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Abstract
We study the repeated balls-into-bins process introduced by Becchetti, Clementi, Natale, Pasquale
and Posta [3]. This process starts with m balls arbitrarily distributed across n bins. At each round
t = 1, 2, . . ., one ball is selected from each non-empty bin, and then placed it into a bin chosen
independently and uniformly at random. We prove the following results:

For any n ⩽ m ⩽ poly(n), we prove a lower bound of Ω(m/n · log n) on the maximum load.
For the special case m = n, this matches the upper bound of O(log n), as shown in [3]. It
also provides a positive answer to the conjecture in [3] that for m = n the maximum load is
ω(log n/ log log n) at least once in a polynomially large time interval. For m ∈ [ω(n), n log n],
our new lower bound disproves the conjecture in [3] that the maximum load remains O(log n).
For any n ⩽ m ⩽ poly(n), we prove an upper bound of O(m/n · log n) on the maximum load for
all steps of a polynomially large time interval. This matches our lower bound up to multiplicative
constants.
For any m ⩾ n, our analysis also implies an O(m2/n) waiting time to reach a configuration with
a O(m/n · log m) maximum load, even for worst-case initial distributions.
For m ⩾ n, we show that every ball visits every bin in O(m log m) rounds. For m = n, this
improves the previous upper bound of O(n log2 n) in [3]. We also prove that the upper bound is
tight up to multiplicative constants for any n ⩽ m ⩽ poly(n).

2012 ACM Subject Classification Mathematics of computing → Probability and statistics; Mathem-
atics of computing → Discrete mathematics; Theory of computation → Randomness, geometry and
discrete structures; Theory of computation → Design and analysis of algorithms

Keywords and phrases Repeated balls-into-bins, self-stabilizing systems, balanced allocations,
potential functions, random walks

Digital Object Identifier 10.4230/LIPIcs.STACS.2023.45

Related Version Full Version: https://arxiv.org/abs/2203.12400 [25]
Brief Announcement (SPAA’22): https://doi.org/10.1145/3490148.3538561 [24]

Supplementary Material Software: https://github.com/Dim131/RBB
archived at swh:1:dir:106d475ab210c4248cebfdee217a0a7f40fbfcab

1 Introduction

We consider the allocation processes involving m balls (jobs or data items) to n bins (servers
or memory cells), by allowing each ball to choose from a set of randomly chosen bins. The
goal is to allocate (or re-allocate) balls efficiently, while also keeping the load distribution
balanced. The balls-into-bins framework has found numerous applications in hashing, load
balancing, routing (we refer to the surveys [27] and [32] for more details).

A classical sequential allocation algorithm is the d-Choice process introduced by Azar,
Broder, Karlin and Upfal [1] and Karp, Richard, Luby, and Meyer auf der Heide [20], where
for each ball to be allocated, we sample d ⩾ 1 bins uniformly and then place the ball in the
least loaded of the d sampled bins. It is well-known that for the One-Choice process (d = 1),
the maximum load is w.h.p.1 Θ(log n/ log log n) for m = n and m/n + Θ

(√
m/n · log n

)
1 In general, with high probability refers to probability of at least 1 − n−c for some constant c > 0.
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45:2 Tight Bounds for Repeated Balls-Into-Bins

for m = Ω(n log n). In particular, this gap between maximum and average load grows
significantly as m/n → ∞, which is called the heavily loaded case. For d = 2, [1] proved that
the maximum load is only m/n + log2 log n + O(1) for m = n. This result was generalized
by Berenbrink, Czumaj, Steger and Vöcking [6] who proved that the same guarantee also
holds for m ⩾ n, in other words, even as m/n → ∞, the difference between the maximum
and average load remains a slowly growing function in n that is independent of m. This
improvement of Two-Choice over One-Choice has been widely known as the “power of
two choices”.

In this work, we investigate the repeated balls-into-bins (RBB) process, introduced by
Becchetti, Clementi, Natale, Pasquale and Posta [3]. In this process, there are m balls
initially allocated arbitrarily across n bins. In each round, one ball is removed from each
non-empty bin and then each of these balls is allocated to one bin sampled uniformly at
random (see Figure 1). This setting differs from the classical balls into bins setting in that
the number of balls is fixed and the amount of balls we re-allocate in each round varies
from 1 to n. Unlike Two-Choice (or d-Choice), this re-allocation is performed without
inspecting the load of any bin or taking additional samples.

Becchetti et al. [3] proved that for m = n, starting from an arbitrary configuration,
w.h.p. after O(n) rounds, the process reaches a maximum load of O(log n) and remains
in such a configuration for poly(n) rounds. Thus, the RBB process is a natural instance
of a self-stabilizing system, and falls into a long line of research on random-walk based
algorithms for stabilization and consensus [4, 14, 17, 18, 29]. More recently, Cancrini and
Posta [11] proved that the mixing time is O(L) where L is the maximum load at the initial
configuration.

Our Results. In this work, we settle two conjectures stated in [3] and prove tight bounds
for the more general case with n ⩽ m ⩽ poly(n).

Becchetti et al. [3] conjectured that the O(log n) upper bound holds for all m = O(n log n).
They also conjectured that for m = n, the maximum load is ω(log n/ log log n). We resolve
both conjectures, proving an Ω(m

n · log n) lower bound on the maximum load w.h.p. in
any interval of length Ω(m2/n2 · log4 n) and for any n ⩽ m ⩽ poly(n) (Lemma 3.3). This
disproves the first conjecture, but confirms the second one, showing that for m = n, the
maximum load is w.h.p. Θ(log n).

For the case m ⩾ n, we also prove that starting from an arbitrary configuration after
O(m2/n) rounds, w.h.p. we reach a configuration with a maximum load of O(m

n · log m)
(Section 4.2). For n ⩽ m ⩽ poly(n), we show that the process stabilizes in such a configuration
there for at least m2 rounds (Theorem 4.11).

Becchetti et al. [3] also studied the cover time (or traversal time) of a ball, which is
the time required to visit all n bins. For m = n, they proved an O(n log2 n) bound on the
traversal time. For any m ⩾ n, we improve this to O(n log m), and also show that it is tight
up to constant factors for any m = poly(n) (Section 5).

Intuition and Techniques. For the upper bound we use an exponential potential Φ with
smoothing parameter Θ(n/m). Provided that Φ is poly(m), we immediately obtain the
O(m/n · log m) bound on the maximum load. Our analysis exploits that after only O((m/n)2)
rounds, sufficiently many bins will become empty, which in turn will reduce the number of
balls being re-allocated. This then helps to reduce the load of any non-empty bin, since these
are guaranteed to lose one ball per round, but only receive in expectation less than one ball
in total from the other non-empty bins. As we will prove, the actual equilibrium will have
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Figure 1 Illustration of one round of RBB with m = 8 balls and n = 6 bins. The balls highlighted
in red are re-allocated to bins chosen randomly among {1, 2, . . . , 6}.

most bins being empty roughly every O(m/n) rounds. To establish this, we employ some
martingale and drift-arguments to first prove that any bin which starts at load O(m/n),
becomes empty after O((m/n)2) rounds with constant probability > 0. Secondly, we prove
that if this happens to a fixed bin, the empty load state will be revisited Ω(m/n) times
during the next O((m/n)2) rounds. In some sense, this is a generalization of the approach
in [3], where they also bounded the fraction of empty bins for the case m = n.

A kind of reversed argument is used for the lower bound. Here, the goal is to prove
that each bin is only empty every O(m/n) rounds on average. This shows that the RBB
process can be approximated by a One-Choice process where at least an 1 − O(n/m)
fraction of the balls are allocated. For t = Ω(m2/n2 · log n), this yields a maximum load of
Ω(m/n · log n). To prove that bins are not empty “too often”, we establish a link between a
quadratic potential and the number of empty bins, similar to that in [26, Lemma 6.2]. This
connection essentially implies that whenever the fraction of empty bins is ω(n/m), then the
quadratic potential decreases. By aggregating sufficiently over many rounds, we can conclude
that, on average, the number of empty bins cannot be too large.

Further Related Work. Cancrini and Posta investigated the behavior of the RBB process
for a large number of rounds, and established “propagation of chaos” [10], meaning that
under some conditions on the initial load distribution, the load of the bins become eventually
independent. In [10], the authors prove results for the RBB process considered here, while [12]
considered more general re-allocation rules. Another variant of the RBB setting was studied
in [8], where in each round one ball is deleted from each bin and an expected λn new balls
arrive and are distributed in parallel to the bins. In contrast to the RBB model, this means
that the number of balls in the system is not fixed.

The RBB is an instance of a discrete time closed Jackson network [19, 21]. However, in
RBB, updates are happening synchronously and in parallel, while in most queuing models
updates occur asynchronously based on independent point processes. As also pointed out
in [10, 12], this leads to a non-reversible Markov Chain, which seems to make the computation
of the stationary distribution intractable. Furthermore, formal methods have been used to
prove guarantees for RBB with m = n [2]. The RBB setting has also been applied to analyze
protocols in short packet communications [33].

STACS 2023



45:4 Tight Bounds for Repeated Balls-Into-Bins

Czumaj, Riley and Scheideler [15] studied a similar re-allocation process where in each
round one random ball is allocated to a random of d bin choices. These are also related to
randomized rerouting protocols studied in [7, 9]. In another parallel allocation processes,
Berenbrink, Czumaj, Englert, Friedetzky and Nagel [5] proved an O(log n) gap for the Two-
Choice process where balls are allocated in batches of n balls and was recently improved to
O( log n

log log n ) in [23].

Organization. In Section 2 we introduce some standard balls-into-bins notations and define
the processes. In Section 3, we prove our lower bound on the maximum load. In Section 4, we
prove an upper bound on maximum load and also analyze the time until such configuration
is reached and preserved (convergence time). In Section 5, we analyze the traversal time. In
Section 6, we present some empirical results on the RBB process. We conclude the paper
with a summary and a few open problems in Section 7.

2 Notation and Definitions

We consider a set of n bins labeled [n] := {1, 2, . . . , n}. By xt we denote the n-dimensional
load vector after t rounds, and x0 is the initial load vector. In our processes, no balls are
added or removed, and the existing m balls are only re-allocated; hence,

∑n
i=1 xt

i = m for all
t ⩾ 0.

By F t := |{i ∈ [n] : xt
i = 0}| we denote the number of empty (free) bins and by f t := 1

n ·F t

the fraction of empty bins. Similarly κt := n − F t is the number of non-empty bins. Since it
will be important to track the number of empty bins over a time interval, we also define F t1

t0

as the total number of pairs of empty bins and rounds in the entire interval [t0, t1], i.e.,

F t1
t0

:=
t1∑

t=t0

F t.

RBB (Repeated Balls-into-Bins Process):
Iteration: At each round t = 1, 2, . . .

For each of the κt = n − F t non-empty bins, take one ball and re-allocate it to a bin
chosen independently and uniformly at random among [n].

More specifically, in each round we choose κt bins zt
1, . . . , zt

κt ∈ [n] uniformly at random
and the load vector at step t + 1 is given by

xt+1
i := xt

i − 1xt
i
>0 +

κt∑
j=1

1zt
j
=i, for each i ∈ [n].

Hence, we can express the marginal load distribution of an arbitrary bin i ∈ [n] at round
t ⩾ 0 (i.e., having completed t iterations before), as

xt+1
i = xt

i − 1xt
i
>0 + Bin(κt, 1/n), (2.1)

where with slight abuse of notation, we write Bin(κt, 1/n) as a placeholder for a random
variable (independent of Ft, the entire history of the process up to round t) which has
distribution Bin(κt, 1/n).
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Similarly, assuming each bin acts as a FIFO queue on the incoming and departing balls,
we can follow the trajectory of an arbitrary single ball. Only if the ball is at the front of its
queue, it will be re-allocated to a bin chosen randomly from [n] in the next round. A natural
question is the so-called cover time (or traversal time), the expected time until every ball
has been allocated to each bin [3]. This is related to the well-studied cover time of parallel
random walks on graphs, but with the constraint that only one walk can leave each vertex
(=bin) at a time.

3 Lower Bound on the Maximum Load for n ⩽ m ⩽ poly(n)

In this section, we prove that w.h.p. the maximum load becomes Ω
(

m
n · log n

)
at least once

in every O( m2

n2 · log4 n) rounds, for any n ⩽ m ⩽ poly(n). This matches the upper bound in
Section 4 up to multiplicative constants and also settles two conjectures in [3].

On a high level, the lower bound follows by showing that in a long enough interval,
w.h.p. a constant fraction of the rounds have an O(n/m) fraction of empty bins. Then, we
couple the process with the One-Choice process, to show that the maximum load must be
w.h.p. at least Ω( m

n · log n).
In order to bound the number of empty bins in an interval we make use of the quadratic

potential function, defined as

Υt :=
n∑

i=1
(xt

i)2,

where xt
i is the load of bin i ∈ [n] at round t. We then prove the following relation between

the expected change of Υt and the number of empty bins F t in round t:

▶ Lemma 3.1. Consider the RBB setting with any m ⩾ 1. Then, for any round t ⩾ 0,

E
[

Υt+1 ∣∣ Ft
]
⩽ Υt − 2 · m

n
· F t + 2n.

Proof. Let us define the binomial random variable Z ∼ Bin(κt, 1
n ). For any bin i ∈ [n] with

load xt
i ⩾ 1,

E
[

Υt+1
i

∣∣ Ft
]

=
κt∑

z=0
(xt

i + z − 1)2 ·
(

κt

z

)
· 1

nz
·
(

1 − 1
n

)κt−z

= (xt
i)2 ·

κt∑
z=0

(
κt

z

)
· 1

nz
·
(

1 − 1
n

)κt−z

+ 2 · xt
i ·

κt∑
z=0

(z − 1) ·
(

κt

z

)
· 1

nz
·
(

1 − 1
n

)κt−z

+
κt∑

z=0
(z − 1)2 ·

(
κt

z

)
· 1

nz
·
(

1 − 1
n

)κt−z

= (xt
i)2 · E [ Z ] + 2 · xt

i · E [ Z − 1 ] + E
[

(Z − 1)2 ]
(a)= (xt

i)2 + 2 · xt
i ·
(κt

n
− 1
)

+ κt · (κt − 1) · 1
n2 − κt

n
+ 1

⩽ (xt
i)2 + 2 · xt

i ·
(κt

n
− 1
)

+ 2,

STACS 2023
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having used in (a) that E [ Z ] = κt

n and E
[

Z2 ] = κt · 1
n · (1 − 1

n ) + (κt)2 · ( 1
n )2, and thus

E
[

(Z − 1)2 ] = κt · 1
n

·
(

1 − 1
n

)
+ (κt)2 ·

(
1
n

)2
− 2 · κt

n
+ 1 = κt · (κt − 1) · 1

n2 − κt

n
+ 1.

Similarly for an empty bin i ∈ [n] with xt
i = 0, the contribution is

E
[

Υt+1
i

∣∣ Ft
]

=
κt∑

z=0
z2 ·

(
κt

z

)
· 1

nz
·
(

1 − 1
n

)κt−z

= κt

n
+ κt · (κt − 1)

n2 .

Hence, by aggregating the contributions of the κt bins non-empty bins and the n − κt empty
bins we obtain

E
[

Υt+1 | Ft
]
⩽ Υt +

∑
i∈[n] : xt

i
⩾1

(
2 · xt

i ·
(

κt

n
− 1
)

+ 2
)

+
∑

i∈[n] : xt
i
=0

(
κt

n
+ κt · (κt − 1)

n2

)

⩽ Υt +
(

κt

n
− 1
)

· 2 · m + 2κt + (n − κt) · 2

= Υt − 2 · m

n
· F t + 2n,

where in the last inequality we used that κt ⩽ n. This concludes the proof. ◀

The key insight is that the quadratic potential drops in expectation as soon as the fraction
of empty bins is of order Ω(n/m). This is crucial to upper bound the number of empty
bins in an interval. This relation is similar to the ones used in [23, 26], where an interplay
between the quadratic potential and the absolute value potential was used to show that the
absolute value potential is small in a constant fraction of the rounds.

The next lemma shows that for any sufficiently long interval, either there is a maximum
load that is Ω(m/n · log n) or the fraction of empty bins in the interval is O(n/m). Note that
we indeed need the interval to be long enough as starting with the perfectly balanced load
vector may require several rounds to reach a gap of Ω(m

n log n) even for the One-Choice
process.

▶ Lemma 3.2. Consider the RBB process with any n ⩽ m ⩽ nk for some constant k ⩾ 1
and any 1 ⩽ ĉ ⩽ n. Then, for any t0 ⩾ 0 and t1 := t0 + ĉ ·

(
m
n · log n

)2,

Pr

 {F t1
t0

<
n2

4m
· (t1 − t0 + 1)

}
∪

⋃
t∈[t0,t1]

{
max
i∈[n]

xt
i >

m

n
· log n

} ∣∣∣∣∣∣ Ft0

 ⩾ 1 − e− ĉ
18 .

Proof. Consider an arbitrary step t0 and filtration Ft0 . We can further assume that
{maxi∈[n] xt0

i ⩽ m
n · log n} holds, otherwise the conclusion trivially follows.

For any t ⩾ t0, we define the sequence

Zt := Υt − 2 · (t − t0) · n + 2 · m

n
· F t−1

t0
,

where F t0−1
t0

= 0. This sequence forms a super-martingale since by Lemma 3.1,

E
[

Zt+1 ∣∣ Ft
]

= E
[

Υt+1 − 2 · (t − t0 + 1) · n + 2 · m

n
· F t

t0

∣∣∣ Ft
]

= E
[

Υt+1 ∣∣ Ft
]

− 2 · (t − t0 + 1) · n + 2 · m

n
· F t

t0

⩽ Υt + 2 · n − 2 · m

n
· F t − 2 · (t − t0 + 1) · n + 2 · m

n
· F t

t0
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= Υt − 2 · (t − t0) · n + 2 · m

n
· F t−1

t0

= Zt.

Further, let τ := min{t ⩾ t0 : maxi∈[n] xt
i > m

n · log n} and consider the stopped random
variable

Z̃t := Zt∧τ ,

which is then also a super-martingale.
To prove concentration of Z̃t, we will now derive an upper bound on

∣∣∣Z̃t+1 − Z̃t
∣∣∣ condi-

tional on Ft.

Case 1: t ⩾ τ . In this case, Z̃t+1 = Z(t+1)∧τ = Zτ , and similarly, Z̃t = Zt∧τ = Zτ , so
|Z̃t+1 − Z̃t| = 0.

Case 2: t < τ . Hence for t we have maxi∈[n] xt
i ⩽ m

n · log n and thus Lemma A.2 implies
that the biggest change in the quadratic potential is w.h.p. at most 2 · m · log n + 4n and
under this condition, using that m ⩾ n,

|Z̃t+1 − Z̃t| ⩽ 2 · m · log n + 4n + 2 · m

n
· n ⩽ 3 · m · log n.

Combining the two cases above, we conclude,

Pr

 ⋂
t∈[t0,t1−1]

{
|Z̃t+1 − Z̃t| ⩽ 3 · m · log n

} ⩾ 1 − n−ω(1) · (t1 − t0) ⩾ 1 − n−ω(1),

since t1 − t0 ⩽ poly(n).

Using the concentration inequality Theorem A.4 with bad event, Bt := ¬
⋂

t∈[t0,t]{|Z̃t+1 −
Z̃t| ⩽ 3 · m · log n} and λ = ĉ · m2

n · log2 n, we get

Pr
[

Z̃t1+1 − Z̃t0 > λ
]
⩽ exp

(
− λ2

2 ·
∑t1

t=t0
(3 · m · log n)2

)
+ Pr [ B ]

= exp

−
ĉ2 ·

(
m2

n · log2 n
)2

18 · ĉ ·
(

m
n · log n

)2 · (m · log n)2

+ Pr [ B ]

⩽ e− ĉ
18 + n−ω(1) ⩽ 2 · e− ĉ

18 .

Thus,

Pr

{Zt1+1 ⩽ Zt0 + λ
}

∪
⋃

t∈[t0,t1]

{
max
i∈[n]

xt
i ⩾

m

n
· log n

} < 1 − 2 · e− ĉ
18 .

Assume that {Zt1+1 ⩽ Zt0 + λ} holds. Our aim is to show that {F t1
t0

< 4n2

m · (t1 − t0 + 1)}
also holds. For the sake of a contradiction, assume that

F t1
t0

⩾
4n2

m
· (t1 − t0 + 1).

By {Zt1+1 ⩽ Zt0 + λ}, we have that

Υt1+1 − 2 · (t1 − t0 + 1) · n + 2 · m

n
· F t1

t0
⩽ Υt0 + λ.

STACS 2023



45:8 Tight Bounds for Repeated Balls-Into-Bins

Rearranging the inequality above gives

Υt1+1 ⩽ Υt0 + λ + 2 · (t1 − t0 + 1) · n − 2 · m

n
· F t1

t0

⩽ Υt0 + λ + 2 · (t1 − t0 + 1) · n − 8 · n · (t1 − t0 + 1)
⩽ Υt0 + λ − 6 · (t1 − t0 + 1) · n. (3.1)

Recall that we start from a round t0 where {maxi∈[n] xt0
i ⩽ m

n · log n} holds, and therefore
also {Υt0 ⩽ n ·

(
m
n · log n

)2} holds. Thus, by (3.1) we have

Υt1+1 ⩽ n ·
(m

n
· log n

)2
+ ĉ · n ·

(m

n
· log n

)2
− 6 · ĉ ·

(m

n
· log n

)2
· n < 0

which is a contradiction for large n since ĉ ⩾ 1. We conclude that if Zt1+1 ⩽ Zt0 + λ, then
F t1

t0
< n2

4m · (t1 − t0 + 1) or the stopping time was reached, i.e.

Pr

{F t1
t0

<
n2

4m
· (t1 − t0 + 1)

}
∪

⋃
t∈[t0,t1]

{
max
i∈[n]

xt
i ⩾

m

n
· log n

} ⩾ 1 − 2 · e− ĉ
18 . ◀

To complete the derivation of the lower bound we need to show that in an interval of
length T = Θ((m

n · log n)2) with an O(n/m) fraction of empty bins, the maximum load is
Ω( m

n · log n). This follows by coupling the allocations of the RBB process in the interval with
a One-Choice process with T · (1 − O(n/m)) balls. By the following standard expression,
for the maximum load, setting c := (1−γ)2

200 · 1
γ2 (for γ = Θ( n

m )), we get the desired lower
bound on the maximum load for the RBB setting.

[cf. [26, Lemma 10.4]] Consider the One-Choice process with m = cn log n balls, for
any c ⩾ 1/ log n. Then, we have

Pr
[

max
i∈[n]

xm
i ⩾

(
c +

√
c

10

)
· log n

]
⩾ 1 − n−2.

Putting the lemmas together, we get the desired lower bound.

▶ Lemma 3.3. Consider the RBB process with any n ⩽ m ⩽ nk for some constant k ⩾ 1
and let γ := n

4m . Then, for any round t0 ⩾ 0 and for t1 := t0 + 1−γ
200 · 1

γ2 · log4 n,

Pr

 ⋃
t∈[t0,t1]

{
max
i∈[n]

xt
i ⩾ 0.008 · m

n
· log n

} ⩾ 1 − n−1.

Proof. Using Lemma 3.2 (for k := 1−γ
200 · 16 · log2 n ⩾ 3 · 18 · log n), we have for t1 =

t0 + 1−γ
200 · 1

γ2 · log4 n,

Pr

{F t1
t0

<
n2

4m
· (t1 − t0 + 1)

}
∪

⋃
t∈[t0,t1]

{
max
i∈[n]

xt
i ⩾

m

n
· log n

} ⩾ 1 − n−2. (3.2)

Consider the log3 n sub-intervals I1, . . . , Ilog3 n of length ∆ = 1−γ
200 · 1

γ2 · log n with starting
points sj := t0 + ∆ · (j − 1). We also define the events for j ∈ [log3 n],

Cj :=
{

F sj+∆
sj

<
n2

4m
· ∆
}

.
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Running the repeated balls-into-bins process over the interval [sj , sj + ∆] involves realloc-
ating ∆ · n − F

sj+∆
sj balls, meaning we sample ∆ · n − F

sj+∆
sj many times a bin uniformly at

random. So if the event Cj holds, then we sample in total

∆ · n − n2

4m
· ∆ = (1 − γ) · ∆ · n =: m

bins. Hence these re-allocations correspond to a One-Choice process with m balls into n

bins; let us denote its load vector by yt for any round t ⩾ 0 starting from the empty load
configuration. By Section 3 with c := (1−γ)2

200 · 1
γ2 , we obtain

Pr
[

max
i∈[n]

ym
i ⩾

(
c +

√
c

10

)
· log n

]
⩾ 1 − n−2.

Further, note that

max
i∈[n]

ym
i ⩾

(
(1 − γ)2

200γ2 + 1
10 ·

√
(1 − γ)2

200γ2

)
· log n

⩾
1 − γ

200γ2 · log n + 0.002 · log n

γ
= ∆ + 0.002 · log n

γ
.

In ∆ rounds, at most ∆ balls can be removed from any single bin i ∈ [n], so for any bin
i ∈ [n], x

sj+∆
i ⩾ x

sj

i + ym
i − ∆ ⩾ ym

i − ∆. and hence

max
i∈[n]

x
sj+∆
i ⩾ max

i∈[n]
ym

i − ∆ ⩾ 0.002 · log n

γ
.

Defining for any round t ⩾ 0

Et :=
{

max
i∈[n]

xt
i ⩾ 0.008 · m

n
· log n

}
,

we have shown that for any 1 ⩽ j ⩽ log3 n,

Pr
[

Esj+∆ ∪ ¬Cj

]
⩾ 1 − n−2.

By taking the union bound over the log3 n sub-intervals, we conclude

Pr

 ⋂
j∈[log3 n]

({
max
i∈[n]

x
sj+∆
i ⩾ 0.008 · m

n
· log n

}
∪ ¬Cj

) ⩾ 1 − (log3 n) · n−2. (3.3)

Assuming that
{

F t1
t0

< n2

4m · (t1 − t0 + 1)
}

holds, then using the pigeonhole principle, at
least one of these intervals j satisfies Cj , i.e., {∪j∈[log3 n]Cj} holds. Hence, by the union bound
of Equation (3.2) and Equation (3.3) we conclude that

Pr

 ⋃
t∈[t0,t1]

Et

 ⩾ Pr

 ⋃
j∈[log3 n]

Esj+∆


⩾ 1 − Pr

¬
⋂

j∈[log3 n]

(
Esj+∆ ∪ ¬Cj

)
∪

⋂
j∈[log3 n]

¬Cj


⩾ Pr

 ⋃
j∈[log3 n]

(
Esj+∆ ∪ ¬Cj

)− Pr

 ⋂
j∈[log3 n]

¬Cj


⩾ 1 − n−2 − (log3 n) · n−2 ⩾ 1 − n−1. ◀
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4 Upper Bounds on the Maximum Load and Convergence Time

In this section, we outline the proofs for the O(m
n · log n) matching upper bound on the

maximum load and the O(m2/n) upper bound on the convergence time of the RBB process
for any n ⩽ m ⩽ poly(n). The omitted proofs and details can be found in the full version [25].
In Section 4.1, we introduce the exponential potential function and demonstrate its use on
the simpler setting with m ⩽ n balls, and in Section 4.2 we outline the proof for the more
challenging case with m ⩾ n balls.

4.1 The Exponential Potential and an Upper Bound for m ⩽ n

For the upper bounds, we make use of the exponential potential function defined as

Φt := Φt(α) :=
n∑

i=1
Φt

i :=
n∑

i=1
eαxt

i ,

where xt
i is the load of bin i ∈ [n] at round t ⩾ 0 and α > 0 is a smoothing parameter. For

any round t with Φt = poly(n), we can deduce that

max
i∈[n]

xt
i = O

( log n

α

)
.

By choosing a smoothing parameter α = Θ(n/m), this will give the desired bound on the
maximum load.

We start by giving a general formula for the expected change of Φ over one step.

▶ Lemma 4.1. Consider the RBB process with any m ⩾ n and the potential Φ := Φ(α) for
any α > 0. Then, for any round t ⩾ 0,

E
[

Φt+1 ∣∣ Ft
]
⩽ Φt · e−α · e

eα−1
n ·κt

+ (n − κt) · e
eα−1

n ·κt

.

Proof. Consider the expected contribution of a bin i ∈ [n] with xt
i ⩾ 1,

E
[

Φt+1
i

∣∣ Ft
]

=
κt∑

z=0
eα(xt

i+z−1) ·
(

κt

z

)
·
( 1

n

)z

·
(

1 − 1
n

)κt−z

= Φt
i · e−α ·

κt∑
z=0

(
κt

z

)
·
(eα

n

)z

·
(

1 − 1
n

)κt−z

(a)= Φt
i · e−α ·

(
1 − 1

n
+ eα

n

)κt

(b)
⩽ Φt

i · e−α · e
eα−1

n ·κt

,

using in (a) the binomial identity
∑k

z=0
(

k
z

)
pzqk−z = (p + q)k and in (b) that 1 + z ⩽ ez for

any z ⩾ 0.
For an empty bin i ∈ [n], its expected contribution is

E
[

Φt+1
i

∣∣ Ft
]

=
κt∑

z=0

(
κt

z

)
· eαz ·

( 1
n

)z

·
(

1 − 1
n

)κt−z

=
(

1 − 1
n

+ eα

n

)κt

⩽ e
eα−1

n ·κt

.

Aggregating over all bins, we have

E
[

Φt+1 ∣∣ Ft
]

=
∑

i∈[n]:xt
i
⩾1

E
[

Φt+1
i | Ft

]
+

∑
i∈[n]:xt

i
=0

E
[

Φt+1
i

∣∣ Ft
]

⩽ Φt · e−α · e
eα−1

n ·κt

+ (n − κt) · e
eα−1

n ·κt

. ◀
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Now, we will investigate the simpler setting where m is much smaller than n, to demon-
strate the use of the exponential potential function. This implies that in each round,
deterministically at least n − m bins are empty. As we prove below, this implies for example,
that for m = n

log n we get w.h.p. a maximum load of O( log n
log log n ) after O( n

log n ) rounds.

▶ Lemma 4.2. Consider the RBB process with m ⩽ 1
e2 n. Then for any round t ⩾ 2m,

Pr
[

max
i∈[n]

xt
i ⩽ 4 · log n

log
(

n
em

) ] ⩾ 1 − n−2.

Proof. We will use the potential Φ := Φ(α) with α := log
(

n
em

)
⩾ 1 (since m ⩽ 1

e2 n). Note
that for m = o(n) the potential is super-exponential, as in [22]. Since κt ⩽ m, we have

eα − 1
n

· κt ⩽ eα · m

n
= 1

e
.

Hence, by using Lemma 4.1,

E
[

Φt+1 | Ft
]
⩽ Φt · e−α · e

eα−1
n ·κt

+ (n − κt) · e
eα−1

n ·κt

⩽ Φt · e−α · e1/e + e · n

⩽ Φt · e− α
2 + e · n,

using in the last inequality that α ⩾ 1.
At round t = 0 we have Φ0 ⩽ eαm. Hence applying Lemma A.5, we have for any t ⩾ 2m,

E
[

Φt
]
⩽ eαm · e− 1

2 ·αt + e · n

1 − e− α
2
⩽ 1 + e · n

1 − e−1/2 ⩽ 3e · n.

By applying Markov’s inequality for t ⩾ 2m,

Pr
[

Φt ⩽ 3e · n3 ] ⩾ 1 − n−2.

When {Φt ⩽ 3e · n3} holds, we have for any bin i ∈ [n],

xt
i ⩽

1
α

· (log(3e) + 3 log n) ⩽ 4 · log n

log
(

n
em

) ,

completing the proof. ◀

4.2 Upper Bound for m ⩾ n

We now turn to outlining the proof for the more challenging case of m ⩾ n. The omitted
proofs an be found in the full version [25].

On a high level, we show that in a large enough interval, an Ω(m/n) fraction of the bins
are empty, the opposite of what we had in Section 3. This follows through a coupling with
an idealized version of the process, which is simpler to analyze. Then, in an interval with
Ω(m/n) fraction of empty bins, the exponential potential with a sufficiently small smoothing
parameter α = Θ(n/m) drops in expectation, at some point becoming poly(n) and implying
the O( m

n · log n) maximum load (convergence). Then, with a similar analysis over a slightly
smaller interval we show that it remains in such a configuration for O(m

n · log n) rounds
(stabilization).

In the analysis, we make use of the following bound on the expected change of Φ, which
is a restatement of Lemma 4.1 based on the fraction of empty bins f t.
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45:12 Tight Bounds for Repeated Balls-Into-Bins

▶ Lemma 4.3. Consider the RBB process with any m ⩾ n and the potential Φ := Φ(α) with
any 0 < α < 1.5. Then, for any round t ⩾ 0,

E
[

Φt+1 ∣∣ Ft
]
⩽ Φt · eα2−αft

+ 6n,

In particular, when the fraction of empty bins satisfies f t = Ω(α), the potential drops in
expectation over one round, as was trivially the case for m ≪ n. So it will be central to our
analysis to prove a lower bound on the fraction of empty bins in a sufficiently long interval.
This idea is inspired by [3, Lemma 19], who proved that in case of m = n, for each round,
a constant fraction of the bins are empty with very high probability. This is useful, as it
implies a constant additive drift for the load of each non-empty bin, which will drop by a
constant term > 0 in expectation.

However, for general m ≫ n, there will be starting configurations in which all bins remain
non-empty for several rounds. Only if the process runs for a sufficiently long time, a small
fraction of bins will become (and, to some extent, remain) empty. The following lemma
quantifies this behavior and proves that, after a waiting time of O((m/n)2) (the square of
the average load), a fraction of O(n/m) of the bins will be empty per round on average.
Hence for a time interval of length (m/n)2, the aggregated “empty bin/round pairs” will be
≈ (m/n)2 · n · (n/m) = m.

[Key Lemma for the Upper Bound] Consider the RBB process with m ⩾ n and any
round t0 ⩾ 0. Then, for round t3 := t0 + 744(m/n)2 it holds that

Pr
[

F t3
t0

⩾
1

384 · m

∣∣∣∣ Ft0

]
⩾ 1 − e−Ω(n).

First, let us remark that for the simpler case m = n, a stronger result was shown in [3,
Lemma 1], proving that for any round t ⩾ 1, F t = Ω(n) holds with probability 1−exp(−Ω(n)).
In fact adjusting the proof in [3] slightly, the same result holds for any m = O(n). Therefore,
we may assume in the following proof for convenience, that m ⩾ C · n for a sufficiently large
constant C > 0 (we will choose C := 6). Alternatively, we can also reduce the case with m

balls for some m ∈ [n, C · m] balls to the case with C · m balls, by using the fact that F t3
t0

becomes stochastically smaller if we add more balls.
In order to establish Section 4.2, we will relate the RBB process to a simpler process,

which we call the idealized process. In the idealized process, we also remove one ball from
each non-empty bin at each round, but we allocate exactly n balls, regardless of how many
bins are empty.

Formally, fix any load configuration of m balls with load vector xt0 . The load vector of
the idealized process is denoted by yt, t ⩾ t0 and defined as follows. For any bin i ∈ [n],
yt0

i := xt0
i . Further, for any t ⩾ t0, let Zt

1, Zt
2, . . . , Zt

n ∈ {1, . . . , n} be n independent, uniform
random samples. Then define,

yt+1
i := yt

i − 1yt
i
>0 +

n∑
j=1

1Zt
j
=i. (4.1)

Note that the marginal distribution of yt+1
i can be expressed as

yt+1
i = yt

i − 1yt
i
>0 + Bin(n, 1/n).

Comparing this to the RBB process (see Equation (2.1)) we have the same distribution apart
from that Bin(n, 1/n) is replaced by Bin(κt, 1/n). Thus we see that the idealized process is a
bit simpler and also has the advantage that the number of balls that are added to the bins
does not depend on the load configuration.
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▶ Lemma 4.4. For any round t0 ⩾ 0 and load vector xt0 , there is a coupling between the load
vectors (xt)t⩾t0 and (yt)t⩾t0 such that for all rounds t ⩾ t0 and for all bins i ∈ [n], xt

i ⩽ yt
i .

Based on this coupling, we also define for two rounds t0 ⩽ t3,

Gt3
t0

:=
t3∑

t=t0

∑
i∈[n]

1yt
i
=0.

Note that Lemma 4.4 implies that F t3
t0

is stochastically larger than Gt3
t0

, therefore it suffices
to analyze Gt3

t0
in the following.

Our first lemma proves that starting from any load configuration with m balls at time
t0, any bin i ∈ [n] whose load is close to the average load, has a constant probability > 0 of
reaching zero load after O((m/n)2) rounds.

▶ Lemma 4.5. Consider the idealized process with an arbitrary initial load configuration at
time t0 with m ⩾ 6n balls. Let i ∈ [n] be any bin with yt0

i ⩽ 2 · m/n. Then,

Pr

 ⋃
t1∈[t0,t0+720· m2

n2 ]

{
yt1

i = 0
} ∣∣∣∣∣∣∣ Ft0 , yt0

i ⩽ 2 · m

n

 ⩾
1
4 .

The next lemma shows that once yt
i = 0 occurs, then with constant probability bin i will

have zero load in Ω(m/n) further rounds until time O((m/n)2).

▶ Lemma 4.6. Consider the idealized process with an arbitrary load configuration at round
t1 with m ⩾ 6n balls, such that there is a bin i ∈ [n] with yt1

i = 0. Then, for round
t2 := t1 + 24 · (m/n)2,

Pr
[

t2∑
t=t1

1yt
i
=0 ⩾

1
6 · m

n

∣∣∣∣∣ Ft1 , yt1
i = 0

]
⩾

1
4 .

By combining Lemma 4.5 and Lemma 4.6, we derive the following lower bound on
E
[

Gt3
t0

]
, which by the coupling also holds for E

[
F t3

t0

]
.

▶ Lemma 4.7. Consider the idealized process with m balls, where m ⩾ 6n. Then, for any
round t0 ⩾ 0 and for t3 := t0 + 744 · (m/n)2,

E
[

Gt3
t0

∣∣ Ft0
]
⩾

1
192 · m.

Using the Method of Bounded Differences (Theorem A.3), we get this w.h.p.

▶ Lemma 4.8. Consider the idealized process with m balls, where m ⩾ 6n. Then, for any
round t0 ⩾ 0 and for t3 := t0 + 744 · (m/n)2,

Pr
[

Gt3
t0

⩾
1

384 · m

∣∣∣∣ Ft0

]
⩾ 1 − e−Ω(n).

Upper Bound on Convergence Time

To bound the convergence time for m ⩾ n, we use the Φ with α = Θ(n/m) and show that in
O(m2/n) rounds the process reaches a configuration with Φt < 48

α2 · n. In such a step, the
maximum load is O(m/n · log m), which becomes O(m/n · log n) for n ⩽ m ⩽ poly(n).

We start by proving that potential drops in expectation when it is sufficiently large and
there is a large fraction of empty bins.
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▶ Lemma 4.9. Consider the RBB process for any m ⩾ n, and the potential Φ := Φ(α) with
α := 1

2·384·744 · n
m . Then for any round t ⩾ 0,

E
[

Φt+1 ∣∣ Ft
]
⩽ Φt · eα2−αft

+ 6n.

In particular,

E
[

Φt+1
∣∣∣ Ft, Φt >

48
α2 · n

]
⩽ Φt · e1.5α2−αft

.

We now define the event

Et :=
{

Φt ⩽
48
α2 · n

}
.

When Et holds, the potential is small enough to imply a maximum load of O(m/n · log m).
When it is large, it drops in expectation by a multiplicative factor in any round with
f t = Ω(m/n). We now define for any t0 ⩾ 0, the adjusted exponential potential function
Φ̃s

t0
:= Φ̃s

t0
(α), with Φ̃t0

t0
:= Φt0(α) and for any s > t0

Φ̃s
t0

:= 1∩t∈[t0,s)¬Et · Φs(α) · exp
(

s−1∑
t=t0

(αf t − 1.5α2)
)

.

This forms a super-martingale. Using Section 4.2, we will show that in a Θ(m2/n) interval
w.h.p. the potential becomes small at least once, implying the O(m/n · log m) bound.

[Convergence] Consider the RBB process for any m ⩾ n and the potential Φ := Φ(α)
for α > 0 as defined in Lemma 4.9. Let cr := 16 · 3842 · 7442. For any round t0 ⩾ 0, for
t1 := t0 + cr · m2

n , we have

Pr

 ⋃
t∈[t0,t1]

{
Φt ⩽

48
α2 · n

} ⩾ 1 − e−Ω(n).

In particular, this implies that for m = poly(n), there exists a constant C > 0 such that

Pr

 ⋃
t∈[t0,t1]

{
max
i∈[n]

xt
i ⩽ C · m

n
· log m

} ⩾ 1 − e−Ω(n).

Upper Bound on the Maximum Load

We will now show that, for any n ⩽ m ⩽ poly(n), once a configuration with Φt ⩽ 48
α2 · n is

reached, then w.h.p. the process will re-visit such a configuration in the next O(m2/n · log n)
rounds. The proof is quite similar to Section 4.2, but with intervals of shorter lengths. By a
One-Choice argument we will deduce that the maximum load in every of the in-between
rounds is O(m/n · log n) and so the maximum load remains small for poly(n) rounds.

▶ Lemma 4.10. Consider the RBB process with n ⩽ m ⩽ nk for some constant k ⩾ 1 and the
potential Φ := Φ(α) for α > 0 as defined in Lemma 4.9. Further, let cs := 8k · 16 · 3842 · 7442.
Then, for any round t0 ⩾ 0 and for t1 := t0 + cs · m2

n2 · log n, we have

Pr

 ⋃
t∈[t0,t1]

{
Φt ⩽

48
α2 · n

} ∣∣∣∣∣ Ft0 , Φt0 ⩽ eα log n · 48
α2 · n

 ⩾ 1 − n−7k.
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Finally, combining Section 4.2 and Lemma 4.10 we can derive the following upper bound
on the maximum load, which holds for poly(n) rounds.

▶ Theorem 4.11 (Stabilization). Consider the RBB process with any n ⩽ m ⩽ nk for some
constant k ⩾ 1. There exists a constant C > 0 such that, for any t ⩾ cr · m2

n , where cr > 0 is
the constant defined in Section 4.2,

Pr

 ⋂
s∈[t,t+m2]

{
max
i∈[n]

xs
i ⩽ C · m

n
· log n

} ⩾ 1 − n−2k.

5 The Multi-Token Traversal Time

As mentioned in [3], it is natural to regard the RBB process as a multi-token traversal
problem, in which each ball should visit all bins as frequently as possible. This can be seen
as a “cover time” of parallel and dependent random walks, which is the first time until each
ball has been allocated at least once to every bin. In [3, Corollary 1], a w.h.p. bound of
O(n log2 n) on this quantity was established (it was also shown that this bound holds even
in an adversarial setting, where an adversary is able to re-allocate all tokens arbitrarily every
O(n) rounds). For the original setting without the adversary, we show:

Consider the RBB with any m ⩾ n. Then, with probability 1 − m−2, each of the m

balls traverses all n bins within 28m · log m rounds. Furthermore, any fixed ball needs with
probability at least 1 − o(1) at least 1/16 · m · log n rounds until all n bins are traversed.

6 Experiments

We complement our analysis with some experimental results in Figure 2 and Figure 3.
In Figure 2, we the plot the maximum load vs the average number of balls for

n ∈ {102, 103, 104} and m ∈ {n, 2n, . . . 50n} after 106 rounds starting with the uniform
distribution. The trend seems to be linear in m/n as m grows, which is in accordance
with the Θ(m/n · log n) bound on the maximum load shown by our theoretical analysis
in Lemma 3.3 and Theorem 4.11. In Figure 3, we plot of the fraction of empty bins vs
the average number of balls for n ∈ {102, 103, 104} and m ∈ {n, 2n, . . . 50n} averaged over
106 rounds, starting from the uniform load vector. The trend supports that the fraction is
Θ(n/m) in the steady state, as proven in Lemma 3.2 and Section 4.2.
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Figure 2 Maximum load vs average number of balls for n ∈ {102, 103, 104} and m ∈
{n, 2n, . . . 50n} after 106 rounds, starting from the uniform load vector (averaged over 25 runs).
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Figure 3 Fraction of empty bins vs the average load for n ∈ {102, 103, 104} and m ∈
{n, 2n, . . . 50n} averaged over 106 rounds, starting from the uniform load vector (averaged over 25
runs). Note that for all values of n, the curves are very close to one another.

7 Conclusions

We revisited the RBB process and proved that for any m ⩾ n that w.h.p. after O(m2/n)
rounds it achieves an O(m/n · log m) maximum load. For n ⩽ m ⩽ poly(n) we show that it
stabilizes in a configuration with an O(m/n · log n) maximum load, for at least m2 rounds
and also prove a lower bound matching up to multiplicative constants. This resolved two
conjectures in [3]. We also obtained an upper bound of O(m · log m) on the traversal time
for the balls, which was shown to be tight for any m = poly(n).

There are several possible extensions, such as generalizing the stabilization result for
m = nω(1), determining whether the O(m2/n) convergence time is tight for m = ω(n) and
determining tight bounds for the maximum load when m < n.

Finally, as mentioned in [3], an interesting but also challenging generalization is the RBB
process on graphs. We hope that at least some of our arguments could be leveraged, for
example, the insight in Section 4.2 that many bins become empty within O((m/n)2) rounds
might extend to graphs.
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Since xt
i has distribution Bin(t, 1/n) for any t ⩾ 0, E

[
(xn

i )2 ] = (1 − 1/n) + 1 = 2 − 1
n . Hence

by linearity of expectations,

E [ Υn ] ⩽ 2n.

Define

Υ̃n :=
n∑

i=1
min{Υn

i , log2 n},

and note that Υn = Υ̃n if and only if the maximum load is at most log n. Then,

E
[

Υ̃n
]
⩽ E [ Υn ] ⩽ 2n.

Further, Υ̃n is a function of n independent random variables (the random bin choices of the n

balls), and changing one of these choices can change Υ̃n by at most (log n)2 − (log n − 1)2 ⩽
2 log n. Hence by the Method of Bounded Differences (Theorem A.3),

Pr
[

Υ̃n − E
[

Υ̃n
]
⩾ λ

]
⩽ exp

(
− λ2

2
∑n

i=1 4(log n)2

)
,

and choosing λ = n yields,

Pr
[

Υ̃n ⩾ 3n
]
⩽ Pr

[
Υ̃n ⩾ E

[
Υ̃n
]

+ n
]
⩽ n−ω(1).

Further, since the maximum load is larger than log n with probability 1 − n−ω(1), we have
by the union bound

Pr [ Υn ⩾ 3n ] ⩽ Pr
[{

Υ̃n ⩾ 3n
}

∪
{

max
i∈[n]

xn
i > log n

}]
⩽ n−ω(1) + n−ω(1) = 2n−ω(1). ◀

The next standard result was also used in [30, Section 4] and is based on [31]. For
convenience of the reader, we give a self-contained proof, obtaining high probability bounds.
[cf. [26, Lemma 10.4]] Consider the One-Choice process with m = cn log n balls, for any
c ⩾ 1/ log n. Then, we have

Pr
[

max
i∈[n]

xm
i ⩾

(
c +

√
c

10

)
· log n

]
⩾ 1 − n−2.

Proof. In order to use the Poisson Approximation [28, Chapter 5], let Y1, Y2, . . . , Yn be n

independent Poisson random variables with parameter λ = m
n = c log n. Then,

Pr
[

Yi ⩾ λ +
√

c

10 · log n

]
⩾ Pr

[
Yi = λ +

√
c

10 · log n

]
= e−λ · λλ+

√
c

10 ·log n

(λ +
√

c
10 · log n)!

.

Using that z! ⩽
√

2πz
(

z
e

)z
e

1
12z for any integer z ⩾ 1,

Pr
[

Yi = λ +
√

c

10 · log n

]
⩾

1
4 ·

√
2πλ

· e−λ ·

(
eλ

λ +
√

c
10 · log n

)λ+
√

c
10 ·log n

⩾
1

4 ·
√

2πλ
· e

√
c

10 log n ·
(

1 + 1
10

√
c

)−λ−
√

c
10 ·log n
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⩾
1

4 ·
√

2πλ
· e

√
c

10 log n · e
− 1

10
√

c
·(λ+

√
c

10 ·log n)

⩾
1

4 ·
√

2πλ
· e

√
c

10 log n− 1
10

√
c

λ− 1
100 log n

⩾
1

4 ·
√

2πλ
· e− 1

100 log n

Since for any k ⩾ 0,

Pr [ Yi = k + 1 ]
Pr [ Yi = k ] = λ

k + 1 ,

we conclude that

Pr
[

Yi ⩾ λ +
√

c

10 · log n

]
⩾

√
λ−1∑

k=0
Pr
[

Yi = λ +
√

c

10 · log n + k

]
⩾

√
λ · Pr

[
Yi = λ +

√
c

10 · log n +
√

λ

]

⩾
√

λ · Pr
[

Yi = λ +
√

c

10 · log n

]
·

√
λ∏

k=1

(
λ

λ +
√

c
10 · log n + k

)

⩾
√

λ · 1
4 ·

√
2πλ

· e− 1
100 log n ·

(
λ

λ +
√

c
10 · log n +

√
λ

)√
λ

⩾
√

λ · 1
4 ·

√
2πλ

· e− 1
100 log n ·

(
1 + 1

5
√

c

)−
√

λ

⩾
√

λ · 1
4 ·

√
2πλ

· e− 1
100 log n · e− 1

5

√
log n

⩾ e− 1
99 log n = n−1/99,

where the last inequality holds for sufficiently large n. Hence,

Pr
[

n⋃
i=1

{
Yi ⩾ λ +

√
c

10 · log n

}]
⩾ 1 −

(
1 − n−1/99

)n

⩾ 1 − n−3.

Hence for Ẽ :=
{

maxi∈[n] Yi ⩾ λ +
√

c
10 · log n

}
, we have Pr

[
¬Ẽ
]
⩽ n−3. Note that Ẽ is a

monotone event under adding balls, and thus with E :=
{

maxi∈[n] xm
i ⩾ λ +

√
c

10 · log n
}

, we
have by [28, Corollary 5.11])

Pr [ ¬E ] ⩽ 2 · Pr
[

¬Ẽ
]
⩽ 2 · n−3 ⩽ n−2. ◀

A.2 A Simple Bound for the RBB process
In this section, we show that given that the maximum load is small in the current step, then
the change of the quadratic potential is w.h.p. small over the next step.

▶ Lemma A.2. Consider the RBB process with m ⩾ n balls and n bins. For any round
t ⩾ 0, we have,

Pr
[

|Υt+1 − Υt| ⩽ 2 · m · log n + 4n

∣∣∣∣ max
i∈[n]

xt
i ⩽

m

n
· log n

]
⩾ 1 − n−ω(1).
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Proof. Let ki ∈ [0, n] be the number of balls that each bin receives at round t. For any bin
i ∈ [n] with xt

i > 0,

|Υt+1
i − Υt

i| = |(xt
i + ki − 1)2 − (xt

i)2| = |2 · (ki − 1) · xt
i + (ki − 1)2|

⩽ 2 · xt
i · ki + (ki)2 + 1.

For any bin i ∈ [n] with xt
i = 0,

|Υt+1
i − Υt

i| = k2
i .

Aggregating over all bins, we have

|Υt+1 − Υt| ⩽
n∑

i=1
2 · xt

i · ki +
n∑

i=1
k2

i + n. (A.1)

Using Lemma A.1 we have

Pr
[

n∑
i=1

k2
i ⩽ 3n

]
⩾ 1 − n−ω(1).

When the event {
∑n

i=1 k2
i ⩽ 3n} holds, and by the condition {maxi∈[n] xt

i ⩽
m
n · log n} and

m ⩾ n, we finally conclude from Equation (A.1)

|Υt+1 − Υt| ⩽ 2 · n · m

n
· log n + 4n = 2 · m · log n + 4n. ◀

A.3 Concentration Inequalities
In this section, we state the Method of Bounded Differences and a concentration inequality
with a bad event.

▶ Theorem A.3 ([16, Corollary 5.2]). Consider a function f :
∏

i∈[N ] Ωi → R such that it
satisfies the Lipschitz condition with bounds (ci)i∈[N ]. For independent random variables
X1, . . . , XN with Xi taking values in Ωi, we have that for any λ > 0

Pr
[

f(X1, . . . , XN ) ⩾ E
[

f(X1, . . . , XN )
]

+ λ
]
⩽ exp

(
− 2 · λ2∑N

i=1 c2
i

)
.

In order to state the concentration inequality for supermartingales conditional on a bad
event not occurring, we introduce the following definitions from [13]. Consider any random
variable X (in our case it will be the Zt, the adjusted quadratic potential in Lemma 3.2)
that can be evaluated by a sequence of decisions Y 1, Y 2, . . . , Y N of finitely many outputs
(the allocated balls). We can describe the process by a decision tree T , a complete rooted
tree with depth n with vertex set V (T ). Each edge uv of T is associated with a probability
puv depending on the decision made from u to v.

We say f : V (T ) → R satisfies an admissible condition P if P = {Pv} holds for every
vertex v. For an admissible condition P , the associated bad set Bi over the Xi is defined
to be

Bi = {v | the depth of v is i, and Pu does not hold for some ancestor u of v}.
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▶ Theorem A.4 (Theorem 8.3 in [13]). For a filtration F,

{∅, Ω} = F0 ⊆ F1 ⊆ . . . ⊆ FN ,

suppose that the random variable Xi is Fi-measurable for 0 ⩽ i ⩽ N . Let B = BN denote
the bad set with the following admissible condition:

E
[

Xi | Fi−1 ] ⩽ Xi−1,

|Xi − Xi−1| ⩽ ci,

for 1 ⩽ i ⩽ N and for c1, . . . , cN ⩾ 0. Then, we have

Pr
[

XN ⩾ X0 + λ
]
⩽ exp

(
− λ2

2 ·
∑N

i=1 c2
i

)
+ Pr [ B ] .

A.4 Auxiliary Probabilistic Claim
▶ Lemma A.5. Consider a sequence of random variables (Zi)i∈N such that there are 0 < a < 1
and b > 0 such that every i ⩾ 1,

E [ Zi | Zi−1 ] ⩽ Zi−1 · a + b.

Then for every i ⩾ 1,

E [ Zi | Z0 ] ⩽ Z0 · ai + b

1 − a
.

Proof. We will prove by induction that for every i ∈ N,

E [ Zi | Z0 ] ⩽ Z0 · ai + b ·
i−1∑
j=0

aj .

For i = 0, E [ Z0 | Z0 ] ⩽ Z0. Assuming the induction hypothesis holds for some i ⩾ 0, then
since a > 0,

E [ Zi+1 | Z0 ] = E [ E [ Zi+1 | Zi ] | Z0 ] ⩽ E [ Zi | Z0 ] · a + b

⩽
(

Z0 · ai + b ·
i−1∑
j=0

aj
)

· a + b

= Z0 · ai+1 + b ·
i∑

j=0
aj .

The claims follows using that for a ∈ (0, 1),
∑∞

j=0 aj = 1
1−a . ◀
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