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—— Abstract

Let P be a convex polygon in the plane, and let 7 be a triangulation of P. An edge e in 7T is called
a diagonal if it is shared by two triangles in 7. A filip of a diagonal e is the operation of removing e
and adding the opposite diagonal of the resulting quadrilateral to obtain a new triangulation of P
from 7. The flip distance between two triangulations of P is the minimum number of flips needed
to transform one triangulation into the other. The CONVEX FLIP DISTANCE problem asks if the flip
distance between two given triangulations of P is at most k, for some given parameter k € N.

We present an FPT algorithm for the CONVEX FLIP DISTANCE problem that runs in time
O(3.82%) and uses polynomial space, where k is the number of flips. This algorithm significantly
improves the previous best FPT algorithms for the problem.
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1 Introduction

Let P be a convex polygon in the plane. A triangulation of P adds edges between non-
adjacent points in P to produce a planar graph 7 such that all faces except the outer face in
T are triangles. The edges in the triangulation 7 not on the convex hall are called diagonals.
The number of diagonals in 7 is denoted by ¢(T).

A flip of a diagonal e in T removes e and adds the opposite diagonal of the resulting
quadrilateral, thus transforming 7 to another triangulation 7’ of P. Given two triangulations
Tinit and Trinq of P, the flip distance between them, denoted as Dist(7init, Trinat), is the
minimum number of flips required to transform 7;,;¢ to Trina: (or equivalently from Tyinas
t0 Tinit)- The CONVEX FLIP DISTANCE problem is formally defined as:

CONVEX FLIP DISTANCE

Given: Two triangulation 7;,i; and Tyina of a convex polygon P in the plane.
Parameter: k.

Question: Is Dist(7init, Tfina) at most k7

The number of ways to triangulate a convex (n + 2)-gon is Cj,, the n-th Catalan number.
Consequently, there exists an isomorphism between triangulations of a convex polygon and
a plethora of counting problems, such as binary trees, Dyck paths, etc [28]. In particular,
there exists a bijection between the set of triangulations of a convex (n + 2)-gon and the set
of full binary trees with n internal nodes. Furthermore, flipping an edge in a convex polygon
triangulation corresponds to rotating a node in a binary tree, which is an essential operation
for maintaining balanced binary search trees. The rotation distance between two binary trees

© Haohong Li and Ge Xia; L)

37 licensed under Creative Commons License CC-BY 4.0 V"
40th International Symposium on Theoretical Aspects of Computer Science (STACS 2023). m I_
Editors: Petra Berenbrink, Patricia Bouyer, Anuj Dawar, and Mamadou Moustapha Kanté; 4 S1

Article No. 44; pp. 44:1-44:14

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fir Informatik, Dagstuhl Publishing, Germany


mailto:lih@lafayette.edu
mailto:xiag@lafayette.edu
https://doi.org/10.4230/LIPIcs.STACS.2023.44
https://arxiv.org/abs/2209.13134
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

44:2

An O(3.82%) Time FPT Algorithm for Convex Flip Distance

with the same number of nodes is the minimum number of rotations needed to transform
one binary tree into the other. Thus, finding the flip distance between two triangulations of
a convex (n + 2)-gon is equivalent to finding the rotation distance between two binary trees
with n internal nodes.

Determining the computational complexity of CONVEX FLIP DISTANCE (equivalently
the rotation distance problem between binary trees) has been an important open problem.
Despite extensive research on this problem [9, 3, 6, 22, 24, 27, 19, 12, 8, 7, 21, 5], it is still
unknown whether it is NP-hard or not.

In 1982, Culik and Wood [9] first studied the rotation distance problem between binary
trees and proved an upper bound of 2n — 2, where n is the number of internal nodes of the
trees. In 1988, Sleator, Tarjan, and Thurston [27] improved the upper bound to 2n — 6,
which is proven to be tight for n > 11 by Pournin [26].

In 1998, Li and Zhang gave two polynomial-time approximation algorithms [19] for
computing the flip distance of convex polygon triangulations. One algorithm has an approx-
imation ratio of 2 — m given that each vertex is an endpoint of at most d diagonals.
Another algorithm has an approximation ratio of 1.97 provided that both triangulations do
not contain internal triangles. Cleary and St. John [8] gave a linear-time 2-approximation
algorithm for rotation distance in 2009.

In 2009, Cleary and St. John [7] gave a kernel of size 5k for CONVEX FLIP DISTANCE
and presented an O*((5k)*)-time fixed-parameter tractable (FPT) algorithm based on this
kernel (the O* notation suppresses polynomial factors in the input size). The upper bound on
the kernel size of CONVEX FLIP DISTANCE was subsequently improved to 2k by Lucas [21],
who also gave an O*(kF)-time FPT algorithm for this problem. Very recently, Celvo and
Kelk improved the kernel size to (1 + €)k for any € > 0 in 2021 [5], although their result does
not lead to an improved approximation algorithm over [19] and [8].

The generalized version of the CONVEX FLIP DISTANCE problem, referred to as the
GENERAL FLIP DISTANCE problem, is the flip distance between triangulations of a point
set in general positions in the plane. The GENERAL FLIP DISTANCE problem is also a
fundamental and challenging problem, and has also been extensively studied [18, 1, 2, 4, 7,
13, 14, 20, 25, 17, 11].

In 1972, Lawson [18] gave an O(n?) upper bound on GENERAL FLIP DISTANCE, where n
is the number of points in S [18]. The complexity of the GENERAL FLIP DISTANCE problem
was resolved in 2012 by Lubiw and Pathak [20] who showed the problem to be A'P-complete.
Simultaneously, and independently, the problem was shown to be APX-hard by Pilz [25].
In 2015, Aichholzer Mulzer, and Pilz [2] proved that the flip distance problem is N"P-complete
for triangulations of a simple (but not convex) polygon.

Very recently, Kanj, Sedgwick, and Xia [16] presented the first FPT algorithm for
GENERAL FLIP DISTANCE that runs in O(n + kc*), where ¢ < 2 - 141, Their approach
defines a dependency relation for a sequence of flips: some flips required some other flips
to be performed first. They proved that any topological sort of the directed acyclic graph
(DAG) modeling this dependency relation yields the equivalent end result. Their algorithm
simulates a “non-deterministic walk” that tries the possible flips to find a topological sort
of the DAG representing an optimal solution. Refining this approach, Feng, Li, Meng, and
Wang improved the FPT algorithm to run in O(n + k - 32%) [11], which currently stands as
the best FPT algorithm for both GENERAL FLIP DISTANCE and CONVEX FLIP DISTANCE.
No more efficient polynomial space algorithm was known for CONVEX FLIP DISTANCE despite
its structural properties. We note in passing here that although a straightforward algorithm
based on breadth-first search (BFS) can find the flip distance between triangulations of a
convex polygon in time O*(C,) = O*(4"), where C,, is the n'* Catalan number, it requires
exponential space.
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In this paper, we present an FPT algorithm for the CONVEX FLIP DISTANCE problem
that runs in time O(3.82%) and uses polynomial space, where k is the number of flips. Instead
of performing a “non-deterministic walk” as in [16, 11], our algorithm computes a topological
sort of the DAG representing an optimal solution by repeatedly finding and removing its
source nodes. This approach allows us to take advantage of the structural properties of
CoNVEX FLIP DISTANCE and design a simple yet significantly more efficient algorithm.

Our algorithm is closely related to algorithms in [16] and [11]. All three algorithms rely
on the same structure results from [16] which state that (1) the flips in an optimal solution
have a dependency relation that can be modeled as a DAG, and (2) any topological sort of
this DAG yields an optimal solution. Therefore, three algorithms address the same problem:
how to find a topological sort of this unknown DAG. The algorithm of Kanj, Sedgwick,
and Xia [16] simulates a “non-deterministic walk”. For any diagonal e, the algorithm will
either flip e (when this flip is a source in the DAG) or move on to one of e’s neighbors
(when a neighbor of e must be flipped before e can be flipped). Through a sequence of such
“flip/move”-type local actions, a topological sort of the DAG (if exists) is found in time
O(n + kc*), where ¢ < 2 - 14!, The algorithm of Feng, Li, Meng, and Wang [11] refines
the “non-deterministic walk” approach by reducing the number of the action types and
streamlining the backtracking in the walk, resulting in an improved algorithm that runs
in time O(n + k - 32%). Different from the previous “walk”-based approach, our algorithm
performs a topological sort of the DAG by repeatedly finding and removing source nodes in
the DAG, similar to Kahn’s algorithm [15]. After the current source nodes of the DAG are

removed, the new source nodes can be found among the neighbors of the flipped diagonals.

Based on this more efficient approach and by exploiting the structural properties of CONVEX
FLIP DISTANCE, we significantly improve the running time of our algorithm to (3.82%).

2 Preliminaries

2.1 Flips, triangulations, and flip distance

For any flip f, we use the notation f< to denote the underlying diagonal e on which f is

performed, and the notation f~ to denote the new diagonal € added when f is performed.

For any two diagonals e; and e in T, we say they are neighbors if they appear in the same
triangle and say they are independent if they are not neighbors. Note that two independent
diagonals in T can share an endpoint, as long as they are not in the same triangle.

Let 7 and T be two triangulations of P. We refer to (7,77) as a pair of triangulations
of P. Denote by C(T,7T") the number of common diagonals shared by 7 and 7'. We say a
sequence of flips F' = (f1,..., fr) transforms a triangulation T to T, denoted as T EiN T, if
there exist triangulations T, ..., 7, such that 7o = 7T, 7, = T’, and performing flip f; in
Ti—1 results in T;, for s = 1,...,r. Such a transformation T LS 77 is referred to as a path
from T to T’ following F. The length of F' (equivalently, the length of the path T EiN T,
denoted |F|, is the number of flips in it. The flip distance Dist(7,7") is the length of the
shortest path between T and T”. A sequence of flips F' such that T EiN T’ is a shortest path
is called an optimal (or minimum) solution of the pair (7,7T").

Let f; and f; be two flips in F = (fi,..., fr) such that 1 <4 < j < r. The flip f; is
said to be adjacent to the flip f;, denoted f; — f;, if f;7 is a neighbor of f;~ in 7;_1. This
adjacency relation defines a partial order among flips in F: if f; — f; then f; must precede
[ because f;7 is a neighbor of f{~ at the moment when f; is performed. Therefore, the
adjacency relation on the flips in F' can be naturally represented by a directed acyclic graph
(DAG), denoted Dg, where the nodes of Dp are the flips in F, and its arcs represent the
(directed) adjacencies in F.

44:3
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Recall that a topological sort of a DAG is any ordering of its nodes that satisfies: For
any directed arc (u,v) in the DAG, u appears before v in the ordering. There could be many
different topological sorts of Dp, but the following lemma by Kanj, Sedgwick, and Xia [16]
asserts that all of them yield the same outcome:

» Lemma 1 ([16]). Let Ty be a triangulation and let F = (f1,..., f.) be a sequence of flips
such that To = Tr.. Let w(F) be a permutation of the flips in F such that ©(F) is a topological

sort of Dp. Then w(F) is a valid sequence of flips such that T ﬂ) T. Furthermore, the
DAG Dy (py, defined based on the sequence w(F), is the same directed graph as Dr.

» Definition 2. Let (Tinit, Trinat) be a pair of triangulations. Let e be a diagonal in Tinit.
We say e is a free-diagonal with respect to Tyinai if flipping e creates a new diagonal € that
is in Trinat- When the context is clear, we simply refer to e as a free-diagonal.

» Lemma 3. If ey and ey are two free-diagonals in Tinit, then er and eo are independent.

Proof. Let &; and ey be the edges created by flipping e; and ey in T, respectively. By
Definition 2, both €; and €3 are in Tfinq. If €1 and ey are neighbors, then €; and €; intersect
each other, contradicting the fact that both €; and € are in Tyinai- <

The following lemma by Sleator, Tarjan and Thurston [27] shows that free-diagonals can
be safely flipped and common diagonals will never be flipped in any shortest path.

» Lemma 4 ([27]). Let (Tinit, Trinal) be a pair of triangulations. (a) If Tinie contains a
free-diagonal e, then there exists a shortest path from Tinit to Trina where e is flipped first.
(b) If Tinit and Trinai share a diagonal e in common, then every shortest path from Tini: to
Trinat never flips e.

In a sequence of flips, a previously non-free diagonal can become a free-diagonal only
when one of its neighbors is flipped.

» Lemma 5. Let F = (fy,..., fr) be a sequence of flips such that Tinit = To EiN Tr = Ttinal
is a shortest path. Let e be a common diagonal of T;_1 and T;, for 1 <i <r. Ife is not a
free-diagonal in T;_1 and is a free-diagonal in T;, then f7 is a neighbor of e.

Proof. Suppose that f;7 is not a neighbor of e. Then )., the quadrilateral associated with
e, remains the same in 7; as in 7;_1. Therefore, flipping e in 7;_; creates the same diagonal
as flipping e in 7;, a contradiction to the fact that e is not a free-diagonal in 7;_1 and is a
free-diagonal in 7;. <

» Definition 6. A pair of triangulations (Tinit, Tfinal) of a convex polygon P is called trivial
Zf DiSt(ﬂnitv ﬁinal) = ¢(7;nzt) - C(%nita ﬂinal)'

» Lemma 7. If a pair of triangulations (Tinit, Tfinat) @s trivial, then every flip in an optimal
solution is a flip of a free-diagonal. Furthermore, it takes linear time to decide if a pair
(Tinit, Tfinat) is trivial.

Proof. If Dist(Tinit, Trinal) = ¢(Tinit) — C(Tinits Trinat), then every flip in an optimal solution
F of (Tinit, Trinat) must create an additional common diagonal between Tipni¢ and Trinai,
which means that every flip in F' is performed on a free-diagonal.

To decide if a pair (Tinit, Tfinar) is trivial, first find all initial free-diagonals in Ty,
and add them to a queue. Then flip the free-diagonals in the queue. By Lemma 5, new
free-diagonals must be neighbors of previous flips and hence can be found and added to
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the queue as the previous free-diagonals are flipped. The pair (Tinst, Tfinar) is trivial if and
only if there are always free-diagonals in the queue to be flipped until 7T;,;; is transformed
to Tfinat- Since the flip distance between Tini and Trina: is at most 2n — 4, where n is the
number of diagonals in T, and Tfina [26], this process takes linear time. <

» Definition 8. Let (Tinit, Trinat) be a pair of triangulations. Let I be a set of diagonals in

Tinit- We say I is a safe-set of diagonals with respect to Ttinal, or simply safe-set, if

1. the diagonals in I are pair-wise independent, and

2. for any permutation (1) of I, there is a shortest path from Tinit to Trinar such that the
diagonals in I are flipped first, in the same order as w(I).

The set of diagonals corresponding to the source nodes of D is a safe-set.

» Lemma 9. Let F = (f1,..., fr) be a sequence of flips such that Tinir = To £, Tr = Tfinal
is a shortest path. Let SC = {fsc,s---, [sc;} be the set of source nodes in Dr. The set of

diagonals I = {f5, ..., f&,} is a safe-set in Tings.

Proof. Let fsc,, fsc; € SC, i # j, be two source nodes in Dr. By Lemma 1, we may assume
that f,, is the first flip in F'. If f5_ and S‘; share a triangle in Tin¢, after flipping fs.,, fic,
and S‘_CJ share a triangle in 77, and hence by Lemma 1, there is a directed path from f,., to
fse; in Dp, contradicting to the fact that fs., is a source in Dg. Therefore, the diagonals in
I are independent.

For an arbitrary permutation of 7(I), there is a topological sort of D that begins with
the flips in SC according to the order of 7(I). By Lemma 1, there is a shortest path between
Tinit and Tring that flips the diagonal in I first, in the order of w(I). Therefore, I is a

safe-set. <

2.2 Counting matchings in binary trees
The following lemma will be useful in the analysis of the running time of our algorithm.

» Lemma 10. Let T, be a binary tree rooted at a node u with n nodes and n — 1 edges. A
matching in T, is a subset of edges in T, that do not share any endpoint (we consider an
empty set to be a matching). Let &, be the set of matchings in T,. Let £, be the set of
matchings in Ty, that exclude the edge(s) incident on u. Then |E, | < F,, and |Ey| < Foy1,
where F,, is the n-th Fibonacci number.

Proof. Let £ be the set of matchings in 7T, that include exactly one edge incident on w.

Then |E,] = |EF] + |, |. The lemma is proven by induction on 7.

When n = 1, T, is a leaf. Thus £ = 0 and &, = {0}. Therefore, |EF]| = 0 < Fp,
€71 =1<F,and |E,| = |EF+ 16, =1 < Fa.
When n = 2, T}, has a single edge that connects u to a single leaf child v. Thus, & = {uv}

and &€, = {0}. Therefore, |EF|=1< Fy, || =1< Fy, and |E,| = |EF]|+ 1€, | =2 < F.
Now suppose that n > 3. We distinguish 2 cases.

(a) w has only one child v. In this case, T,, the subtree rooted at v, has n — 1 nodes and
n — 2 edges. Every matching in &, includes uv and hence excludes edges in T, incident
on v. Thus |[EF] = |€,| < F,—1 by the induction hypothesis. Every matching in &,
excludes uv and hence is also a matching in T;,. Therefore, |E;| = [E,]| < Fp—1)41 = Fn
by the induction hypothesis. Finally, |E,| = |EF| + |€,| < Fu—1 + F,, = F,41. The
statement is true.

(b) w has two children v, w. Let the number of nodes in T, and T, be ny and ns, respectively.

Then n = ny +ns + 1. We consider &, and &, separately:

44:5
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(i) The matchings in &, exclude both wv and ww. Therefore, |E, | = |&,] - |Ew] <
Froiv1Fn,+1 < Foygn,+1 < F,, by the induction hypothesis and the Honsberger’s
Identity of Fibonacci numbers.

(ii) The matchings in £ include exactly one of the edges uv and uw. The number of
matchings that include wv and exclude vw is |€, | |Ew| < Fiy Fny+1 by the induction
hypothesis. The number of matchings that include uw and exclude wv is |E, |- 1€, | <
F,,+1F,, by the induction hypothesis. Therefore, |EF| < F,,, F,4+1 + Fry+1Fn,-

Finally, ‘5u| = |gu_| + |€J| < Fn1+1Fn2+1 + FTL1F712+1 + Fn1+1Fn2 = n1+2Fn2+1 +
Fo+1Fn, = Fu4n,42 = Fui1, where the second last equality is the Honsberger’s
Identity of Fibonacci numbers.

This completes the proof. |

2.3 Parameterized complexity

A parameterized problem is a set of instances of the form (z,k), where z is the input
instance and k € N is the parameter. A parameterized problem is fized-parameter tractable
(FPT) if there is an algorithm that solves the problem in time f(k)|z|°, where f is a
computable function and ¢ > 0 is a constant. We refer to [10, 23] for more information about
parameterized complexity.

3 The algorithm and its analysis

3.1 The basic ideas

Given an instance (Tinit, Tfinal, k) of CONVEX FLIP DISTANCE, our algorithm decides whether
there is a sequence of flips F' = (f1,..., fr), r < k that transforms T, t0 Tfinal-

By Lemma 4, common diagonals will never be flipped and free diagonals can be safely
flipped. Thus, we can assume that (Tinit, Tfinas) does not have any common diagonals, i.e.,
C(Tinit, Tfina) = 0, and that there are no free-diagonals in the initial triangulation 7ipn..
Therefore, we can assume n < k < 2n — 4, where n = ¢(Tinit)-

In Preliminaries, we showed that we can represent a minimum solution F' to an instance
(Tinits Ttinar) using a DAG Dp, and that any topological sort of D is a minimum solution
(Lemma 1). Therefore, to solve an instance of CONVEX FLIP DISTANCE, it suffices to compute
a topological sort of Dp.

Intuitively, our algorithm computes a topological sort of Dg by repeatedly finding and
removing its source nodes, similar to Kahn’s algorithm [15]. The algorithm uses a branch-
and-bound approach to find and flip the source nodes in Dg.

This seemingly simple approach faces two technical challenges. The design of our algorithm
revolves around addressing them.

First, how to find the source nodes of the unknown Dy without trying all possible subsets
of the diagonals? The set I of initial source nodes of Dr must be a subset of independent
diagonals in T;p;;. Our algorithm enumerates all subsets of independent diagonals in 7+,
whose number is at most F, 1, the (n + 1)-th Fibonacci number (Lemma 14). Afterward,
any new source node f; of Dr must be adjacent to a previous source node f;. This means
that the underlying diagonal of f; is a neighbor of the new diagonal created by f;. Therefore,
when flipping a source node, our algorithm adds all neighbors of the new diagonal to a
candidate pool S from which new source nodes are chosen. In fact, the neighbors of the new
diagonal are added as pairs in S because at most one diagonal in each pair may be chosen as
a new source node. The next set of new source nodes of Dr will be chosen by branching on
the edge-pairs in S. This method significantly reduces the search space of the source nodes.
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Second, how to flip free-diagonals without increasing the branching factor of the algorithm?
By Lemma 4, any free-diagonals can be safely flipped. If there is a free-diagonal e in T,
our algorithm flips it to create a new diagonal €. Since € is a common diagonal and hence
will never be flipped again, the instance (7init, Tfinat) is then partitioned along € into two
smaller instances. The candidate pool S is also partitioned accordingly and passed on to the
two smaller instances. This method, through careful analysis, allows the free-diagonals to be

flipped “for free” essentially.

3.2 The algorithm

FlipDiSt(ﬂnih 7}inal7 k)

Input: Two triangulations Tinit and Tfinai, @ parameter k
Precondition: C(Tinit, Tfinat) = 0 and there is no free-diagonals in Tinst
Output: True if Dist(Tinit, Trinat) < k; False otherwise.

0. If ¢(Tinit) > k, return False.

1. Tterate through all subsets I of independent diagonals in 7, as follows:

1.1. For each diagonal e € T, if none of the neighbors of e is in I, branch on two choices: (1)
include e in I; (2) do not include e in I.

1.2. At the end of the branching, if I is non-empty, do:
If FlipDist-I(Tinit, Tfinal, k, I) returns True, then return True.

2. Return False.

Figure 1 The function FlipDist.

FlipDist-1(Tinit, Trinat, k, 1)

Input: Two triangulations Tini: and Trinai, @ parameter k, and a set of independent diagonals 1.
Precondition: C(Tinit, Tfinar) = 0 and there is no free-diagonals in Tinst

Output: True if Dist(Tinit, Trinat) < k; False otherwise.

0. If ¢(Tinit) > k — |I], return False; If ¢(Tinit) = 0 and k > 0, return True.

1. Create an empty set S. For each edge e in I, do:

1.1. Flip e to create a new edge e.
1.2. Let Ay = {e1,ef,€} and Ay = {ez2,e5,€} be the triangles on either side of €. Add the
pairs (e1,e]) and (e2, e5) to the set S.
2. Return FlipDist-S(T init, Tinat, k — |I],S), where Tins is the triangulation resulting from
Tinit after all edges in I are flipped and S = {(e1,€}),..., (e, e;)} is the set of edge-pairs
created in Step 1.

Figure 2 The function FlipDist-I.

The algorithm’s main function FlipDist (Fig. 1) iterates through all subsets of independ-
ent diagonals in 7. For each non-empty subset I of independent diagonals that represents the
set of initial source nodes of a DAG D, two mutually recursive functions FlipDist-I (Fig. 2)
and FlipDist-S (Fig. 3) are invoked to repeatedly remove the source nodes and find the set
of new source nodes in Dg. Along the way, whenever a free-diagonal is flipped to create a

common diagonal, the instance is partitioned into smaller isolated instances.
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FlipDist-S(Tinit, Tfinat, k, S)

Input: Two triangulations Tini: and Tfinai, & parameter k, and a set of edge-pairs S.
Precondition: C(Tinit, Tfinat) =0

Output: True if Dist(Tinit, Trinat) < k; False otherwise.

0. If ¢(Tinit) > k, return False; If ¢(Tinit) = 0 and k > 0, return True.

1. If there is a free-diagonal e in Tinit, do:

1.1. Remove any edge-pair containing e from S. Flip the free-diagonal e to create a new
diagonal € € Tyinai- Let Tinit be the triangulation after flipping e.

1.2. Let Ay = {e1,e],e} and Az = {e2, e5,¢} be the triangles on either side of € in T ;nit. Add
the edge-pairs (e1, e]) and (e2,e5) to S.

1.3. Partition the triangulations 7 ;ni and Tyina: along € into {7—;nit, T—fmt} and {Tflmaz, ﬂ%nal},
respectively. Partition the edge-pairs S into {51, 52} accordingly so that S is in 77’}7”',&
and So is in 77’22,m Let n1 = <Z>(7i:m~t) and ng = (b(?fmt)

1.4. 1If the pair (7‘:““7 Tfinar) is trivial, set k1 = ns.

1.5. Else, find the smallest k1 between ni 4+ 1 and min(k — 1 — n2, 2n1) such that
FlipDist-S(?imt7 Tflmau k1,S1) returns True; If such a k1 does not exist, return False.

1.6. If the pair (77'?””,7}21-”“) is trivial, return True.

1.7. Return FlipDist-S(T inir, Thnars k — 1 — ki, Sa).

2. Tterate through all non-empty subsets I of independent diagonals in | J .S, as follows:

2.1. For each edge pair (e;,e;) € S, branch on up to three choices of their membership in I:
(1) include neither e; nor e;; (2) include e; but not ej; and (3) include e; but not e;. Skip
a choice if it tries to include a non-diagonal edge or a diagonal with a neighbor already
included in 1.

2.2. At the end of branching, if I is non-empty, do:

If FlipDist-I(Tinit, Tfinai, k, I) returns True, then return True.

3. Return False.

Figure 3 The function FlipDist-S.

Specifically, FlipDist-I(T;nit, Tfinai, k, I) performs flips on all diagonals in I. Suppose
that a diagonal e € T is flipped to create a new edge €. There are two triangles A; = {ej, e}, €}
and Ay = {eq, €5, €} on opposite sides of €. The edges e, €], ea, €, are candidates of the new
source nodes in Dp. Since (e, €}) are neighbors and so are (e, €5), at most one edge can be
chosen from each pair as a new source node. Therefore, the pairs (e1,¢e]) and (ez,e5) are
added to a candidate pool S. After all diagonals in I are flipped, the current triangulations
are T init and Tfinal, the current parameter is k — |I| since || flips are already performed,
and the candidate poll is S, all of which are passed to FlipDist-S as parameters.

FlipDist-S(Tinit, Ttinal, k, S) first flips free-diagonals (if any) in 7;ni:. When a free-
diagonal e is flipped, a common diagonal € is created, and by Lemma 4, the instance can
be safely partitioned along € into two smaller isolated sub-instances, which can be solved
recursively in a divide-and-conquer approach. In order to determine the parameters of the
sub-instances, it is necessary to find the smallest parameter k; such that the first sub-instance
returns True. The parameter of the second sub-instance is then set to be k — k1. If there are
no free-diagonals, FlipDist-S branches on the pairs of edges in S to form the safe-set I for
the next round. For each edge-pair (e;,e;) € S in S, I may include neither, only e;, or only
e}, forming a three-way branching.
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3.3 Analysis of the algorithm

In the following, we will prove the correctness of the algorithm and analyze its running time.
We start by proving the following invariant for both FlipDist-I and FlipDist-S:

> Claim 11. For every new diagonal created in FlipDist-I and FlipDist-S, its neighbors
are contained in (J S, which is the union of the edge-pairs in S.

Proof. In FlipDist-I, after each diagonal e € I is flipped, the neighbors of the new diagonal
€ are included in the edge-pairs in S. Thus in FlipDist-I, | .S contains all neighbors of the
new diagonals in 7 jns.

FlipDist-S(7;% ;s fiim“ k,I) starts by flipping free-diagonals (if any) in Tns. If there is
a free-diagonal e in T;,;t, then by Lemma 4, e can be safely flipped to create a new diagonal
€ € Tfinai- Before e is flipped to create a new diagonal €, any pair (e,€’) containing e is
removed from S. Let T, be the triangulation after flipping e. Let A; = {e1, e}, e} and
Ay = {€), e, e} be the triangles on either side of € in T ;. Two edge-pairs (e1,e)) and
(e2,€h) are added to S. Note that if (e, €’) is a pair in S before the free-diagonal e is flipped,
then ¢’ must be contained in one of two new pairs added to S after e is flipped. Therefore,
after flipping e, |J S still contains all neighbors of the new diagonals in 7T ;,;, and hence the
claim is true. <

» Lemma 12. Let (Tinit, Trinat) be a pair of triangulations that do not share any common
edge. Let I be a set of independent diagonals in Tini- Let S be a set of edge-pairs in Tin
and |J S be the union of the edge-pairs in S.

(a) If there is a minimum solution F' of (Tinit, Trinai) such that I is the set of underlying
diagonals of the source nodes of Dp, then FlipDist-I(Tinit, Trinai, k, I) returns True if
and only if F' has at most k flips.

(b) If there is a minimum solution F' of (Tinit, Trinat) Such that the set of underlying diagonals
of the source nodes of D is a subset of |J S, then FlipDist-S(Tinit, Trinai, k, S) returns
True if and only if F' has at most k flips.

Proof. The proof is by mutual induction on k. For the base case when k& = 0, both functions
will return true if and only if Tinit = Tfinai. The statements are true.
Based on the inductive hypothesis, the inductive step is proven in two parts.
(a) First consider FlipDist-I(T;nit, Tfinai, k, I). By Lemma 9, I is a safe-set and hence for any
permutation 7(I) of I, there is a shortest path from it to Tinas such that the diagonals
in I are flipped first according to the order of 7(I). Therefore, Dist(Tinit, Tinal) < k
if and only of Dist(Tinit, Tfinat) < k — |I|, where Tt is the resulting triangulation
after the diagonals in I are flipped. After the set of diagonals I corresponding to the
source nodes of D are flipped and removed from Dp, the set of diagonals corresponds
to the new source nodes in Dp must be neighbors of the new diagonals in 7T ,;; and
hence by Claim 11 is a subset of |JS. Therefore, when FlipDist-I(Tinit, Tfinal, k: 1)
calls FlipDist-S(T init, Trinat, k — |I],.S), by the inductive hypothesis, it returns True if
and only if Dist(T jnit, Trinar) < k — |I], as required.
(b) Now consider FlipDist-S(7init, Trinai, k, S) in two cases:
(i) If 7ini: has a free-diagonal e, then by Lemma 4, there is a shortest path from 7,
to Ttinar such that e is flipped first to create a new diagonal e that is shared by
T init and Tfinal- Again by Lemma 4, no shortest paths from T init tO Ttina will flip
€. Therefore, the triangulations T init and Tfinai can be safely partitioned along
into {77‘3,”,5,7?”#} and {7701 Tfinar }> tespectively. By Claim 11, after e is flipped,
the set S still contains all neighbors of the new diagonals, which is partitioned
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accordingly to S; and Sy. There is a path of length at most k from Tini: to Trina
if and only if there is a path of length k; from T..., to Tfl“ml and a path of length
ko from Tig”-t to Tmeal such that k1 + ko = k — 1. It is easy to see that S; and S
satisfy the condition of Part (b) for 77‘;”1 and T?Hit, respectively. By the inductive

hypothesis, FlipDist-S(T';Mt, 7}1inal7 k1,S1) returns True if and only if there is a
—2

path of length k; from T,;, to T/, ,;» and FlipDist-S(T .1, Tfinar k—1—Fk1, S2)

returns True if and only if there is a path of length & — 1 — k; from T?m»t to szmal-
Therefore, FlipDist-S(T init, Tfinais k — |I|, S) returns True if and only if there is
a path of length at most k from Tini; to Trinai, as required.

(ii) If Tinit has no free-diagonals, then FlipDist-S(Tinit, Tinal, k, S) enumerates all
subsets I of independent diagonals and calls FlipDist-I(7init, Tfinal, k, I). For each
edge-pair (e, e2) € S, the algorithm branches on up to three possible choices: 1)
include neither e; nor es, 2) include e; but not es, and 3) include es but not e;. Since
e1 and ey are neighbors, they cannot both belong to I. FlipDist-S(Tinit, Tfinai, k, S)
returns True if and only if there is an enumerated independent subset I of | J .S such
that FlipDist-I(Tinit, Tfinai, k, I) returns True. If Dist(Tinit, Trinar) < k, then by
Claim 11, the set of the underlying diagonals of the source nodes of D is a subset of
(JS and hence, will be enumerated. Consequently, by Part (a) of the inductive step
proven above, FlipDist-I(T;nit, Tfinal, k, I) returns True. Conversely, if there is
an enumerated set I such that FlipDist-I(7;p;+, Trinat, k, 1 ) returns True, then by
Part (a) of the inductive step, there is a sequence of at most & flips that transforms
Tinit 10 Tfinai- Therefore, FlipDist-S(Tinit, Trinal, k,S) returns True if and only
if DiSt(IEnita 7}inal) S k.

This completes the proof. |

The following lemma bounds the number of leaves in the search trees of FlipDist-
I(Innih ,Tfinala kz I) and FlipDiSt'S(ﬂnita ,Tfinala ka S)

» Lemma 13. Let n = ¢(Tinit). Let Li(n, k) be the number of leaves in the search tree of
FlipDist-I(Tinit, Trinat, k, I). Let Lg(n, k, s) be the number of leaves in the search tree of

FlipDist-S(Tinit, Trinai, k, S), where s = |S|. Then Li(n, k) < 32(k=1) gnd Ls(n,k,s) <
38+2(’C7’I’L).

Proof. The proof is by mutual induction on k. For the base case when k = 0, we have n =0

and both search trees have only 1 leaf. The statements are true.
Based on the inductive hypothesis, the inductive step is proven in two parts.

(a) First consider FlipDist-I(7init, Tfinal, k, I), which flips |I| edges and create a set S of 2|I|
edge-pairs. It then calls FlipDist-S(T init, Tfinats k — |11, S) where ¢(T init) = ¢(Tinit) =
n. By the inductive hypothesis, the number of leaves in FlipDist-S(?im-t, Trinal, k —
|1],S) is at most 3151+2(k=l11=n) = 32/I|+2(k=|Il-n) — 32(k=n) _Gince there is no branching
in FlipDist-I, we have L;(n, k) < 32(:=") as required.

(b) Now consider FlipDist-S(7Tinit, Tfinat, k. S) in two cases:

(i) If there is no free-diagonal in Ty, then FlipDist-S(7init, Trinal, k, S) branches
into up to 3 subtrees for each pair in .S, corresponding to three possible choices
that include at most one edge in the pair. Therefore, at most 3!°! subtrees are
created after all edge-pairs in S are branched on and each subtree is a call to
FlipDist-I(7init, Tfinal, k, I). By Part (a) of the inductive step proven above,
FlipDist-I(7init, Tfinal, k, I) has at most 32(k—n) Jeaves. Therefore, the total
number of leaves in the search tree of FlipDist-S(Tinit, Tfinal, k,S) is at most
318132(k—n) — 3s+2(k—n) a9 required.
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(ii) Suppose that a free-diagonal e is flipped in Step 1 of FlipDist-S to create a

new diagonal € € Tfina. The algorithm partitions the triangulations T init and
. =1 =2 : .
Tinar along € into {T i, Tinie} and {77500 Tiinar}s respectively. This creates
—1 =2

two smaller instances (7,55 Tfinar) a0d (Tipies Tfipar)- We may assume both are
non—triviall because, by Lemma 7, trivial instances are solvable in linear time. Let
n1 = ¢(T jny)- The algorithm calls FlipDist-S(T ;i Tfipars k1, 1) for ki =ny +
1,...,min(k—1—mn9, 2n;), until k1 = k1, where ky = Dist(?ﬁmt, 7}1inal)' If no such
k1 is found, then the search tree terminates and it is easy to verify tlhat the statement
is true. Since k; < k, by the inductive hypothesis, FlipDist-S(T ;,,.;, 7}1"“”, k1, 51)
has at most 3‘Sl|+12(k1_"1) leaves. This means for 12;1 =ny+1,..., k1, the subtrees
of FlipDiSt-S(Tinit"Ydflinahki751) has at most 3|51\+2’ 3|Sl\+4’ o 31S11+2(k1—n1)
leaves, respectively. Observing that this is a geometric sequence with a common
ratio of 9, their sum is at most $ - 3151/+2(ki=na),

Finally, the algorithm calls FlipDist-S('T'?nit, 7}2“”1[, k—1—ky, S3), which by

1
the inductive hypothesis has at most 3/5214+2(k=1=k1—n2) Jegyeg,
Thus, in total, the number of leaves in the search tree of FlipDist-
S(Tinits Ttinal, k. S) is at most % - 3l51+2(ki—n1) 4 glS2|+2(k—1-ki—n2) e o =
—1
32k =) and y = 3I9:IF2(k=1=k1=n2) " Gince both instances (T i Tfinar) and

('T?mh 7}2inal) are non-trivial, we have ky —ny > land k—1—k; —no > 1, and
hence z,y > 9. Therefore, the number of leaves in the search tree of FlipDist-
S(Tinit, Tfinal, k, S) is at most

9 9
g . 3\Sl|+2(k17n1) + 3|SQ|+2(k5717k17n2) — gl‘ + Yy (1)
27 3. wxy
E @
27 3, 2y
< (2 %W 3
<3 ®)
Ty
<z @
3\31|+2(k17n1) . 3'52‘4’2(}{)717’617"2)
= 5
3 )
— 3\31|+\52|71+2(k717n17n2). (6)

We have |S1| 4 |S2| < |S| + 1 because when a free-diagonal e is flipped, at least
one edge-pair in S that contains e is removed and two new edge-pairs are added to
S. We also have nq + no = n — 1 because after the T, is partitioned along the
diagonal €, the total number of diagonals is reduced by 1.

Therefore, the total number of leaves in the search tree of FlipDist-
S('Em‘t,'Tfmal, k, S) is Ls(n, k’, 8) < 3|31\+|Sgl—1+2(k—1—nl—n2) < 3\5\32(k—n) —
35+2(k—n) a5 required.

This completes the proof. |

When the algorithm initially starts, the set of source nodes may be any subsets I of
independent diagonals in T,;+. We will prove in Lemma 14 that there are at most Fj, 1
such subsets, where F), is the n-th Fibonacci number, and they can be enumerated using
polynomial space and in time O(n) each.
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» Lemma 14. Let T be a triangulation of a convex polygon and ¢(T) = n. The number
of subsets of independent diagonals in T is at most F,, 11, the (n + 1)-th Fibonacci number.
Furthermore, all such subsets can be iterated in time O(n) each using polynomial space.

Proof. First, observe that the set of subsets of independent diagonals in 7 is in bijection
with the set of matchings in the binary tree T' corresponding to 7. Each triangle in T
corresponds to a node in T" and each diagonal shared by two triangles in 7 corresponds to
an edge between the two nodes in T representing the two triangles. A set of independent
diagonals in T corresponds to a subset of edges in T" that do not share any endpoint, referred
to as a matching (we consider an empty set to be a matching). By Lemma 10, the number of
matchings in 7' is at most F,,;1 and hence the number of subsets of independent diagonals
in 7 is at most Fj, ;1.

To iterate all such subsets I, consider all diagonals in an arbitrarily fixed order. For each
diagonal e, if any of its neighbors has already been included in I, do not include e; otherwise,
branch on e to include or exclude e in I. When all diagonals have been branched on, I is a
subset of independent diagonals in 7. Since each leaf of this branching tree corresponds to a
unique subset of independent diagonals in 7 and the depth of the branching tree is n, the
running time is O(n) for each subset. The iteration uses polynomial space because only a
subset of diagonals in 7 is maintained at each step of the branching. |

Finally, we have the correctness and complexity of our algorithm.

» Theorem 15. The algorithm FlipDist(Tinit, Trinal, k) runs in time O(3.82%) using poly-
nomial space and returns True if and only if there is a sequence of at most k flips that
transforms Tinit t0 Ttinai-

Proof. By Lemma 14, FlipDist(7;nit, Tfinal, k) branches into at most F,y; subsets of
independent diagonals. For each such subset I, the function FlipDist-I(7init, Trinat, K, I)
is called, which has at most 32(*~") leaves by Lemma 13. Therefore, the search tree of
FlipDist(Tinit, Tfinal, k) has at most Fn+132(k_”) leaves, which means there are at most
Fn+132(7€_”) root to leaf paths in the search tree.

Along each root-to-leaf path, the algorithm does the following: (a) enumerates the initial
independent set I in time O(n) when charged to each path; (b) performs at most &k flips
that take time O(1) each; (c) performs at most n partitions that take time O(n) each; (d)
perform at most k rounds of branching, where each round takes time O(k) when charged
to each end-branch. Therefore, the time spent on each root-to-leaf path is O(k? 4+ n?) =
O(n?). Since O(n?F,,1) = O(1.618"), the overall running time is O(n?F,,32+~")) =
O(1.618"32h=m)) = O (9k . (L818)™),

Since k/2 < n < k, the overall running time O (9k : (%)n) is maximized when n = k/2.
Therefore, the total running time of the algorithm is O (9]’C : (igls)n) =0 (9’C . (%)k/z) =
0(3.82%).

FlipDist(Tinit, Tfinal, k) enumerates all subsets I of independent diagonals as the ini-
tial set of source nodes and calls FlipDist-I(7;pn:t, Tfinai, k, I). By Lemma 12, FlipDist-
I(Tinits Trinats k, I) returns True if and only if there is a sequence of at most k flips that
transforms Tinit t0 Trinal-

Finally, the algorithm uses polynomial space because every step of it, including the
iteration of the initial independent sets (Lemma 14), uses polynomial space.

This proves the correctness and complexity of our algorithm. <
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4 Concluding remarks

Both ConvEX FLiP DISTANCE and GENERAL FLIP DISTANCE are important problems.
The current paper presents a simple FPT algorithm for CONVEX FLIP DISTANCE that
runs in time O(3.82%) and uses polynomial space, significantly improving the previous best
FPT algorithm the problem, which runs in time O(n+k-32%) and is the same FPT algorithm
for GENERAL FLIP DISTANCE [11].

Our algorithm takes advantage of the structural properties of CONVEX FLIP DISTANCE
regarding the common diagonals and the free-diagonals. However, the general approach of
our algorithm, namely finding a topological sort of the DAG Dp by repeatedly removing the
source nodes, seems applicable to GENERAL FLIP DISTANCE. It remains to be seen if can be
used to derive an improved algorithm for GENERAL FLIP DISTANCE.

The recent progress on both CONVEX FLIP DISTANCE and GENERAL FLIP DISTANCE,
including [16, 11] and this work, all rely on the DAG that models dependency relation among
the flips. More research along this line will likely produce further improved algorithms.
However, deciding whether the CONVEX FLIP DISTANCE problem is NP-hard remains a
challenging open problem and may require new insights into the structural properties of the
problem.
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