfully employed by binti
Khalil and Konrad [8] for obtaining optimal lower bounds in the vertex-query model. When
a matching Mi is returned, the algorithm not only learns that the edges Mi are indeed
contained in the input graph, but also that none of the edges of Qi that connect vertices
outside of V (Mi) exist, which is due to the maximality of Mi in the subgraph G[E ∩Qi] of
the input graph G = (V, E). The main challenge lies in keeping track of the information
revealed over the course of the algorithm while considering the complexity of all possible
queries in each round. This is achieved by considering the vertex-induced subgraphs on
carefully constructed partitions of the vertices while maintaining a superset of the information
revealed to the algorithm in each part: We prove that, no matter the sequence of queries,
the information about the edges that are guaranteed to exist and those that are guaranteed
not to exist in each part of the partition is less than a certain superset of existing edges
and non-existing edges that are easy to describe, up to isomorphism. Our arguments are
substantially more involved than those for the vertex-query model [8], which is due to the
fact that edge queries can have more complex structure.

Further Related Work. The study of graph algorithms with query access to the input dates
back to the works of Feige [11] and Goldreich and Ron [14]. The literature distinguishes
between local queries – such as vertex-degree queries, neighborhood queries, and edge-existence
queries [11, 14, 7] – and global queries – such as (bipartite) independent set queries [6, 1],
linear, or and cut queries [3], and maximal matching queries as studied in this paper [8]. We
refer the reader to [1] and the references therein for an overview.
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Outline. We first present our main result, a 3-round algorithm for MBM, in Section 2. Our
lower bound results are discussed in Section 3, and we conclude with open questions in
Section 4.

2 3-Round Algorithm

In this section, we present our 3-round query algorithm for MBM (see Algorithm 1). We
prove the following result, which constitutes the main result of this paper:

▶ Theorem 1. Algorithm 1 is a deterministic 3-round 5
8 -approximation algorithm for MBM

in the edge-query model.

Algorithm 1 Three Rounds using Maximal Matching Queries.
Input: A bipartite graph G = (A, B, E) and a maximal matching oracle Query
Output: A large matching Mout of G

First round
1: M1 ← Query(G[A ∪B])
2: GL = G[A(M1) ∪B(M1)]
3: GR = G[A(M1) ∪B(M1)]

Second round
4: M2 ← Query(GL ∪GR)
5: Let A′ ⊆ A(M1) and B′ ⊆ B(M1) be the endpoints of length-2 paths in M1 ∪M2
6: G′ = G[A′ ∪B′ ∪A(M1) ∪B(M1)]

Third round
7: M3 ← Query(G′)

Output
8: return Mout, the largest matching in M1 ∪M2 ∪M3

Our algorithm operates on a bipartite input graph G = (A, B, E), where only the vertex
sets A and B are initially known to the algorithm. It only uses the edge-query maximal
matching oracle to compute maximal matchings in subgraphs of G. Our algorithm initially
computes a maximal matching M1 of G in the first round. Then, in the second round,
maximal matchings in the subgraphs GL and GR are computed (M2 denotes the union of
both matchings), where GL consists of the edges connecting the B-vertices unmatched in
M1 to the A-vertices matched in M1 and GR is defined similarly with the roles of A and
B reversed. The matching M2 w.r.t. M1 possibly finds some length-3 augmenting paths,
which we denote by P , while the remaining ones make up length-2 alternating paths. Last,
in the third round, a maximal matching M3 is computed in the subgraph induced by the
vertices unmatched by M1 and the endpoints of the length-2 paths in M1 ∪M2 that are also
in A(M1) ∪ B(M1). Each edge of the matching M3 thus completes length-3 and length-5
augmenting paths, which we denote by Q. See Figure 1 for an example run of the algorithm
where Gin = G[A(M1) ∪B(M1)].

▶ Observation 2. The size of Q is exactly the size of M3.

The goal of our analysis is to show that the size of the returned matching Mout, the largest
matching in M1∪M2∪M3, is always at least a 5

8 -approximation of a maximum matching M∗.
To that end, we can always find a large maximal matching by appropriately augmenting M1
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41:6 Maximum Matching via Maximal Matching Queries

with the augmenting paths P ∪Q. Although each edge in M1 can be augmented by at most
one augmenting path, the augmenting paths P ∪Q are not necessarily vertex-disjoint since
the vertices unmatched by M1 may be incident to an edge in M2 and also one in M3. See
Figure 1 for an example of this. However, we observe that the intersection multi-graph of the
augmenting paths P ∪Q has maximum degree 2 and, in particular, constitutes a collection
of paths and even-length cycles. We can thus pick an independent set of non-overlapping
augmenting paths of size 1

2 (|P |+ |Q|) and thus obtain the following:

|Mout| ≥ |M1|+
1
2(|P |+ |Q|). (1)

A(M1)B(M1)A(M1)B(M1)

GL Gin GR

Figure 1 An example run of Algorithm 1 that
showcases some possible intersections of the aug-
menting paths. The edges of M1 are in black,
the edges of M2 are in blue, and the edges of M3

are in orange. The dashed thick edges are those
which belong to augmenting paths in P , whereas
the solid thick edges are those which belong to
Q. The vertices of A′ and B′ are circled.

A(M1)B(M1)A(M1)B(M1)

GL Gin GR

Figure 2 An example of the implied graph
structure w.r.t. M∗ and M1. The edges of M1

are the solid edges and the edges of M∗\M1 are
dashed ones. The edges of M∗ ∩ M1 are the
solid edges not incident to any dashed ones. The
red vertices represent A∗ and B∗, the green ones
represent Aout and Bout, and the violet ones rep-
resent Ain and Bin.

We highlight here that either finding a large matching in the first round or finding many
augmenting paths in the second round leaves fewer augmenting paths to be found in the
third round. Therefore, the size of Q must be a decreasing function of |M1| and |P |. We
subsequently formalise this by systematically bounding the quantities required to bound the
size of M3, which is equivalent to the size of Q (Observation 2). Theorem 1 then immediately
follows from Equation (1).

Let M∗ be a maximum matching in G with size µ(G). The first query finds a maximal
matching M1 of G, which is always at least half the size of M∗ (Observation 3). By considering
a maximum matching M∗ such that M∗ ∪M1 contains no even-length alternating paths or
cycles (Lemma 4), each vertex in A(M1) and B(M1) are endpoints of exactly one edge in
M∗ (Lemma 5) and we have that M1 relates exactly to the the number of edges of M∗ in
GL and GR, respectively (Lemma 6). We give these proofs in Appendix A for completeness.
As such, for the remainder of the analysis, we assume this choice of M∗. See Figure 2 for an
example of the implied structure.

▶ Observation 3. |M1| = ( 1
2 + ϵ) · µ(G), 0 ≤ ϵ ≤ 1

2 .

▶ Lemma 4. There exists a maximum matching M∗ such that M∗ ∪M1 has no even-length
alternating paths or cycles.
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▶ Lemma 5. Each vertex of A(M1) and B(M1) is the endpoint of an edge in M∗.

▶ Lemma 6. |M∗ ∩GL| = |M∗ ∩GR| = ( 1
2 − ϵ) · µ(G).

We now have that the vertices A(M1) and B(M1) can be partitioned based on the kind
of edge in M∗ that they are endpoints of, i.e., by Lemma 5. Let A∗ := A(M∗ ∩ M1),
Aout := A(M∗ ∩GL), and Ain := A(M1)\(A∗ ∪Aout). Similarly define B∗ := B(M∗ ∩M1),
Bout := B(M∗ ∩GR) and Bin := B(M1)\(B∗ ∪Bout). See the coloured vertices of Figure 2
for an example of these partitionings.

▶ Lemma 7. |Ain| = |Bin| = 2ϵ · µ(G)− |M∗ ∩M1|.

Proof. By construction of the partitions, we have that |A∗| = |M∗ ∩M1| = |B∗|, |Aout| =
|M∗ ∩ GL| and |Bout| = |M∗ ∩ GR|. Then, by Lemma 6, it follows that |Aout| = |Bout| =
( 1

2 − ϵ) · µ(G). Finally, since |A(M1)| = |B(M1)| = |M1| = ( 1
2 + ϵ) · µ(G) by Observation 3,

we have that |Ain| = ( 1
2 + ϵ) · µ(G)− |Aout| − |A∗| = 2ϵ · µ(G)− |M∗ ∩M1| = |Bin|. ◀

Intuitively, we have that finding edges of M∗ with the first query always puts us in a
better situation. Therefore, we consider the effect that these edges have on the quantities
that we bound. We introduce some helpful notation in this regard: For any matching M , we
define M(A∗) (and M(B∗)) as the edges of M that have one endpoint in A∗ (resp. B∗), i.e.,
those which are incident to edges of M∗ ∩M1.

The second query finds a maximal matching M2, which is the union of (vertex-disjoint)
maximal matchings ML in GL and MR in GR. Each edge of M2 forms the beginning of an
alternating path in M1 ∪M2, some of which may immediately form length-3 augmenting
paths P while the rest form length-2 alternating paths P ′, which are extended in the third
round. Note that the endpoints of P ′ that are in A(M1) and B(M1) are the vertex sets A′

and B′, respectively. We then partition A′ and B′ such that A′
out := A′ ∩Aout and similarly

define A′
in, A′

∗, B′
out, B′

in, and B′
∗.

▶ Lemma 8. |M∗ ∩M1| ≥ 1
2 · (|ML(A∗)|+ |MR(B∗)|).

Proof. By definition, every edge of the matchings ML(A∗) and MR(B∗) is incident to an
edge of M∗ ∩M1. Hence, |M∗ ∩M1| ≥ |ML(A∗)| and |M∗ ∩M1| ≥ |MR(B∗)|, which implies
the result. ◀

▶ Lemma 9. |M2| ≥ ( 1
2 − ϵ) · µ(G) + 1

2 (|ML(A∗)|+ |MR(B∗)|)

Proof. Consider the edges of M∗∩GL. Every edge of ML is incident to at most two edges of
M∗ ∩GL, and every edge of ML(A∗) is incident to at most one of the edges of M∗ ∩GL. By
a counting argument, we have that |ML| ≥ 1

2 (|M∗ ∩GL| − |ML(A∗)|) + |ML(A∗)|. Then, by
Lemma 6, it follows that |ML| ≥ 1

2
(
( 1

2 − ϵ) · µ(G) + |ML(A∗)|
)
. We similarly bound |MR|

w.r.t. MR(B∗) and obtain the results since |M2| = |ML|+ |MR|. ◀

▶ Lemma 10. |P ′| = |A′
in|+ |B′

in|+ |A′
out|+ |B′

out|+ |A′
∗|+ |B′

∗| = |M2| − 2|P |.

Proof. Each length-2 alternating path in P ′ has an endpoint in either A(M1) or B(M1), but
not both; thus, we have that |P ′| = |A′|+ |B′| and the first equality follows by definition of
the partitions of A′ and B′. For the subsequent equality, we have that every edge of ML

contributes to a length-2 alternating path except for the ones which contribute to length-3
augmenting paths. This gives |ML| − |P | of them which have an edge in ML. A similar
reasoning w.r.t. MR shows that |MR| − |P | of them have an edge in MR. The result then
follows since the paths in P ′ either have an edge in ML or in MR, but never both. ◀
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41:8 Maximum Matching via Maximal Matching Queries

▶ Lemma 11. |A′
∗| ≤ |MR(B∗)| and |B′

∗| ≤ |ML(A∗)|.

Proof. Consider any vertex in a ∈ A′
∗. By definition, a is the endpoint of an edge (a, b) ∈

M∗ ∩M1, which implies that b ∈ B∗. Since a is the endpoint of a path p ∈ P ′, we have that
p = (a, b, aR) where (aR, b) must be an edge of MR(B∗). Finally, every a ∈ A′

∗ has a unique
(aR, b) ∈MR(B∗) since each path in P ′ is vertex-disjoint and thus the first inequality follows.
The second inequality follows similarly w.r.t. B∗ and ML(A∗) instead. ◀

The third query finds a maximal matching M3 in the graph G′ = G[A′ ∪B′ ∪A(M1) ∪
B(M1)], which implies that the size of M3 is at least half of µ(G′). As such, it is sufficient to
bound µ(G′). To that end, we bound the number of edges of M∗ in G′, which we accomplish
by decomposing G′ into edge-disjoint subgraphs G′

L = G[A′ ∪B(M1)], G′
in = G[A′ ∪B′] and

G′
R = G[B′ ∪A(M1)]. Using the quantities we have previously bounded, we then obtain our

final bound on the size of M3 as a decreasing function of |M1|, in terms of ϵ, and |P |.

▶ Lemma 12. |M∗∩G′
L| = |A′

out|, |M∗∩G′
R| = |B′

out|, and |M∗∩G′
in| ≥ |A′

in|+ |B′
in|−|Ain|.

Proof. By definition, every vertex of A′
out is incident to an edge in M∗ ∩G′

L, and vice versa;
hence, it holds that |M∗ ∩G′

L| = |A′
out|. A similar argument shows that |M∗ ∩G′

R| = |B′
out|

holds. To bound |M∗ ∩ G′
in|, consider an edge (a, b) ∈ (M∗\M1) ∩ Gin. By definition,

a ∈ Ain and b ∈ Bin; however, (a, b) ∈ M∗ ∩G′
in if and only if a ∈ A′

in and b ∈ B′
in. Thus,

there are at most (|Ain| − |A′
in|) + (|Bin| − |B′

in|) edges of (M∗\M1) ∩ Gin which are not
in M∗ ∩ G′

in. By definition, it holds that |(M∗\M1) ∩ Gin| = |Bin| and it follows that
|M∗ ∩G′

in| ≥ |A′
in|+ |B′

in| − |Ain|. ◀

▶ Lemma 13. |M3| ≥ ( 1
4 −

3ϵ
2 ) · µ(G)− |P |.

Proof. By rearranging the equation in Lemma 10 and applying Lemma 11, we have that

|A′
in|+ |B′

in|+ |A′
out|+ |B′

out| ≥ |M2| − 2|P | − |MR(B∗)| − |ML(A∗)|. (2)

We subsequently bound µ(G′), which the result follows from since |M3| ≥ 1
2 · µ(G′).

µ(G′) ≥ |M∗ ∩G′
L|+ |M∗ ∩G′

R|+ |M∗ ∩G′
in| (edge-disjoint subgraphs)

≥ |A′
out|+ |B′

out|+ |A′
in|+ |B′

in| − |Ain| (by Lemma 12)
≥ |M2| − 2|P | − |ML(A∗)| − |MR(B∗)| − |Ain| (by Equation (2))

≥ (1
2 − ϵ) · µ(G)− 1

2(|ML(A∗)|+ |MR(B∗)|)− 2|P | − |Ain| (by Lemma 9)

≥ (1
2 − ϵ) · µ(G)− |M∗ ∩M1| − 2|P | − |Ain| (by Lemma 8)

= (1
2 − ϵ) · µ(G)− |M∗ ∩M1| − 2|P | − (2ϵ · µ(G)− |M∗ ∩M1|) (by Lemma 7)

= (1
2 − 3ϵ) · µ(G)− 2|P |. ◀

We are now ready to bound the size of the returned matching Mout w.r.t. µ(G), the size
of the maximum matching M∗, thus proving Theorem 1.

▶ Lemma 14. The large matching Mout returned by Algorithm 1 is always at least a 5
8 -

approximation of the size of a maximum matching in the input graph G.
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Proof.

|Mout| ≥ |M1|+
1
2(|P |+ |Q|) (by Equation (1))

= (1
2 + ϵ) · µ(G) + 1

2(|P |+ |M3|) (by Observations 2 and 3)

≥ (1
2 + ϵ) · µ(G) + 1

2(|P |+ (1
4 −

3ϵ

2 ) · µ(G)− |P |) (by Lemma 13)

= (5
8 + ϵ

4) · µ(G). ◀

3 Lower Bound Results

In this section, we give our lower bounds for edge-query algorithms for MM for up to 3
rounds, showing that our 3-round algorithm is best possible:

▶ Theorem 15. There does not exist a deterministic algorithm on a n-vertex input graph
for MM in the maximal matching edge-query model that achieves a better than
1. 1

2 -approximation in 1 round,
2.

( 1
2 + 2

n

)
-approximation in 2 rounds, and

3.
( 5

8 + 24
n

)
-approximation in 3 rounds.

We prove our lower bounds by considering a game between a player, i.e., the algorithm,
and an oracle in the edge-query model. The goal of the player is to learn a large matching in
the underlying bipartite graph G = (A, B, E) that is adversarially constructed by the oracle
along the way. The player initially only knows the vertices A and B and is allowed to query
the oracle with any set of edges Q ⊆ A×B in each round, typically basing the query on any
information about G revealed in previous rounds. The oracle then returns an adversarially
chosen maximal matching in the subgraph G[E ∩Q], revealing as little information about a
large matching as possible. Throughout the game, once information about G is revealed, it
may not be altered in subsequent rounds.

Let Qi be the player’s query and let Mi be the maximal matching returned by the oracle
in round i. The player learns that the edges Mi are present in G and that the edges in Qi

with both endpoints unmatched by Mi do not exist in G. The player thus learns about both
edges and non-edges. As such, we use structure graphs to encapsulate the information known
by the player up to graph isomorphisms, providing a simple representation in which to prove
our lower bounds – similar to the work by binti Khalil and Konrad [8].

▶ Definition 16 (Structure Graph [8]). A 4-tuple (A, B, E, F ) is a bipartite structure graph
if E and F are disjoint sets of edges such that (A, B, E) and (A, B, F ) are bipartite graphs.
The set E corresponds to the set of edges learnt by the algorithm, and the set F corresponds
to the set of non-edges learnt.

A player always begins with the empty structure graph H0 = (A, B, E0, F0) where
E0 = F0 = ∅. In a game of r rounds, the structure graphs H1, H2, . . . , Hr represent
the information (edges and non-edges) learned by the player after each round, which are
based purely on the player’s queries Q1, Q2, . . . , Qr and the oracle’s adversarially returned
matchings M1, M2, . . . , Mr. Consider a player’s structure graph Hi w.r.t. Hi−1 for any
i ∈ [r]. It consists of the edges Ei = Ei−1 ∪Mi and the non-edges Fi = Fi−1 ∪ Ni where
Ni = Qi ∩ (A(Mi)×B(Mi)) ensures that Mi is maximal. The player’s information at the
end of a round is then necessarily a superset of the information known at the end of the
previous round, i.e., Ei ⊇ Ei−1 and Fi ⊇ Fi−1. Hence, the structure graph Hi dominates
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Hi−1, which we say in general for any structure graph that is a superset of the information
of another up to graph isomorphism. The underlying graph G may then be any graph that
is consistent with all the information Hr revealed to the player by the end of round r.

▶ Definition 17 (Consistent). Let G = (A, B, E) be any bipartite graph and let Hi =
(A, B, Ei, Fi) be a bipartite structure graph. G is consistent with Hi iff E ⊇ Ei and E∩Fi = ∅.

The largest matching a player who knows Hr may output is the maximum matching
Mout

r in (A, B, Er). Therefore, the oracle adversarially constructs the graph G so that G

is consistent with Hr and so that G has the largest possible maximum matching. This
implies that the approximation factor of Hr is |Mout

r |
µ(G) . Note that Hr is strongly dependent

on the player’s sequence of queries Q1, Q2, ..., Qr. Altering even a single query could alter
Hr, the player’s largest matching Mout

r and, most importantly, the approximation factor of
Hr. Hence, the goal for proving our lower bound results is to find an upper bound on the
approximation factor achieved by any sequence of queries Q1, . . . , Qr for r = 1, 2 and 3.

Before proceeding with our analysis, we first present the ideas that we employ to prove
our lower bounds. To generally consider all possible queries in each round i ∈ [r], we allow
the oracle to commit to more information than is revealed to the player, denoted by the
structure graph H̃i. In particular, we show that H̃i dominates the player’s structure graph
Hi learned regardless of the query Qi. Then, at the end of round i, the player is assumed
to have knowledge of the oracle’s structure graph H̃i. This implies that H̃r dominates the
structure graph learned by the player for any sequence of queries Q1, . . . , Qr. We also allow
the oracle to partition the vertices of the graph and consider the vertex-induced subgraph
of each part independently. By making the partition a function of the query, we create
desirable properties in each part. This, however, does not consider the edges that cross
the partition, which are thus asserted as non-edges. Formally, we recombine the structure
graphs learned in each part using the disjoint union (Definition 18) at the end of round r.
Then, the approximation factor of the recombined structure graph follows naturally from the
independent parts by Observations 19 and 20.

▶ Definition 18 (Disjoint Union). Let (Ax, Bx) and (Ay, By) represent an arbitrary parti-
tioning of the vertices A and B into two parts and let Hx = (Ax, Bx, Ex, Fx) and Hy =
(Ay, By, Ey, Fy) be any bipartite structure graphs. Then, their disjoint union is Hx ∪̇Hy =
(A, B, Ex ∪ Ey, Fx ∪ Fy ∪ (Ax ×By) ∪ (Ay ×Bx)).

▶ Observation 19. Let Hx and Hy be bipartite structure graphs on disjoint sets of vertices
with largest output matchings Mout

x and Mout
y , respectively. Then, the largest output matching

of Hx ∪̇Hy is of size |Mout
x |+ |Mout

y |.

▶ Observation 20. Let Hx and Hy be bipartite structure graphs on disjoint sets of vertices
with consistent graphs Gx and Gy, respectively. Then, there exists a graph G consistent with
Hx ∪̇Hy such that µ(G) = µ(Gx) + µ(Gy).

We begin our analysis with the following simplifying assumption, where its justification
is given in Appendix B for completeness:

▶ Assumption 21. In each round 1 ≤ i ≤ r, we assume that the query Qi does not contain
any edges or non-edges already learned by the player.

Let A = Ain ∪Aout and B = Bin ∪Bout be such that Ain, Aout, Bin and Bout are disjoint
sets of vertices of size n

4 where n is the number of vertices and a multiple of 4. We further
assert that n

4 is odd. Then, the player begins with only the knowledge of A and B, i.e., the
empty structure graph H0.
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First Round. Let M̃1 be a matching of size n
4 that matches Ain to Bin. We assert its

maximality by letting Ñmax
1 = Aout×Bout be non-edges. Additionally, the non-edges Ñ ind

1 =
(Ain ×Bin)\M̃1 assert that it is an induced matching2. Then, we define H̃1 = (A, B, Ẽ1, F̃1)
where Ẽ1 = M̃1 and F̃1 = Ñ1 = Ñmax

1 ∪ Ñ ind
1 . See Figure 3 for an illustration.

▶ Remark. H̃1 can be defined on any subset of vertices A′ ⊆ A and B′ ⊆ B such that
|A′

in| = |B′
in| = |A′

out| = |B′
out|. We later use such generalisations, denoted as H̃1(A′, B′).

AoutBinAinBout

M̃1

Figure 3 An illustration of structure graph H̃1. The thick solid black edges represent the matching
M̃1. The non-edges Ñmax

1 are implicit by the layout of the vertices and the non-edges Ñ ind
1 are the

grey edges. The dashed black edges are a perfect matching in a worst-case underlying graph.

▶ Lemma 22. Any structure graph H1 learned by the player is dominated by H̃1.

Proof. Let Q1 be any arbitrary query and let M∗(Q1) be a maximum matching in the query
graph (A, B, Q1). If |M∗(Q1)| ≥ |M̃1|, then let M1 ⊆M∗(Q1) be a subset of size |M̃1|. We
assert the maximality of matching M1 with the non-edges N1 = A(M1)×B(M1). Otherwise,
|M∗(Q1)| < |M̃1| and we let M1 = M∗(Q1), which is trivially a maximal matching among
the edges of the query Q1; hence, N1 = ∅.

Finally, in either case, let σ be a graph isomorphism such that M1 ⊆ σ(M̃1), which
implies that N1 ⊆ σ(Ñ1). Therefore, the player’s H1 learned is always dominated by H̃1. ◀

▶ Lemma 23. The approximation factor of the structure graph H̃1 is 1
2 .

Proof. The largest matching M̃out
1 that the player who knows H̃1 may output is the matching

M̃1, which matches half of the vertices. Since no information regarding the edges in Ain×Bout
or Aout × Bin has been revealed, we can choose a graph G consistent with H̃1 that has a
perfect matching, which is of size 2 · |M̃1|, thus proving the result. In particular, it has a
matching that arbitrarily matches Ain to Bout and Aout to Bin (see Figure 3). ◀

Lemma 22 shows that H̃1 dominates all possible structure graphs learned by the player by
the end of round 1, i.e., after query Q1. Thus, Lemma 23 immediately implies Theorem 15-1.

Second Round. Let M̃L ⊆ (Ain×Bout) and M̃R ⊆ (Aout×Bin) be matchings of size
⌊

|M̃1|
2

⌋
such that M̃1 ∪ M̃L ∪ M̃R has no length-3 paths. Let Ñmax

L = Ain\A(M̃L) × Bout\B(M̃L)
and Ñmax

R = Aout\A(M̃R)×Bin\B(M̃R) be the non-edges that assert the maximality of the
matching M̃2 = M̃L ∪ M̃R among the unknown edges. Let Ñ ind

L =
(
A(M̃L)×B(M̃L)

)
\M̃L

and Ñ ind
R =

(
A(M̃R)×B(M̃R)

)
\M̃R be the non-edges required to make the matching

2 Committing to an induced matching simplifies the arguments in the subsequent rounds without affecting
the approximation factor of the player’s structure graphs.
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induced. Additionally, if |M̃1| is odd, then let e∗
in ∈ M̃1 be the only edge with both endpoints

unmatched by M̃L and M̃R, and similarly let aout ∈ Aout and bout ∈ Bout be any vertices
unmatched by M̃L and M̃R. We assert that e∗

in is an isolated edge and that aout and bout
are isolated vertices3, which implies the non-edges Ñ∗ = (A(e∗

in)×B\B(e∗
in)) ∪ (A\A(e∗

in)×
B(e∗

in)) ∪ (A× {bout}) ∪ ({aout} ×B). Otherwise, if |M̃1| is even, we let Ñ∗ = ∅. Then, we
define H̃2 = (A, B, Ẽ1 ∪ M̃2, F̃1 ∪ Ñ2) where Ñ2 = Ñmax

L ∪ Ñmax
R ∪ Ñ ind

L ∪ Ñ ind
R ∪ Ñ∗. See

Figure 4 for an illustration where the non-edges Ñ∗ have been removed for clarity.

AoutBinAinBout

M̃1M̃L M̃R

Figure 4 An illustration of the structure graph
H̃2. The thick blue edges represent the matching
M̃2 and the grey ones are the non-edges Ñ2\Ñ∗.
The orange vertices and their incident edge are
isolated and only present if |M̃1| is odd. The
black dashed edges represent a large maximum
matching in a worst-case underlying graph.

AoutBinAinBout

M̃1M∗(Q2) M∗(Q2)

Figure 5 An example of the partitioning based
on M∗(Q2). The blue edges represent the match-
ing M∗(Q2). The vertices in the orange box
represent part (A+, B+) and the remaining un-
boxed ones represent part (A−, B−). The grey
edges show the additional non-edges asserted by
the disjoint union.

Let Q2 be an arbitrary query of round 2 and let M∗(Q2) be a maximum matching of
(A, B, Q2). By Assumption 21, we have that Q2 only has edges in Ain×Bout and Aout×Bin,
which implies that the edges of M∗(Q2) either form vertex-disjoint length-3 or length-2
alternating paths w.r.t. M̃1. As such, we partition the vertices of A and B to consider the
length-3 and length-2 paths separately: Part (A+, B+) with N+ many vertices consists of
all vertices that lie on a length-3 path, whereas part (A−, B−) consists of the remaining
N− = n−N+ many vertices, whose induced subgraph includes all the length-2 paths. See
Figure 5 for an example of the partitioning.

▶ Lemma 24. H̃1 is partitioned w.r.t. parts (A+, B+) and (A−, B−) into structure graphs
H̃+

1 = H̃1(A+, B+) and H̃−
1 = H̃1(A−, B−), respectively, where H̃+

1 ∪̇ H̃−
1 dominates H̃1.

With Lemma 24, whose proof is given in Appendix C for completeness, the player’s
information in each part at the start of round 2 is exactly the respective generalisations
of H̃1. As such, we show that the respective generalisations of H̃2 dominate the player’s
structure graphs H+

2 and H−
2 learned in each part after query Q2.

▶ Lemma 25. Any structure graph H+
2 learned by the player is dominated by H̃+

2 =
H̃2(A+, B+).

▶ Lemma 26. Any structure graph H−
2 learned by the player is dominated by H̃−

2 =
H̃2(A−, B−).

3 Committing to the isolated edge and vertices simplifies the arguments in the subsequent round without
affecting the approximation factor of the player’s structure graphs.
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Lemmas 25 and 26 are proven similarly to Lemma 22; hence, we give their proofs in
Appendix C to save space. By Lemmas 25 and 26, the player’s overall information at the
end of round 2 is dominated by the structure graph H̃+

2 ∪̇ H̃−
2 .

▶ Lemma 27. The approximation factor of the structure graph H̃+
2 ∪̇ H̃−

2 is at most 1
2 + 2

n .

Proof. We claim that the largest matching is of size |M̃1| and that there exists a consistent
graph G such that µ(G) = 2 · |M̃1| − 1. Then, the approximation factor of H̃+

2 ∪̇ H̃−
2 is at

most |M̃1|
2·|M̃1|−1 = 1

2 + 1
4·|M̃1|−2 ≤

1
2 + 1

2·|M̃1| = 1
2 + 2

n for large enough n.
We now prove the first claim. Since there are no augmenting paths in M̃+

1 ∪ M̃+
2 or

M̃−
1 ∪ M̃−

2 , the largest output matching is M̃out
2 = M̃+

1 ∪ M̃−
1 = M̃1 by Observation 19. It

remains to prove the second claim. Since |M̃1| = n
4 is odd, w.l.o.g., |M̃+

1 | is odd and |M̃−
1 | is

even; hence, we have that |M̃+
2 | = |M̃

+
1 |−1 and |M̃−

2 | = |M̃
−
1 |. Since both matchings in both

parts are maximal and induced, the only unknown edges are those in (Ain×Bout)∪(Aout×Bin)
that have only one endpoint matched by M̃+

2 or M̃−
2 and are not incident to the isolated

edge or vertices. Thus, we may use these to construct consistent graphs in H̃+
2 and H̃−

2 with
maximum matchings of size 2 · |M̃+

2 |+ 1 = 2 · |M̃+
1 | − 1, which includes the isolated edge, and

2 · |M̃−
2 | = 2 · |M̃−

1 |, respectively. By Observation 20, this gives the graph G as required. ◀

Overall, we have that any arbitrary query Q2 can be used to construct the relevant
partition of the vertices where Lemmas 25–27 always hold, thus proving Theorem 15-2.

Third Round. We continue to consider the partition w.r.t. the query Q2 where the player
now knows generalisations of H̃2 in each part. As such, it is sufficient to find a structure
graph H̃3 that dominates H̃2 and then apply the disjoint union as before. Note that we
consider only the even case of H̃2 since, by Assumption 21, the endpoints of the isolated
edge e∗

in and the isolated vertices aout and bout in the odd case of H̃2 (see Figure 4) are not
endpoints of any edge in a third round query, thus reducing it to an even case of H̃2.

With knowledge of an even case of H̃2 at the start of round 3, the player is aware of two
edge-disjoint maximal and induced matchings M̃1 and M̃2, both of which are half the size
of a perfect matching, such that M̃1 ∪ M̃2 is exactly the edges of |M̃1| many vertex-disjoint
length-2 paths, denoted by P . Therefore, by Assumption 21, any third round query may
contain only the edges that either (a) extend a path in P , denoted by Kext, or (b) provide a
replacement edge for a path in P , denoted by Krep. Observe that the extending or replacement
edges are either incident to Ain (on the left) or incident to Bin (on the right). As such,
we define the set of possible query edges as a union of (left and right) complete graphs,
respectively:

Kext := Kext
L ∪Kext

R = (Ain(P )×Bout(P )) ∪ (Aout(P )×Bin(P )) ,

Krep := Krep
L ∪Krep

R =
(

Ain(P )×Bout(P )
)
∪

(
Aout(P )×Bin(P )

)
where, for any set of vertices U , U(P ) denotes the U -endpoints of paths in P and U(P ) :=
U\U(P ). We illustrate this in Figure 6.

Let Q3 be an arbitrary query of round 3. We partition the vertices A and B to consider
the paths in P that form vertex-disjoint 6-cycles with edges in Qext

3 = Q3 ∩Kext separately
from the ones that do not: Part (A◦, B◦) with N◦ many vertices consists of all vertices that
lie on the vertex-disjoint 6-cycles, including, for each 6-cycle, a vertex from Aout(P ) and one
from Bout(P ), whereas part (A◦, B◦) consists of the remaining N◦ = n−N◦ many vertices,
whose induced subgraph includes all the paths in P that do not form any 6-cycles with each
other using the query edges Qext

3 . See Figure 7 for an example of the partitioning.
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AoutBinAinBout

Krep
L

Kext
L

Kext
R

Krep
R

M̃1M̃2 M̃2

Figure 6 An illustration of the possible query
edges by a player who knows H̃2. The black edges
represent the induced maximal matchings M̃1

and M̃2 and the grey ones are their corresponding
non-edges Ñ1 and Ñ2. The possible query edges
Kext

L , Kext
R , Krep

L and Krep
R are complete graphs

on the vertices of their respective boxes.

AoutBinAinBout

Qext
3 Qext

3

Figure 7 An example of the partitioning based
on Qext

3 . The green edges represent the edges
necessarily in Qext

3 and the dashed red edges
represent the edges necessarily not in Qext

3 , i.e.,
the edges in Qext

3 = Kext\Qext
3 . The vertices in

the green box represent part (A◦, B◦) and the
remaining unboxed ones represent part (A◦, B◦).

▶ Lemma 28. H̃2 is partitioned w.r.t. parts (A◦, B◦) and (A◦, B◦) into structure graphs
H̃◦

2 = H̃2(A◦, B◦) and H̃◦
2 = H̃2(A◦, B◦), respectively, where H̃◦

2 ∪̇ H̃◦
2 dominates H̃2.

With Lemma 28, whose proof is given in Appendix C for completeness, the player’s
information in each part at the start of round 3 is exactly the respective generalisations of
H̃2. We show that the structure graphs H◦

3 and H◦
3 learned by the player in each part are

dominated by distinct structure graphs H̃◦
3 and H̃◦

3 , respectively, after query Q3. We defer
the corresponding proofs of Lemmas 29 and 30 to Appendix C to save space.

A◦
outB◦

inA◦
inB◦

out

M̃ext
◦ M̃ rep

◦

(a) A gadget of the structure
graph H̃◦

3 .

A◦
outB◦

inA◦
inB◦

out

M̃ext
◦ M̃ rep

◦

(b) First case of a gadget of the
structure graph H̃◦

3 .

A◦
outB◦

inA◦
inB◦

out

M̃ext
◦ M̃ rep

◦

(c) Second case of a gadget of
the structure graph H̃◦

3 .

Figure 8 Illustrations of the gadgets of the structure graphs H̃◦
3 and H̃◦

3 , respectively. The thick
blue edges (solid and dashed) represent the matchings M̃ext

◦ and M̃ext
◦ . The thick orange edges

represent the matchings M̃ rep
◦ and M̃ rep

◦ . The grey edges represent the non-edges Ñmax
◦ and Ñmax

◦ .
The dashed edges (black and blue) represent maximum matchings in worst-case underlying graphs.

Let P ◦ be the set of the |M̃◦
1 | many vertex-disjoint length-2 paths in part (A◦, B◦). Let

G◦ be a collection of at least |M̃◦
1 |

4 − 1 many vertex-disjoint gadgets such that each gadget is
made up of two distinct vertices from A◦

out(P ◦) and two from B◦
out(P ◦), and four distinct

paths from P ◦ where two have their endpoints in A◦ while the other two have theirs in B◦.
Let M̃ ext

◦ ⊆ Kext
◦ be a matching such that each gadget has two edges that from a 6-cycle

with two of the paths. Let M̃ rep
◦ ⊆ Krep

◦ be another matching such that each gadget has two
edges, one from Krep

L and one from Krep
R , where only one of them is incident to the 6-cycle.

Let the inter-gadget edges of Kext
◦ ∪Krep

◦ be the non-edges Ñgad
◦ . We assert the maximality

of the matching M̃◦
3 = M̃ ext

◦ ∪ M̃ rep
◦ by committing the edges of Kext

◦ ∪Krep
◦ within each

gadget that have both endpoints unmatched by M̃◦
3 to be the non-edges Ñmax

◦ . Then, we
define H̃◦

3 = (A◦, B◦, Ẽ◦
2 ∪ M̃◦

3 , F̃ ◦
2 ∪ Ñ◦

3 ) where Ñ◦
3 = Ñgad

◦ ∪ Ñmax
◦ . See Figure 8a for an

illustration of a single gadget.
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▶ Lemma 29. Any structure graph H◦
3 learned by the player is dominated by H̃◦

3 .

Let P ◦ be the set of the |M̃◦
1 | many vertex-disjoint length-2 paths in part (A◦, B◦). Let

G◦ be a collection of at least |M̃◦
1 |

4 − 1
2 many vertex-disjoint gadgets such that each gadget is

made up of two distinct vertices from A◦
out(P ◦) and two from B◦

out(P ◦), and four distinct
paths from P ◦ where two have their endpoints in A◦ while the other two have theirs in B◦.
Let M̃ ext

◦ ⊆ Kext
◦ be a matching such that each gadget has two edges that form a length-8

path with three of the paths, leaving the other path unmatched. Let M̃ rep
◦ ⊆ Krep

◦ be another
matching such that each gadget has two edges, one from Krep

L and one from Krep
R , where one

of them is incident to the path unmatched by M̃ ext
◦ . Let the inter-edges of Kext

◦ ∪Krep
◦ be

the non-edges Ñgad
◦ . We assert the maximality of matching M̃ rep

◦ among the edges of Krep
◦ in

each gadget by committing its edges that have both endpoints unmatched by M̃ rep
◦ to be the

non-edges Ñ rep
◦ . We assert the maximality of the matching M̃ ext

◦ among the edges of Kext
◦

with the non-edges Ñ ext
◦ in two distinct cases of a gadget: Ñ ext

◦ is such that each gadget
either has (1) the only two edges of Kext

◦ with both endpoints unmatched by M̃ ext
◦ , or (2) two

edges of Kext
◦ that form a length-8 path and are both incident to only the A-vertices or only

the B-vertices of M̃ ext
◦ . Note that the gadgets in the latter case are indeed maximal since,

by construction of part (A◦, B◦), there are no 6-cycles among its query edges. Then, we
define H̃◦

3 = (A◦, B◦, Ẽ◦
2 ∪ M̃◦

3 , F̃ ◦
2 ∪ Ñ◦

3 ) where Ñ◦
3 = Ñgad

◦ ∪ Ñmax
◦ . See Figures 8b and 8c

for illustrations of the two cases of a gadget.

▶ Lemma 30. Any structure graph H◦
3 learned by the player is dominated by H̃◦

3 .

By Lemmas 29 and 30, the player, whose structure graph is H̃2 at the start of round 2, has
its structure graph dominated by H̃◦

3 ∪̇ H̃◦
3 by the end of round 3. Note that, since there are no

inter-gadget edges, H̃◦
3 ∪̇ H̃◦

3 is made up of the collection of gadgets G = G◦∪G◦. As such, each
gadget is either a gadget from H̃◦

3 , the first case gadget from H̃◦
3 , or the second case gadget

from H̃◦
3 . It follows then that there are at least |M̃◦

1 |
4 −1+ |M̃◦

1 |
4 − 1

2 = N◦

16 + N◦

16 −
3
2 = |M̃1|

4 −
3
2

many gadgets in G and, since each gadget has exactly four edges of M̃1 = M̃◦
1 ∪ M̃◦

1 , there
are at most |M̃1|

4 many gadgets in G.

▶ Lemma 31. The largest matching in H̃◦
3 ∪̇ H̃◦

3 is of size at most 5·|M̃1|
4 .

Proof. Since each gadget is vertex-disjoint, we only need to consider the number of edges that
each case of a gadget contributes to a largest output matching M̃out

3 . By Berge’s theorem or
similar, every edge with an endpoint of degree 1 is included in a largest output matching
and thus it is easy to see that each gadget contributes exactly 5 edges to M̃out

3 . Finally, any
edge of M̃1 not included in a gadget contributes fewer edges, hence; we assume that all form
part of a gadget, which implies that |G| = |M̃1|

4 and the result. ◀

▶ Lemma 32. There exists a graph consistent with H̃◦
3 ∪̇ H̃◦

3 that has a maximum matching
of size at least 2 · |M̃1| − 12.

Proof. Any graph consistent with H̃◦
3 ∪̇ H̃◦

3 may only consist of the edges within the vertex-
disjoint gadgets. As such, we construct a maximum matching w.r.t. to each case of a gadget
independently. Observe that all cases of a gadget, on 16 vertices, can be partitioned into 4
vertex-disjoint parts such that each consists of two A-vertices and two B-vertices, and they
respectively correspond to the edges Kext

L , Kext
R , Krep

L and Krep
R unknown to the player who

knows H̃2. After query Q3, at most a single non-edge f in each part is learned; hence, the
remaining two edges incident to f can be used to construct a perfect matching in each part,
which is thus a perfect matching, of size 8, in each gadget. Finally, we have that, since there
are |G| ≥ |M̃1|

4 − 3
2 many vertex-disjoint gadgets, the result holds. ◀
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Overall, we have that the structure graph learned by the player after round 1 is dominated
by H̃1, for any arbitrary query Q1. Then, in round 2, any arbitrary query Q2 made by
the player partitions the vertices into parts (A+, B+) and (A−, B−) such that the structure
graphs learned in each part is dominated by the respective generalisations of H̃2, i.e., H̃+

2
and H̃−

2 , by the end of round 2. In round 3, each part is dominated by the respective
generalisations of H̃◦

3 ∪̇ H̃◦
3 , which we denote as H̃+

3 and H̃−
3 , respectively, for any arbitrary

query Q3. As such, the player’s overall information by the end of round 3 is H̃+
3 ∪̇ H̃−

3 for
any arbitrary sequence of queries Q1, Q2, Q3. Finally, we prove Lemma 33, which implies
Theorem 15-3.

▶ Lemma 33. The approximation factor of the structure graph H̃+
3 ∪̇ H̃−

3 is at most 5
8 + 24

n .

Proof. Recall that n
4 is odd; hence, H̃+

2 and H̃−
2 are such that, w.l.o.g., |M̃+

1 | is even and
|M̃−

1 | is odd, and are dominated be the respective generalisations of H̃◦
3 ∪̇ H̃◦

3 , that is, H̃+
3 and

H̃−
3 . As such, we consider both cases, particularly paying attention to H̃−

3 and considering
its isolated edge and vertices. It follows by Lemma 31 that H̃+

3 has a largest matching of
size at most 5·|M̃+

1 |
4 ; however, H̃−

3 has one of size at most 5·|M̃−
1 |

4 − 1
4 . Then, Lemma 32

immediately implies that H̃+
3 has a consistent graph G+

3 such that µ(G+
3 ) ≥ 2 · |M̃+

1 | − 12;
however, it implies that H̃−

3 has a consistent graph G−
3 such that µ(G−

3 ) ≥ 2 · |M̃−
1 | − 13.

Finally, by Observations 19 and 20, the approximation factor of H̃+
3 ∪̇ H̃−

3 is at most
5
4 |M̃1|− 1

4
2·|M̃1|−25 ≤

5
8 + 8

|M̃1| = 5
8 + 24

n for large enough n. ◀

4 Conclusion

In this paper, we gave tight results on the approximation factor achievable by deterministic
algorithms in the maximal matching edge-query model for up to 3 rounds. Our main result
is a 0.625-approximation algorithm for MBM, which operates in three query rounds, and we
proved that this is best possible. This algorithm can be implemented in the semi-streaming
model and constitutes an improvement over the previously best 3-pass algorithm with
approximation factor 0.6111 by Feldman and Szarf [13]. The best approximation factors
achievable in one and two rounds are 1

2 and 1
2 + Θ( 1

n ), respectively, even in general graphs.
We conclude with three open questions:

1. Randomization. Our paper only considers deterministic query algorithms. Does random-
ization allow us to improve upon the results obtained in this paper?

2. Adaptivity. The algorithms considered in this paper are adaptive in the sense that the ith
query can depend on the maximal matchings returned in rounds 1, . . . , i − 1. Can we
obtain interesting results if we allow multiple non-adaptive queries, i.e., queries that do
not depend on the output produced by other queries?

3. Semi-streaming Algorithms. Is there a 3-pass semi-streaming algorithm for MBM with
approximation factor better than 0.625 (that necessarily cannot be implemented as a
deterministic edge-query algorithm)?
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A Proofs of Lemmas 4–6

▶ Lemma 4. There exists a maximum matching M∗ such that M∗ ∪M1 has no even-length
alternating paths or cycles.

Proof. Let P (M∗) be the set of even length alternating paths or cycles in M∗ ∪M1. If it is
non-empty, we can use any p ∈ P (M∗) to find another maximum matching M̂∗.

Observe first that the edges of p alternate between edges in M1 and M∗ and is of even
length. Therefore, we construct M̂∗ from M∗, without decreasing its size, by replacing the
edges of M∗ ∩ p with the edges of M1 ∩ p. Finally, M̂∗ is indeed a maximum matching since
the edges of M1 ∩ p are vertex disjoint from the edges of M∗\(M∗ ∩ p), otherwise p would
not be an even length alternating path.

The only difference between the edges in M∗ ∪M1 and M̂∗ ∪M1 are the removed edges
M∗ ∩ p which means that p is no longer an alternating path in M̂∗ ∪M1 whereas all others
remain unchanged. Therefore, |P (M̂∗)| = |P (M∗)| − 1. Repeating this process until no such
paths exist produces a maximum matching where the claim holds. ◀

▶ Lemma 5. Each vertex of A(M1) and B(M1) is the endpoint of an edge in M∗.

Proof. Since M∗ is a maximal matching, every edge of M1 must be incident to at least one
of its edges. By Lemma 4, there are no even length alternating paths in M∗ ∪M1; hence,
every (a, b) ∈ M1 is either an edge of M∗ or part of an augmenting path in M∗ ∪M1. In
either case, a and b are each endpoints of exactly one edge of M∗. ◀
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▶ Lemma 6. |M∗ ∩GL| = |M∗ ∩GR| = ( 1
2 − ϵ) · µ(G).

Proof. Firstly, every edge of M∗ ⊕M1 is part of an alternating path or cycle since M1 is
maximal. Then, by Lemma 4, there are only odd length alternating paths, i.e., augmenting
paths. Finally, any augmenting path must begin with an edge of M∗ in GL and end with
one in GR (or vice versa) with all other edges along the path belonging to Gin. See Figure 2
for an example. Thus, the number of edges of M∗ in GL and GR, respectively, is the number
of vertex-disjoint augmenting paths, which we subsequently show is exactly ( 1

2 − ϵ) · µ(G)
and thus implies the result.

Since M1 and M∗ are maximal matchings, every edge of M∗ must be incident to at least
one edge of M1, and vice versa. In the case that e ∈ M∗ ∩M1, both these conditions are
satisfied and e is an isolated edge in M∗ ∪M1 as both are matchings. Hence, in all other
cases, the edges of M∗ and M1 belong to an alternating path in M∗ ⊕M1, all of which are
necessarily vertex-disjoint since no two edges from a matching may share the same endpoint.
Then, by Lemma 4, these are necessarily (odd length) augmenting paths. Finally, since M∗

is a maximum matching of size µ(G) and each vertex-disjoint augmenting path increases the
size of M1 by 1, there must be exactly µ(G) − |M1| many paths and the claim follows by
Observation 3. ◀

B Reason for Assumption 21

▶ Assumption 21. In each round 1 ≤ i ≤ r, we assume that the query Qi does not contain
any edges or non-edges already learned by the player.

Reason. Let H = (A, B, E, F ) be the structure graph known by the player. Let e ∈ E and
f ∈ F . If e ∈ Qi, then the oracle can add e to the returned matching Mi without revealing
any information about the edges incident to e that the player could have otherwise learned;
thus, the query Qi\{e} could never reveal less information than Qi. If f ∈ Qi, then f would
never be in Mi; hence, Qi\{f} would be an equivalent query. ◀

C Proofs of Lemmas 24–26 and 28–30

▶ Lemma 24. H̃1 is partitioned w.r.t. parts (A+, B+) and (A−, B−) into structure graphs
H̃+

1 = H̃1(A+, B+) and H̃−
1 = H̃1(A−, B−), respectively, where H̃+

1 ∪̇ H̃−
1 dominates H̃1.

Proof. Consider part (A+, B+) and its vertex-induced subgraph. Since (A+, B+) consists of
the vertices of length-3 alternating paths w.r.t. M̃1, the inclusion of the vertices of each path
includes a matching edge from M̃1 and two unmatched vertices, one in Aout and one in Bout.
Thus, the matching edges M̃+

1 = M̃1 ∩ (A+ ×B+) and the non-edges Ñ+
1 = Ñ1 ∩ (A+ ×B+)

are exactly the edges and non-edges of H̃1(A+, B+). Part (A−, B−) follows similarly since
the remaining vertex-induced subgraph must have two unmatched vertices for every matching
edge. Finally, since no edges of Ẽ1 cross the partition, the disjoint union of each part
dominates the original structure graph. ◀

▶ Lemma 25. Any structure graph H+
2 learned by the player is dominated by H̃+

2 =
H̃2(A+, B+).

Proof. Let Q+
2 := Q2 ∩ (A+ × B+) be the query edges relevant to part (A+, B+). By

construction of the partition, M∗(Q2) ∩ (A+ ×B+) ⊆ Q+
2 is a perfect matching in (A+, B+)

such that every edge in M̃+
1 is incident to two edges in M∗(Q2). Let W +

L be the perfect
matching edges incident to A+

in = A(M̃+
1 ) and let W +

R be the ones incident to B+
in = B(M̃+

1 ).
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As such, M̃+
1 ∪W +

L ∪W +
R is exactly the edges of the the |M̃+

1 | many vertex-disjoint length-3
paths used to construct part (A+, B+). Therefore, we can construct matchings M+

L ⊆W +
L

and M+
R ⊆W +

R of size
⌊

|M̃+
1 |

2

⌋
such that M̃+

1 ∪M+
L ∪M+

R has no length-3 paths. We then
assert the maximality of M+

2 = M+
L ∪M+

R by committing N+
L = A+

in\A(M+
L )×B+

out\B(M+
L )

and N+
R = A+

out\A(M+
R )×B+

in\B(M+
R ) as non-edges.

Finally, we let σ be a graph isomorphism4 that relates this to H̃+
2 where M+

L = σ(M̃+
L )

and M+
R = σ(M̃+

R ). Then, we have that M+
2 ⊆ σ(M̃+

2 ) and N+
2 = N+

L ∪N+
R ⊆ σ(Ñ+

2 ). ◀

▶ Lemma 26. Any structure graph H−
2 learned by the player is dominated by H̃−

2 =
H̃2(A−, B−).

Proof. Let Q−
2 := Q2 ∩ (A− × B−) be the query edges relevant to part (A−, B−). By

construction of the partition, M∗(Q2)∩(A−×B−) ⊆ Q−
2 is a maximum matching in (A−, B−)

such that every edge in M̃−
1 is incident to at most one edge in M∗(Q2). Let W −

L be the
matching edges incident to A−

in = A(M̃−
1 ) and let W −

R be the ones incident to B−
in = B(M̃−

1 ).
If |W −

L | ≥
⌊

|M̃−
1 |

2

⌋
, then we let M−

L ⊆W −
L be of size

⌊
|M̃−

1 |
2

⌋
and assert its maximality among

the query edges Q−
2 ∩ (A−

in ×B−
out) by letting N−

L = A−
in\A(M−

L )×B−
out\B(M−

L ). Otherwise,
if |W −

L | <
⌊

|M̃−
1 |

2

⌋
, then we let M−

L = W −
L which is trivially maximal; thus, N−

L = ∅. We
similarly consider W −

R to construct the maximal matching M−
R with non-edges N−

R . Thus,
there are no length-3 paths in M̃−

1 ∪M−
L ∪M−

R .
Finally, we let σ be a graph isomorphism that relates this to H̃−

2 where M−
L ⊆ σ(M̃−

L )
and M−

R ⊆ σ(M̃−
R ); thus, we have that M−

2 = M−
L ∪M−

R ⊆ σ(M̃−
2 ) and N−

2 = N−
L ∪N−

R ⊆
σ(Ñ−

2 ). ◀

▶ Lemma 28. H̃2 is partitioned w.r.t. parts (A◦, B◦) and (A◦, B◦) into structure graphs
H̃◦

2 = H̃2(A◦, B◦) and H̃◦
2 = H̃2(A◦, B◦), respectively, where H̃◦

2 ∪̇ H̃◦
2 dominates H̃2.

Proof. Consider part (A◦, B◦) and its vertex-induced subgraph. Since (A◦, B◦) consists of
the vertices of length-6 cycles each with a corresponding vertex unmatched by both matchings
M̃1 and M̃2, we have that, for every two edges of M̃1 included, two edges of M̃2, one incident
to Ain and one to Bin, and two unmatched vertices, one in Aout and one in Bout, are added
to (A◦, B◦). Therefore, it is a generalisation of H̃2. Part (A◦, B◦) follows similarly since the
remaining vertices must have the same properties. ◀

▶ Lemma 29. Any structure graph H◦
3 learned by the player is dominated by H̃◦

3 .

Proof. Let Q◦
3 = Q3 ∩ (A◦ ×B◦) be any query w.r.t. part (A◦, B◦). By construction, every

path in P ◦ forms a 6-cycle with another one using the edges of Qext
◦ = Q◦

3 ∩Kext
◦ . Let C be

a set representing the |M̃◦
1 |

2 many 6-cycles. Each 6-cycle in C has one vertex in A◦
in(P ◦) and

one in B◦
in(P ◦) such that every edge of Qrep

◦ = Q◦
3 ∩Krep

◦ is incident to exactly one of these
vertices while the other is in A◦

out(P ◦) ∪B◦
out(P ◦). As such, we represent each 6-cycle as an

edge between its endpoints in A◦
in(P ◦) and B◦

in(P ◦) and delete all its other vertices. This
exactly simulates a structure graph that, using a graph isomorphism σ′, is dominated by the
generalisation H̃1(A′, B′) where A′ = A◦

in(P ◦) ∪A◦
out(P ◦), B′ = B◦

in(P ◦) ∪B◦
out(P ◦) and C

has a one-to-one correspondence with M̃ ′
1. There is then a one-to-one correspondence of the

edges Krep
◦ to the edges (A′

in ×B′
out) ∪ (A′

out ×B′
in); hence, any query Qrep

3 w.r.t. H̃◦
2 has a

one-to-one correspondence to a query Q′ w.r.t. H̃1(A′, B′).

4 Note that the player knows H̃1 at the start of round 2 and H̃2 is specified w.r.t. H̃1; thus, the graph
isomorphism from round 1 is implicitly considered in H2 and H̃2.
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Using the round 2 analysis in a white-box manner, we partition the vertices A′ and B′

into parts (A+, B+) and (A−, B−) using the query Q′, which then, using isomorphisms σ+

and σ−, are dominated by H̃+
2 and H̃−

2 by Lemmas 25 and 26, respectively. Let C+ and
C− be the corresponding partition of C w.r.t. the partitioning of M̃ ′

1 into M̃+
1 and M̃−

1 .
Let M̃+

◦ , M̃−
◦ be the matchings and Ñ+

◦ , Ñ−
◦ be the non-edges in H̃◦

3 that correspond to the
matchings M̃+

2 , M̃−
2 and the non-edges Ñ+

2 , Ñ−
2 in H̃+

2 , H̃−
2 , respectively. Recall that M̃+

2
(and M̃−

2 ) has an equal number of edges incident to A′
in and B′

in such that each edge in M̃+
1

(resp. M̃−
1 ), except for at most one, is incident to exactly one edge in M̃+

2 (resp. M̃−
2 ); hence,

M̃+
◦ (resp. M̃−

◦ ) has an equal number of edges in Krep
L and Krep

R such that each 6-cycle in
C+ (resp. C−), except for at most one, is incident to exactly one edge in M̃+

◦ (resp. M̃−
◦ ).

We now construct each vertex-disjoint gadget of G◦ to consist of the endpoints of two
distinct edges in M̃+

◦ (or M̃−
◦ ), one from Krep

L and one from Krep
R , including the vertices of the

two respective cycles in C+ (resp. C−) that they are incident to, and two distinct unmatched
vertices corresponding to vertices in (A+, B+) (resp. (A−, B−)), one from A◦

out(P ◦) and one
from B◦

out(P ◦). Thus, the non-edges Ñ+
◦ (resp. Ñ−

◦ ) are such that each gadget only has
non-edges where both vertices are unmatched by M̃+

◦ (resp. M̃−
◦ ). Then, M̃+

◦ ∪ M̃−
◦ = M̃ rep

◦
and Ñ+

◦ ∪ Ñ−
◦ = Ñ rep

◦
We currently have that each gadget consists of two 6-cycles, each using two vertex-disjoint

edges of Qext
◦ . If the number of 6-cycles |C+| (or |C−|) in part (A+, B+) (resp. (A−, B−))

is odd, then there is one 6-cycle that would not be in any gadget, i.e., the one without an
incident edge in M̃+

◦ (resp. M̃−
◦ ); hence, in any case, there are at least |C+|+|C−|−2

2 = |M̃◦
1 |

4 −1
many gadgets in G◦. We complete each gadget by letting the edges of Qext

◦ for only one of the
6-cycles be the edges of the matching M̃ ext

◦ while the edges for the other are committed as
the non-edges Ñ ext

◦ , which are vertex-disjoint from M̃ ext
◦ since the 6-cycles are vertex-disjoint.

Then, with the non-edges Ñgad
◦ , we have that M̃ ext

◦ ∪ M̃ rep
◦ = M̃◦

3 is a maximal matching
since Ñ rep

◦ ∪ Ñ ext
◦ ∪ Ñgad

◦ = Ñmax
◦ ∪ Ñgad

◦ = Ñ◦
3 . Therefore, any structure graph H◦

3 learned
w.r.t. the player’s query Q◦

3 is dominated by H̃◦
3 such that M◦

3 ⊆ σ(M̃◦
3 ) and N◦

3 ⊆ σ(Ñ◦
3 )

using the graph isomorphism σ = σ′ ◦ σ+ ◦ σ−. ◀

▶ Lemma 30. Any structure graph H◦
3 learned by the player is dominated by H̃◦

3 .

Proof. Before making a query, the player knows H̃◦
2 in part (A◦, B◦); thus, we have that

there are an equal number of paths in P ◦ that have their endpoints in A◦ and in B◦, which
are also the same as the number of vertices in A◦

out(P ◦) and B◦
out(P ◦), respectively. As

such, we first construct each vertex-disjoint gadget of G◦ to consist of the endpoints of
four distinct paths in P ◦, two with their endpoints in A◦ and two in B◦, and four distinct
vertices, two from A◦

out(P ◦) and two from B◦
out(P ◦). Since |P ◦| = |M̃◦

1 | is even, there are⌊
|M̃◦

1 |
4

⌋
≥ |M̃◦

1 |
4 − 1

2 many gadgets in G◦.

Let Q◦
3 = Q3 ∩ (A◦ × B◦) be any query w.r.t. part (A◦, B◦). At this point, each

gadget of G◦ has the same structure and receives a subset of the query edges Q◦
3 that is

independent from the other gadgets. As such, it is sufficient to consider all possible queries
Q′

◦ ⊆ Kext
◦ ∪Krep

◦ w.r.t. a single gadget. In general, Q′
◦ can be partitioned into four smaller

parts: Qext
L = Q′

◦ ∩Kext
L , Qext

R = Q′
◦ ∩Kext

R , Qrep
L = Q′

◦ ∩Krep
L and Qrep

R = Q′
◦ ∩Krep

R , each
being any possible query w.r.t. two A-vertices and two B-vertices.

▷ Claim 34. Let Q be any arbitrary set of edges and let g be any arbitrary edge w.r.t.
two A-vertices and two B-vertices where the player knows only the empty structure graph.
Then, the structure graph with one edge e ̸= g and one non-edge f such that e and f are
vertex-disjoint dominates the structure graph learned by the player after query Q.

STACS 2023
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Proof. If Q is the empty query, then no information is learned by the player and the claim
holds. Otherwise, let e ̸= g ∈ Q be an arbitrary edge in the query, if one exists. Since there
are only two A-vertices and two B-vertices, there exists only one possible edge f which is
vertex-disjoint from e. If f ∈ Q then we commit f as a non-edge, which makes the edge e a
maximal matching. Otherwise, f /∈ Q and we have that e is already maximal. In the case
where ∄e ≠ g ∈ Q, we commit f = g as a non-edge, which implies that the empty matching
is maximal since Q has no other edges. ◁

By Claim 34, we have that the player learns at most the edges erep
L ∈ Krep

L and erep
R ∈ Krep

R ,
possibly with the non-edges f rep

L ∈ Krep
L and f rep

R ∈ Krep
R , after the queries Qrep

L and Qrep
R ,

respectively. Therefore, the player learns the matching M rep
◦ ⊆ M̃ rep

◦ = {erep
L , erep

R } and
non-edges N rep

◦ ⊆ Ñ rep
◦ = {f rep

L , f rep
R }. As such, in each gadget, edge erep

L is incident to a
path p with its endpoints in B◦ while edge erep

R is incident to a path q with its endpoints in
A◦. Furthermore, we have that there exists a unique edge gext

L ∈ Kext
L and a unique edge

gext
R ∈ Kext

R each of which are incident to p and q – we never want these edges to belong to
the player’s maximal matching M ext

◦ .
We now consider the pair of queries Qext

L and Qext
R that, by construction of part (A◦, B◦),

do not contain edges that form 6-cycles with any paths in P ◦. This implies that if gext
L ∈ Qext

L

(or gext
R ∈ Qext

R ) then gext
R /∈ Qext

R (resp. gext
L /∈ Qext

L ). Furthermore, since every pair of
Qext

L and Qext
R has a symmetrical pair, we only need to consider the pairs of queries where

gext
L /∈ Qext

L and show that the edges and non-edges learned in a single gadget are subsets of
the edges M̃ ext

◦ and (either case of) the non-edges Ñ ext
◦ w.r.t. a single gadget.

If either query is empty, by Claim 34, we have that the edges, which avoid gext
R , and

non-edges learned are thus subsets of a first case gadget in H̃◦
3 . Otherwise, both queries are

non-empty and there exists query edges eL ̸= gext
L ∈ Qext

L and eR ∈ Qext
R . We then have that

they either form a length-8 path in the gadget or do not. Consider first the simpler latter
case where the query edges necessarily form two length-5 paths and are the only query edges
since they do not form length-8 paths or 6-cycles. Let M ext

◦ = {eext
L } and N ext

◦ = {f ext
R }

where eext
L = eL and f ext

R = eR. M ext
◦ is naturally maximal, and the edges and non-edges

learned are a subset of the second case gadget in H̃◦
3 .

Consider now the case where the query edges eL ̸= gext
L and eR form a length-8 path.

If eR ̸= gext
R , let M ext

◦ = {eext
L , eext

R } where eext
L = eL and eext

R = eR. Since eext
L ≠ gext

L the
endpoints of either p or q in the gadget remain unmatched by M ext

◦ . Then, if they exist,
we add the edges f ext

L ∈ Qext
L and f ext

R ∈ Qext
R that are unmatched by M ext

◦ to an initially
empty set of non-edges N ext

◦ ; hence, M ext
◦ is maximal and the edges and non-edges learned

are a subset of the first case gadget in H̃◦
3 . Otherwise, we have that eR = gext

R and let
N ext

◦ = {f ext
L , f ext

R } where f ext
L = eL and f ext

R = eR. Any possible remaining query edges
must be either only incident to or only not incident to N ext

◦ since they may not form any
6-cycles. We pick at most one from Qext

L and one from Qext
R then add them to an initially

empty matching M ext
◦ , which is thus maximal and, if both exist, forms a length-8 path that

leaves the endpoints of either p or q in the gadget unmatched since M ext
◦ does not contain

gext
L or gext

R . If M ext
◦ and N ext

◦ are incident to each other, then the edges and non-edges
learned are a subset of the second case gadget in H̃◦

3 . Otherwise, they are a subset of the
first case gadget in H̃◦

3 . ◀
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