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Abstract
Let G be an undirected network with a distinguished set of terminals T ⊆ V (G) and edge capacities
cap : E(G) → R+. By an odd T -walk we mean a walk in G (with possible vertex and edge self-
intersections) connecting two distinct terminals and consisting of an odd number of edges. Inspired
by the work of Schrijver and Seymour on odd path packing for two terminals, we consider packings
of odd T -walks subject to capacities cap.

First, we present a strongly polynomial time algorithm for constructing a maximum fractional
packing of odd T -walks. For even integer capacities, our algorithm constructs a packing that is
half-integer. Additionally, if cap(δ(v)) is divisible by 4 for any v ∈ V (G)−T , our algorithm constructs
an integer packing.

Second, we establish and prove the corresponding min-max relation.
Third, if G is inner Eulerian (i.e. degrees of all nodes in V (G) − T are even) and cap(e) = 2

for all e ∈ E, we show that there exists an integer packing of odd T -trails (i.e. odd T -walks with
no repeated edges) of the same value as in case of odd T -walks, and this packing can be found in
polynomial time.

To achieve the above goals, we establish a connection between packings of odd T -walks and
T -trails and certain multiflow problems in undirected and bidirected graphs.
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1 Introduction

Hereinafter, for graph G we use notation V (G) (resp. E(G)) to denote the set of vertices
(resp. edges) of G.

Consider an undirected network G with a distinguished set of terminals T ⊆ V (G)
and edge capacities cap : E(G) → R+. We use the notions of walks and paths; the
former allow arbitrary edge and vertex self-intersections, while the latter forbid any self-
intersections. Additionally, we consider trails that allow vertex self-intersections but not
edge self-intersections. Any path is a trail and any trail is a walk, but not vice versa. A
T -walk (resp. T -trail or T -path) is a walk (resp. trail or path) connecting two distinct
vertices in T (note that its intermediate vertices may also be in T ).

By a (fractional) packing of T -walks (resp. T -trails, T -paths) subject to capacities cap

we mean a weighted collection P = {α1 ·W1, . . . , αm ·Wm}, where Wi are T -walks (resp.
T -trails, T -paths) and αi ∈ R+ are weights such that

∑
i αini(e) ≤ cap(e) for any e ∈ E(G),

where ni(e) = 0, 1, . . . denotes the number of occurrences of e in Wi. If all αi are integer
(resp. 1

k -integer, i.e. become integer after multiplying by k) then the whole packing is said
to be integer (resp. 1

k
-integer). The value of P (denoted by ∥P∥) is

∑
i αi; a packing of

maximum value will be referred to as maximum.
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5:2 Packing Odd Walks and Trails in Multiterminal Networks

If one imposes no additional restrictions, the values of maximum packings of T -walks,
T -trails and T -paths coincide; this follows from the fact that any walk can be reduced into
a path by removing its cyclic parts. Also for |T | = 2 and integer edge capacities the value
of a maximum fractional packing equals the value of a maximum integer packing (by the
max-flow integrality theorem [10, Cor. 10.3a]), while for |T | ≥ 3 a maximum packing may be
half-integer [10, Sec. 73.2].

Now consider a much harder case where T -walks (resp. T -trails, T -paths) comprising a
packing are required to be odd, i.e. to consist of an odd number of edges. Now an attempt
to transform a walk into a path (or even a walk into a trail) by a similar decycling approach
fails since it may alter the parity.

Our original source of inspiration lies in the work of Schrijver and Seymour [11], who
established a min-max formula for the value of a maximum fractional packing of odd T -paths
for T = {s, t}. At its dual side, the formula involves enumerating (not necessarily induced)
subgraphs H of G that contain both s and t but no odd s − t path and upper-bounding
the value of packings by a certain “capacity” of H. In a sense, such H is analogous to an
s− t cut in the standard max-flow-min-cut-theorem [10, Th. 10.3] and is called an odd path
barrier.

The above result is established for just |T | = 2, only concerns fractional packings and,
moreover, is non-constructive. In case of integer capacities one should ultimately aim for a
min-max formula and a polynomial algorithm for constructing a maximum integer packing of
odd T -paths. These questions, unfortunately, seem to be notoriously hard. In particular, [12,
Sec. 3.3] shows that checking if a given graph contains a pair of edge-disjoint odd T -trails is
NP-hard already for |T | = 2.

1.1 Our results
The present paper deals with the multiterminal version of the problem (allowing arbitrary
number of terminals T ) but considers packings of odd T -walks and T -trails rather than odd
T -paths.

First, for packings of odd T -walks and real-valued capacities we present a polynomial
time reduction (Theorem 9) from a maximum odd T -walk packing problem to a maximum
multiflow problem for a special commodity graph family due to Karzanov [6]. For even
integer capacities, our algorithm produces a half-integer packing. Also, if capacities are even
integers and cap(δ(v)) (which is, as usual, the sum of cap(e) for all edges e incident to v) is
divisible by 4 for any v ∈ V (G)− T , a maximum packing can be made integer.

Second, we present a min-max formula (Theorem 12) for maximum odd T -walk packings.
It is strikingly similar to the one due to Schrijver and Seymour [11] (for odd s− t paths) and
involves, at its dual side, subgraphs of G containing no odd T -walks.

Third, we extend the above results to odd T -trail packings. Consider the unit-capacity
case. Then a Schrijver–Seymour-type min-max relation does not hold for integer packings
even if one assumes that |T | = 2 and the underlying graph is inner Eulerian (i.e. degrees
of all non-terminal verticies are even). An example of such a “bad” instance can be found in
[11, Sec.3]. (There it was given for the case of odd T -paths rather than odd T -trails but it
turns the example works in both cases.)

The fractionality status of such a packing problem seems to be open. We partially resolve
it by proving that for an inner Eulerian graph with unit capacities and an arbitrary number
of terminals an optimum packing of T -trails can always be chosen half-integer (and also can
be found in polynomial time). If all capacities are multiplied by 2, the inner Eulerianness
condition becomes cap(δ(v)) being divisible by 4 for all v ∈ V (G)− T , which is equivalent to
the condition from the first result, and our optimum packing becomes integer.
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We prove (Theorem 14) that there exists a packing of odd T -trails of the same value as in
the case of odd T -walks, and this packing can be found in polynomial time. In other words,
odd T -walks forming a maximum integer packing can always be rearranged (“untangled”) to
ensure that none of them has edge self-intersections.

1.2 Our techniques

The algorithm that deals with odd T -walks is based on a reduction to a certain multiflow
problem [6] and some graph symmetrization. For the min-max formula regarding packing of
odd T -walks, we indicate how optimum collections of cuts (in the sense of the above multiflow
problem) correspond to minimum odd T -walk barriers.

The algorithm dealing with odd T -trails attracts additional combinatorial ideas. Loosely
speaking, it constructs a maximum integer packing consisting of odd T -walks Wi. If all of
these T -walks Wi are already T -trails (i.e. have no edge self-intersections), then we are done.
Otherwise, for walk Wi with edge self-intersections, we either simplify Wi (while maintaining
its parity) or find a redundant edge in G whose removal does not decrease the number
of T -walks in the current packing, drop it, and repeat. The existence of a redundant edge
is proved by a novel characterization of integer odd T -walk packings in terms of T -trail
packings in inner Eulerian bidirected graphs [1] and relies on the corresponding min-max
theorem.

1.3 Related work

There is also a solid body of recent research devoted to path packings in unit-capacitated
graphs. (Note that here the notions of integer walk and trail packings coincide.)

While even for T = {s, t} the problem of finding a maximum integer packing of odd
T -trails in general networks does not seem to be tractable, a certain lower bound for the
maximum value of such packings (relating it to odd T -trail covers) is known [5] (also see [4]
for a weaker bound).

Note that if one is interested in packing odd T -trails (rather than odd T -walks) in graphs
with integer capacities larger than 1, then the problem does not seem to be directly reducible
to unit capacities. Indeed, splitting each edge and solving the problem in the unit-capacitated
case, one will face challenges with edge self-intersections when attempting to return back to
the original graph.

These challenges seem to be quite fundamental, and, in particular, we are not aware of
any prior art concerning capacitated versions of the maximum odd T -trail integral packing
problem. Our algorithm for constructing a maximum packing of odd T -trails is able to deal
with edge self-intersections by certain T -walk “untangling” but this battle is not won easily.

Another related (but still substantially different) area of research concerns integer packing
of vertex-disjoint A-paths in group-labeled graphs. Here each edge xy ∈ E is endowed with
an element g(x, y) of group Γ (obeying g(x, y) = −g(y, x)). Path P with both (distinct) ends
in A ⊆ V (G) is called a non-zero A-path if the sum of all group elements corresponding
to (directed) edges of P is non-zero. (This also extends to non-Abelian groups.) In [3] a
polynomial algorithm for constructing a maximum integer packing of vertex-disjoint A-paths
is given. See also [9] for a similar treatment involving permutation groups.

With an appropriate choice of group Γ and edge labels, non-zero A-paths may express
various well-studied notions, e.g. the much-celebrated Mader’s integer packings of vertex-
disjoint S-paths [8], [10, Sec. 73.1].

STACS 2023



5:4 Packing Odd Walks and Trails in Multiterminal Networks

Note that if Γ = Z2 and g(x, y) = 1 for all edges xy one gets the odd parity constraint for
paths comprising a packing. The latter motivates adding such Γ as a direct group summand
in the Mader’s case above hoping to capture the parity restriction. This approach, however,
will not work as expected: now a path could either be odd or connect terminals in distinct
S-classes (while we were certainly hoping for paths that simultaneously have ends in distinct
S-classes and have odd length).

2 Walks, trails, packings and other notation

Consider an undirected loopless graph G with possible parallel edges. In this paper we deal
with certain families of path-like objects in G differing in kinds of allowed self-intersections.
Formally:

▶ Definition 1. Given x, y ∈ V (G), an x− y walk is a sequence W = (e1, e2, . . . , el), where
ei ∈ E are such that ei = vi−1vi for v0 = x, vl = y and v1, . . . , vl−1 ∈ V (G).

Here l is called the length of W . A walk is called even or odd depending on the parity
of its length. Vertices x and y are called the endpoints of W and v1, . . . , vl−1 are called
intermediate (for W ).

Note that some of vertices vi of W may coincide, allowing a walk to visit the same vertex
multiple times and traverse same edge multiple times.

▶ Definition 2. An x−y trail (resp. path) is an x−y walk W with all edges (resp. vertices)
being distinct. An x− x walk (resp. trail) is called cyclic.

▶ Definition 3. Let T ⊆ V (G) be a distinguished set of vertices called terminals. A T -walk
(resp. T -trail, T -path) is an x − y walk (resp. x − y trail, x − y path) for two distinct
x, y ∈ T . (Note that unless explicitly stated otherwise, intermediate vertices of such walks
are allowed to be terminals.)

▶ Definition 4. Graph G is called inner Eulerian with respect to T (or simply inner
Eulerian if T is clear from context) if for any v ∈ V (G)− T the degree of v in G is even.

▶ Definition 5. Given edge capacities cap : E(G) → R+, a weighted multiset P = {α1 ·
W1, . . . , αm · Wm}, where αi ∈ R+ are weights and each Wi is a walk, is said to be a
(fractional) walk packing if for any e ∈ E(G) the load P(e) :=

∑
i αini(e) of edge e does

not exceed cap(e), where ni(e) = 0, 1, . . . is the number of occurrences of e in Wi.
∥P∥ :=

∑
i αi is called the value of P. If all αi ∈ Z+ then P is called integer.

If P,Q are packings and α ∈ R+, P +Q denotes a union of weighted multisets and α · P
denotes the result of multiplying all weights in P by α.

When walks comprising a packing are restricted in some way, the analogous terminology
is applied to the packing as a whole. In particular, one may speak of T -walk (resp. T -trail,
T -path) packings P indicating that walks in P are, in fact, T -walks (resp. T -trails, T -paths).

▶ Definition 6. A triple (G, T, cap) consisting of an undirected graph G, terminal set
T ⊆ V (G) and capacity function cap : E(G)→ R+, is called a network.

Two notable special cases of constant capacity function to appear throughout our paper
are 1(e) := 1 and 2(e) := 2 for any e ∈ E(G).

▶ Definition 7. Consider network N = (G, T, cap) together with undirected graph H such
that V (H) = T (called the commodity graph). A multi-commodity flow (or simply a
multiflow) in network N with commodity graph H is a T -walk packing P such that for any
T -walk W in P its (distinct) endpoints are connected by an edge in H.
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We also employ the following graph-theoretic notation:

▶ Definition 8.
Given graph G and A ⊆ V (G), v ∈ V (G), δ(v) denotes the set of edges incident to v, δ(A)
denotes the set of edges with exactly one endpoint in A and γ(A) denotes the set of edges
with both endpoints in A;
For function f : X → R and Y ⊆ X, f(Y ) is defined as

∑
x∈Y f(x); e.g. for a set of

vertices A, f(δ(A)) is the total value of f over all edges with exactly one endpoint in A;
Given edge capacities cap : E(G) → R+ in graph G and S, T ⊆ V (G), S ∩ T = ∅, an
S − T cut is a vertex set C such that S ⊆ C ⊆ V (G) − T ; the capacity of cut C is
cap(δ(C)); the minimum capacity of an S − T cut is denoted by λ(S, T );
When graph G is not clear from the context, it is specified explicitly, e.g. δG, γG and λG.

3 Odd T -walk packing algorithm

Let (G, T, cap) be a network. In this section we introduce an auxiliary network (G̃, T̃ , c̃ap)
constructed from G and employ it to provide a strongly polynomial time algorithm for finding
a maximum odd T -walk packing. This network also plays a crucial role in further sections.

Construct graph G̃ with V (G̃) := V (G) ⊔ V (G)′, where V (G)′ is a disjoint copy of V (G),
i.e. each vertex v ∈ V (G) has its own copy v′ ∈ V (G)′, and E(G̃) := {u′v, uv′ | uv ∈ E(G)}.
Also, let v′′ := v for v ∈ V (G). If x, y ∈ V (G), vertices x and x′ are called symmetric
to each other, and similarly for edges xy′ and x′y. For a vertex set (resp. an edge set
or a walk) X, let X ′ be the vertex set (resp. edge set or walk) consisting of vertices (or
edges) symmetric to ones in X. Let T̃ := T ⊔ T ′. Finally, define capacities on edges of G̃ as
c̃ap(uv′) := c̃ap(u′v) := 1

2 cap(uv) for any uv ∈ E(G).
The following theorem encapsulates the first of our results announced in Section 1.

▶ Theorem 9 (Odd T -walk packing). Given network (G, T, cap), it is possible to construct a
maximum fractional odd T -walk packing P in (G, T, cap) in strongly polynomial time.

If all capacities are non-negative even integers, the resulting P is half-integer. If addi-
tionally cap(δ(v)) is divisible by 4 for all v ∈ V (G)− T , P is integer.

Proof. Note that G̃ is bipartite, so for distinct x, y ∈ T any x − y′ walk in G̃ is odd and
corresponds to an odd x− y walk in G.

Construct commodity graph HT as follows: V (HT ) := T̃ and E(HT ) := {tit
′
j | i ̸= j}.

Note that HT is isomorphic to K|T |,|T | without a perfect matching (see Figure 1).
Consider an arbitrary fractional odd T -walk packing P = {α1 ·W1, . . . , αm ·Wm} in

(G, T, cap) of value p. Denote endpoints of Wk as tk,1 and tk,2; this walk corresponds to a
pair of tk,1 − t′

k,2 walk W̃k and t′
k,1 − tk,2 walk W̃ ′

k in G̃, which are symmetric to each other.
Packing P̃ := {α1 · W̃1, . . . , αm · W̃m} in (G̃, T̃ , c̃ap) is of value p. For any xy ∈ E(G) holds
P̃(xy′) + P̃(x′y) = P(xy) since each occurrence of xy in some walk Wk in P corresponds to
exactly one occurrence of either x′y or xy′ in W̃k. The same properties hold for packing
P̃ ′ = {α1 · W̃ ′

1, . . . , αm · W̃ ′
m}, which is the symmetric counterpart of P̃.

Construct Q := 1
2 (P̃ + P̃ ′); the value of Q is also p. For any xy ∈ E(G) holds P̃ ′(xy′) =

P̃(x′y), thus Q(xy′) = 1
2 (P̃(xy′) + P̃ ′(xy′)) = 1

2 (P̃(xy′) + P̃(x′y)) = 1
2P(xy) ≤ 1

2 cap(xy) =
c̃ap(xy′), i.e. Q is a (self-symmetric) multiflow in (G̃, T̃ , c̃ap) with commodity graph HT .
Thus p does not exceed the value of a maximum fractional multiflow in (G̃, T̃ , c̃ap) with
commodity graph HT .

STACS 2023



5:6 Packing Odd Walks and Trails in Multiterminal Networks

t1 t2 t3

t′1 t′2 t′3

Figure 1 Commodity graph HT ; anticlique family A1 is in red and A2 is in blue.

Conversely, consider a fractional multiflow Q of value q in network (G̃, T̃ , c̃ap) with
commodity graph HT . Construct an odd T -walk packing P of value q in (G, T, cap) by taking
preimages of all weighted walks in Q with their respective weights. Clearly, for xy ∈ E(G)
holds P(xy) = Q(xy′) +Q(x′y) ≤ c̃ap(xy′) + c̃ap(x′y) = cap(xy). Thus, q does not exceed
the value of a maximum fractional odd T -walk packing in (G, T, cap).

Therefore, the maximum value of a fractional odd T -walk packing in (G, T, cap) equals
the value of a maximum fractional multiflow in (G̃, T̃ , c̃ap) with commodity graph HT . To
conclude the proof, we utilize the following result due to Karzanov [6]:

▶ Theorem 10. Let (G, T, cap) be a network with commodity graph H. Denote by A the
family of all inclusion-wise maximal anticliques (i.e. independent sets) in H. Suppose A can
be split into two subfamilies A1,A2 such that all anticliques in each family Ai are pairwise
disjoint.

Then a maximum multiflow in (G, T, cap) can be found in strongly polynomial time. If,
additionally, cap are integers and cap(δ(v)) is even for any v ∈ V (G)− T , then the resulting
multiflow is integer.

Note that the family of anticliques in HT obeys the property from Theorem 10. Indeed,
define A1 := {T, T ′} and A2 := {{t, t′} | t ∈ T} (see Figure 1). If some maximal anticlique
contains a terminal and its symmetric copy, then it must belong to A2; otherwise it cannot
contain both a vertex from T and a vertex from T ′, thus it belongs to A1. Also, if cap(δ(v))
is divisble by 4 for any v ∈ V (G)−T , then c̃ap(δ(v)) is even for any v ∈ V (G̃)− T̃ . Therefore,
applying Theorem 10 finishes the proof. ◀

4 Odd T -walk barrier

In this section we provide a combinatorial description of barrier structure that defines a tight
upper bound for the value of a maximum odd T -walk packing, which is our second result
announced in Section 1. This characterization is surprisingly similar to the corresponding
barrier structure for maximum odd s− t path packings due to Schrijver and Seymour [11].
A strong duality is proven using the equivalence with multiflows from Section 3.

▶ Definition 11. Given network (G, T, cap), a (not necessarily induced) subgraph B of G

with T ⊆ V (B) is called an odd T -walk barrier if there is no odd T -walk in B.
The capacity cap(B) of barrier B is defined as 1

2 cap(I(B)) + cap(U(B)), where for an
arbitrary (not necessarily induced) subgraph H of G we use the following notation:

I(H) := {xy ∈ E(G) | xy ∈ δG(V (H))} (informally, the edge leaves H and does not
return);
U(H) := {xy ∈ E(G) | x, y ∈ V (H), xy ∈ E(G)− E(H)} (informally, the edge takes a
U-turn by leaving H and immediately returning back).
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Figure 2 An example of an odd T -walk barrier B; vertices in T are crosses, vertices in V (B)− T

are black dots, vertices not in V (B) are white dots; edges in E(B) are solid, edges not in E(B) are
dashed; edges in I(B) are blue, edges in U(B) are red.

It is easy to verify that the capacity of any barrier B is an upper bound for the value
of any odd T -walk packing P. Indeed, any odd T -walk W endowed with weight α in P is
not entirely contained in B; thus it either visits some vertex v ∈ V (G)− V (B) or traverses
some edge xy ∈ E(G)− E(B) such that x, y ∈ V (B). In the former case it reserves α units
of capacity of at least two edges in I(B), and in the latter case it reserves α units of capacity
of at least one edge in U(B). Therefore ∥P∥ ≤ cap(B). The strong duality also holds:

▶ Theorem 12 (see Appendix). Let (G, T, cap) be a network. If P ranges over odd T -walk
packings and B ranges over odd T -walk barriers, then max

P
∥P∥ = min

B
cap(B).

The min-max formula above enables strengthening the statement of Theorem 9 as follows.

▶ Corollary 13. Given network (G, T, cap), let P be a maximum fractional odd T -walk
packing in (G, T, cap). If all capacities are non-negative even integers, ∥P∥ is integer. If
additionally cap(δ(v)) is divisible by 4 for all v ∈ V (G)− T , ∥P∥ is even integer.

Proof. By Theorem 12, ∥P∥ = 1
2 cap(I(B)) + cap(U(B)) for minimum odd T -walk barrier B.

If all capacities are even integers, then cap(U(B)) and cap(I(B)) are also even, therefore the
first part of the statement is trivial. Let A := V (G)− V (B), note that δ(A) = I(B). Under
the second condition, note the following congruence:

0 ≡
∑
v∈A

cap(δ(v)) ≡ 2cap(γ(A)) + cap(δ(A)) ≡ cap(I(B)) (mod 4)

Therefore, 1
2 cap(I(B)) is also an even integer. ◀

5 Odd T -trail packing algorithm

Hereinafter we focus on network (G, T, 2) for an inner Eulerian graph G. Since all capacities
are 2, each edge can be traversed by at most two walks in an integer packing. Our ultimate
goal is to construct a maximum integer T -trail packing. The third result announced in
Section 1 is as follows:

▶ Theorem 14. Given network (G, T, 2) with inner Eulerian G, it is possible to construct a
maximum integer packing of odd T -trails in polynomial time. This packing is also a maximum
fractional packing of odd T -walks in (G, T, 2).

We use a chemistry-inspired notation: replace each edge in G with two valencies each of
which may be occupied by a walk. More formally:

▶ Definition 15. For edge e ∈ E(G), denote e1 and e2 to be two valencies of e; edge e is
called underlying for e1 and e2. Define the valence graph G12 to be the graph on the same
vertices as G with valencies regarded as edges.

STACS 2023



5:8 Packing Odd Walks and Trails in Multiterminal Networks

In what follows, instead of integer odd T -walk packings in (G, T, 2) we shall be dealing
with integer odd T -trail packings in (G12, T, 1), which effectively are sets of edge-disjoint
odd T -trails in G12. However, a T -trail in G12 may correspond to a non edge-simple T -walk
in G once we replace valencies with their underlying edges. This is captured as follows:

▶ Definition 16. Edge e ∈ E(G) is called irregular for T -trail W in G12 if W traverses
both valencies e1, e2 and regular otherwise.

Hence we are looking for a maximum set of edge-disjoint odd T -trails in G12 without
irregular edges.

A brief outline of our approach is as follows. In Section 5.1 we introduce signing on
valencies that guide T -trails and ensure they have proper parities. Given a suitable signing,
we prove the existence of an integer odd T -trail packing in (G12, T, 1) (with possible irregular
edges) of the needed value by reduction to bidirected networks. We also prove that a
suitable signing exists.

In Section 5.2 we construct such a signing and also perform the so-called terminal
evacuation by introducing an auxiliary terminal t′ for each t ∈ T that is connected to t

with a proper number of valencies of certain signs. This transformation allows to assume
that no trail in the packing contains any terminal as its intermediate vertex.

Next, Section 5.3 ensures that inner vertices are of degree at most 3.
Finally in Section 5.4 we deal with irregular edges. We show that whenever both valencies

e1 and e2 of some edge e are used by some odd T -trail W in the packing, either W could
be simplified (preserving its parity) or e is in fact redundant, i.e. G can be reduced by
dropping e. This reduction preserves the needed properties of G; hence one can recompute a
packing and iterate. These iterations continue until there are no more remaining irregular
edges.

5.1 Signed graphs
We also use the framework of signed graphs whose edges are endowed with signs “+” and
“-”. Intuitively, a signed valence graph introduces a convenient family of T -trails defined by
the requirement of alternation which makes parity of the trail uniquely determined by the
signs of the first and the last valence.

▶ Definition 17. A signing is an arbitrary function M : E(G12) → {+, -}. Graph G12

together with some signing M forms a signed valence graph (G12, M). In presence of
terminal set T ⊆ V (G), a signed valence network (G12, M, T, 1) appears. A T -trail W in
(G12, M) is called alternating if signs of valencies alternate along W .

▶ Definition 18. Signing M is called inner balanced if for any v ∈ V (G)− T , the number
of positive edges incident to v equals the number of negative edges incident to v.

We shall need the notion of bidirected graphs, which generalize digraphs and admit
three possible kinds of edges: a usual directed edge (ingoing for one endpoint and outgoing
for another), a positive edge (which is ingoing for both its endpoints) and a negative edge
(which is outgoing for both its endpoints). The definition of a bidirected walk or a bidirected
trail is similar to Definition 1 with the only difference that for any internal vertex vi exactly
one of ei, ei+1 is ingoing to vi and another is outgoing from vi. Refer to [10, Ch. 36] for
details.
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The notion of inner Eulerianness is extended to bidirected graphs as follows: a bidirected
graph G is inner Eulerian with respect to terminal set T if for any v ∈ V (G) − T the
number of edges ingoing to v is equal to the number of edges outgoing from v. Similarly to
the undirected case, triple (G, T, cap) consisting of bidirected graph G, terminal set T and
capacity function cap is called a bidirected network.

We rely on two theorems of a similar kind, one of which is due to Cherkassky [2] and
Lovász [7], and another is due to Babenko and Karzanov [1, Th. 1.1]:

▶ Theorem 19 (Min-max formula for T -trail packings in inner Eulerian undirected graphs [2, 7]).
Let (G, T, 1) be an inner Eulerian network. Then the value of a maximum packing of T -trails
equals 1

2
∑

t∈T λ({t}, T − {t}). Such a packing can be chosen integer and can be constructed
in polynomial time.

▶ Theorem 20 (Min-max formula for T -trail packings in inner Eulerian bidirected graphs [1]).
Let (G, T, 1) be an inner Eulerian bidirected network. Then the value of a maximum packing
of bidirected T -trails equals 1

2
∑

t∈T λ({t}, T − {t}). Such a packing can be chosen integer
and can be constructed in polynomial time.

Note that the value of a maximum packing in the latter theorem does not depend on
actual directions of edges. As we mentioned before, signings encode a certain family of odd
T -walks. The following theorem describes why it is important for us.

▶ Theorem 21. Let (G12, M, T, 1) be a signed valence network with an inner balanced signing
M . Let P be a maximum packing of odd T -trails in (G12, T, 1), and S be a maximum packing
of alternating T -trails in (G12, M, T, 1). Then ∥P∥ = ∥S∥. Additionally, P and S can be
chosen integer and can be constructed in polynomial time.

Proof. Construct an auxiliary bidirected graph
←→
G12 corresponding to the signed valence

graph (G12, M) as follows: edges in
←→
G12 correspond to valences in E(G12); an edge is positive

if the sign of the valence is “+” and negative otherwise; M being inner balanced implies
that

←→
G12 is inner Eulerian, therefore Theorem 20 is applicable to (

←→
G12, T, 1). Also note that

bidirected T -trails in
←→
G12 correspond to alternating T -trails in (G12, M). Refer to Figures

3a and 3b for an example.
Note that G12 is automatically inner Eulerian due to each vertex in V (G12) being adjacent

to an even number of valencies, therefore Theorem 19 is applicable to (G12, T, 1).
It follows that maximum packing P of odd T -trails in (G12, T, 1) and maximum packing

←→
P of bidirected T -trails in (

←→
G12, T, 1) are of the same value 1

2
∑

t∈T λ({t}, T − {t}). The
latter packing can be chosen integer and can be constructed in polynomial time, and then
transformed into a maximum integer packing S of alternating T -trails in signed valence
network (G12, M, T, 1). ◀

▶ Definition 22. A signed valence network (G12, M, T, 1) with inner balanced signing M is
(p, q)-tight if 1) there exists an integer T -trail packing in (G12, T, 1) of value p + q and 2)
the number of “-” valencies adjacent to terminals T is q.

▶ Lemma 23. Given a signed valence network (G12, M, T, 1) with a (p, q)-tight inner balanced
signing M , there exists an integer packing P +Q in (G12, M, T, 1) of value p + q, where P
consists of at least p odd alternating T -trails and Q consists of at most q even alternating
T -trails. Moreover, T -trails in P +Q can be chosen so as to avoid passing through terminals
T as intermediate vertices.
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(a) Packing of two t1−t2 trails in (G12, M, T, 1),
one of which is even and another is odd.
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(b) Packing of two bidirected t1 − t2 trails in
(
←→
G12, T, 1), one of which is even and another is odd.

Figure 3 Correspondence between signed valence graph with inner balanced signing (G12, M, T, 1)
and inner Eulerian bidirected graph (

←→
G12, T, 1). Terminals are crosses, other vertices are black dots.

Proof. The first tightness property implies existence of an integer T -trail packing in (G12, T, 1)
of value p + q. Then, by Theorem 21 we get a packing of p + q alternating T -trails in
(G12, M, T, 1). Break this packing into two parts P and Q, where P consists of odd T -trails
and Q consists of even T -trails.

The second tightness property implies ∥Q∥ ≤ q as each trail in Q has a - valence incident
to a terminal, therefore ∥P∥ ≥ p, as needed.

W.l.o.g. all these T -trails do not contain terminals as intermediate vertices (for otherwise,
if some alternating T -trail W visits t ∈ T as its intermediate vertex, then W can be split
into two subtrails W1, W2 at t; among W1, W2 at least one, say W1 is a valid alternating
T -trail; replace W with W1 and repeat). ◀

5.2 Initial signing and terminal evacuation
In this section we present an algorithm for constructing a tight inner balanced signing M .
This is done with the help of network (G̃, T̃ , c̃ap) from Section 3. Note that since cap = 2,
we have c̃ap = 1. Degrees of vertices in G̃ coincide with degrees of their pre-images in G,
therefore G̃ is also inner Eulerian.

Consider a maximum multiflow F in (G̃, T̃ , 1) with commodity graph HT . Theorem 10
ensures that F can be chosen integer, i.e. F is a collection of edge-disjoint T̃ -trails (endowed
with weight 1) in G̃ connecting vertex pairs of form t1 − t′

2 for distinct t1, t2 ∈ T . Each
of these T -trails is odd, therefore their pre-images are odd T -trails in G12 (see Figure 4).
Denote the packing of these odd T -trails in (G12, T, 1) (taken with weight 1) as P. Let
p := ∥P∥. The proof of Theorem 9 implies:

▶ Corollary 24. P is a maximum odd T -trail packing in (G12, T, 1).

Consider the subgraph Z̃ of G̃ consisting of edges not appearing in T -trails of F . Since
any vertex v ∈ V (G̃) − T̃ has even degree in G̃, Z̃ is also inner Eulerian with respect to
terminals T̃ . Therefore Z̃ decomposes into two families of edge-disjoint trails: a collection of
cyclic trails and a collection of T̃ -trails.

The former ones correspond to even cyclic trails in G12 (due to biparticity of G̃); denote
the packing (with unit weights) of these even cyclic trails in (G12, T, 1) as E .

The latter ones may be further subdivided into two categories: (i) t1 − t2 or t′
1 − t′

2 trails
for distinct t1, t2 ∈ T ; and (ii) t − t′ trails for t ∈ T . (Note that t1 − t′

2 trails for t1 ̸= t2
cannot appear due to maximality of F .) The first category corresponds to even T -trails in
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Figure 4 Four possible trail-like components of G̃ and their images in G12: an odd T -trail, an
odd cyclic trail passing through terminal, an even T -trail and an even cyclic trail. Terminals are
crosses, other vertices are black dots.

(G12, T, 1). The second category corresponds to odd cyclic trails passing through terminals
in (G12, T, 1). Denote the packings in (G12, T, 1) (with unit weights) corresponding to these
two categories as Q and R respectively, and let q := ∥Q∥ and r := ∥R∥.

Note that P +Q+R+ E is an integer packing of (possibly cyclic) trails in (G12, T, 1)
that traverses each edge in G12 exactly once.

Starting from this moment we forget about graph G̃ and release the notation (·)′ of its
meaning of symmetry in G̃.

Perform terminal evacuation as follows. For each terminal t ∈ T introduce a new
terminal t′ connected to t by a certain number of edges. Namely, extend each t1 − t2 trail (t1
and t2 may coincide) in P +Q+R with new t′

1 − t1 and t2 − t′
2 valencies in G12, obtaining

a new valence graph G′12 and new integer packings P ′,Q′,R′ in (G′12, T ′, 1).
Note that originally each terminal t ∈ T had an even number of adjacent edges in G12,

therefore it serves as an endpoint for an even number of trails in P + Q + R (counting
endpoints of R twice). Hence, for any t ∈ T the number of added t′ − t valencies is even,
therefore the underlying graph G′ is well-defined and can be constructed by adding half the
number of t′ − t valencies. Note that odd (resp. even) T ′-trails in G′12 correspond to odd
(resp. even) T -trails in G12.

Now construct signing M ′ for G′12 by: turning trails in P ′ and R′ into odd alternating
trails starting and ending with + valencies; turning trails in Q′ into even alternating trails (in
any of two possible ways); turning each (cyclic) trail in E alternating (in any of two possible
ways). Clearly, such M ′ is inner balanced w.r.t. T ′. Also M ′ is (p, q)-tight. Indeed, P ′ +Q′

is a T ′-trail packing of value p + q. Finally, “-” valencies adjacent to terminals T ′ correspond
to T ′-trails in Q′, hence there are exactly q of them. Hence we proved the following theorem.

▶ Theorem 25. Given network (G, T, 2) with inner Eulerian G such that the maximum
value of an odd T -walk packing in (G, T, 2) is p, it is possible to construct in polynomial time
a signed valence network (G′12, M ′, T ′, 1) with an inner balanced signing M ′ such that:

M ′ is (p, q)-tight for some q;
any packing P ′ of odd T ′-trails in (G′, T ′, 2) can be transformed into a packing P of odd
T -trails in (G, T, 2) of the same value in polynomial time.

5.3 Subcubization
In this section we prove that it is sufficient to solve the problem only for graphs with degree
of non-terminal vertices not exceeding 3, which simplifies the subsequent case splitting.
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Figure 5 Subcubization at v.

▶ Definition 26. Valence network (G12, T, 1) is called inner subcubic, if deg v ≤ 3 for any
v ∈ V (G)− T .

Define the supercubicity of G to be

s(G) :=
∑

v∈V (G)−T

max{0, deg v − 3}.

Obviously, s(G) = 0 for inner subcubic networks.
Let (G12, M, T, 1) be a signed valence network with a (p, q)-tight inner balanced signing M .

Apply Lemma 23 to construct an integer packing P +Q, where P (resp. Q) consists of at
least p (resp. at most q) odd (resp. even) alternating T -trails.

Consider an inner vertex v of degree d ≥ 4. Denote edges incident to v in G as
δG(v) = {e1, . . . , ed}. Whenever some trail W in P +Q passes through v, it contains a pair
of consequent valencies corresponding to some edges {ei, ej} in E(G); call (ei, ej) for i ≤ j

an (ordered) transit pair. (Note that this ordering of ei and ej is not related to the order
in which these edges are passed by W .) Clearly, whenever an alternating trail passes through
a transit pair, it takes valencies of opposite signs.

Valencies corresponding to edges in δG(v) not traversed by any of Wi could also be
(arbitrarily) divided into pairs of opposite signs (due to signs balance). Fix some division; it
generates (by replacing valencies with their preimages in G) more pairs (ei, ej) for i ≤ j that
we also regard as transit. Totally we get exactly d transit pairs.

▶ Lemma 27. One can partition the set of incident edges δG(v) into two subsets L ⊔R such
that |L|, |R| ≥ 2 and there are at most two transit pairs (ei, ej) (call them split transit
pairs) such that ei, ej belong to distinct subsets, i.e. ei ∈ L, ej ∈ R or ei ∈ R, ej ∈ L.

Proof. Suppose there exists a transit pair (ei, ej) for i < j. Define L := {ei, ej} and
R := δG(v) − L. Each split transit pair must use another valence of ei or ej , hence there
could be at most two such pairs.

On the other hand, if all transit pairs are of the form (ei, ei), then an arbitrary partition
L ⊔R with |L|, |R| ≥ 2 will do. ◀

Construct a new valence network (G′, M ′, T ′ = T, 1) (Figure 5) by replacing vertex v

with three vertices u, v′, w and two edges uv′, v′w, and also replacing v with u in all edges
from L and replacing v with w in all edges from R. There are either 0 or 2 split transit
pairs; if there are two of them, extend these trails by inserting valencies of uv′ and v′w with
suitable signs so that signing M ′ is inner balanced. If there are no transit pairs, simply make
both uv′ and v′w have one positive and one negative valence. Thus, we also obtain a new
packing P ′ +Q′ in (G′12, M ′, T, 1), where P ′ (resp. Q′) contains at least p (resp. at most q)
odd (resp. even) alternating T -trails not passing through terminals as intermediate vertices.

▶ Lemma 28. s(G′) = s(G)− 1 for the resulting G′.
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Proof. First of all, deg v′ = 2 < 3, so we do not need to consider v′ when calculating
the change of supercubicity. Then, deg u = 1 + |L| ≥ 3 and deg w = 1 + |R| ≥ 3; also
deg u + deg w = 2 + |L|+ |R| = d + 2 and finally deg v = d. We conclude:

s(G′)− s(G) = max{0, deg u− 3}+ max{0, deg w − 3} −max{0, deg v − 3} =
(deg u−3)+(deg w−3)−(deg v−3) = (deg u+deg w)−deg v−3 = (d+2)−d−3 = −1 .

◀

Repeat these transformations until there are no more inner vertices with degree more
than 3. We obtain an inner subcubic signed valence network (G′12, M ′, T ′ = T, 1) with
an inner balanced signing M ′. Note that any T ′-trail W ′ in (G′12, T ′, 1) may easily be
transformed into a T -trail W in (G12, T, 1) of the same parity by performing all actions in
the reverse order and removing added parts of W ′, if there are any.

▶ Lemma 29. The resulting signing M ′ is (p, q)-tight.

Proof. The total number of “-” valencies adjacent to terminals does not change during
subcubization. Also, packing P ′ +Q’ has the same value as P +Q, i.e. p + q. ◀

Hence we proved the following theorem.

▶ Theorem 30. If (G12, M, T, 1) is signed valence network with a (p, q)-tight inner balanced
signing M , it is possible to construct a signed valence network (G′12, M ′, T ′ = T, 1) with a
(p, q)-tight inner balanced signing M ′ such that:

G′ is inner subcubic;
any packing P ′ of odd T ′-trails in (G′, T ′, 2) may be transformed into packing P of odd
T -trails in (G, T, 2) of the same value in polynomial time.

5.4 Regularization
Let (G12, M, T, 1) be an inner subcubic signed valence network with a (p, q)-tight inner
balanced signing M . Construct an integer packing P + Q of at least p odd alternating
T -trails (denoted by P) and at most q even alternating T -trails (denoted by Q) using
Lemma 23.

Suppose there is edge xy in E(G) that is irregular for some T -trail W in P +Q, i.e. W

traverses both of xy’s valencies in G12. Denote the fragment of W between two occurrences
of valencies of xy (but not including them) by C.

Note that xy is not adjacent to any terminal since all T -trails in P +Q are assumed to
avoid passing through terminals as intermediate vertices. Consider cases as follows:
Case 1 (Figure 6a): valencies of xy have opposite signs and W traverses them in the same

direction. Simplify W by dropping occurrences of both of these valencies.
Case 2 (Figure 6b): valencies of xy have opposite signs and W traverses them in the opposite

directions. Simplify W by dropping occurrences of both of these valencies together with C.
Case 3 (Figure 6c): valencies of xy have same signs and W traverses them in the same

direction. Simplify W by dropping one of the occurrences of these valencies together
with C.

Case 4 (Figures 6d and 6e): valencies of xy have same signs and W traverses them in the
opposite directions. Assume that xy is chosen such that C is the shortest possible. W.l.o.g.
y belongs to C. Finally assume that both valencies of xy are +; the remaining case is
done analogously.
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Figure 6 Regularization cases.

▶ Lemma 31. In Case 4, deg y = 3 and C starts with a negative valence of some edge yu

and terminates with a negative valence of some edge vy with u ̸= v.

Proof. If deg y = 1, the inner Eulerianess of y is contradicted as both of its adjacent valencies
are positive.

If deg y = 2, two valencies of the remaining adjacent edge are both negative and W must
follow both of them in order to be alternating. This contradicts the choice of xy with the
shortest C.

Finally deg y = 3 and C starts with some valence of yu and terminates with some valence
of vy, both of which are negative. If u = v, this would again contradict the choice of xy with
the shortest C. ◀

Consider two remaining valencies of yu and yv. For signing to be balanced at y, one of
them must be + and another must be -. Therefore, one of yu and yv has both a + and a -
valence; assume it is yu, the other case is done analogously. Call yu redundant and obtain
a new signed valence network (G′12, M ′, T ′ = T, 1) by removing yu in G′.

▶ Lemma 32. New signing M ′ is inner balanced and (p, q)-tight.

Proof. Signing M ′ is inner balanced since we remove two valencies of the same edge of
opposite signs. Also, the removed edge is not adjacent to a terminal, therefore the total
number of “-” valencies adjacent to terminals is preserved.

Let us prove that a packing of T -trails of value at least p + q still remains. Namely, we
alter P +Q so that none of its T -trails passes through valencies of the removed edge yu.

W.l.o.g. let e1 be the valence of e = yu that is the initial or the final valence of C.
Alter W by removing both valencies of xy and C, obtaining a (non-alternating) subtrail W ′

avoiding e1. Note that the remaining valence e2 may either: (i) not belong to any trail in
P +Q; (ii) belong to C; (iii) belong to the same trail W outside of C; (iv) belong to another
trail in P +Q.
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In subcases (i,ii) (Figure 6d) e2 is no longer used by any trail in P +Q; replace W with
W ′. In subcases (iii,iv) (Figure 6e), consider trail containing e2 and replace e2 in it with the
y − u fragment of C that is different from e1 (note that C is not used by W ′ anymore). ◀

Repeat the procedure until no more irregular edges exist. In Cases 1–3 the signed
valence graph does not change, but the total length of odd T -trails in the packing decreases.
Therefore, this step may be iterated until either there are no irregular edges or Case 4
happens and we obtain a new signed graph (G′12, M ′). In other words, (|E(G)|, L), where
L is the total length of T -trails in P, decreases lexicographically in each case. Thus the
total number of iterations is polynomial. Let us summarize the result of this section by the
following theorem.

▶ Theorem 33. If (G12, M, T, 1) is an inner subcubic signed valence network with a (p, q)-
tight inner balanced signing M , then it is possible to construct an integer packing of odd
T -trails in (G, T, 2) of value at least p in polynomial time.

5.5 Concluding the proof
Proof of Theorem 14. Let (G, T, 2) be a inner Eulerian network and let p be the value of a
maximum odd T -walk packing in it. Apply Theorem 25 to construct a signed valence network
(G′12, M ′, T ′, 1) with a (p, q)-tight inner balanced signing M ′ (for some q). By Theorem 30
the latter network can be replaced by a subcubic signed valence network (G′′12, M ′′, T ′′, 1)
with a (p, q)-tight inner balanced signing M ′′. Now Theorem 33 implies the existence of
packing P ′′ of odd T ′′-trails of value p in (G′′, T ′′, 2).

Finally reverse the changes applied to network: P ′′ gives rise to packing P ′ of odd T ′-trails
of the same value p in (G′, T ′, 2) (by Theorem 30); in its turn, P ′ generates packing P of
odd T -trails of value p in (G, T, 2) (by Theorem 25), as needed.

Note that all of the above steps take polynomial time. ◀
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A Proof of Theorem 12

We are going to use the following min-max relation for multiflows due to Karzanov under
the same commodity graph constraints as in Theorem 10; see [6]:

▶ Theorem 34. Let (G, T, cap) be a network and H be a commodity graph obeying the
conditions of Theorem 10. Consider a partition X := {X1, X2, . . . , Xk} of T into disjoint
nonempty sets X1, X2, . . . , Xk; call X proper if each Xi is an independent set of H. Define
the capacity of X as cap(X ) := 1

2
∑k

i=1 λ(Xi, T−Xi); also let Yi (Xi ⊆ Yi ⊆ V (G)−(T−Xi))
be the corresponding minimum cut between Xi and T −Xi in G.

Let F range over multiflows in network (G, T, cap) with commodity graph H, and X range
over proper partitions of T ; then

max
F
∥F∥ = min

X
cap(X ).

Moreover, the minimum X can be chosen such that Yi are pairwise disjoint.

Let us rewrite the capacity of an odd T -walk barrier as follows.

▶ Definition 35. Let H be a (not necessarily induced) subgraph of G. Define function
S[H] : E(G) → {0, 1

2 , 1} called a slice of H by S[H](e) := 1 for e ∈ U(H), S[H](e) := 1
2

for e ∈ I(H), and 0 otherwise.

A similar notion of slices (differing by a factor of 2) earlier appeared in [11]. Now for an odd
T -walk barrier cap(B) = cap • S[B], where • stands for the scalar product.

▶ Lemma 36. Let H be a (not necessarily induced) subgraph of G and C be the family of
connected components of H. Then S[H] =

∑
C∈C S[C] (regarded as functions on E(G)).

Proof. If S[H](xy) = 1, either x and y belong to the same connected component C1, in
which case S[C1](xy) = 1 and S[C2](xy) = 0 for any other C2 ∈ C, C2 ̸= C1, or to two
distinct connected components C1, C2 ∈ C, in which case S[C1](xy) + S[C2](xy) = 1

2 + 1
2 = 1

and S[C3](xy) = 0 for any other C3 ∈ C, C3 ̸= C1, C2.
If S[H](xy) = 1

2 , let C1 be the connected component containing one of xy’s endpoints; in
this case S[C1](xy) = 1

2 and S[C2](xy) = 0 for C2 ∈ C, C2 ̸= C1.
Otherwise S[H](xy) = 0 and S[C1](xy) = 0 for any C1 ∈ C. ◀

▶ Lemma 37. Let X range over proper partitions of T̃ and B be fixed odd T -walk barrier,
then

min
X

cap(X ) ≤ cap(B).
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Proof. Consider some barrier B and let C denote the family of connected components of B.
We construct a proper partition X of T̃ and a corresponding family of cuts separating X and
T̃ −X for any X ∈ X . Moreover, the capacities of these cuts are bounded by corresponding
summands in

∑
C∈C cap • S[C].

Call a component C ∈ C redundant if it contains no terminals from T and singular if
it contains a single terminal. Otherwise C must be bipartite (regarded as a graph) and all
terminals must belong to the same part of bipartition so that there is no odd T -walk within
this component. Construct a proper partition as follows.

If C is singular containing just terminal t ∈ T , enclose t with its symmetric vertex t′

with set X := {t, t′}, which is a maximal anticlique in HT . Note that Y := C ∪ C ′ is a cut
between X and T̃ −X; edges of δ(Y ) in G̃ correspond to edges of I(C) in G. Thus

1
2 c̃ap(δ(Y )) = 1

2
∑

xy∈δ(Y )̃

cap(xy) = 1
2

∑
xy∈I(C)

(c̃ap(xy′) + c̃ap(x′y)) =

= 1
2

∑
xy∈I(C)

cap(xy) = 1
2cap(I(C)) ≤ cap • S[C]. (1)

If C is bipartite containing multiple terminals t1, . . . , tk, introduce sets X := {t1, . . . , tk}
and X ′ := {t′

1, . . . , t′
k}, which are subsets of maximal anticliques T and T ′ in HT , respectively.

Let L and R be the bi-partition parts of C such that t1, . . . , tk ∈ L. Note that Y := L ⊔R′

is a cut between X and T̃ −X and, symmetrically, Y ′ = L′ ⊔ R is a cut between X ′ and
T̃ −X ′.

There are two kinds of edges in δ(Y ) ∪ δ(Y ′) in G̃: the ones connecting Y or Y ′ with
V (G)− (Y ⊔ Y ′), and the ones connecting Y with Y ′. Again, the former ones correspond to
edges in I(C), while the latter ones are edges connecting L with L′ or R with R′; therefore
their pre-images belong to γ(L) or γ(R), hence they belong to U(C). Using these observations,
we get the following:

1
2 (c̃ap(δ(Y )) + c̃ap(δ(Y ′))) = 1

2
∑

xy∈δ(Y ⊔Y ′ )̃

cap(xy) +
∑

x∈Y, y∈Y ′̃

cap(xy) ≤

≤ 1
2

∑
xy∈I(C)

(c̃ap(xy′) + c̃ap(x′y)) +
∑

xy∈U(C)

(c̃ap(xy′) + c̃ap(x′y)) =

= 1
2

∑
xy∈I(C)

cap(xy) +
∑

xy∈U(C)

cap(xy) = 1
2cap(I(C)) + cap(U(C)) = cap • S[C]. (2)

Finally, if C is redundant, it does not produce any set for our proper partition. Note that
each vertex v ∈ T̃ belongs to exactly one of the formed sets in our partition.

Summing Equation (1) and Equation (2) over all singular and bipartite components, we
get cap(X ) ≤ cap • S[B] = cap(B), which completes the proof. ◀

▶ Lemma 38. There exists a proper partition X with minimum cap(X ) such that no two
X1, X2 ∈ X are subsets of the same maximal anticlique in HT .

Proof. Construct another proper partition Z by replacing X1 and X2 with X1 ⊔X2. The
change in capacity is cap(Z) − cap(X ) = λ(X1 ⊔ X2, T̃ − (X1 ⊔ X2)) − λ(X1, T̃ − X1) −
λ(X2, T̃ −X2).

Let Yi be a minimum cut between Xi and T̃ − Xi for i = 1, 2. Submodularity of cut
capacities [10, Sec. 44.1a] implies λ(X1, T̃ −X1)+λ(X2, T̃ −X2) = cap(δ(Y1))+cap(δ(Y2)) ≥
cap(δ(Y1∩Y2))+cap(δ(Y1∪Y2)) ≥ 0+λ(X1⊔X2, T̃−(X1⊔X2)). Therefore, cap(Z) ≤ cap(X ).
Repeat merging parts until done. ◀
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5:18 Packing Odd Walks and Trails in Multiterminal Networks

(a) Odd T -walk barrier B in (G, T, c): left connected component is singular; right connected component is
non-singular; blue and red edges are I(B) and U(B), respectively.

(b) Proper partition X in (G̃, T̃ , c̃): left set is singular; two right sets are non-singular and symmetric;
blue and red edges are accounted in cap(X ) with weight 1

2 and 1, respectively.

Figure 7 Odd T -walk barrier B and its corresponding proper partition X .

From the previous lemma trivially follows the following corollary.

▶ Corollary 39. There exists a proper partition X with minimum cap(X ) such that all of its
sets are of the form {t, t′} for t ∈ T (call them singular) except for, possibly, two symmetric
sets X, X ′ ∈ X (call them non-singular).

▶ Lemma 40. There exists a proper partition X with minimum cap(X ) such that the
associated minimum cuts between X and T̃ −X for X ∈ X obey the following properties:

if X is singular, the corresponding cut Y is self-symmetric, i.e. Y ′ = Y ;
if X and X ′ are non-singular, their corresponding cuts are also symmetric to each other;
all the above cuts are disjoint.

Proof. Using Theorem 34, we may choose X such that the corresponding cuts Y , Y ′ are
disjoint.

If Y is a minimum cut between {t, t′} and T̃ − {t, t′} for some t ∈ T , then so is Y ′. Since
by submodularity cap(δ(Y )) + cap(δ(Y ′)) ≥ cap(δ(Y ∩ Y ′)) + cap(δ(Y ∪ Y ′)), it follows that
Y ∩ Y ′ is also a minimum cut between {t, t′} and T̃ − {t, t′}; also Y ∪ Y ′ is self-symmetric
by construction. Replace Y with Y ∩ Y ′.

The second part of the statement is similar. If X and X ′ are non-singular and Y1 (resp. Y2)
is a minimum cut between X and T̃ −X (resp. X ′ and T̃ −X ′), then Y ′

2 and (resp. Y ′
1) is

also a minimum cut for the same vertex sets. Using a similar argument, replace Y1 and Y2
with Y1 ∩ Y ′

2 and Y2 ∩ Y ′
1 , which are also minimum cuts symmetric to each other.

The steps above replace cuts with their subsets; therefore the last property is preserved. ◀

▶ Lemma 41. Let X range over proper partitions of T and B range over odd T -walk barriers,
then

min
X

cap(X ) ≥ min
B

cap(B).

Proof. Pick X with the minimum capacity cap(X ) satisfying the properties from the previous
lemma.

If X = {t, t′} ∈ X is singular and Y is the corresponding cut, consider the pre-image
C ⊆ V (G) of Y . Add the subgraph of G induced by C to barrier B. Note that U(C) = ∅.
Now
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cap • S[C] = 1
2cap(I(C)) = 1

2
∑

xy∈I(C)

cap(xy) =

= 1
2

∑
xy∈I(C)

(c̃ap(xy′) + c̃ap(x′y)) = 1
2 c̃ap(δ(Y )). (3)

If X, X ′ ∈ X are non-singular, consider their corresponding cuts Y and Y ′. Let Y = L⊔R′

for L, R ⊆ V (G) (which implies Y ′ = L′ ⊔R). Add the bipartite subgraph D of G induced
by L and R to barrier B. Note that U(D) is the pre-image of edges xy′ with x ∈ Y and
y′ ∈ Y ′. Therefore

cap • S[D] = cap(U(D)) + 1
2cap(I(D)) =

∑
xy∈U(D)

cap(xy) + 1
2

∑
xy∈I(D)

cap(xy) =

= 2 · 1
2

∑
xy∈U(D)

(c̃ap(xy′) + c̃ap(x′y)) + 1
2

∑
xy∈I(D)

(c̃ap(xy′) + c̃ap(x′y)) =

= 1
2(c̃ap(δ(Y )) + c̃ap(δ(Y ′))). (4)

◀

Proof of Theorem 12. From Theorem 9 we know that maxP ∥P∥ = maxQ ∥Q∥, where P
ranges over odd T -walk packings and Q ranges over multiflows in (G̃, T̃ , c̃ap) with commodity
graph HT . Then, from Theorem 34 it follows that maxQ ∥Q∥ = minX cap(X ), where X
ranges over proper partitions of T in HT . Finally, from Lemma 37 and Lemma 41 it follows
that minX cap(X ) = minB cap(B). ◀
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